Home CV Research People Teaching Blog

Schmidt - Statistical and Nonequilibrium Physics

[bare list] [illustrated] [by topic] Publons Google Scholar

    Original papers

    2024


    163. Hyper-density functional theory of soft matter
    Florian Sammüller, Silas Robitschko, Sophie Hermann, and Matthias Schmidt (submitted). arxiv, pdf.
    162. Noether invariance theory for the equilibrium force structure of soft matter
    Sophie Hermann, Florian Sammüller, and Matthias Schmidt (J. Phys. A: Math. Theor., submitted). arxiv, pdf.
    161. Why neural functionals suit statistical mechanics
    Florian Sammüller, Sophie Hermann, and Matthias Schmidt, J. Phys. Condens. Matter 36, 243002 (2024) (Invited Topical Review). doi, arxiv, tutorial, Press Release, pdf.
    160. Hyperforce balance via thermal Noether invariance of any observable
    Silas Robitschko, Florian Sammüller, Matthias Schmidt, and Sophie Hermann, Commun. Phys. 7, 103 (2024). doi, arxiv, pdf, Sophie's blog post.
    159. Active crystallization from power functional theory
    Sophie Hermann and Matthias Schmidt, Phys. Rev. E (Letter) 109, L022601 (2024). doi, arxiv, pdf.

    2023


    158. Neural functional theory for inhomogeneous fluids: Fundamentals and applications
    Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt, Proc. Nat. Acad. Sci. 120, e2312484120 (2023). doi, arxiv, code, tutorial, Press Release, pdf.
    157. Local measures of fluctuations in inhomogeneous liquids: Statistical mechanics and illustrative applications
    Tobias Eckert, Nico C. X. Stuhlmüller, Florian Sammüller, and Matthias Schmidt, J. Phys.: Condens. Matter 35, 425102 (2023). doi, arxiv, pdf, Video,
    156. Effect of sample height and particle elongation in the sedimentation of colloidal rods
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, Soft Matter 19, 2214 (2023). doi, arxiv, pdf.
    155. Perspective: How to overcome dynamical density functional theory
    Daniel de las Heras, Toni Zimmermann, Florian Sammüller, Sophie Hermann, and Matthias Schmidt,
    J. Phys.: Condens. Matter 35, 271501 (2023). (Invited Perspective) doi, arxiv, pdf. Video, Press Release.
    154. Noether-constrained correlations in equilibrium liquids
    Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt, Phys. Rev. Lett. 130, 268203 (2023). doi, arxiv, pdf.
    153. Reduced-variance orientational distribution functions from torque sampling
    Johannes Renner, Matthias Schmidt, and Daniel de las Heras, J. Phys.: Condens. Matter 35, 235901 (2023). doi, arxiv, pdf.
    152. Comparative study of force-based classical density functional theory
    Florian Sammüller, Sophie Hermann, and Matthias Schmidt, Phys. Rev. E 107, 034109 (2023). doi, arxiv, pdf.
    151. Inhomogeneous steady shear dynamics of a three-body colloidal gel former
    Florian Sammüller, Daniel de las Heras, and Matthias Schmidt, J. Chem. Phys. 158, 054908 (2023). (Special Topic on Colloidal Gels). doi, movie, arxiv, pdf.

    2022


    150. Sedimentation path theory for mass-polydisperse colloidal systems
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, J. Chem. Phys. 157, 234901 (2022). doi, arxiv, pdf.
    149. Force balance in thermal quantum many-body systems from Noether's theorem
    Sophie Hermann and Matthias Schmidt, J. Phys. A: Math. Theor. 55, 464003 (2022). (Physics of Michael Berry). doi, arxiv, pdf.
    148. Variance of fluctuations from Noether invariance
    Sophie Hermann and Matthias Schmidt, Commun. Phys. 5, 276 (2022). doi, pdf, arxiv, Sophie's blog post.
    147. Force density functional theory in- and out-of-equilibrium
    Salomée Tschopp, Florian Sammüller, Sophie Hermann, Matthias Schmidt, and Joseph M. Brader, Phys. Rev. E 106, 014115 (2022). doi, pdf, arxiv.
    146. Shear and bulk acceleration viscosities in simple fluids
    Johannes Renner, Matthias Schmidt, and Daniel de las Heras, Phys. Rev. Lett. 128, 094502 (2022). doi, arxiv, pdf.
    145. Sedimentation of colloidal plate-sphere mixtures and inference of particle characteristics from stacking sequences
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, Phys. Rev. Res. 4, 013189 (2022). doi, arxiv, pdf.
    144. Dynamic decay and superadiabatic forces in the van Hove dynamics of bulk hard sphere fluids
    Lucas L. Treffenstädt, Thomas Schindler, Matthias Schmidt, SciPost Phys. 12, 133 (2022). doi, arxiv, pdf.
    143. Power functional theory for many-body dynamics
    Matthias Schmidt, Rev. Mod. Phys. 94, 015007 (2022). doi, pdf, arxiv, Nutshell, Press Release.
    142. Why Noether's Theorem applies to Statistical Mechanics
    Sophie Hermann and Matthias Schmidt, J. Phys.: Condens. Matter 34, 213001 (2022) (Invited Topical Review). doi, pdf, arxiv, Noether rules.

    2021


    141. Gravity-induced phase phenomena in plate-rod colloidal mixtures
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, Commun. Phys. 4, 202 (2021). pdf, journal, doi, arxiv.
    140. Adaptive Brownian Dynamics
    Florian Sammüller and Matthias Schmidt, J. Chem. Phys. 155, 134107 (2021). doi, pdf, code, arxiv. Featured on the Cover of Issue 13.
    139. Custom Flow in Molecular Dynamics
    Johannes Renner, Matthias Schmidt, and Daniel de las Heras, Phys. Rev. Res. 3, 013281 (2021). pdf, doi, arxiv.
    138. Noether's Theorem in Statistical Mechanics
    Sophie Hermann and Matthias Schmidt, Commun. Phys. 4, 176 (2021). pdf, doi, arxiv, webpage, Press Release.
    137. Phase separation of active Brownian particles in two dimensions: Anything for a quiet life
    Sophie Hermann, Daniel de las Heras, and Matthias Schmidt, Mol. Phys. e1902585 (2021); Gerhard Findenegg Memorial Issue. pdf, doi, arxiv.
    136. Universality in driven and equilibrium hard sphere liquid dynamics
    Lucas L. Treffenstädt and Matthias Schmidt, Phys. Rev. Lett. 126, 058002 (2021). pdf, doi, arxiv.

