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We derive a dynamic Ornstein-Zernike equation for classical fluids undergoing overdamped Brow-
nian motion and driven out of equilibrium. Inhomogeneous two-time correlation functions are ob-
tained from functional differentiation of the one-body density and current with respect to an ap-
propriately chosen external field. Functional calculus leads naturally to non-Markovian equations of
motion for the two-time correlators. Memory functions are identified as functional derivatives of a
space- and time-nonlocal power dissipation functional. We propose an excess (over ideal gas) dis-
sipation functional that both generates mode-coupling theory for the two-body correlations and ex-
tends dynamical density functional theory for the one-body fields, thus unifying the two approaches.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820399]

I. INTRODUCTION

In 1914 Leonard Ornstein and Frits Zernike developed
a theory of critical opalescence in which they proposed to
separate the radial distribution function, g(r), into direct and
indirect contributions.1 The Ornstein-Zernike (OZ) relation,
which has since become a cornerstone of equilibrium liquid-
state theory,2 provides the mathematical expression of this
separation and defines the direct correlation function, c(r), via
the integral relation

h(r13) = c(r13) + ρb

∫
dr2 c(r12)h(r23), (1)

where ρb is the bulk number density, h(r) = g(r) − 1 is the
total correlation function, and rij = |ri − rj|. The strength
of this approach lies in the fact that c(r) usually has a sim-
ple functional dependence on both the separation r and on
ρb, thus facilitating the development of approximations. By
supplementing the OZ relation with an appropriate closure
relation between h(r) and c(r), one arrives at a closed inte-
gral equation theory for the equilibrium pair correlations, and
hence for all thermodynamic properties of the system.2 Even
simple, short-ranged approximations to c(r) can describe ac-
curately the oscillatory behaviour of g(r), which arises from
molecular packing effects, and can capture the long-ranged
decay of g(r) near the critical point,3 which causes the exper-
imentally observed turbidity.

Deeper insight into the OZ equation (1), as well as its
natural extension to inhomogeneous systems, is provided by
modern density functional theory (DFT).4 Within DFT the di-
rect correlation function, c(r1, r2), is defined as the second
functional derivative of the excess (over ideal gas) Helmholtz
free energy with respect to the density. A second generat-
ing functional, the grand potential, is obtained from Leg-
endre transform of the Helmholtz free energy and yields

a)Electronic mail: joseph.brader@unifr.ch

the density-density correlation function, ρ(r1)ρ(r2)h(r1, r2)
+ ρ(r1)δ(r1 − r2), upon differentiation with respect to the
external potential; here ρ(r) is the inhomogeneous one-body
density distribution. The inhomogeneous OZ relation,

h(r1, r3) = c(r1, r3) +
∫

dr2 c(r1, r2)ρ(r2)h(r2, r3), (2)

which reduces to (1) in the absence of an external poten-
tial, then expresses the fact that the direct and density-density
correlation functions are (essentially) functional inverses of
each other. The OZ relation (2) thus plays the role of a fun-
damental sum rule, distinct from hierarchies that relate, e.g.,
two-body functions to integrals over three-body functions.2

Higher-order correlation functions can be obtained by further
differentiation of the generating functionals4 and are interre-
lated by higher-order OZ relations.5

The situation in nonequilibrium is quite different. No
analogue of the OZ relation is known that would deter-
mine dynamic correlation functions.6 Such a nonequilibrium
Ornstein-Zernike (NOZ) equation should fulfill at least three
requirements: (i) It should determine the van Hove func-
tion, GvH(r1, t1, r2, t2), which is the natural generalization
of g(r1, r2) to time-dependent situations. (ii) It should be
an equation on the two-body level, distinct from the familiar
n-body correlation hierarchies.2 (iii) Direct time correlation
functions, which depend on two points in spacetime, should
occur, in analogy to c(r1, r2) in the static case. These con-
ditions are not met by simply adding a time argument to
the functions appearing in (2), as has been suggested in the
literature.7

In this paper we propose a dynamical equation that sat-
isfies all of the above requirements. The derivation is based
on the dynamical generalization of the well-known equi-
librium concept of functional differentiation as a means to
generate n-point correlation functions. We first apply this
method to dynamical density functional theory (DDFT),8 and
then supplement the resulting approximate equation by a
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formally exact contribution that involves direct time correla-
tion functions. Furthermore, we show that within the recently
introduced power functional framework,9 the direct time
correlation functions can be identified as second functional
derivatives of the excess (over ideal gas) power dissipation
functional. The NOZ equation may thus be closed via ap-
proximation of the excess power dissipation functional, in the
spirit of equilibrium DFT. Alternatively, in the spirit of in-
tegral equation theory,2 one can postulate an additional re-
lation between the van Hove and the direct time correlation
functions. We show that mode-coupling theory (MCT) can be
viewed as providing a closure of the latter type, where the
memory function plays the role of a direct time correlation
function.

