IOPScience

Home

Search Collections Journals About Contactus My IOPscience

Power functional theory for the dynamic test particle limit

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 J. Phys.: Condens. Matter 27 194106
(http://iopscience.iop.org/0953-8984/27/19/194106)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 132.180.92.155
This content was downloaded on 25/08/2015 at 08:35

Please note that terms and conditions apply.

iopscience.iop.org


iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/27/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

10P Publishing

Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 27 (2015) 194106 (8pp)

doi:10.1088/0953-8984/27/19/194106

Power functional theory for the dynamic

test particle limit

Joseph M Brader' and Matthias Schmidt’

! Soft Matter Theory, University of Fribourg, Avenue de 1I’Europe 20, CH-1700 Fribourg, Switzerland
2 Theoretische Physik II, Physikalisches Institut, Universitit Bayreuth, D-95440 Bayreuth, Germany

E-mail: Joseph.Brader @unifr.ch and Matthias.Schmidt@uni-bayreuth.de

Received 4 August 2014, revised 3 November 2014
Accepted for publication 21 November 2014
Published 29 April 2015

Abstract

®

CrossMark

For classical Brownian systems both in and out of equilibrium we extend the power functional
formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different
types of particles. We apply the framework to develop an exact dynamical test particle theory

for the self and distinct parts of the van Hove function, which characterize tagged and
collective particle motion. The memory functions that induce non-Markovian dynamics are
related to functional derivatives of the excess (over ideal) free power dissipation functional.
The method offers an alternative to the recently found nonequilibrium Ornstein—Zernike

relation for dynamic pair correlation functions.

Keywords: colloids, density functional theory, dynamics

1. Introduction

Most of the fundamental aspects of the dynamics of simple
as well as of complex fluids can be described on the basis of
microscopic two-point correlations in space and time. The
collective two-point functions, such as the (total) van Hove
function, the intermediate scattering function or the shear
modulus [1], provide information about the relevant relaxation
times at various lengthscales and enable one, via Green—Kubo
relations [2, 3], to calculate macroscopic transport coefficients,
such ase.g. the shear viscosity. Collective correlation functions
relate microstates of the system at different times with each
other, treating all occuring combinations of particle pairs on
the same footing. As a result, information about the (average)
motion of individual particles is not resolved.

A higher level of resolution can be obtained by splitting
a given collective correlation function into a sum of ‘self’
and ‘distinct’ contributions, via appropriate restriction of the
occurring sum(s) over particles. The behaviour of each
of the split contributions can then be studied and analyzed
separately. The self contribution describes the dynamics of
an arbitrarily selected (tagged) particle and yields information
about e.g. the mean-squared displacement in the case of the
self van Hove function [1]. Transport properties of a tagged
particle, such as the self diffusion coefficient, can be obtained
from integrating in time over the tagged particle velocity
autocorrelation function, established via a well-known Green—
Kubo relation [5].

0953-8984/15/194106+08%$33.00

Theoretical schemes for the practical calculation of
dynamic pair correlations are commonly formulated in terms of
memory functions. These represent the residual influence of
the unresolved microscopic degrees of freedom, which have
been integrated out when formulating a closed equation of
motion on the two-body level. The required coarse-graining
may formally be implemented through use of the Zwanzig—
Mori projection operator formalism [4—6]. The exact memory
functions thus obtained are usually approximated using e.g.
generalized hydrodynamics [7] or mode-coupling projections
onto slow variables [8], in order to arrive at a closed theory.
In the spirit of density functional theory a time-dependent
generalization of the pair direct correlation function was also
proposed some time ago [9], but remains to be tested.