    2020


    135. Fluctuation profiles in inhomogeneous fluids
    Tobias Eckert, Nico C. X. Stuhlmüller, Florian Sammüller, and Matthias Schmidt, Phys. Rev. Lett. 125, 268004 (2020). pdf, doi, arxiv.
    134. Flow and structure in nonequilibrium Brownian many-body systems
    Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 125, 018001 (2020). pdf, doi, arxiv, Supp. Mat.
    133. Active interface polarization as a state function
    Sophie Hermann and Matthias Schmidt, Phys. Rev. Research 2, 022003(R) (2020). pdf, doi, arxiv.
    132. Shear-induced deconfinement of hard disks
    Nikolai Jahreis and Matthias Schmidt, Col. Pol. Sci. 298, 895 (2020); Festschrift Matthias Ballauff. pdf, doi.
    131. Crystal structures in binary hard-sphere colloid-droplet mixtures with patchy cross interactions
    Hai Pham Van, Andrea Fortini, and Matthias Schmidt, Phys. Rev. E 101, 012608 (2020). pdf, doi.
    130. Superadiabatic demixing in nonequilibrium colloids
    Thomas Geigenfeind, Daniel de las Heras and Matthias Schmidt, Commun. Phys. 3, 23 (2020). pdf, doi.
    129. Memory-induced motion reversal in Brownian liquids
    Lucas L. Treffenstädt and Matthias Schmidt, Soft Matter 16, 1518 (2020). pdf, doi, arxiv.

    2019


    128. Non-negative interfacial tension in phase-separated active Brownian particles
    Sophie Hermann, Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 123, 268002 (2019). arxiv, pdf, doi.
    127. Phase coexistence of active Brownian particles
    Sophie Hermann, Philip Krinninger, Daniel de las Heras and Matthias Schmidt, Phys. Rev. E 100, 052604 (2019). arxiv, pdf, doi.
    126. Superadiabatic forces via the acceleration gradient in quantum many-body dynamics
    Moritz Brütting, Thomas Trepl, Daniel de las Heras and Matthias Schmidt, Molecules 24, 3660 (2019); doi, pdf.
    125. Power functional theory for active Brownian particles: general formulation and power sum rules
    Philip Krinninger and Matthias Schmidt, J. Chem. Phys. 150, 074112 (2019); doi, pdf.
    124. Custom flow in overdamped Brownian dynamics
    Daniel de las Heras, Johannes Renner, and Matthias Schmidt, Phys. Rev. E 99, 023306 (2019); arxiv, pdf, doi.

    2018


    123. Structural nonequilibrium forces in driven colloidal systems
    Nico C. X. Stuhlmüller, Tobias Eckert, Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 121, 098002 (2018). doi, journal, pdf.
    122. Better than counting: Density profiles from force sampling
    Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 120, 218001 (2018) (selected as PRL Editors' Suggestion); arxiv, pdf, doi.
    121. Active ideal sedimentation: Exact two-dimensional steady states
    Sophie Hermann and Matthias Schmidt, Soft Matter 14, 1614 (2018). arxiv, pdf, doi.
    120. Power functional theory for Newtonian many-body dynamics
    Matthias Schmidt, J. Chem. Phys. 148, 044502 (2018); pdf, doi.
    119. Velocity gradient power functional for Brownian dynamics
    Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 120, 028001 (2018); pdf, doi; arxiv.

    2017


    118. Assembly of One-Patch Colloids into Clusters via Emulsion Droplet Evaporation
    Hai Pham Van, Andrea Fortini and Matthias Schmidt, Materials 10, 361 (2017); pdf, doi.

    2016


    117. Nonequilibrium phase behaviour from minimization of free power dissipation
    Philip Krinninger, Matthias Schmidt, and Joseph M. Brader, Phys. Rev. Lett. 117, 208003 (2016); Erratum 119, 029902 (2017); pdf, doi, arxiv.
    116. Dynamic pair correlations and superadiabatic forces in a dense Brownian liquid
    Thomas Schindler, Matthias Schmidt, J. Chem. Phys. 145, 064506 (2016). pdf, doi, arxiv.
    115. Superadiabatic forces in the dynamics of the one-dimensional Gaussian core model
    Elias Bernreuther and Matthias Schmidt, Phys. Rev. E 94, 022105 (2016). pdf, doi, arxiv.
    114. Assembly of open clusters of colloidal dumbbells via droplet evaporation
    Hai Pham Van, Andrea Fortini, Matthias Schmidt, Phys. Rev. E 93, 052609 (2016). pdf, journal, doi.
    113. Particle conservation in dynamical density functional theory
    D. de las Heras, J. M. Brader, A. Fortini, M. Schmidt, J. Phys.: Condens. Matter 28, 244024 (2016). pdf, journal
    112. Minimal model for dynamic bonding in colloidal transient networks
    P. Krinninger, A. Fortini, and M. Schmidt, Phys. Rev. E 93, 042601 (2016). pdf, journal, doi.
    111. Reentrant network formation in patchy colloidal mixtures under gravity
    D. de las Heras, L. L. Treffenstädt, and M. Schmidt, Phys. Rev. E 93, 030601(R) (2016). pdf, journal, doi.