II. THEORY

A. Microscopic dynamics

We describe the state of the system by a time-dependent
distribution function �(rN, t), which gives the probability
density to find the N particles in the system at positions rN

≡ {r1, . . . rN} at time t. The particles interact via an interpar-
ticle potential U(rN) and with their surrounding via an exter-
nal potential Vext(r, t) and via a non-conservative force field
X(r, t). The thermal agitation at constant temperature T is bal-
anced by a velocity-dependent friction force with force con-
stant γ . The resulting overdamped Brownian dynamics can
be described via the continuity equation for the many-body
distribution function,

∂

∂t
�(rN, t) = −

∑
i

∇i · v̂i(t)�(rN, t). (3)

Here the velocity operator of particle i is defined as

v̂i(t) = γ −1[−(∇iU (rN )) − kBT ∇i

− (∇iVext(ri , t)) + X(ri , t)], (4)

where kB is the Boltzmann constant, and T is absolute tem-
perature. Within this Smoluchowski picture the average of an
operator â(t) in configuration space is given by a(t) = 〈â(t)〉
= ∫

drN â(t)�(rN, t).

B. One-body averages

For the present study the one-body density and one-body
current are of particular importance and are described by the
operators

ρ̂(r, t) =
∑

i

δ(r − ri), (5)

Ĵ(r, t) =
∑

i

δ(r − ri)v̂i(t). (6)

For brevity we will henceforth use the shorthand notation
ρ̂(1) ≡ ρ̂(r1, t1), and Ĵ(1) ≡ Ĵ(r1, t1) for spacetime points.
The one-body density and current are then given by ρ(1)
= 〈ρ̂(1)〉 and J(1) = 〈Ĵ(1)〉, respectively. The one-body ve-
locity is simply v(1) = J(1)/ρ(1). The local conservation

of particle number is expressed by the one-body continuity
equation

∂

∂t1
ρ(1) = −∇1 · J(1). (7)

C. Two-body correlation functions

On the two-body level, the molecular motion of a liquid
is commonly analyzed in terms of a two-time density-density
correlation function first introduced by Leon van Hove.2 For
spatially and temporally inhomogeneous situations the van
Hove function is defined by

GvH(1, 2) = ρ(1)−1〈ρ̂(1)ρ̂(2)〉, (8)

where the two-time average is taken with respect to the
nonequilibrium distribution at the earlier time t2, together
with the conditional probability for finding the state at the
later time t1.

While the equilibrium relaxation dynamics of the system
is well-characterized by the van Hove function, the motion
in the presence of, e.g., a time-dependent external potential
or non-conservative shear forces is better described by the
nonequilibrium two-body function

Jf
vH(1, 2) = 〈Ĵ(1)ρ̂(2)〉, (9)

which we will henceforth refer to as the (front) van Hove cur-
rent. We adopt the convention t1 ≥ t2. The analogue of (7) on
the two-body level is given by

∂

∂t1
ρ(1)GvH(1, 2) = −∇1 · Jf

vH(1, 2), (10)

which relates the vectorial van Hove current to the scalar van
Hove function.

D. Static functional derivatives

In order to connect the one-time level of description, pro-
vided by the density, ρ(1), and current, J(1), to the inhomoge-
neous two-time van Hove current, we seek to express the latter
as a functional derivative of the former with respect to an ap-
propriately chosen one-body field. In equilibrium this proce-
dure is straightforward. For example, the equilibrium density
is given by

ρ(r) = Trclρ̂(r)�eq(rN ), (11)

where Trcl is the classical trace over phase space and total
particle number, and the grand canonical probability density
is given by

�eq(rN ) = �−1e−β(H−μN), (12)

where � is the grand partition function, β = (kBT)−1,
H = ∑

i[p
2
i /(2m) + Vext(ri)] + U (rN ) is the Hamiltonian, pi

is the momentum of particle i, m is the particle mass, and μ is
the chemical potential.2 Functional differentiation of the den-
sity with respect to its conjugate field, the external potential,
generates the density-density correlation function

δρ(r)

δβVext(r′)

∣∣∣
eq

= 〈ρ̂(r)ρ̂(r′)〉 − ρ(r)ρ(r′) . (13)
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Here we use that for fields u(r) that depend only on space
δu(r)/δu(r′) = δ(r − r′).

