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Classical density functional theory (DFT) provides an exact variational framework for determin-
ing the equilibrium properties of inhomogeneous fluids. We report a generalization of DFT to treat
the non-equilibrium dynamics of classical many-body systems subject to Brownian dynamics. Our
approach is based upon a dynamical functional consisting of reversible free energy changes and
irreversible power dissipation. Minimization of this “free power” functional with respect to the mi-
croscopic one-body current yields a closed equation of motion. In the equilibrium limit the theory
recovers the standard variational principle of DFT. The adiabatic dynamical density functional theory
is obtained when approximating the power dissipation functional by that of an ideal gas. Approxi-
mations to the excess (over ideal) power dissipation yield numerically tractable equations of motion
beyond the adiabatic approximation, opening the door to the systematic study of systems far from
equilibrium. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807586]

I. INTRODUCTION

The dynamics of soft matter is a topic of consider-
able current interest from both experimental and theoretical
perspectives.1–3 Among the various theories aiming to pro-
vide a microscopic description of complex transport and pat-
tern formation phenomena, the dynamical density functional
theory (DDFT)4, 5 has emerged as a prime candidate. Much
of the appeal of DDFT arises from its ease of implementa-
tion and its close connection to equilibrium density functional
theory (DFT), which is a virtually unchallenged framework
for the study of equilibrium properties in inhomogeneous
liquids.4 The DDFT was originally suggested on the basis of
phenomenological reasoning,4 and has since been rederived
from the Langevin equation,5 using projection operators6 and
via coarse graining the many-body Smoluchowski equation.7

Despite the deep insight provided by these alternative deriva-
tions of the DDFT, the final equation of motion for the density
remains unchanged and no guidance is provided for making
a systematic, or indeed any improvement that goes beyond
the standard formulation. A striking and undesirable feature
of DDFT is the clear asymmetry between the treatment of
spatial and temporal degrees of freedom. The intricate non-
local spatial structure is in stark contrast to the simple time-
local treatment of the dynamics and suggests much potential
for improvement, particularly in view of the sophistication of
temporally nonlocal memory-function approaches such as the
mode-coupling theory.8

At the heart of DDFT lies the “adiabatic approximation,”
in which the non-equilibrium pair correlations of the real sys-
tem are approximated by those of a fictitious equilibrium,
whose density distribution is given by the instantaneous den-
sity of the non-equilibrium system. Although this provides
a reasonable account of relaxational dynamics in colloidal
liquids at low and intermediate volume fraction, it does not

a)Electronic mail: joseph.brader@unifr.ch

capture the physics of the glass transition and strongly un-
derestimates the structural relaxation time scale at high vol-
ume fraction.9 Moreover, the adiabatic assumption fails when
applied to even the simplest driven systems, due to the ne-
glect of non-affine particle motion which generates a non-
trivial current in directions orthogonal to local shear flows.10

These omissions make the theory incapable of describing ei-
ther long-range correlations or symmetry breaking induced
by the flow, thus putting out of reach many technologically
relevant and fundamental non-equilibrium problems, such as
shear-induced ordering2, 11, 12 or migration effects in nonuni-
form channel flows.13

In this paper we develop a variational approach to col-
loidal dynamics based upon the current, rather than the den-
sity, as the fundamental variable. We thus provide a natural
generalization of classical DFT to treat non-equilibrium sit-
uations. Our framework transcends the adiabatic approxima-
tion and provides a physically intuitive method to go beyond
DDFT.

II. THEORY

A. Microscopic dynamics

The overdamped dynamics of colloidal particles can be
described on a microscopic level by a stochastic Langevin
equation, based upon the assumption that the momentum de-
grees of freedom equilibrate much faster than the particle
positions.14 The velocity of particle i at time t depends on
the configuration, {r1, . . . , rN} ≡ rN, and is determined by the
simple equation of motion,

γ vLan
i (rN, t) = Fi(rN, t) + χ i(t), (1)

where γ is a friction constant related to the bare diffu-
sion coefficient, D0, according to γ = kBT/D0, with kB the
Boltzmann constant and T the temperature. The stochastic,
velocity-dependent viscous force, γ vLan

i , is balanced by both
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a random force, χ i(t), representing the thermal motion of the
solvent, and the force Fi, arising from interparticle interac-
tions and external fields. Due to the fluctuation-dissipation
theorem the stochastic force is auto-correlated according to
〈χ i(t)χ j (t ′)〉 = 2kBT γ δij δ(t − t ′)1. The deterministic force
acting on particle i is given by