    2015


    110. Quantum power functional theory for many-body dynamics
    M. Schmidt, J. Chem. Phys. 143, 174108 (2015). pdf, doi.
    109. Confinement of two-dimensional rods in slit pores and square cavities
    T. Geigenfeind, S. Rosenzweig, M. Schmidt, and D. de las Heras, J. Chem. Phys. 142, 174701 (2015). pdf, journal
    108. Free power dissipation from functional line integration
    J. M. Brader, M. Schmidt, Mol. Phys. 113, 2873 (2015). (Special issue in honour of Jean-Pierre Hansen) journal.

    2014


    107. Power functional theory for the dynamic test particle limit
    J. M. Brader, M. Schmidt, J. Phys.: Condens. Matter 27, 194106 (2015). pdf, journal
    106. Full canonical information from grand potential density functional theory
    D. de las Heras, M. Schmidt, Phys. Rev. Lett. 113, 238304 (2014). pdf, journal.
    105. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials
    D. de las Heras, M. Schmidt, J. Phys.: Condensed Matt. 27, 194115 (2015). (Special Issue for Liquids 2014) pdf, arxiv.
    104. Superadiabatic forces in Brownian many-body dynamics
    A. Fortini, D. de las Heras, J. M. Brader, M. Schmidt, Phys. Rev. Lett. 113, 167801 (2014). pdf, journal, arxiv.
    103. Dynamic correlations in Brownian many-body systems
    J. M. Brader and M. Schmidt, J. Chem. Phys. 140, 034104 (2014). pdf, doi, arxiv.

    2013


    102. Phase stacking diagram of colloidal mixtures under gravity
    D. de las Heras and M. Schmidt, Soft Matter 9, 8636 (2013). pdf, doi, arxiv, cover page.
    101. Nonequilibrium Ornstein-Zernike relation for Brownian many-body Dynamics
    J. M. Brader and M. Schmidt, J. Chem. Phys. 139, 104108 (2013). pdf, doi, arxiv.
    100. Power functional theory for Brownian dynamics
    M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013). pdf, doi, arxiv.
    to appear.
    99. Effect of controlled corrugation on capillary condensation of colloid-polymer mixtures
    A. Fortini and M. Schmidt, Soft Matter 9, 3994 (2013). doi, pdf, arxiv. journal.
    published.

    2012


    98. Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory
    M. Schmidt, M. Burgis, W. S. B. Dwandaru, G. Leithall, P. Hopkins, Cond. Matt. Phys. 15, 43603 (2012). doi, pdf, arxiv.
    published.
    97. Floating nematic phase in colloidal platelet-sphere mixtures
    D. de las Heras, N. Doshi, T. Cosgrove, J. Phipps, D. I. Gittins, J. S. van Duijneveldt, M. Schmidt, Sci. Rep. 2, 789 (2012). doi, pdf, journal.
    published.
    96. Bulk fluid phase behaviour of colloidal platelet-sphere and platelet-polymer mixtures
    D. de las Heras, M. Schmidt, Phil. Trans. R. Soc. A 371, 20120259 (2013). pdf, journal.
    published.
    95. Particle nanosomes with tailored silhouettes
    C. S. Wagner, A. Fortini, E. Hofmann, Th. Lunkenbein, M. Schmidt, and A. Wittemann, Soft Matter 8, 1928 (2012). doi, pdf, journal.
    published.

    2011


    94. Monte Carlo computer simulations and electron microscopy of colloidal cluster formation via emulsion droplet evaporation
    I. Schwarz, A. Fortini, C. S. Wagner, A. Wittemann and M. Schmidt, J. Chem. Phys. 135, 244501 (2011). pdf, doi, arxiv.
    published.
    93. Statics and dynamics of inhomogeneous liquids via the internal-energy functional
    M. Schmidt, Phys. Rev. E 84, 051203 (2011). pdf, doi, arxiv.
    published.
    92. Density functional for ternary non-additive hard sphere mixtures
    M. Schmidt, J. Phys.: Condens. Matt. 23, 415101 (2011). pdf, doi, arxiv, news.
    published.
    91. Radial distribution functions of non-additive hard sphere mixtures via Percus' test particle route
    P. Hopkins and M. Schmidt, J. Phys.: Condens. Matt. 23, 325104 (2011). pdf, doi.
    published.
    90. First-order layering and critical wetting transitions in nonadditive hard sphere mixtures
    P. Hopkins and M. Schmidt, Phys. Rev. E 83, 050602(R) (2011). pdf, doi, arxiv.
    published.
    89. Variational principle of classical density-functional theory via Levy's constrained search method
    W. S. B. Dwandaru and M. Schmidt, Phys. Rev. E 83, 061133 (2011). pdf, doi, arxiv.
    submitted.
    88. Computer simulations of colloidal transport on a patterned magnetic substrate
    A. Fortini and M. Schmidt, Phys. Rev. E. 83, 041411 (2011). pdf, doi, arxiv.
    accepted.
    87. Density functional for hard hyperspheres from a tensorial-diagrammatic series
    G. Leithall and M. Schmidt, Phys. Rev. E 83, 021201 (2011). pdf, url, arxiv.
    accepted.
    86. Isometric and metamorphic operations on the space of local fundamental measures
    M. Schmidt, Mol. Phys. 109, 1253 (2011). (Special Issue in honour of R. Evans). pdf, doi, arxiv.
    accepted.
    85. Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field
    J. Phillips and M. Schmidt, J. Phys.: Condens. Matt. 23, 194111 (2011). (Special Issue in honour of Henk Lekkerkerker). pdf, doi, arxiv.
    accepted.