Very recently, an alternative theoretical method for
the determination of collective pair correlation functions in
Brownian systems has been proposed by the present authors

[10,11]. This new method is based on a nonequilibrium
Ornstein—Zernike (NOZ) equation, which is a formally exact,
non-Markovian equation of motion for the tensorial two-
body current, J,(ry, t; 2, tp), correlating particle current
fluctuations at separate spacetime points ry, #; and ry, ;. In
contrast to mode-coupling-type approaches employing explicit
projection operators, the statistical averaging in the NOZ
theory is achieved using dynamical functional calculus [11].
From knowledge of J; it is straighforward to obtain the more
familiar van Hove function [12] by employing the two-point

© 2015 IOP Publishing Ltd  Printed in the UK


http://dx.doi.org/10.1088/0953-8984/27/19/194106
mailto: Joseph.Brader@unifr.ch
mailto: Matthias.Schmidt@uni-bayreuth.de
http://crossmark.crossref.org/dialog/?doi=10.1088/0953-8984/27/19/194106&domain=pdf&date_stamp=2015-04-29
http://dx.doi.org/10.1063/1.4807586

J. Phys.: Condens. Matter 27 (2015) 194106

J M Brader and M Schmidt

continuity equation, and hence differentiating in space and
integrating in time.

The NOZ equation can be elegantly derived within the
variational framework of power functional theory (PFT) [14].
The PFT is an exact generalization of equilibrium classical
density functional theory (DFT) [18] for many-body Brownian
systems out-of-equilibrium. An equation of motion for the
one-body current, J(r,t), follows from minimization of a
dynamic generating functional, R,, representing the ‘free
power’ available in the system [14], and hence

SRip. 3]
sy, 0 )

where the square brackets indicate a functional dependence on
the density and current fields (which both depend on space
and time). It was shown that functional differentiation of
the Euler-Lagrange equation (1) with respect to the external
forces acting on the system yields an exact NOZ equation
for the two-body current [11]. The NOZ route to the two-
body correlations has the advantage over other theoretical
approaches that the memory functions can be identified as
functional derivatives of an excess (over ideal gas) power
dissipation functional [10,11], thus aiding their physical
interpretation. Moreover, generating all one-body, two-body
and, in principle, higher-body dynamic correlation functions
from the single variational principle (1) provides a unified and
internally consistent description of both the static and dynamic
properties of the system.

The NOZ approach forms an analogue of the well-known
static Ornstein—Zernike (OZ) relation, which is a cornerstone
of the equilibrium theory of liquid structure. Within DFT the
pair-direct correlation function can be generated from a second
functional derivative of the excess Helmholtz free energy with
respect to the one-body density distribution. The OZ relation
then yields the two-body density correlator and hence the static
(i.e. equal-time) pair distribution function and, via Fourier
transform, the static structure factor.

An alternative, possibly less common but equally powerful
route to the static structure is to minimize the grand potential
functional in the presence of an external field that corresponds
to a test-particle fixed at the origin. Percus’ test particle idea
[15] can then be used to identify the resulting one-body density
profile with the two-body density correlator. Given an exact
free energy functional, the OZ and test-particle routes to the
pair correlations are formally equivalent and will thus yield
identical results. In practice, if a reliable approximative free
energy functional is available, then the test-particle results are
often superior in quality than those from the OZ route, when
using simulation results as benchmark data.

In this paper we develop a dynamic test particle method
for obtaining dynamic pair correlations from power functional
theory. The dynamical test particle method, first suggested by
Archer et al [16], is straightforward to implement and provides
an intuitive separation of the van Hove function into self and
distinct contributions. The development of a dynamical test
particle approach within power functional theory requires a
multi-component formulation of the latter, which we develop in
the present work. This enables us to distinguish the test particle

from all other particles according to the species label. While
Archer et al’s implementation of the dynamic test particle
concept via DDFT is approximate in nature, the use of the PFT
permits us to formulate a formally exact equation of motion
for the self and distinct van Hove function.

The paper is structured as follows: In section 2 we specify
the microscopic dynamics and define the one-body correlations
of interest. In section 3 we describe the extension of power
functional theory to multicomponent systems. The self and
distinct van Hove functions are introduced in section 4, and
are then calculated in section 5 by applying the mixture power
functional in a dynamic test particle calculation. Finally, in
section 6, we give concluding remarks and an outlook on
future work.