Fi(rN, t) = −∇iU (rN ) − ∇iVext(ri , t) + X(ri , t). (2)

This force depends upon the positions of all particles and
consists of three physically distinct contributions: (i) Forces
arising from the total interaction potential, U(rN). (ii) Con-
servative forces generated by an external potential, Vext(r, t).
(iii) Non-conservative forces X(r, t). Our choice to distinguish
conservative from nonconservative forces is not essential, but
is made for later convenience when developing the variational
approach to the many-body dynamics. The noise term in (1) is
additive, from which follows that the particle positions, ri(t),
obtained by integrating the velocities, are insensitive to the
choice of integration scheme employed: Ito and Stratonovich
calculus both yield the same result.14 It should also be noted
from (1) that the velocities at any time are well defined quan-
tities, completely determined by the stochastic force and the
instantaneous configuration of particles.

An alternative, but entirely equivalent description of
Brownian dynamics is provided by the probability density for
finding the particles in a given configuration at time t, which
we denote by �(rN, t). The time evolution of this probability
is given exactly by the Fokker-Planck equation correspond-
ing to (1), which takes the form of the many-body continuity
equation

∂�(rN, t)

∂t
= −

∑
i

∇i · Ji(rN, t), (3)

where the sum is taken over all particles and the current of
particle i is given by

Ji(rN, t) = γ −1�(rN, t)[Fi(rN, t) − kBT ∇i ln �(rN, t)]. (4)

Equations (3) and (4) constitute a many-body drift-
diffusion equation, generally referred to as the Smoluchowski
equation.1 The factor in square brackets appearing in (4) is
the total force acting on particle i, which we denote by

Ftot
i (rN, t) ≡ Fi(rN, t) − kBT ∇i ln �(rN, t), (5)

and which includes both direct forces, as well as statistical,
thermal forces. The (deterministic) velocity of particle i can
be identified from (4) as

vi(rN, t) = γ −1Ftot
i (rN, t), (6)

such that the current is simply Ji(rN, t) = vi(rN, t)�(rN, t).
For calculation of average quantities, rather than individual
stochastic particle trajectories, the information provided by
the deterministic function vi(rN, t) is equivalent to that of the
stochastic Langevin velocity, vLan

i (rN, t), appearing in (1).

B. Central variables

An important average quantity characterizing non-
equilibrium particle dynamics is the time-dependent one-

body density,

ρ(r, t) =
〈∑

i

δ(r − ri(t))

〉
, (7)

where ri(t) is the position of particle i at time t, δ ( · ) is the
Dirac distribution, and the sum is over all N particles. Within
the Langevin description the angle brackets 〈 · 〉 indicate an
average taken over many solutions of (1) generated using in-
dependent realizations of the random forces, χ i(t), and an av-
erage over initial conditions. Within the probabilistic Smolu-
chowski picture the angle brackets should be interpreted as a
configurational average, to be calculated using the probability
density function �(rN, t) obtained from solution of (3). An ar-
bitrary function of the particle coordinates, f̂ (rN, t), thus has
average value f (t) = 〈f̂ (rN, t)〉 ≡ ∫

drN�(rN, t)f̂ (rN, t).
Within the standard DDFT the one-body density acts as

the central variable. However, the motion of the system is
better characterized by a vector field, namely, the time- and
space-resolved one-body current,

J(r, t) =
〈 ∑

i

vi(rN, t) δ(r − ri(t))

〉
, (8)

where vi(rN, t) is given by (6), and the angle brackets rep-
resent a configurational average. Of course, the same result
is obtained from (8), if one replaces vi(rN, t) with vLan

i (rN, t)
and employs an average over stochastic realizations and ini-
tial conditions. It is evident that the vector current (8) pro-
vides a more appropriate starting point than the scalar density
(7) for a theory aiming to describe flow in a complex liquid;
there are many relevant flows for which the density is trivial,
ρ(r, t) = const, but the current is not. The same conclusion
has also been arrived at within the quantum DFT community,
where time-dependent problems are generally addressed us-
ing approaches for which the current is regarded as the funda-
mental variable.15 Once the current is known, the density can
be calculated from the continuity equation, given in integral
form by

ρ(r, t) = ρ0(r) −
∫ t

t0

dt ′∇ · J(r, t ′), (9)

and expressing the local conservation of particle number. At
the initial time t0 we take the system to be in equilibrium,
possibly in an inhomogeneous state, ρ0(r) �= const, which is
generated by the action of an external potential Vext,0(r). The
many-body distribution �0(rN) at time t0 is then of Boltzmann
form. Recall that equilibrium DFT4 provides a framework for
calculating ρ0(r) for given Vext,0(r) and interparticle interac-
tions U(rN); a very brief synopsis of DFT is given below.