    2010


    84. The van Hove distribution function for Brownian hard spheres:
    Dynamical test particle theory and computer simulations for bulk dynamics

    P. Hopkins, A. Fortini, A.J. Archer, and M. Schmidt, J. Chem. Phys. 133, 224505 (2010). pdf, doi, arxiv.
    published.
    83. Nanoparticle assembly by confinement in wrinkles: Experiment and Simulations
    A. Schweikart, A. Fortini, A. Wittemann, M. Schmidt, and A. Fery, Soft Matter 6, 5860 (2010). Communication, pdf, doi.
    published.
    82. Laterally driven interfaces in the three-dimensional Ising lattice gas
    T. H. R. Smith, O. Vasilyev, A. Maciolek, M. Schmidt, Phys. Rev. E 82, 021126 (2010). pdf, journal
    published.
    81. Binary non-additive hard sphere mixtures: Fluid demixing, asymptotic decay of correlations and free fluid interfaces
    P. Hopkins and M. Schmidt, J. Phys.: Condens. Matt. 22, 325108 (2010). IOPSelect, pdf, doi, arxiv, news
    published.
    80. Bulk phase behavior of binary hard-platelet mixtures from density functional theory
    J. Phillips and M. Schmidt, Phys. Rev. E 81, 041401 (2010). pdf
    published.
    79. Sedimentation equilibrium of colloidal platelets in an aligning magnetic field
    H. Reich and M. Schmidt, J. Chem. Phys. 132, 144509 (2010). pdf
    published.
    78. Lateral transport of thermal capillary waves
    T. H. R. Smith, O. Vasilyev, A. Maciolek, and M. Schmidt, EPL 89, 10006 (2010). pdf
    published.

    2009


    77. Quenched-annealed density functional theory for interfacial behaviour of hard rods at a hard rod matrix
    D. L. Cheung and M. Schmidt, J. Chem. Phys. 131, 214705 (2009). pdf
    accepted.
    76. Test particle limit for the pair structure of quenched-annealed fluid mixtures
    M. Schmidt, Phys. Rev. E 79, 031405 (2009). pdf
    published.

    2008


    75. Structure and stability of isotropic states of hard platelet fluids
    D. L. Cheung, L. Anton, M. P. Allen, A. J. Masters, J. Phillips, and M. Schmidt, Phys. Rev. E 78, 041201 (2008). pdf
    published.
    74. Interfaces in confined Ising models: Kawasaki, Glauber and sheared dynamics
    T. H. R. Smith, O. Vasilyev, D. B. Abraham, A. Maciolek, and M. Schmidt, J. Phys.: Condens. Matter 20, 494237 (2008). pdf
    published.
    73. Non-equilibrium sedimentation of colloids: Confocal microscopy and Brownian dynamics simulations
    M. Schmidt, C. P. Royall, A. van Blaaderen, and J. Dzubiella, J. Phys.: Condens. Matter 20, 494222 (2008). pdf
    published.
    72. Interfaces in driven Ising models: Shear enhances confinement
    T. H. R. Smith, O. Vasilyev, D. B. Abraham, A. Maciolek, and M. Schmidt, Phys. Rev. Lett. 101, 067203 (2008). pdf
    published.

    2007


    71. Peel or Coat Spheres by Convolution, Repeatedly
    M. Schmidt and M. R. Jeffrey, J. Math. Phys. 48, 123507 (2007). pdf
    published.
    70. Fundamental measure density functional theory for non-additive hard core mixtures: The one-dimensional case
    M. Schmidt, Phys. Rev. E 76, 031202 (2007). pdf
    published.
    69. Capillary nematization of hard colloidal platelets confined between two parallel hard walls
    H. Reich and M. Schmidt, J. Phys.: Condens. Matt. 19, 326103 (2007). doi, pdf
    published.
    68. A relationship of mean-field theory for a driven lattice gas to an exact equilibrium density functional
    W. S. B. Dwandaru and M. Schmidt, J. Phys. A: Math. Theo. 40, 13209 (2007). pdf
    published.
    67. Non-equilibrium sedimentation of colloids on the particle scale
    C. P. Royall, J. Dzubiella, M. Schmidt, and A. van Blaaderen, Phys. Rev. Lett. 98, 188304 (2007);
    also in: Virt. J. Nanosc. Sci. & Tech. 15, Issue 19 (2007). pdf
    published.
    66. Dynamics in inhomogeneous liquids and glasses via the test particle limit
    A. J. Archer, P. Hopkins, and M. Schmidt, Phys. Rev. E 75, 040501(R) (2007). pdf
    published.
    65. Entropic wetting and the free isotropic-nematic interface of hard colloidal platelets
    H. Reich, M. Dijkstra, R. van Roij, and M. Schmidt, J. Phys. Chem. B 111, 7825 (2007). doi, pdf
    published.

    2006


    64. The isotropic-nematic interface and wetting in suspensions of colloidal platelets
    D. van der Beek, H. Reich, P. van der Schoot, M. Dijkstra, T. Schilling, R. Vink, M. Schmidt, R. van Roij, and H. N. W. Lekkerkerker,
    Phys. Rev. Lett. 97, 087801 (2006). pdf
    published.
    63. Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
    A. Fortini, M. Schmidt, and M. Dijkstra, Phys. Rev. E. 73, 051502 (2006). pdf
    published.
    62. Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel
    A. J. Archer, M. Schmidt, and R. Evans, Phys. Rev. E. 73, 011506 (2006). pdf
    published.
    61. Density functional theory for colloidal mixtures of hard platelets, rods, and spheres
    A. Esztermann, H. Reich, and M. Schmidt, Phys. Rev. E. 73, 011409 (2006). pdf
    published.

    2005


    60. Lattice density functional for colloid-polymer mixtures: Comparison of two fundamental measure theories
    J. A. Cuesta, L. Lafuente and M. Schmidt, Phys. Rev. E 72, 031405 (2005). pdf
    published.
    59. Mixtures of charged colloid and neutral polymer: influence of electrostatic interactions on demixing and interfacial tension
    A. R. Denton and M. Schmidt, J. Chem. Phys. 122, 244911 (2005). pdf
    published.
    58. Wall-Fluid and liquid-gas interfaces of model colloid-polymer mixtures by simulation and theory
    A. Fortini, M. Dijkstra, M. Schmidt, and P. P. F. Wessels, Phys. Rev. E. 71, 051403 (2005). pdf
    published.
    57. Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and non-ideal polymers
    R. L. C. Vink and M. Schmidt, Phys. Rev. E 71, 051406 (2005). pdf
    published.
    56. Wetting, drying, and layering of colloid-polymer mixtures at porous interfaces
    P. P. F. Wessels, M. Schmidt, and H. Löwen, Phys. Rev. Lett. 94, 078303 (2005).
    Fresh from the brewery.
    [more] [pdf] Teaser.