2. Many-body Brownian dynamics

2.1. Smoluchowski equation

The system is described by a time-dependent distribution
function, W (r” ¢), which gives the probability density to find
the N particles in the system at positions r¥ = {r;, ..., ry} at
time 7. The total inter-particle interaction potential is U (r").
The external force acting on a given particle i consists of
a conservative contribution, —V; V™' (r;, t), arising from an
external potential (which, in principle, can be different for each
particle), and a non-conservative force, X; (r;, t), which could
e.g. represent shear. The many-body distribution function
evolves according to the Smoluchowski equation [17]

%‘I’(ﬂ H=- Xi:V,- VWD), 2

where the velocity operator of particle 7 is defined as
W0 =y [ - UE") — ke TV,
S AGCRIES L)) REE)

where y; is a friction constant related to the bare diffusion
coefficient Dy; of species i, according to y; = kgT/Dy;, with
kp the Boltzmann constant and 7' the temperature. In order to
retain full generality, a particle dependent friction coefficient
is considered. Note that only the thermal term is a differential
operator; the two bracketed gradients each yield a vector-
valued function, which then acts via multiplication only. The
derivative with respect to the position of particle i in (2) acts on
both the velocity operator and on the many-body distribution
function. Physically, the action of V;(¢) on the distribution,
W (rN 1), generates the noise averaged velocity of particle i.

2.2. One-body density and current

The one-body density and one-body current of a tagged particle
i in a classical many-body system are respectively described
by the following operators,

pi(r,1) =8(r—r), “

Jir, 1) =8 — )V, (1), S
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where v, (¢) is the time-dependent velocity of particle i, given
by (3). We consider the system to be a mixture consisting of m
species, labelled by = 1, ..., m. Let \V,, be the set of particle
indices i that constitute species «. Then the species-labelled
density and current operators are given by

palr, 1) =Y pilr,1), 6)
i€Ng

Ja(r,0) =" Ji(r,n), @)
ieN,

The total density and current operators follow from summation
over the species label

A1) = pulr,0), ®)
o
Jaen =Y Jar, 0, ©)
where the sums run over all species, ¢ = 1, ..., m.

The local conservation of tagged particle density is
expressed by the one-body continuity equation
-V. J i (rv t )1

a
—,0,'(1’, t) = (10)

at

where the average tagged density and current are given by
pi(r, 1) = (pi(r,1)) and Ji(r, 1) = (Ji(r, 1)), respectively.
Here the angles indicate an average with respect to the
instantaneous distribution function, (-) = [dr" - W(r¥r).
The continuity equation for the species resolved densities is
obtained by summing (10) over all i € N, and using the
definitions (6) and (7), which yields

d
—Pa(r, 1) ==V - Jo(r, 1), an

ot
where the average density and current of species « are
given by p,(r,1) = (0u(r,1)) and Jo(r,1) = (Ja(r,1)).
Finally, summing over all particles in (10) yields the continuity
equation for the total density

d
Zpr)=-V-

o7 J(r, 1).

(12)
The average total velocity is given as the ratio v(r,t) =
J(r,t)/p(r, t). The average velocity of species « is v, (r, 1) =
Jo(r,1)/ps(r, t), and the average velocity of particle i is
vi(r, 1) =Ji(r, 1)/ pi(r, 1).

3. Power functional theory for mixtures

In equilibrium the central generating functional is the grand
potential, which describes the free energy available to do work,
subject to the contraints imposed on the system; namely fixed
volume, temperature and chemical potential. For Brownian
many-body systems out of equilibrium, it has been shown
that the corresponding natural quantity is a ‘free power’ [14].

This dynamic generating functional is nonlocal in space and
time and captures the interplay between reversible free energy
changes and irreversible dissipative loss.

For a one-component system of Brownian particles it
has been proven [14] that the free power of an arbitrary
nonequilibrium state is a functional of the average one-
body density and current. Separating off the external field
contributions to the free power enables identification of an
intrinsic contribution, which depends only on the interparticle
interactions. The existence of an intrinsic free power,
analogous to the intrinsic Helmholtz free energy in equilibrium
density functional theory [18], is a powerful and highly
nontrivial aspect of the PFT: For a given model interaction
potential this enables approximations to be developed, which
can then be employed without modification to systems subject
to arbitrary external forces.