C. Variational principle

In classical mechanics, dissipative effects are commonly
dealt with via Rayleigh’s dissipation function, from which
frictional forces are generated by differentiation with respect
to particle velocities.16 For the Brownian dynamics under
consideration, we formulate the many-body problem in terms
of a generating function, consisting of dissipative and total
force contributions as well as non-mechanical contributions
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due to temporal changes in the external potential,

R̂(rN, ṽN, t) =
∑

i

(γ

2
ṽi(rN, t) − Ftot

i (rN, t)
)

· ṽi(rN, t)

+
∑

i

V̇ext(ri , t), (10)

where V̇ext(r, t) = ∂Vext(r, t)/∂t , and the ṽi(rN, t) are trial
functions which may be varied independently of the distribu-
tion function contained within the thermal force term in (10).
When averaged over particle configurations the many-body
function R̂ becomes a functional of both the trial velocity and
the distribution function

Rt [�, ṽN ] ≡
∫

drN�(rN, t)R̂(rN, ṽN, t), (11)

which is valid for an arbitrary �(rN, t). For notational conve-
nience we indicate the dependence of a functional on time t
using a subscript. The functional Rt [�, vN ] is minimized by
setting equal to zero the functional derivative with respect to
the trial field,

δRt [�, ṽN ]

δṽi(rN, t)
= 0, (12)

where the variation is performed at fixed �(rN, t) and at
fixed time t. From (12) follows directly, observing the simple
quadratic structure of (10), that the minimal, physically real-
ized trial fields are given by ṽi = vi and are thus related to the
forces according to (6). Imposing the condition that probabil-
ity is conserved throughout the dynamics, i.e., the many-body
continuity equation, then recovers the Smoluchowski equa-
tion (3) and (4). When evaluated at the physical solution, the
functional becomes, upon inserting (6) into (10),

Rt [�, vN ] = −1

2

∫
drN�(rN, t)

∑
i

Ftot
i (rN, t) · vi(r, t)

+
∫

drN�(rN, t)
∑

i

V̇ext(ri , t), (13)

where the first term is −1/2 times the total power that the
system handles at time t and the second term is the non-
mechanical rate of external potential increase. In equilib-
rium the velocities are zero and the minimization condition
(12) reduces to the simple expression UN (rN ) + ∑

i Vext(ri)
− kBT ln �(rN ) = const, thus recovering the Boltzmann
distribution.

We now proceed to exploit the results described above
in order to arrive at a more useful variational scheme on
the one-body, rather than the many-body, level. In the orig-
inal Hohenberg-Kohn formulation of DFT18 the variational
principle relies on the condition that a given one-body den-
sity is generated by some external potential (a requirement
known as v-representability, where v indicates an external po-
tential). The alternative “constrained search” formulation pro-
vided by Levy19 has the advantage that it relies on a weaker
N-representability condition, which, for classical systems, re-
quires only that the given one-body density be generated by
some many-body probability distribution.20 The strength of
the Levy method, which we now exploit, is that it can be read-
ily applied out-of-equilibrium: the distribution function does

not have to be of Boltzmann form. We thus define our cen-
tral functional, which we henceforth refer to as the free power
functional, as a constrained minimization

Rt [ρ, J] = min
ṽN→ρ,J

Rt [�, ṽN ]. (14)

Here the minimization searches at time t over all possible trial
velocities which yield a desired target one-body density and
target one-body current, defined, respectively, by the configu-
rational averages

ρ(r, t) =
∫

drN�̃(rN, t)
∑

i

δ(r − ri), (15)

J(r, t) =
∫

drN�̃(rN, t)
∑

i

ṽi(rN, t)δ(r − ri), (16)

and selects the set of trial velocities ṽi,min(r, t) which mini-
mize Rt. We take the trial velocities ṽi(r, t) to be parametrized
by a trial distribution �̃(rN, t), which is normalized according
to

∫
drN�̃(r, t) = 1, and which generates instantaneously the

velocities via

ṽi(rN, t) = γ −1 (
Fi(rN, t) − kBT ∇i ln �̃(rN, t)

)
. (17)

The minimization (14) hence becomes a minimization with
respect to �̃(rN, t) under the constraints (15) and (16). We
denote the distribution at the minimum by �̃min(rN, t).