    55. Entropic interfaces in hard-core model amphiphilic mixtures
    J. M. Brader and M. Schmidt, J. Coll. Interf. Sci. 281, 495 (2005).
    In a ternary mixture of spheres (species S), hard needles (species N), and hybrid particles playing the role of amphiphiles (species A) there are only hard core interactions. We give strong evidence that amphiphilic properties can arise purely from geometrical packing effects (without attractive forces!)
    [more] [pdf] Teaser.

    2004


    54. Isotropic-nematic transition of hard rods immersed in random sphere matrices
    M. Schmidt and M. Dijkstra, J. Chem. Phys. 121, 12067 (2004).
    Using replica density functional theory and computer simulations a system of annealed hard spherocylinders is adsorbed in a matrix of quenched hard spheres.
    [more] [pdf] Teaser.

    53. Rosenfeld functional for non-additive hard spheres
    M. Schmidt, J. Phys.: Condens. Matt. 16, L351 (2004).
    The interaction between unlike balls in non-additive hard spheres is different from what one would expect solely from their shapes. This makes a geometric treatment very delicate. (A culmination after many failed attemts since Ref.11.)
    [more] [pdf] Teaser.

    52. Floating liquid phase in sedimenting colloid-polymer mixtures
    M. Schmidt, M. Dijkstra, and J.-P. Hansen, Phys. Rev. Lett. 93, 088303 (2004).
    The green particles (colloids) are heavier than the red ones (polymers). Nevertheless, phase separation induces a lifted layer of colloids, leading to apparent three-phase coexistence. Gravity points downwards and increases from left to right. This (and Ref. 52) is based on an inspiring collaboration during Jean-Pierre's tenure of the Kramers chair of Utrecht University.
    [more] [pdf] Teaser.

    51. Competition between sedimentation and phase coexistence of colloidal dispersions under gravity
    M. Schmidt, M. Dijkstra, and J.-P. Hansen, J. Phys.: Condens. Matt. 16, S4185 (2004).
    We show that under gravity the location of the interface between two phase can depend on the total height of the sample. Here the interface shifts downwards upon increasing height.
    [more] [pdf] Teaser.

    50. The contact angle of the colloidal liquid-gas interface and a hard wall
    P. P. F. Wessels, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matt. 16, S4169 (2004).
    For situations of partial wetting the contact value takes on non-zero values. Despite the tiny tensions of the present system, the typical magnitude of angles, as obtained using Young's equation, is considerable.
    [more] [pdf] Teaser.

    49. Density functional theory for sphere-needle mixtures: Toward finite rod thickness
    A. Esztermann and M. Schmidt, Phys. Rev. E 70, 022501 (2004).
    A delicate limit: finite packing fractions of spheres and rods, but the rods possessing vanishing thickness (a la Onsager). We introducing several new (and quite unexpected) geometric weight functions into the framework.
    [more] [pdf] Teaser.

    48. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit
    M. Schmidt, A. Fortini, and M. Dijkstra, J. Phys.: Condens. Matt. 16, S4159 (2004).
    Confinement between polymer-coated walls (or using laser tweezers) leads to capillary evaporation, i.e. stabilization of the colloidal gas in the capillary. And hence complementing the effect of hard walls (Ref.43) nicely. We hope that people will build such a cell!
    [more] [pdf] Teaser.

    47. Direct visual observation of thermal capillary waves
    D. G. A. L. Aarts, M. Schmidt, and H. N. W. Lekkerkerker, Science 304, 847 (2004).
    Confocal microscopy allows to image a thin slice of an interface and using colloids set scales conveniently. First pictures of equilibrium interface roughness of fluid interfaces ever!
    [more] [pdf] Teaser.

    46. Replica density functional study of one-dimensional hard core fluids in porous media
    H. Reich and M. Schmidt, J. Stat. Phys. 116, 1683 (2004).
    This gives a detailed and general justification (not limited to the model under investigation) why the theory of Ref. 24 works. Hendrik's diploma thesis!.
    [more] [pdf] Teaser.

    45. Wall tensions of model colloid-polymer mixtures
    P. P. F. Wessels, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matt. 16, L1 (2004). (Selected for Top Papers 2004, pdf by IOP.)
    Wall tensions measure the tendency to adsorb at a substrate. Here an analytical formula is given that captures primary trends.
    [more] [pdf] Teaser.

    2003


    44. Statistical mechanics of inhomogeneous model colloid-polymer mixtures
    J. M. Brader, R. Evans, and M. Schmidt, Mol. Phys. 101, 3349 (2003). (Invited article)
    This gives both an extensive review and presents new results - essentially Joe's PhD thesis. No teaser could do it any justice - it has to be digested in its full and overwhelming beauty.
    [more] [pdf] Teaser.

    43. Capillary condensation of colloid-polymer mixtures confined between parallel plates
    M. Schmidt, A. Fortini, and M. Dijkstra, J. Phys.: Condens. Matt. 48, S3411 (2003).
    Narrow confinement of a gas can cause it to condense. Here we investigate colloidal gases.
    [more] [pdf] Teaser.

    42. Simulation and theory of fluid-fluid interfaces in binary mixtures of hard spheres and hard rods
    P. G. Bolhuis, J. M. Brader, and M. Schmidt, J. Phys.: Condens. Matt. 48, S3421 (2003).
    Simulation results confirm the previously predicted (in Ref. 30) unusual preferred normal alignment of rods on the sphere-rich side of the free interface. (We had luck with the weather when we rendered the simulation snapshot!)
    [more] [pdf] Teaser.