In order to implement the dynamical test particle method
to be described below, we will require a generalization
of the power functional method to treat mixtures. For
multicomponent systems the free power, written as a sum of
intrinsic and external field contributions, is given by the sum

Rullows Judl = Willpws Jul1 + / dr VE(r, £)pu (1, 1)

= fdr (Xe(r, ) = VVE(r, 1)) - Jo(r, 1), (13)
o
where W, is the intrinsic free power at time ¢, the overdot on
the external potential denotes a partial derivative with respect
to time, and the notation [{p., J.}] indicates a functional
dependence on the complete set of density and current fields,
a=1,...,m.
The intrinsic free power may be subdivided into a sum of
dissipative and adiabatic contributions

Wil pa, Jo 3] = Pilipa, Ju)}1+ Fl{pa}], (14)

where irreversible energy loss due to friction is described by
the power dissipation functional, P;[{p., J«}], and adiabatic
changes are captured by the (time derivative of the) equilibrium
intrinsic Helmholtz free energy, F[{p,}]. The latter is a
functional of the instantaneous density alone [18] and is taken
to be known, either exactly or to a good level of approximation.
We emphasise that the splitting (14) does not represent an
approximation, but rather a physically motivated definition
of Pi[{p«,Ja}], expressing the expectation that free energy
changes will be responsible for the adiabatic part of the
dynamics.

In order to isolate the nontrivial many-body physics as
cleanly as possible, we further split the dissipated power
functional into two contributions

Pil{pes Jo}1 = Ppw, Jo )1+ PE[{ 00, Ju 3,

where the first term is the dissipation functional of a multi-
component ideal gas, given exactly by

POl pas Jul] = Zf

s5)

Yado(r, 1)

16
2p(r, 1) (16
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and the second term in (15) accounts for the nontrivial
dissipation, including all memory effects, arising from
interparticle interactions. Here the friction coefficient of
species « is denoted by y,,.

For multicomponent systems the minimum principle (1)
generalizes straightforwardly to the set of equations

ORullper dul] _ a7
8Jo(r, 1)

where « = 1, ..., m. Using equations (13)—(16) the Euler—
Lagrange equation (17) can be written in the more explicit
form

Yodo(r, 1) SP[{py, Jo'}] (18)
Pa(r, 1) 8Jo(r, 1)
_ SF[{px}] _ ext
= V—Spa(r, D VV A (r, 1) + X, (r, 1).

Given approximations for the free energy and the excess
dissipation functionals, where the latter depends only on
the interparticle interactions, substitution of (18) into the
continuity equation (11) generates a closed set of coupled
equations for the density fields.

The simplest (adiabatic) approximation within PFT is to
neglect entirely the excess dissipation by setting P =0. This
recovers the well-known dynamical density functional theory
(DDFT) [18-20]. Within this approximation, the density fields
of different species are coupled solely via the Helmholtz free
energy. In a more complete theory the equation (17) would be
coupled (generally in a nonlinear fashion) by both the excess
free energy and the excess dissipation functional.

4. The van Hove function

We return to one-component systems, and investigate these
on the two-body level. =~ The most commonly studied
dynamical two-body correlation function is the density-
density correlation function introduced by van Hove [I1,12].
For spatially and temporally inhomogeneous one-component
systems this is given by
Guri(T1. 11, T2 1) = (P(l‘lyll)l)(l‘z,lz))’
p(ry, 1)

where the average is taken using the many-body probability
distribution at the earlier time, #,, together with the many-
body propagator that ‘transports’ the result of the action of the
density operator at time #, to the later time #;; [11] provides
all details on the calculation of such two-time averages.