We can now eliminate the dependence on the many-body
distribution, �(rN, t), appearing on the right-hand side of (14),
by requiring it to satisfy the many-body continuity equation,
using the trial velocities ṽi,min(rN, t) and corresponding distri-
bution �̃min(rN, t) as input, i.e.,

�(r, t) = �0(rN ) −
∫ t

t0

dt ′
∑

i

∇i · ṽi,min(rN, t ′)�̃min(r, t ′).

(18)

The substitution of (18) into (14) is consistent with minimiza-
tion with respect to the trial velocities at fixed �(r, t), be-
cause the minimization is performed at the fixed time t. The
high-dimensional variation (12) hence becomes the simpler
one-body variational principle

δRt [ρ, J]

δJ(r, t)
= 0, (19)

where ρ(r, t) and the history of ρ(r, t′) and J(r, t′) at times
t′ < t are held constant. Within the space of all density and
current fields, the physically realized fields are given by the
minimum condition (19). The functional Rt [ρ, J] will depend
in general on the density and current in a complicated way,
nonlocal in space and containing memory effects in time. The
spatial nonlocality of Rt [ρ, J] follows from the presence of a
finite-range interaction potential U(rN) in (11), whereas tem-
poral nonlocality is a consequence of the time integral in (18),
which couples to the trial velocity fields, and hence the one-
body fields via the constraints, at earlier points in time.

D. Relationship to Mermin’s functional

It is instructive to relate the configurational contribution
in (11) to the form of the many-body functional17 originally
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introduced to treat quantum systems at finite temperature. The
generating functional can be decomposed as

Rt [�, vN ] = �̇M[�] + γ

2

∫
dr�(rN, t)v2

i (r, t)

−
∫

drN�(rN, t)
∑

i

vi(rN, t) · X(ri , t),

(20)

where �̇M[�] is the total time derivative of

�M[�] =
∫

drN�(rN, t)
[
U (rN )

+
∑

i

(Vext(ri , t) − μ) + kBT ln �(rN, t)
]
.

(21)

Apart from the absence of a kinetic term, not required
for Brownian dynamics, and the addition of time argu-
ments, (21) is the same as Mermin’s functional for the
time-independent case;17 here μ = const is the chemical po-
tential. Equation (20) is obtained in a straightforward way
from (11) via integration by parts in space, using the many-
body continuity equation in order to make the replace-
ment −∑

i ∇i ·vi� = �̇, and observing the normalization∫
drN� = 1.

For completeness, we recall that in equilibrium the grand
potential density functional �[ρ] follows from (21) via a con-
strained Levy search in the function space of �(rN),

�[ρ] = min
�→ρ

�M[�] (22)

under the constraint that ρ(r) = ∫
drN�(r)

∑
i δ(r − ri) is

held fixed.20 The structure of (21) allows one to split (22) into
intrinsic and external contributions,

�[ρ] = F [ρ] +
∫

drρ(r)(Vext(r) − μ), (23)

where F[ρ] is the intrinsic free energy density functional,
which is independent of Vext(r). The minimization principle4

states that

δ�[ρ]

δρ(r)
= 0, (24)

where the left-hand side can be written as δ�[ρ]/δρ(r)
= δF [ρ]/δρ(r) + Vext(r) − μ. The intrinsic free energy den-
sity functional F[ρ] contains only adiabatic contributions, as
the many-body distribution at the minimum in (22) has Boltz-
mann form.4 However, as our dynamical theory is built on the
general form �̇M[�] and thus contains (21), it retains all non-
adiabatic effects.

E. Generating functional

The many-body function R̂ defined in (10) contains
forces due to friction, interactions, and external fields. By ex-
plicitly separating off the external field contributions to the to-
tal force, Ftot

i (rN, t), and substitution of (10) into the Levy-type
functional (14) the intrinsic part of the free power functional

can be identified as

Wt [ρ, J] = Rt [ρ, J] +
∫

dr (X(r, t) − ∇Vext(r, t)) · J(r, t)

−
∫

dr V̇ext(r, t)ρ(r, t). (25)

The intrinsic functional retains the same form for all choices
of external field and is therefore universal, in the sense that it
only depends upon the interparticle interactions U(rN).

