Home CV Research People Teaching Blog

Schmidt - Browse papers with the paper browser

[bare list] [illustrated] [by topic]
    Reference [<] [>] [x] : Figure [<] [>] [x]

    23. Freezing transition of hard hyperspheres
    R. Finken, M. Schmidt, and H. Löwen, Phys. Rev. E 65, 016108 (2002).
    Locate in [bare] [illustrated] list. Get [full paper] as pdf.

    Abstract. We investigate the system of D-dimensional hard spheres in D-dimensional space, where D>3. For the fluid phase of these hyperspheres, we generalize scaled-particle theory to arbitrary D and furthermore use the virial expansion and the Percus-Yevick integral equation. For the crystalline phase, we adopt cell theory based on elementary geometrical assumptions about close-packed lattices. Regardless of the approximation applied, and for dimensions as high as D=50, we find a first-order freezing transition, which preempts the Kirkwood second-order instability of the fluid. The relative density jump increases with D, and a generalized Lindemann rule of melting holds. We have also used ideas from fundamental-measure theory to obtain a free energy density functional for hard hyperspheres. Finally, we have calculated the surface tension of a hypersphere fluid near a hard smooth hyper-wall within scaled-particle theory. [figures]


    Read the [full paper] as pdf.

    Hard spheres

    The hard sphere system freezes between [2] and [3], and in ~[23] dimensions (tags as contents!), as well as on stripe-patterned substrates [26]. Deep relations to dimensional crossover exist [5] [6]. Hard spheres were immersed in emulsions [9], confined to a flexible container [18], exposed to surfaces of other quenched spheres [37] and of random fiber networks [39], and subject to gravity [51]. Recently, the Rosenfeld functional [5] [6] was generalized to non-additive mixtures [53].

    [more]

Legal. The material on this website is intended as a scientific resource for the private use of individual scholars. None of it may be used commercially, or for financial gain. Some of the material is protected by copyright. Requests for permission to make public use of any of the papers, or material therein, should be sought from the original publisher, or from M. Schmidt, as appropriate.
MS, 20 Apr 2009.