Generalizations of (19) exist for general multi-component
systems [13]. However, in the present work we wish to
focus on the dynamics of one-component systems. The species
labelling introduced above will serve as a formal method to tag
an arbitrarily chosen particle (which will serve to identify the
self contribution). As a consequence the friction coefficient of
tagged and distinct ‘species’ are identical, y; = y4 = y. With
this in mind, we split the total van Hove function (19) into a
sum of two contributions

19)

. d
Gu(ry, 11,12, ) =Gy (ry, 11, 12, )+ Gy (T, 11, 12, 1),
(20)

where the self and the distinct part of the van Hove function is
defined, correspondingly, by
(i (r1, 1) pi (12, 1))

P (rl 5 Z‘l)

Giyry, t1, 12, 10) = Z

i

, 2y

(i (ry, 1) pr (12, 1))
Giy(ri, 1,12, 1) = )
vH ; p(rl’ tl)

(22)

The primed sum indicates a summation over distinct pairs, i.e.
Y = i Yk 4i)- The superscripts s and d, denoting the
self and distinct contributions, can be formally regarded as
labelling distinct species, despite the fact that all particles are
physically identical.

For isotropic, translationally invariant bulk systems the
van Hove functions (19), (21) and (22) become functions of
the time difference t = t; —t, and of the radial distance r = |r]|,
where r = r; — r,. The initial conditions at time ¢ = 0 are

Giu(r,0) =4(n), (23)

Guu(r, 0) = pg(r), (24)
where §(r) indicates a three-dimensional Dirac delta function
(at the origin) and g(r) is the equilibrium radial distribution
function.  The self and distinct intermediate scattering
functions are given by the spatial Fourier transform

Gk, 1) = [ dr G%(r, H)e kT, (25)

where o = s, d. Knowledge of the self intermediate scattering
function provides direct access to the mean-squared particle
displacement due to the diffusive motion via

d .

— Gk, 1)

(i) = =3 -

, (26)
k=0

where r = 0 at the start of the measurement, t = 0, due to the
use of the relative coordinates and the initial condition (23).

5. Dynamic test particle limit

The dynamic test particle limit, as first introduced by Archer
et al [16], enables the self and distinct van Hove functions
of a homogeneous one-component system in equilibrium to
be determined from the density profiles of a binary mixture
in an appropriately constructed inhomogeneous situation. The
method is completely general and is applicable both in and out-
of-equilibrium. For the bulk in equilibrium at time ¢ = O the
density profile of species s (self) is taken to be a delta function
of unit norm located at the coordinate origin, ps(r, 0) = §(r),
representing a tagged particle. The initial condition for species
d (distinct) is given by pq(r, 0) = pg(r), where p = N/V is
the bulk density and g (r) is the bulk radial distribution function.
If the particles are physically identical, such that the species
labelling is just a formal device to keep track of the tagged
particle, then the density profiles can be identified with the self
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and distinct van Hove functions of the one-component system,
according to

Giy(r, 1) = ps(r, 1), 27

Go(r, 1) = pa(r, 1). (28)

In making the identifications (27) and (28) it is assumed that
there are no external fields. However, the dynamic test particle
approach remains valid in nonequilibrium. An example is e.g.
shear flow, for which the system becomes anisotropic, but
remains translationally invariant. In this case the functions
appearing in (27) and (28) will simply acquire a vectorial
argument r and are subject to the initial conditions ps(r, 0) =
8(r), pa(r,0) = pg(r,t), where g(r) is the shear-distorted,
steady state radial distribution function at the time ¢ (the shear
field can be time-dependent).

The above arguments apply to translationally invariant
systems. For completeness, we note that the most general
situation is realized when the density becomes spatially
inhomogeneous, p(r, ), as a result of either time-dependent
external driving or external potential fields. In such cases
equations (27) and (28) generalize to

Gi(ry, 1,12, 1) = py(ry, 1), (29)

Giy(ry, 1,12, 1) = pa(ry, 1), (30)

with the initial conditions ps(ry, t,) =8 (r1—r;) and pq(ry, 1) =
p(ry, t)g(ry, 1y, 1), where the single-time inhomogeneous
pair correlation function is related to the pair-density according
to g(r, 12, 1) = pP(r1, 12, 1)/ (p(r1, 1) p(r2, 1)).

5.1. Self and distinct van Hove functions

In the absence of external fields, combining (18) with the
continuity equation (11) yields a coupled pair of equations
for the self and distinct van Hove function

]

5Gg‘H(r, N+ V- [Giy@r, )y 'F(r, 0] =0,
where o = s, d and the total force arising from interparticle
interactions, thermal motion and interparticle dissipation is
given by

(€29}

8Flps, pal 8P [ps, pa, I, Jal

8pa(r, 1) 8o,y
The first term in (32) involves the total Helmholtz free energy,
whereas the second term involves only the excess dissipation.
The ideal dissipation term, which has here been been split
off, generates the yJ,/p, term in (18) and thus leads, via the
continuity equation, to the appearance of the time-derivative
term in (31).