As a consequence of the linearity of the external contribu-
tions, the free power functional acts as a generator for the one-
body density and current, when differentiated with respect to
the conjugate fields,

ρ(r, t) = δRt [ρ, J]

δV̇ext(r, t)
, (26)

J(r, t) = −δRt [ρ, J]

δX(r, t)
, (27)

and hence (25) represents a Legendre transform. For com-
pleteness, the inverse Legendre transform implies that

δWt [ρ, J]

δJ(r, t)
= X(r, t) − ∇Vext(r, t), (28)

δWt [ρ, J]

δρ(r, t)
= α(r, t) − V̇ext(r, t), (29)

where (28) follows from the minimization principle
(19) and (29) defines a Lagrange multiplier α(r, t)
= δRt [ρ, J]/δρ(r, t) to ensure that the continuity equation
can be satisfied. Physically, α(r, t) is a measure of the locally
dissipated power. The mechanical work created by Vext(r, t)
is accounted for in (28), whereas the non-mechanical “charg-
ing” contribution is contained in (29).

F. Equation of motion

With a view to constructing approximation schemes it is
convenient to split the intrinsic contribution into a sum of dis-
sipative and reversible contributions,

Wt [ρ, J] = Pt [ρ, J] +
∫

dr J(r, t) · ∇ δF [ρ]

δρ(r, t)
, (30)

where the sum consists of a dissipated power functional,
Pt[ρ, J], accounting for irreversible energy loss due to the
friction, and a term describing reversible changes in the in-
trinsic Helmholtz free energy.4 The choice to split the in-
trinsic power functional into two terms does not represent
a close-to-equilibrium assumption: Nonadiabatic effects are
concentrated in the dissipated power functional. In general,
the dissipation functional Pt[ρ, J] will be non-local in space
and time, depending on the history of the fields ρ(r, t) and
J(r, t) prior to time t. Employing the functional chain rule,
Ḟ [ρ] = ∫

dr ρ̇(r, t)δF [ρ]/δρ(r, t), and the continuity equa-
tion (9), followed by a partial integration in space leads to the
alternative expression,

Wt [ρ, J] = Pt [ρ, J] + Ḟ [ρ], (31)
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where Ḟ [ρ] is the total time derivative of the intrinsic
Helmholtz free energy functional. Only the Boltzmann-type
contributions are separated away into Ḟ [ρ]. Recalling the de-
composition (20) of the many-body functional demonstrates
that Pt[ρ, J] contains a combination of both purely dissipa-
tive contributions, via the squared velocities, and the addi-
tional non-adiabatic effects contained within �̇M[�], which
are in excess of the adiabatic contribution Ḟ [ρ].

Application of the variational principle (19) yields our
fundamental equation of motion

δPt [ρ, J]

δJ(r, t)
= −∇ δF [ρ]

δρ(r, t)
− ∇Vext(r, t) + X(r, t), (32)

where the term on the left-hand side of (32) represents a fric-
tion force, balanced by the terms on the right-hand side arising
from inhomogeneities in the local intrinsic chemical poten-
tial, δF[ρ]/δρ(r, t), and external forces. Equation (32) is sup-
plemented by the one-body continuity equation (9). In equi-
librium the left-hand side of (32) vanishes and the variational
prescription reduces to (24), thus recovering equilibrium DFT
as a special case. Given that the construction of the dynamical
framework is not based upon the variational principle of DFT
(24), we find this alternative derivation to be very remark-
able, and revealing that the generating functional Rt [ρ, J], as
defined in (11), is a more fundamental object than the grand
potential density functional �[ρ], cf. (22). For tackling non-
equilibrium situations in practice, the challenge is to find ex-
plicit forms for the dissipation functional, Pt[ρ, J], to obtain
a closed equation of motion.

G. Limiting cases

In order to gain some intuition into the equation of mo-
tion (32), we consider three special limiting cases:

(i) Instantaneous motion. The mathematically simplest
case is obtained by neglecting nonconservative external
forces and setting Pt[ρ, J] = 0. Equation (32) then yields
δF [ρ]/δρ(r, t) = μ − Vext(r, t), which is identical to the
Euler-Lagrange equation of equilibrium DFT, where the
chemical potential, μ, keeps the particle number constant.
Hence the density field instantaneously follows changes in the
external potential.