E. Dynamic functional derivatives

Out of equilibrium there is no standard procedure for
generating, in the spirit of (13), inhomogeneous two-time cor-
relation functions. We thus seek to express microscopic two-
time correlators as functional derivatives of one-body fields.
Consider the Smoluchowski equation (3) in the form

∂

∂t
�(rN, t) = 	̂(t)�(rN, t), (14)

where the (Smoluchowski) time evolution operator, given by

	̂(t) = −
∑

i

∇i · v̂i(t), (15)

allows to write the formal solution of (14) as

�(rN, t) = e
∫ t

t0
ds 	̂(s)

+ �(rN, t0), (16)

where t0 is an initial time and e+ indicates a time-ordered ex-
ponential (see, e.g., Ref. 10), which is defined via the power
series

e
∫ t

t0
ds	̂(s)

+ = 1 +
∫ t

t0

ds	̂(s) +
∫ t

t0

ds1

∫ s1

t0

ds2	̂(s1)	̂(s2)

+
∫ t

t0

ds1

∫ s1

t0

ds2

∫ s2

t0

ds3	̂(s1)	̂(s2)	̂(s3) + · · · .

(17)

The time-ordered exponential in (16) acts as a propagator and
will play a role analogous to that of the Boltzmann factor in
the equilibrium distribution (12).

In order to calculate the desired functional derivatives
we will use the general functional identity δu(r, t)/δu(r′, t′)
= δ(r − r′)δ(t − t′), where u(r, t) is an arbitrary function, and
furthermore the chain rule for time-ordered exponentials,

δ

δu(r, t)
e
∫ t2
t1

ds 	̂(s)

+ =
∫ t2

t1

ds e
∫ t2
s

ds ′ 	̂(s ′)
+

δ	̂(s)

δu(r, t)
e
∫ s

t1
ds ′	̂(s ′)

+ .

(18)

Observing the general definition of the two-time correlation
between two operators â(1) and b̂(2),

〈â(1)b̂(2)〉 =
∫

drN â(1)e
∫ t1
t2

ds	̂(s)

+ b̂(2)e
∫ t2
t0

ds	̂(s)

+ ψ(rN, t0),

(19)

and using (18) it is straightforward to show that the following
functional derivative relations hold

δJ(1)

δβV(2)
= I (1, 2) + ∂

∂t2
Jf

vH(1, 2), (20)

δρ(1)

δβV(2)
= ρ(1)

∂

∂t2
GvH(1, 2), (21)

where causality requires t2 ≤ t1. The functional derivatives are
built with respect to the function

V(2) ≡
∫ t2

t0

dt ′2 D0∇2
2 Vext(2

′), (22)

where we employ the notation Vext(2′) = Vext(r2, t
′
2). The

function V(2) has the same physical dimension as the ex-
ternal potential, but rather measures the accumulated change
in potential arising from the action of the diffusion opera-
tor. The instantaneous contribution to (20) is given by I (1, 2)
= −γ −1ρ(1)δ∇Vext(1)/δβV(2); explicit evaluation of the
functional derivative in will not be required for the following
development.

The consistency of our formalism with the equilibrium
density functional approach can be demonstrated by assuming
the system was in equilibrium for all times and integrating the
dynamic functional derivative (21) over the entire history∫ t2

−∞
dt ′2

δρ(1)

δβV(2′)
=

∫ t2

−∞
dt ′2 ρ(1)

∂

∂t ′2
GvH(1, 2′) (23)

= 〈ρ̂(r1)ρ̂(r2)〉 − ρ(r1)ρ(r2) (24)

= δρ(r1)

δβVext(r2)

∣∣∣
eq

, (25)

where we make the (reasonable) assumption that density fluc-
tuations become decorrelated at sufficiently long times. Note
that in this dynamical calculation the second term in (24)
arises from the lower integration limit, whereas in the stan-
dard Gibbs ensemble calculation (13) it is generated by the
normalization of the probability distribution.