Interpreting y ~'F%'(r, t) as a generalized velocity field,
the left hand side of equation (31) can be identified as
a transport derivative acting on the van Hove functions.
Equation (31) is highly nonlinear, as the density fields
appearing in the functionals of (32) are related to the van
Hove functions according to (27) and (28), while the current

FOr 1) = -V (32)

fields are obtained from the densities by solving equation (18).
Although (31) appears to be symmetric with respect to species
labels s and d, the asymmetry between the tagged particle and
the others enters via the initial conditions and the explicit form
of the generating functionals F and P*°.

The Helmbholtz free energy can be split into a sum of ideal
and excess contributions, F[{pe}] = F9[{pa}] + F*[{pu}],
where the former is given exactly by

Filip = ket 3 [drputrn [in (3p,w.0) = 1],

(33)

where A, is the (irrelevant) thermal de Broglie length of
species «, and in the present situation Ay = Ag = A. The
excess contribution depends upon the interparticle interactions
of the specific model under consideration. Employing this
splitting in (31) enables the interaction contributions to be
separated off,

9
5GgH(r, 1) = DyV>G%(r, 1)

— V- [Gir Yy 'Fi(r, )] =0, (34)
where the forces arising from interparticle interactions are
given by
SF™[{poar}] 8P [{pars Jur}]

8pa(r, 1) 8Ja(r, 1)
In contrast to the adiabatic free energy term, the dissipative
contributions to the interaction force are nonconservative.

F'(r, 1) = -V (35)

5.2. Intermediate scattering functions

Experiments can provide results for the self and distinct
intermediate scattering functions, which are here obtained by
spatial Fourier transformation of (34) to yield

= .
P G%(k, t) = —Dok*G%(k, ) (36)
Sy -/dk’ Gk — K|, 1) FN(K/, 7).

where the Fourier transformed force, i‘g“(k, t), is purely
imaginary. The relation (36) constitutes an exact pair of
equations for the self and distinct intermediate scattering
function.

The species labelled one-body direct correlation functions
are defined in terms of the excess free energy according to [18]

1 8F[{por}]
80 (1)

which, for a bulk system, is related to the excess chemical
potential by ¢\ . = —uS°/kgT. Substitution of (35) and
(37) into equation (36) enables the equation of motion to be

recast in the form

cV(r) = —(kgT)~ : (37

3 ~ .
5Gng(k, 1) = —Dok*G%4(k, ) (38)
D ~
+ g%/dk/ k-KG%(k—K| 1) éD®, 1)
Sy /dk/ Gk — K|, 1)k - FES &/ 1),
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where the last term involves the Fourier transform of the
superadiabatic force (also known as the irreducible force)

SPpars Jur}]

diss _
F,>(rt) = 53, 0)

, (39
which accounts for the dissipation arising from interparticle
interactions.

5.3. RY approximation to the free energy

Ramakrishnan and Youssouff (RY) suggested an approxima-
tion to the excess free energy, valid for small density inhomo-
geneities, by considering a functional Taylor expansion about
the homogeneous state and truncating at quadratic order. For
a mixture this is given by [21]

F[{pa}] = FO[{py" )] + Z e f dr fy(r) (40)

k T
tel Z/dr/dr’ ) — )70 ).

where pq(r) = pu(r) — p2 is the deviation of the

inhomogeneous density profile from the constant bulk density.
For general inhomogeneous equilibrium situations the pair
direct correlation between species o and 8 is defined by the
functional derivative

8¢ (r)
Spp(r’)’

e r) = (41)

This two-point correlation function is the convolution kernel
in (40) that acts as an effective potential coupling the density
fluctuations. Note that the pair direct correlation depends only
on a single scalar argument, as the functional Taylor expansion
is performed around the homogeneous bulk fluid.