    41. Capillary condensation and interface structure of a model colloid-polymer mixture in a porous medium
    P. P. F. Wessels, M. Schmidt, and H. Löwen, Phys. Rev. E 68, 061404 (2003).
    The big gray spheres are immobilized and built a random (model) matrix for the other two components. We study capillary condensation of the mixture in a small sample of random matrix as well as demixing and the fluid-fluid interface inside a bulk (infinite) matrix.
    [more] [pdf] Teaser.

    40. Entropic wetting of a colloidal rod-sphere mixture
    R. Roth, J. M. Brader, and M. Schmidt, Europhys. Lett. 63, 549 (2003).
    Very similar to the case of polymers as depletants, rod-induced depletion interactions lead to rich wetting phenomena (without the need of explicit attractive interaction.)
    [more] [pdf] Teaser.

    39. Hard sphere fluids in random fiber networks
    M. Schmidt and J. M. Brader, J. Chem. Phys. 119, 3495 (2003).
    An annealed hard sphere fluid is adsorbed in the bulk and at the surface of a quenched random matrix of rods. In particular the theory treats the latter on the level of their one-body density distribution (providing an enormous simplificationn over description as an external field.). (This time we got caught in a terrible thunderstorm. Rods wet, spheres wet, -it was awful.
    [more] [pdf] Teaser.

    38. Freezing in the presence of disorder: A lattice study
    M. Schmidt, L. Lafuente, and J. A. Cuesta, J. Phys.: Condens. Matt. 15, 4695 (2003).
    A fluid of (a) particles moves in the space between the quenched (b) particles. The latter may freely overlap but are not allowed to move. We find that on increasing matrix density the freezing transition shifts towards close packing and vanishes.
    [more] [pdf] Teaser.

    37. Hard sphere fluids at surfaces of porous media
    M. Schmidt, Phys. Rev. E 68, 021106 (2003).
    Overlappling spheres at high density density make up a smooth surface. (Do you agree that the typo is a particularly nice one?) This is the first test of the theory of Ref. 24 in an inhomogeneous situation.
    [more] [pdf] Teaser.

    36. Hard body amphiphiles at a hard wall
    J. M. Brader, C. von Ferber, and M. Schmidt, Mol. Phys. 101, 2225 (2003).
    We can quantitatively identify all these configurations in the probability of position and orientation of particles. A more descriptive title would have been: Lollipops at a lolliwall. LOL.
    [more] [pdf] Teaser.

    35. Laser-induced condensation in colloid-polymer mixtures
    I. O. Götze, J. M. Brader, M. Schmidt, and H. Löwen, Mol. Phys. 101, 1651 (2003).
    Ingo's diploma thesis! When I first tried to enthuse a (very famous) experimentalist about this exciting prediction from simulations, I got an immediate invitation that I am "most welcome to try this on my own."
    [more] [pdf] Teaser.

    2002


    34. Fluid demixing in colloid-polymer mixtures: Influence of polymer interactions
    M. Schmidt, A. R. Denton, and J. M. Brader, J. Chem. Phys. 118, 1541 (2003).
    No proper polymer physicist believes polymer-polymer interactions to be stepfunctions, but until this point we had to set them to zero (within our DFT game), arguably an even more severe approximation.
    [more] [pdf] Teaser.

    33. Density functional theory for random sequential adsorption
    M. Schmidt, J. Phys.: Condens. Matt. 14, 12119 (2002).
    A non-equilibrium process of consecutive adsorption of hard particles onto a solid smooth substrate is treated with density-functional theory (that is normally believed to be solely an approach to tackle equilibrium situations).
    [more] [pdf] Teaser.

    32. Model colloid-polymer mixtures in porous matrices: density functional versus integral equations
    M. Schmidt, E. Schöll-Paschinger, J. Köfinger, and G. Kahl, J. Phys.: Condens. Matt. 14, 12099 (2002).
    Sorry, Elisabeth, Jürgen and Gerhard, that I got exhausted at this point. I fear that no visitor will have scrolled that far down anyway.
    [more] [pdf] Teaser.

    31. Colloid-induced polymer compression
    A. R. Denton and M. Schmidt, J. Phys.: Condens. Matt. 14, 12051 (2002).
    OK, now that we are amongst us, maybe it is time to reveal a few little dirty secrets.
    [more] [pdf] Teaser.

    30. Colloidal rod-sphere mixtures: Fluid-fluid interfaces and Onsager limit
    J. M. Brader, A. Esztermann, and M. Schmidt, Phys. Rev. E 66, 031401 (2002).
    The first is a particular shocking one: The Mayer function for rods has been decomposed exactly. The resulting naked single-particle measures were forced into the construction of a hard core functional. This is disgusting, I know.
    [more] [pdf] Teaser.

    29. Density functional theory for a model colloid-polymer mixture: bulk fluid phases
    M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, J. Phys.: Condens. Matter 14, 9353 (2002).
    Indeed a "bulk" paper that details the short account given in Ref. 11.
    [more] [pdf] Teaser.

    28. Penetrability in model colloid-polymer mixtures
    M. Schmidt and M. Fuchs, J. Chem. Phys. 117, 6308 (2002).
    The AOV model is modified to take into account insertion of colloids into polymer coils, relevant for large polymer-to-colloid size ratios.
    [more] [pdf] Teaser.

    27. Demixing of colloid-polymer mixtures in poor solvents
    M. Schmidt and A. R. Denton, Phys. Rev. E 65, 061410 (2002).
    The solvent is modeled as a two-component mixture of a primary solvent, regarded as a background theta solvent for the polymer, and a cosolvent of point particles that are excluded from both colloids and polymers.
    [more] [pdf] Teaser.