F. DDFT approximation

We next seek to apply the mathematical framework de-
veloped above to generate equations of motion for the two-
time correlation functions. This requires explicit expressions
for the one-body averages which can be differentiated with re-
spect to the external fields. The simplest theory for the micro-
scopic one-body current of interacting particles is the DDFT,8

where the current,

JDDFT(1) = ρ(1)

γ

(
−∇ δF [ρ]

δρ(1)
− ∇Vext(1) + X(1)

)
, (26)

expresses a time-local balance between the viscous friction,
γ v(1), external forces, forces due to thermal motion, and in-
terparticle interactions, the latter two contributions generated
by the intrinsic Helmholtz free energy functional F[ρ]. When
combined with the one-body continuity equation (7), a closed
drift-diffusion equation for ρ(1) follows.

Using (26) to calculate the functional derivative
δJ(1)/δβV(3), employing the functional chain rule, and the
relations (20) and (21) generates a DDFT approximation to
the van Hove current,

Jf,DDFT
vH (1, 3)

= J(1)GvH(1, 3) − D0ρ(1)∇1

(
GvH(1, 3)

−
∫

dr2c(1, 21)ρ(21) (GvH(21, 3)−ρ(3−∞))

)
, (27)

where ρ(3−∞) ≡ ρ(r3, −∞) and a contribution ∇1ρ(3−∞)
vanishes. The argument 21 in (27) indicates position r2
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and time t1; the direct correlation function is hence evalu-
ated at distinct values of the spatial arguments at the same
time, c(1, 21) ≡ c(r1, r2, t1), and v(1) is given here by
JDDFT(1)/ρ(1). Here the equilibrium direct correlation func-
tion is the second functional derivative of the excess (over
ideal gas) part of the intrinsic Helmholtz free energy, c(r1,
r2) = −δ2βFexc[ ρ]/δρ(r1)δρ(r2).4 In obtaining (27) we have
made the assumption that two-body correlations factorize
for widely separated time arguments, i.e., 〈ρ̂(r, t)ρ̂(r′,−∞)〉
= ρ(r, t)ρ(r′,−∞), which holds in the absence of an ideal
glass transition. The three distinct contributions to (27) rep-
resent a transport term, ideal decay, and an adiabatic integral
term due to interparticle interactions.

Equation (27) is the natural extension of the DDFT ap-
proximation for the one-body current (26) to the two-body
level. Substitution of (27) into the two-body continuity equa-
tion (10) yields a closed equation for the van Hove function
which is local in time, due to the adiabatic assumption under-
lying (26), but nonlocal in space; this is the DDFT approxi-
mation to the NOZ equation we seek. External forces do not
appear in (27) explicitly, but enter implicitly via the one-body
density and current obtained by solving (7) with (26). The fact
that Eq. (27) is closed is a direct consequence of the adiabatic
assumption that thermodynamic driving forces can be gener-
ated from an equilibrium free energy functional. As we will
discuss below, this is equivalent to neglecting the contribution
of interparticle interactions to the the power dissipation in the
dynamical generating (power) functional.

Within the same DDFT approximation considered here
Archer et al.12, 13 have proposed a dynamic test-particle
method for calculating the equilibrium van Hove function.
This alternative approach focuses on the simultaneous re-
laxation of both a tagged particle density (from a delta-
function initial state) and the one-body density distribution of
the remaining particles (from initial state ρ(r, 0) = ρbg(r)).
In general, this one-body route to the van Hove function
will produce results which differ from those generated by
Eqs. (10) and (27). In the special case that the Helmholtz
free energy is approximated by a quadratic density expansion
(the Ramakrishnan-Yussouff (RY) approximation14) the test-
particle current becomes identical to (27). The RY functional
thus exhibits test-particle self consistency within the DDFT
approximation.