Within the approximation (40) the one- and two-body
direct correlation functions of a mixture are related by a
convolution integral

cél)(r) = Z/dr’ (2)(|r —r'))pp()).
B

However, for the dynamic test particle limit under
consideration in this work the ‘mixture’ consists of a bath
of particles of species d and a single tagged particle, species
s. Both species are physically identical. The pair direct
correlation functions are thus independent of the species labels,
c((f;(lr — r'D=cP(|r — r'|), as can be deduced from the
definition (41). Furthermore, it is possible at this stage to
incorporate the physical requirement that the tagged particle
does not interact with itself [16], by imposing that cbb)(|r —
r’'|) = 0. This physical input breaks the symmetry of the free
energy (40) with respect to the self and distinct species.

42)

5.4. RY intermediate scattering functions

Using (27) and (28) in (42) and assuming the spherical
symmetry appropriate for the present dynamic test particle

situation in a bulk fluid yields approximate one-body direct
correlation functions

(1) = / dr' P (e = DHu (', 1), (43)
V) = /dr’ (e =Y VHS (', 1), (44)
where we have introduced the shifted functions
HS(r, 1) = GY4(r, 1) — p (45)
Hy(r,t) = Gu(r,t) — p (46)

which have the property that they tend to zero at large
separations (G} (r, t) already does this). In equations (43)
and (44) we have eliminated the unphysical self-self interaction
and employed the fact that p,=0 and pg =p = N/V in the
thermodynamic limit.

Substitution of (43) and (44) into (38) generates
(approximate) coupled equations for the distinct van Hove
function,

3
—GY(k, 1) = —Dok>GYy(k, 1)

o (47)
D ’ d / ~(2) (1,7 ’
to dk' k- K'GY(k — K|, 1) P (K, ) Gyu (K, 1)
+ 8773)/fdk/ Gk — K|, )k - Fis (' 1),
and for the self van Hove function,
]
8—G*H(k 1) = —Dok*GSy(k, 1) (48)
D ’ 1 A3S ’ ~(2) (1’ ~d ’
to dk' k- K'G3y(k — K|, 1) EP (K, )Gy (k' 1)
+ 8W3fdk/ Gy(k — K|, 1)k - FIS (K, 7).

The distinct equation (47) is, with the exception of the
dissipative force term, structurally identical to an expression
previously employed in a DDFT study of the intermediate
stages of spinodal decomposition (see equation (37) of [19]).
However, the physical interpretation here is very different to
that of [19], where DDFT was used to calculate the time
evolution of the one-component density following a quench
into the two-phase region. Via (27) and (28) we relate
the density fields of a mixture to the two-body correlation
functions.
The distinct equation (47) can be expressed as

) o ry = — (2o
or T Sk, 1)
Dy

+_
83

) Gy (k, 1) (49)

dk' k- K HS(k = K|, 1) EP &, 1) Hu (K, 1),

M fdk’GdH(|k K|, 0)k-Fis@' 1),
83y

where the time-dependent function S(k, #) is given by
S(k,t) = S(k) (1 - (Stk)— 1)<M>> (50)
Gk, 1)
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The static structure factor is related to the direct correlation
function by S(k) = (1 — p"*c® (k))~'. It is not neccessary
to rewrite equation (48) for the self van Hove function, because
one can simply replace GSH(I{’, t) by FIVdH(k/, t) in the given
expression (an additional delta function generated by the
constant bulk density in (45) gives zero contibution to the
integral in (48)).

5.5. Mean-squared displacement

The mean squared displacement of the tagged particle can

now be obtained from the low wavevector limit of the self van

Hove equation (48). Substitution of (48) into (26) generates

an expression for the mean squared displacement
3D, IGS (K, 1)

a 2
2 — 6Dy — 22
57 @) 07 43 Ik’

dk’ ShH

xk - <k’5(k’) G (K, 1) + kBLTF;ﬁSS(k’, t)) :

where k is a unit vector. The first term generates simple
free diffusion of the tagged particle, whereas the integral
term describes the interaction of the tagged particle with
its environment, consisting of adiabatic and superadiabatic
contributions.