    26. Decoration lattices of colloids adsorbed on stripe-patterned substrates
    H. M. Harreis, M. Schmidt, and H. Löwen, Phys. Rev. E 65, 041602 (2002).
    Visit a zoo of crystals: triangular, quadratic, rhombic, kitelike, sheared honeycomb lattices, triangular slices, and triangle superlattices.
    [more] [pdf] Teaser.

    25. Colloids, polymers, and needles: Demixing phase behavior
    M. Schmidt and A. R. Denton, Phys. Rev. E 65, 021508 (2002).
    Rich phase diagrams are predicted, exhibiting three-phase coexistence, and reentrant demixing behavior.
    [more] [pdf] Teaser.

    24. Density functional theory for fluids in porous media
    M. Schmidt, Phys. Rev. E 66, 041108 (2002).
    This extends the DFT concept to quenched-annealed mixtures modelling adsorbates in randomly disordered porous media. Being able to treat random disorder is much fancier than the dull title suggests.
    [more] [pdf] Teaser.

    23. Freezing transition of hard hyperspheres
    R. Finken, M. Schmidt, and H. Löwen, Phys. Rev. E 65, 016108 (2002).
    I don't want a plot. SHOW ME A HYPERSPHERE! Reimar's diploma thesis!
    [more] [pdf] Teaser.

    22. Do effective interactions depend on the choice of coordinates?
    M. Schmidt, Phys. Rev. E 65, 022801 (2002); also in: Virt. J. Nanosc. Sci. & Tech. 5, Issue 6 (2002).
    A nice example that virtual journals do not necessarily induce a boost.
    [more] [pdf] Teaser.

    21. Entropic wetting and the fluid-fluid interface of a model colloid-polymer mixture
    J. M. Brader, R. Evans, M. Schmidt, and H. Löwen, J. Phys. Condens. Matter 14, L1 (2002).
    See also Refs. 44 and 50 for further details of the behavior at a hard wall.
    [more] [pdf] Teaser.

    2001


    20. Amphiphilic hard body mixtures
    M. Schmidt and C. von Ferber, Phys. Rev. E 64, 051115 (2001).
    We did not yet dare to call them lollipops.
    [more] [pdf] Teaser.

    19. Density functional theory for colloidal rod-sphere mixtures
    M. Schmidt, Phys. Rev. E 63, 050201(R) (2001).

    [more] [pdf] Teaser.

    18. Colloids confined to a flexible container
    L. Maibaum, M. Schmidt, and H. Löwen, Phys. Rev. E 63, 051401 (2001).
    Lutz' diploma thesis!
    [more] [pdf] Teaser.

    17. Density functional for the Widom-Rowlinson model
    M. Schmidt, Phys. Rev. E 63, 010101(R) (2001).
    Have you ever wondered what the first PRE paper in the 21st century was? And have you ever wondered whether the editors made a conscious choice?
    [more] [pdf] Teaser.

    16. Soft interaction between dissolved dendrimers: theory and experiment
    C. N. Likos, M. Schmidt, H. Löwen, M. Ballauff, D. Pötschke, and P. Lindner, Macromolecules 34, 2914 (2001).

    [more] [pdf] Teaser.

    15. Density functional theory for structure and freezing of star polymer solutions
    B. Groh and M. Schmidt, J. Chem. Phys. 114, 5450 (2001).
    The theory of Ref. 8 applied to a model for soft matter.
    [more] [pdf] Teaser.

    2000


    14. Fluid of penetrable spheres: Testing the universality of the bridge functional
    Y. Rosenfeld, M. Schmidt, M. Watzlawek, and H. Löwen, Phys. Rev. E 62, 5006 (2000).
    Rosenfeld kickoff: Penetrable spheres have been the object of recent extensive investigations as a prototype for intermicellar interactions in a solvent, and as representing a class of bounded potentials allowing complete interpenetrability of the particles.
    [more] [pdf] Teaser.

    13. Fluid structure from density functional theory
    M. Schmidt, Phys. Rev. E 62, 4976 (2000).
    Application of the theory of Ref. 8 to the bulk fluid structure of various model fluids.
    [more] [pdf] Teaser.

    12. Topological defects in nematic droplets of hard spherocylinders
    J. Dzubiella, M. Schmidt, and H. Löwen, Phys. Rev. E 62, 5081 (2000).
    Joe's diploma thesis!
    [more] [pdf] Teaser.

    11. A density functional for a model colloid-polymer mixture
    M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, Phys. Rev. Lett. 85, 1934 (2000).
    Having validated, after one year's work, the last author's assessment that treating this model "should be trivial" on the basis of Ref.7, I had at that time not imagined how long I would flesh this out.
    [more] [pdf] Teaser.

    10. A density functional for additive mixtures
    M. Schmidt, Phys. Rev. E 62, 3799 (2000).
    The generalization of Ref. 8. to mixtures.
    [more] [pdf] Teaser.

    9. Colloidal particles in emulsions
    F. L. Roman, M. Schmidt, and H. Löwen, Phys. Rev. E 61, 5445 (2000).
    A simulation study of hard sphere colloids that can penetrate emulsion droplets causing swelling of the latter.
    [more] [pdf] Teaser.

    stoneage


    8. Density-functional theory for soft potentials by dimensional crossover
    M. Schmidt, Phys. Rev. E 60, R6291 (1999).
    The derivation is based soley on limits, where the behavior is exactly known, namely a zero-dimensional cavity distribution and the low-density virial expansion.
    [more] [pdf] Teaser.

    7. Ab-initio density-functional theory for penetrable spheres
    M. Schmidt, J. Phys.: Condens. Matt. 11, 10163 (1999).
    Yasha's reaction to the initial idea was: "This could be a goldmine." Not sure to what extent he was right, but I do wish he had meant a real one.
    [more] [pdf] Teaser.