G. Equal-time equilibrium correlations

In the special case of equilibrium at all times, J(1) = 0,
the equal-time limit, t1 = t3, of (27) yields

Jf,DDFT
vH (1, 31)

= −D0ρ(1)∇1

[
δ(r1 − r3) + ρ(31)

(
h(1, 31)−c(1, 31)

−
∫

dr2c(1, 21)ρ(21)h(21, 31)

)]
, (28)

where we have used the equal time limit of the van Hove
function, GvH(1, 31) = ρ(31)(h(1, 31) + 1) + ρ(1)δ(r1 − r3).
The short-time relaxation of the van Hove function is deter-

mined by the highly localised, delta-function initial condition
of the self part, such that the term in square brackets in (28) is
identically zero. The dynamic functional derivative approach
to two-time correlation functions thus provides an alternative
derivation of the inhomogeneous OZ equation (2).

H. Homogeneous system without external forces

In the homogeneous limit with no external forces Eq. (27)
reduces to

∂

∂t
F (k, t) + �(k)F (k, t) = 0, (29)

where the intermediate scattering function, F(k, t), is the
three-dimensional spatial Fourier transform of the transla-
tionally invariant equilibrium van Hove function.2 The time-
independent “initial decay rate” is given by �(k) = D0 k2/S(k),
where S(k)=1/(1− ρbc̃(k)) is the static structure factor; here
the tilde indicates the spatial Fourier transform. Equation (29)
has the solution

F (k, t) = e−�(k)t . (30)

The effective diffusion constant, D0/S(k), is strongly reduced
for wavenumbers around the main peak of S(k), relative to
the bare diffusion constant. This well-known “de Gennes
narrowing”11 has its origins in the strong spatial correlations
at wavelengths corresponding to the local nearest-neighbour
cage around any given particle.

I. Homogeneous system under shear

When applied to a spatially homogeneous systems un-
der steady shear of rate γ̇s , with flow in x-direction and
shear-gradient in y-direction, Eq. (26) yields γ JDDFT(1)/ρb

= X(1) ≡ γ̇sy1êx . Solution of Eqs. (10) and (27) for this one-
body current is straightforward (using, e.g., the method of
characteristics) and yields

F (k, t) = exp

(
−kk :D(t ; γ̇s)

S(k(t))

)
, (31)

in which the wavevector dyadic kk is fully contracted with
the time-dependent diffusion tensor, given by

D(t ; γ̇s) =
⎛
⎝ t + γ̇ 2

s t3

3 γ̇s t
2 0

0 t 0
0 0 t

⎞
⎠, (32)

and where the shear-advected wavevector is given by
k(t)= (kx, ky + γ̇skxt, kz). Equation (31) extends (30) to
steadily sheared states and captures the enhanced diffu-
sion in flow direction, termed “Taylor dispersion,”15 which
arises from the coupling of Brownian and affine motion.
Equation (27) thus treats systems with non-zero density by
supplementing the exact low density limit (Eq. (31) with
S(k) = 1) with an approximate, wavevector dependent diffu-
sion tensor. The approximation (31) is on a similar level to
the fluctuating diffusion equation approach of Ronis16 (for a
review of alternative approaches to calculating the distorted
structure factor see Ref. 17).
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J. Beyond DDFT

In contrast to the DDFT approximation (27), the exact
expression for Jf

vH(1, 2) should include the physics of struc-
tural relaxation, via a dependence on the history of both one-
and two-body correlation functions. Introduction of vecto-
rial and tensorial direct time correlation functions, denoted
by m(1, 2) and M(1, 2), respectively, enables formulation of
a general equation of motion. Splitting the full van Hove
current into the DDFT contribution and an irreducible part,
Jf

vH = Jf,DDFT
vH + Jirr

vH, we identify the most general non-
Markovian form that involves only one- and two-body func-
tions which generate a vector field from spacetime convo-
lutions of the van Hove function and van Hove current,
namely,

Jirr
vH(1, 3) = Jirr

vH(1, 3−∞) − ρ(1)
∫ t3

−∞
dt ′3 ∇3 · M(1, 3′)ρ(3′)

+ ρ(1)
∫

d2
[
M(1, 2) · (

Jf
vH(2, 3) − J(2)ρ(3−∞)

)

+ m(1, 2)ρ(2)(GvH(2, 3) − ρ(3−∞))
]
.