5.6. de Gennes’ approximation

Truncation of both equations (48) and (49) at the first term
provides the simplest approximation to the van Hove functions

9 - -

EGiﬂ(k, 1) = —Dok*Giy(k, 1), (52)
0 ~d D()k2 ~d

EGVH(k5 1) = _S(k t)GVH(k’ 1, (53)

the first of which trivially predicts free diffusion of the self van
Hove function
Gk, 1) = exp (—Dok’t) . (54)

Substitution of equations (52) and (53) into the exact splitting

Gk, 1) = Gk, 1) + Gy (k, 1), (55)
yields an approximation to the full van Hove function
Gk, 1) = S(k) Dok”, (56)
1) = exp | — .
vH p S(k)

Equation (56) is a well known approximation, first proposed
by de Gennes in 1959 [22]. This describes the relaxation of
the van Hove function as a free diffusion process, but with an
effective, wavevector dependent diffusion constant Dy/S (k).
Relaxation is thus slowest for wavevectors around the main
peak of the structure factor, corresponding to the length-scale
set by the nearest neighbour particles.

The truncation of equations (48) and (49) at the first term
thus provides a consistent description of the self and distinct
particle motion on the level of the de Gennes approximation

(56). The next step beyond this is to include the second
(integral) terms on the right hand side of (48) and (49), which
require no additional input information to evaluate. This
adiabatic approximation effectively sets P*[p, J] = 0, such
that the excess dissipation force (39) vanishes. Going beyond
the adiabatic approximation, then requires an expression for
P[p, J] to provide a closed theory.

6. Concluding remarks

We have demonstrated how the power functional frame-
work [14] can be applied to develop an exact dynamical test
particle theory for the self and distinct parts of the van Hove
function of a bulk one-component system. The first step in this
development is the generalization of the power functional to
treat mixtures of different particle species. The availability of
a mixture theory is an essential requirement for implementa-
tion of the dynamic test particle limit, as this requires that a
tagged particle can be identified by its species label. Appli-
cation of the dynamic test particle limit then generated exact
equations of motion (38) for the van Hove functions, which
we expressed in Fourier space and related to existing approxi-
mation schemes. The present work builds upon that of Archer
et al [16,19] by formulating the dynamic test particle method
within the framework of PFT.

The exact equations of motion (38) for the van Hove
functions require as input the excess Helmholtz free energy
functional, assumed to be known, and the excess power
dissipation functional, which remains unspecified. Even at
the lowest (adiabatic) order of approximation, for which the
excess dissipation is neglected, the theory goes beyond the
de Gennes’ level of approximation by including a coupling
between different wavevectors (modes).  Archer et al
[16] found that equations of this type provide qualitatively
reasonable results for the van Hove functions at low and
intermediate densities. Improving the description further
will require carefully constructed approximations for the
excess dissipation functional. Some physically motivated
approximation schemes were suggested in [14], however, the
search for accurate approximations to the excess dissipation
remains a highly nontrivial task and work in this direction is
ongoing.

The present development is related to the mode-coupling
theory of liquid dynamics [8], which provides approximate
equations of motion for the self and distinct intermediate
scattering functions. In common with the mode-coupling
approach, equations (48) and (49) couple the dynamics
at different wavevectors and involve a history dependence,
which enters here via the excess dissipation functional. As
mentioned in the introduction, an alternative approach to the
(total) intermediate scattering function is provided by the
nonequilibrium Ornstein—Zernike (NOZ) equation [10, 11]. In
this case the structural similarities between the NOZ equation
and the mode-coupling equation of motion are explicit. It
would be interesting to explore these connections further
within the present test-particle formulation. Moreover, given
that mode-coupling theory can also be derived from field
theoretic methods [23], it may prove fruitful to investigate
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the relation of the present approach to nonequilibrium field
theories.

We emphasize that both the dynamic test particle limit and

the PFT are very general methods, which can be applied in and
out-of-equilibrium. These approaches are well-suited to treat
spatial inhomogeneity arising from external fields or transient
relaxation and remain valid in the presence of external driving
(e.g. externally applied shear flow).
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