    6. Fundamental-measure free energy density functional for hard spheres: Dimensional crossover and freezing
    Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, Phys. Rev. E 55, 4245 (1997).
    The abstract starts like this: A geometrically based fundamental measure free energy density functional unified the scaled-particle and Percus-Yevick theories for the hard-sphere fluid mixture.
    [more] [pdf] Teaser.

    5. Dimensional crossover and the freezing transition in density functional theory
    Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, J. Phys.: Condens. Matt. 8, L577 (1996).
    The key is: This functional predicts the hard-sphere fluid-solid transition in excellent agreement with simulations.
    [more] [pdf] Teaser.

    4. Cell theory for the phase diagram of hard spherocylinders
    H. Graf, H. Löwen, and M. Schmidt, Prog. Coll. Poly. Sci. 104, 177 (1997).
    3. Phase diagram of hard spheres confined between parallel hard plates
    M. Schmidt and H. Löwen, Phys. Rev. E 55, 7228 (1997).
    Nearly everything one could possibly ask about Ref. 2.
    [more] [pdf] Teaser.

    2. Freezing between two and three dimensions
    M. Schmidt and H. Löwen, Phys. Rev. Lett. 76, 4552 (1996).
    Prediction of melting and phase transitions between different crystal structures, namely, layered, buckled, and rhombic crystals.
    [more] [pdf] Teaser.

    1. Monte Carlo simulation of the three-dimensional q=3-states Potts model
    M. Schmidt, Z. Phys. B 95, 327 (1994).
    Buried in pre-pdf times.

    Reviews and Theses

    143. Power functional theory for many-body dynamics
    Matthias Schmidt, Rev. Mod. Phys. 94, 015007 (2022). doi, pdf, arxiv, Nutshell, Press Release.
    142. Why Noether's Theorem applies to Statistical Mechanics
    Sophie Hermann and Matthias Schmidt, J. Phys.: Condens. Matter 34, 213001 (2022) (Invited Topical Review). doi, pdf, arxiv, Noether rules.
    R5. Replica density functional theory: an overview
    M. Schmidt, J. Phys.: Condens. Matt. 17, S3481 (2005); (Proceedings of the 6th EPS Liquid Matter Conference). (Refereed)
    Short summary of the state of research in 2005.
    R4. Geometry-based density-functional theory: Construction and applications to soft matter
    M. Schmidt, Habilitation thesis, Heinrich-Heine-Universität Düsseldorf, Oct 2004 (475 pages).
    Warning: This is a cumulative thesis, i.e. the introduction is genuine and the body consists of original papers; hence large download.
    R3. Geometry-based density-functional theory: An overview
    M. Schmidt, J. Phys.: Condens. Matt. 15, S101 (2003); (Proceedings of the 5th EPS Liquid Matter Conference). (Refereed)
    Short summary of the state of research in 2002.
    R2. Simulations of systems with colloidal particles
    M. Schmidt, in Computational Methods in Colloid and Interface Science, Ed. M. Borowko, M. Dekker; NewYork, Chap. 15, p. 745 (2000).
    R1. Freezing in confined geometry
    M. Schmidt, Dissertation, Shaker, Aachen (1997) ISBN 3-8265-2206-0.
    Pay these people to publish and become immortal in their database of recipients of advertisements.

    Conference and popular articles

    C8. Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures
    H. N. W. Lekkerkerker, V. W. A. de Villeneuve, J. de Folter, D. G. A. L. Aarts, M. Schmidt, Y. Hennequin, D. Bonn, and J. O. Indekeu, Proceedings of Statphys 23, Genova, Italy (2007).
    C7. Microscopy on thermal capillary waves in demixed colloid-polymer systems
    D. G. A. L. Aarts, M. Schmidt, H. N. W. Lekkerkerker, and K. R. Mecke, Advances in Solid State Physics (ed. B. Kramer) 45, 15 (2005).
    C6. Directe visuele waarneming van thermische capillaire golven
    D. G. A. L. Aarts, M. Schmidt, and H. N. W. Lekkerkerker, Nederlands Tijdschrift voor Natuurkunde 70, 216 (2004).
    De directe visuele waarneming van thermische fluctuaties in vloeistoffen en suspensies kent een lange traditie en heeft tot fascinerende resultaten geleid. En U verstaat Nederlands!
    C5. Interfacial properties of model colloid-polymer mixtures
    R. Evans, J. M. Brader, R. Roth, M. Dijkstra, M. Schmidt, and H. Löwen, Phil. Trans. Roy. Soc. Series A 359, 961 (2001). (Refereed)
    C4. The hard physics of soft matter
    H. Löwen, M. Watzlawek, C. N. Likos, M. Schmidt, A. Jusufi, J. Dzubiella, C. von Ferber, E. Allahyarov, A. Thünemann, and I. D'Amico, Advances in Solid State Physics 40, 809 (2000) (ed. by B. Kramer, Vieweg). (Refereed)
    C3. Phase transitions in colloidal suspensions and star polymer solutions
    H. Löwen, M. Watzlawek, C. N. Likos, M. Schmidt, A. Jusufi, and A. R. Denton, J. Phys.: Condens. Matt. 12, A465 (2000). (Refereed)
    C2. Phase transitions in soft matter systems
    H. Löwen, M. Watzlawek, C. N. Likos, M. Schmidt, A. Jusufi, C. von Ferber, and A. R. Denton, AIP Journal, Proceedings of the Third Tohwa University Conference on Statistical Physics, ed. by M. Tokuyama and H. E. Stanley, May 2000. (Refereed)
    C1. Freezing in confined suspensions
    H. Löwen and M. Schmidt, Prog. Coll. Poly. Sci. 104, 81 (1997). (Refereed)

Legal. The material on this website is intended as a scientific resource for the private use of individual scholars. None of it may be used commercially, or for financial gain. Some of the material is protected by copyright. Requests for permission to make public use of any of the papers, or material therein, should be sought from the original publisher, or from M. Schmidt, as appropriate.
MS, 22 Mar 2024.