(ii) Ideal gas. For a system of noninteracting particles the
Helmholtz free energy is known exactly, Fid[ρ] = kBT

∫
drρ(r,

t)[ ln (ρ(r, t)	3) − 1], where 	 is the thermal wavelength, and
the dissipation functional is given by

P id
t [ρ, J] =

∫
dr

γ J(r, t)2

2ρ(r, t)
. (33)

Functional differentiation of this expression at fixed time with
respect to the current generates the (mean) friction force,
such that J(r, t) · δP id

t [ρ, J]/δJ(r, t) = J(r, t) · γ v(r, t) rep-
resents the dissipated power density resulting from the av-
erage motion of the system; here v(r, t) = J(r, t)/ρ(r, t)
is the average one-body velocity. The exact expression
for the ideal current, γ Jid(r, t)/ρ(r, t) = −kBT ∇ ln ρ(r, t)
− ∇Vext(r, t) + X(r, t) follows from substitution of (33)
into (32).

(iii) Dynamical density functional theory. The intrinsic
free energy functional of an interacting system can be writ-
ten as the sum of two contributions, F[ρ] = Fid[ρ] + Fexc[ρ],
where the excess contribution accounts for interparticle in-
teractions. If we retain the full free energy, but assume that
the dissipation is given by (33), then (32) yields J(r, t)
= JDDFT(r, t), where

γ JDDFT(r, t)
ρ(r, t)

= −∇ δF [ρ]

δρ(r, t)
− ∇Vext(r, t) + X(r, t) (34)

is precisely the current of DDFT.4, 5 We thus gain new insight
into the standard theory, namely that the adiabatic approxima-
tion is equivalent to assuming a trivial, noninteracting form
for the dissipation functional. This observation suggests that
superior theories can be obtained by developing approxima-
tions to Pt[ρ, J] which recognize the existence of interparticle
interactions.

H. Beyond DDFT

We can now go beyond DDFT by decomposing the dis-
sipation power functional into two contributions,

Pt [ρ, J] = P id
t [ρ, J] + P exc

t [ρ, J], (35)

where P id
t [ρ, J] is given by (33) and P exc

t [ρ, J] accounts for
dissipation arising from interparticle interactions. Equation
(35) is to be viewed as the definition of P exc

t [ρ, J] rather than
as an assumption. Microscopically, the excess dissipation is
caused by the non-adiabatic contributions to the time deriva-
tive of the Mermin functional (21), and hence Pexc[ρ, J] de-
pends explicitly on the interparticle interactions U(rN). Using
(35), the fundamental equation of motion (32) becomes

γ J(r, t)
ρ(r, t)

+ δP exc
t [ρ, J]

δJ(r, t)

= −∇ δF [ρ]

δρ(r, t)
− ∇Vext(r, t) + X(r, t). (36)

Corrections to DDFT thus come from the second term on
the left-hand side. It is instructive to compare (36) with the
formally exact result obtained by integrating the many-body
Smoluchowski equation, given by (3) and (4), over N − 1
particle coordinates.7 Restricting ourselves for simplicity to
systems that interact via pair potentials, U = ∑

i < j φ(ri, rj),
an exact equation of motion is obtained,

γ J(r, t)
ρ(r, t)

= −kBT ∇ ln(ρ(r, t)	3) − ∇Vext(r, t)

+ X(r, t) −
∫

dr′ ρ
(2)(r, r′, t)
ρ(r, t)

∇φ(r, r′), (37)

where ρ(2)(r, r′, t) is the exact (but unknown) out-of-
equilibrium equal-time two-body density. Comparison with
(36) yields

δP exc
t [ρ, J]

δJ(r, t)
= −∇ δFexc[ρ]

δρ(r, t)
+

∫
dr′ ρ

(2)(r, r′, t)
ρ(r, t)

∇φ(r, r′).

(38)

Splitting the full non-equilibrium two-body density into
an instantaneous-equilibrium and an irreducible part,
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ρ(2)(r, r′, t) = ρ(2)
eq (r, r′, t) + ρ

(2)
irr (r, r′, t), leads to the

following pair of identities

∇ δFexc[ρ]

δρ(r, t)
=

∫
dr′ ρ

(2)
eq (r, r′, t)

ρ(r, t)
∇φ(r, r′), (39)

δP exc
t [ρ, J]

δJ(r, t)
=

∫
dr′ ρ

(2)
irr (r, r′, t)
ρ(r, t)

∇φ(r, r′). (40)

Equation (39) is an exact equilibrium relation,7 whereas (40)
expresses the fact that the excess dissipation is intimately con-
nected with beyond-adiabatic, irreducible two-point correla-
tions. This is fully consistent with the interpretation that the
dynamic functional is a generator for many-body induced fric-
tion forces in the system. If the system contains many-body
forces, generalized versions of the identities (39) and (40)
hold, which contain three- and higher-body density distribu-
tions.