(33)

The 2-integral in (33) runs over a spacetime slab from the
earlier time t3 to later time t1, consistent with causality. Un-
like the approximate DDFT expression (27), the exact NOZ
equation is not closed and serves to define the direct time
correlation functions m(1, 2) and M(1, 2), in analogy to the
equilibrium OZ equation (2), which defines the static di-
rect correlation function c(r1, r2). Equation (33), when com-
bined with (27), provides a natural generalization of the equi-
librium OZ equation to nonequilibrium systems undergoing
Brownian dynamics and enables structural relaxation to be
incorporated via the time direct correlation functions. Al-
though the continuity equation (10) can be used to elim-
inate Jf

vH(1, 3) from (33) in favour of GvH(1, 3), closure
still requires that (33) be supplemented by two independent
equations that relate m(1, 2) and M(1, 2) to the van Hove
function and its current. This can be achieved either by pos-
tulating closure relations (as is done in equilibrium via, e.g.,
the Percus-Yevick or hyper-netted-chain approximations,2) or
by exploiting the power functional formalism,8 as outlined
below.

An approximation of particular significance is obtained
by setting m(1, 2) = 0, neglecting the second direct (with-
out spatial convolution) term, and simplifying the tensorial
structure of the remaining direct time correlation function,
M(1, 2)=M(1, 2)1, where M(1, 2) is a scalar function and 1
the unit matrix. For homogeneous equilibrium states the gen-
eral equation (33) then reduces to

∂

∂t
F (k, t) + �(k)F (k, t) −

∫ t

0
dt ′M̃(k, t−t ′)Ḟ (k, t ′) = 0,

(34)

which is a non-Markovian equation for the intermediate
scattering function, identical to that employed in MCT.
The standard “idealized” mode-coupling theory18 is obtained
by setting M̃(k, t)=M̃MCT(k, t), where the friction kernel

given by

M̃MCT(k, t) = −ρb�(k)

16π3

∫
dq V (k , q) F (q, t)F (|k − q|, t),

(35)

contains the vertex function

V (k , q) = S(k)S(q)S(p)

k4
(k · q c̃(q) + k · p c̃(p))2, (36)

where p = k − q. The equations of MCT, (34)–(36), cap-
ture slow structural relaxation, absent from the simple DDFT
approximation (30), and predict dynamical arrest in dense
and/or strongly attractive systems.18 The MCT closure (35)
is local in time but nonlocal in space. Relaxation of the re-
striction m(1, 2) = 0, generates an additional term within the
time integral in (34), which is linear in the intermediate scat-
tering function. Remarkably, this extension, which emerges
naturally within the NOZ approach, is consistent with the “ex-
tended MCT” of Götze and Sjögren,19 in which an additional
relaxation process was introduced to describe relaxation pro-
cesses (“hopping”) in glassy states.

K. Connection to power functional theory

The NOZ approach developed in this work gains further
significance when viewed in the context of the recently de-
veloped power functional theory,9 which is an extension of
classical density functional theory to nonequilibrium. Within
this framework, minimization of a dynamic (free power) func-
tional yields a general and exact equation of motion for the
one-body current,

J(1) = JDDFT(1) − ρ(1)

γ

δP exc
t1

[ρ, J]

δJ(1)
, (37)

where JDDFT(1) is defined via (26) and obtained by differ-
entiation of the ideal gas contribution to the power dissipa-
tion, P id

t [ρ, J] = ∫
drγ J(r, t)2/(2ρ(r, t)), with respect to the

one-body current. The excess (over ideal gas) power dissi-
pation, P exc

t [ρ, J], is a functional of the history of ρ(1) and
J(1) prior to time t and accounts for dissipation induced by
particle-particle interactions. Differentiating the exact Euler-
Lagrange equation (37) with respect to βV(3) (following the
same procedure used to obtain (27)) and comparing the result
to the general form (33) yields the identification of the direct
time correlation functions with second functional derivatives
of the excess power dissipation via

m(1, 2) = −γ −1 δ

δρ(2)

δP exc
t1

[ρ, J]

δJ(1)
, (38)

M(1, 2)T = −γ −1 δ

δJ(2)

δP exc
t1

[ρ, J]

δJ(1)
, (39)

where the superscript T indicates the transpose. Equa-
tions (33) and (37)–(39) imply that approximating a single
mathematical object, the excess power dissipation functional,
is sufficient to generate a closed and fully consistent set of
equations for the dynamics of both the one- and two-body
correlation functions. The DDFT approximation, leading to
Eqs. (26) and (27), is obtained by setting P exc

t [ρ, J] = 0.
A natural way to go beyond DDFT is to approximate

P exc
t [ρ, J] by a truncated (functional) Taylor expansion in
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the one-body current about the equilibrium state. To leading
(quadratic) order this yields

