Home CV Research People Teaching Blog

Schmidt - Browse papers with the paper browser

[bare list] [illustrated] [by topic]
    Reference [<] [>] [x] : Figure [<] [>] [x]

    11. A density functional for a model colloid-polymer mixture
    M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, Phys. Rev. Lett. 85, 1934 (2000).
    Locate in [bare] [illustrated] list. Get [full paper] as pdf.

    Abstract. We present a density functional theory for mixtures of (hard sphere) colloidal particles and ideal polymers. For this extreme nonadditive system we employ a fundamental measures approach to construct a functional which incorporates the correct dimensional crossover and the exact low density limit. In bulk fluid mixtures the functional yields the same free energy and, therefore, the same gas-liquid (demixing) transition as given by free-volume theory. It generates consistent pair correlation functions; the partial structure factors Sij(k) diverge, as k->0, at the critical point obtained from the free energy. Our results for the structure agree well with those from simulation and Percus-Yevick theory. [figures]


    Read the [full paper] as pdf.

    Basic model fluids

    Density functionals were constructed for hard spheres [5] [6], penetrable spheres that interact with a step-function pair potential [7] (see [14] for more discussion), the Asakura-Oosawa-Vrij model of colloid-polymer mixtures [11], the Widom-Rowlinson model [17], and non-additive hard sphere mixtures [53].

    Colloid-polymer mixtures

    The density functional theory for the Asakura-Oosawa model of colloid-polymer mixtures [11] was used to find the "floating liquid" phase [52]. Phew, I am exhausted! All these relations drive me crazy.. See [29] for an investigation of bulk fluid phases. See [22] for an answer to the question whether effective interactions depend on the choice of coordinates.

    [more]

Legal. The material on this website is intended as a scientific resource for the private use of individual scholars. None of it may be used commercially, or for financial gain. Some of the material is protected by copyright. Requests for permission to make public use of any of the papers, or material therein, should be sought from the original publisher, or from M. Schmidt, as appropriate.
MS, 20 Apr 2009.