I. Approximations to the excess dissipation

Any practical application of the framework, i.e., imple-
mentation of (36) along with (9), requires one to choose an
approximation for P exc

t [ρ, J] for the given physical system (as
characterized by U). Here we discuss several physically rea-
sonable approximations to P exc

t [ρ, J], which may be applied
to treat systems with arbitrary pairwise interactions. The sim-
plest of these is given by the space- and time-local expression

P loc
t [ρ, J] =

∫
dr (γ̃ (ρ) − γ )

J(r, t)2

2ρ(r, t)
, (41)

where γ̃ (ρ) is a density-dependent friction factor which can
be approximated using either a virial expansion or, in the case
of hard spheres, by employing closed form expressions.21 Us-
ing (41) slows the dynamics in regions of high density rela-
tive to DDFT,22 but will still fail to describe collision induced
dissipation arising from shearing motions in the fluid. To cap-
ture this requires a nonlocal treatment in space and in time
which recognizes the finite range of the colloidal interactions.
A suitably general form is given by

P nloc
t [ρ, J] =

∫
dr

∫
dr′

∫ t

t0

dt ′J(r, t) · K(r, t ; r′, t ′) · J(r′, t ′),

(42)

where the convolution kernel K is a second-rank tensor de-
scribing current-current scattering and is in general a func-
tional of ρ. The incorporation of temporal nonlocality repre-
sents a powerful feature of the present approach. A simple
specific form for the scattering kernel which captures this is
K = γ m(t − t′)δ(r − r′)/ρ(r, t), where m(t − t′) is a memory
function (with units of inverse time). As a result we obtain
a spatially local excess dissipation functional with temporal
memory, given by

P mem
t [ρ, J] =

∫
dr

∫ t

t0

dt ′
γ J(r, t) · J(r, t ′)

ρ(r, t)
m(t − t ′). (43)

For general interactions and time-dependent external fields
the memory need not be time translationally invariant, as as-

sumed here. The equation of motion (36) thus becomes

γ

ρ(r, t)

(
J(r, t) +

∫ t

t0

dt ′J(r, t ′)m(t − t ′)
)

= −∇ δF [ρ]

δρ(r, t)
− ∇Vext(r, t) + X(r, t), (44)

which captures the history-dependence of the one-body cur-
rent, but neglects the spatial nonlocality of the dissipation.

J. Memory effects: A numerical test

We have performed numerical calculations using the
(three-dimensional) hard sphere system in a slab geometry
using approximations (41) and (43). The (spatially non-local)
Rosenfeld functional23 was used to approximate Fexc[ρ]. The
system is initially confined along the y-axis by a parabolic po-
tential, Vext(r, t < 0) = by2/2, where b is a constant measur-
ing the strength of the trapping potential. We then switch off
the confinement at t = t0 = 0, such that Vext(r, t > 0) = 0, and
monitor the time evolution of the density. In Fig. 1 we show
the density calculated using three approximations: DDFT, the
density-dependent friction coefficient (41) (where we have
employed the expression for γ̃ (ρ) from Ref. 21, and the
temporally nonlocal approximation (43). When implement-
ing (43) we have approximated the memory function by the
simple form m(t − t′) = (a/τ ) exp (−(t − t′)/τ ), where a is a
dimensionless parameter and τ is a relaxation time. In view
of the complexity of mode-coupling-type memory functions8

it is clear that the assumption of exponential decay represents
a strong simplification, but nevertheless provides a first step
towards recognizing the history dependence of the one-body
fields.

The density profiles in Fig. 1 (generated using the param-
eter values a = 0.8, b = 10kBT, τ = 0.05γ d2/kBT, where the
particle diameter, d, sets the length-scale) show that both (41)
and (43) slow the dynamics. The magnitude of the retardation
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FIG. 1. Relaxation of a density peak (slab geometry) from an initial state (red
dashed) for which the density is confined to a parabolic potential. Solid green
curves show the density and blue dashed-dotted curves show the spatially
resolved dissipation (scaled down by a factor 20) for three approximations to
the excess dissipation (at dimensionless times t∗ ≡ tkBT/γ d2 = 0.2 to 1.4 in
steps of 0.2). Using (a) DDFT, (b) (41), and (c) (43). (d) Decay of the total
dissipated power.
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achieved using (43) depends upon the choice of parameters a
and τ determining the memory. While (43) generates density
profiles with a similar functional form to those from DDFT,
Eq. (41) leads to a density more sharply peaked at the origin.
The spatially resolved dissipation (blue dashed-dotted curves)
confirms the intuition that power is dissipated mostly in re-
gions of high density gradient and the spatial integral of this
quantity,