P exc
t [ρ, J] = −γ

2

∫
dr1

∫
d2 J(1) · M(1, 2)

∣∣∣
J=0
· J(2). (40)

Making the approximation M(1, 2)|J=0 ≈ MMCT(1−2)1,
which on the two-body level yields the MCT equation, gener-
ates on the one-body level a closed non-Markovian equation
of motion for the current and density, via (7) and (37). This
equation of motion contains information about slow structural
relaxation, on the level of idealized MCT, and thus provides a
useful tool to study situations for which standard DDFT fails,
such as, e.g., the sedimentation of colloidal gels.20

III. CONCLUDING REMARKS

To summarize, we have developed a nonequilibrium
Ornstein-Zernike approach to the two-time correlation func-
tions of interacting Brownian particles. The most fundamental
equations emerging from our treatment are (27) and (33) for
the vectorial van Hove current. When supplemented by the
two-body continuity equation (10), these expressions provide
a means to calculate the two-time dynamical correlation func-
tions under the influence of arbitrary external forces. Approxi-
mate closures, of which MCT is a specific nontrivial example,
generate, in general, non-Markovian equations of motion for
the van Hove function (8) and the van Hove current (9).

As part of our development of the general nonequilib-
rium theory we have derived a DDFT approximation for the
van Hove current (27). This expression, which to the best
of our knowledge has not appeared previously in the litera-
ture, provides much confidence in our general approach and
strongly supports our identification of the microscopically de-
fined two-time correlation functions, namely the van Hove
function (8) and van Hove current (9), as functional deriva-
tives of the one-body fields, via (20) and (21). The DDFT ap-
proximation to the van Hove current (27) predicts de Gennes
narrowing of the intermediate scattering function for homo-
geneous systems and derives the inhomogeneous equilibrium
OZ relation (2) in the equilibrium limit, consistent with the
underlying adiabatic approximation.

One can view the general equations of motion (27) and
(33) as the basis for the construction of approximate nonequi-
librium integral equation theories. However, an alternative,
and potentially more illuminating approach to a closed two-
time theory is provided by the power functional formalism.9

Within this framework, non-adiabatic contributions to the
one-body equation of motion (37) and the memory func-
tions entering the two-time equations (38) and (39), are re-
lated to first and second derivatives, respectively, of the ex-
cess power dissipation, as a single generating functional. In
analogy with equilibrium DFT, for which the direct correla-
tion function, c(r1, r2), is generated from a free energy func-
tional, the nonequilibrium time-direct correlation functions
(memory functions) responsible for non-Markovian dynam-
ics are generated by the excess power dissipation functional.
As the same excess power dissipation functional generates
the dynamics of the one-body fields, via the Euler-Lagrange
equation (37), the power functional approach can be seen to

provide a unified variational framework for the calculation
of one- and two-body dynamical correlation functions. Fur-
ther functional differentiation of (33) with respect to external
forces generates higher-order NOZ relations involving, for ex-
ample, three- and four-body correlations. Despite their com-
plexity, these expressions may be of use, perhaps in a simpli-
fied form or in special limits, for analyzing dynamical hetero-
geneities in equilibrium or in metastable, arrested states.21

By expressing the MCT within the framework of func-
tional differentiation, it is straightforward to identify a can-
didate approximation, (40), to the excess power dissipation
functional, which can then be equally well applied, via (37),
on the one-body level. This opens up the possibility of exploit-
ing approximations developed on the two-body level (e.g.,
MCT) for one-body variational calculations, thus putting
within reach the systematic investigation of many interest-
ing problems for which the one-body dynamics may be sig-
nificantly influenced by slow structural relaxation (e.g., the
sedimentation of gels20). When applied to inhomogeneous
driven systems the approximate excess dissipation functional
(40), together with (10) and (33), provides a natural exten-
sion of equilibrium MCT. Moreover, application of (40) in
a dynamic test particle calculation of the type developed by
Archer et al.12, 13 may provide results for the intermediate
scattering function which are superior to the standard MCT, as
the calculation is performed at the one-body level. Research
along all these lines is in progress.
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