∫
dr J(r, t) · δPt[ρ, J]/δJ(r, t), decays towards zero

as the system approaches equilibrium. It is well known that
relaxation rates predicted by standard DDFT are significantly
faster than those found in simulation.5, 22 From our findings
we conclude that this failing can be remedied by the incorpo-
ration of temporal nonlocality in the excess dissipation func-
tional, leading to memory effects in the equation of motion
for J(r, t). If an exponential memory is employed then the
computational demands are comparable to those of DDFT.

III. CONCLUSIONS

In summary, we have shown that collective Brownian dy-
namics can be formulated as a variational theory (19) based
upon the dissipative power as a functional of the one-body
density and the one-body current. The underlying many-body
expression (11) is a difference of half of the power that is dis-
sipated due to friction and the total power that is generated by
the deterministic and entropic forces. As we have shown, this
free power functional is minimal for the physical time evo-
lution, and hence plays a role analogous to that of the free
energy functional in equilibrium. Thermodynamic potentials
in equilibrium are abstract quantities, detectable only through
their derivatives. The same is true for the power functional,
cf. the equation of motion (32), which hence attains a simi-
lar status, but is of more general nature, as it applies out of
equilibrium. We have formulated the theory in the Smolu-
chowski picture, starting with the time evolution of the many-
body probability distribution �(rN, t). An alternative deriva-
tion could be based upon the Langevin equation (1), using the
path integral approach to obtain averaged quantities.24 In both
cases, the one-body current and density are averages that do
not fluctuate, despite any formal similarities of our approach
to dynamical field theories, where the fields themselves can
fluctuate.

The appeal of our approach stems from its utility and
and ease with which it can be implemented, which contrast
strongly with the time-dependent classical DFT formalism by
Chan and Finken.25 As far as we are aware, the approach
of Chan and Finken25 has never been applied to any model
system, possibly because it is built around an action func-
tional, which so far could not be approximated in any system-
atic or physically intuitive way. This is not the case with the
excess dissipation functional identified in the present work,
for which even simple expressions, such as (43), transcend
the adiabatic approximation. While DDFT remains an active
field of research (e.g., hydrodynamic interactions26 and arbi-
trary particle shapes27 have very recently been addressed), it
is important to appreciate that all extensions and modifica-
tions proposed since the original presentation of DDFT4 have
been firmly under the constraint of adiabaticity. The power
functional approach is free of this restriction and provides a

solid, nonadiabatic basis for extensions aiming to treat more
complex model systems (e.g., orientational degrees of free-
dom). Moreover, it applies also to systems governed by many-
body forces, where U(rN) also contains three- and higher-
body contributions. The only other nonadiabatic approach of
which we are aware is the Generalized Langevin theory of
Ramirez-Gonzalez and Medino-Noyola.29 Exploring connec-
tions to this work may prove fruitful.

Regarding extensions of the power functional theory:
First, generalization to mixtures of different species
is straightforward. The ideal contribution becomes∑

i P
id
t [ρi, Ji], where i enumerates the different species,

whereas the excess dissipation, P exc
t [{ρi}, {Ji}], generates

dynamical coupling between particles of different species.
Second, if the Langevin equation (1) is generalized to
include a velocity-dependent friction coefficient, γ (vi(t)), a
modified version of the ideal dissipation functional applies,
P

id,nl
t [ρ, J] = ∫

drρ(r, t)f (v(r, t)2), where the function
f ( · ) is related to the density-dependent friction force via
γ (v2) = 2ρf ′(v2) and the prime denotes differentiation with
respect to the argument.

Much of the phenomenology of non-equilibrium dynam-
ics can be investigated using two- and higher-body correlation
functions. Using the dynamical test particle method,28 which
identifies the van Hove function with the dynamics of suitably
constructed one-body fields, one has immediate access within
the present framework to the dynamic structure factor and the
intermediate scattering function. Moreover, the relationships
(26) and (27) of the one-body fields to their generating func-
tional imply that two- and higher-body dynamic correlation
functions can be generated from further functional differentia-
tion, putting a non-equilibrium generalization of the Ornstein-
Zernike relation, which in equilibrium is a cornerstone of liq-
uid state theory,30 within reach. Work along these lines, as
well as application to driven lattice models,31 is currently in
progress.
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