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Minimal model for dynamic bonding in colloidal transient networks
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We investigate a model for colloidal network formation using Brownian dynamics computer simulations.
Hysteretic springs establish transient bonds between particles with repulsive cores. If a bonded pair of particles
is separated by a cutoff distance, the spring vanishes and reappears only if the two particles contact each other.
We present results for the bond lifetime distribution and investigate the properties of the van Hove dynamical
two-body correlation function. The model displays crossover from fluidlike dynamics, via transient network
formation, to arrested quasistatic network behavior.
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I. INTRODUCTION

Network structures are ubiquitous in nature. They influence
the properties of many soft matter systems, such as gels [1],
suspensions [2,3], or entangled polymers [4]. At larger length
scales, spatial [5] and force networks [6,7] occur in granular
matter. In living systems, neuronal circuits can be regarded
as networks; the neurones can be identified as nodes, and the
synapses serve as links [8].

Many of these examples constitute networks with a static
structure, i.e., the position of the nodes, which form the
backbone of the network, is fixed in space. Only few of the links
between nodes break or form over time. However, there are also
transient networks, where the position of the nodes changes
in time. Hence the general shape of the network changes.
In polymer science the concept of transient networks is well
known [9–13] and being used to explain, e.g., the presence of
the rubber plateau in rheological experiments [14]. Theoretical
approaches for transient networks have been developed by
Tanaka et al. [9]. In their work, the sticky end groups of
monodisperse polymers form the links.

Transient networks in colloidal systems [15–17] have been
studied in experiments and by numerical simulation. For
example, colloidal membranes in a magnetic field show effects
such as the growth of short chains, cross linking, and network
formation, induced by many-body polarization interactions
between the particles [18]. A very recent study was aimed
at the dynamics of the transient colloidal network itself [19].
In this work, the authors show the influence of the mesh size
of the network in the initial state on the mesh dynamics and
give an explanation of the shrinking and growing process of
the meshes based on the competition of first-order long-range
collective dipolar interactions and short-range second-order
dipolar pair correlations.

Dipolar colloidal systems are one of the primary real-
izations of transient networks. In recent years, progress in
the theoretical description of dipolar colloidal gels has been
made, supported by extensive molecular dynamics computer
simulations [20–22]. These simulation studies on colloidal
dumbbells show the crossover from a transient percolated
network to a dynamical arrested state as a result of cooling,
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caused by the rapid increase of bond lifetime of the bonds
between different dumbbells at low temperature.

Simulation studies of the influence of solid content on the
structure of forming networks of colloidal particles, e.g., the
fractal dimension and the bond angle distribution, have been
performed [23]. Patchy colloids [24–26] possess bonding sites
on their surface that develop strong short-ranged attractive
interactions [27]. The dependence of the network growth on
the opening angle of the patches of three-patched colloids
has been investigated by Dias et al. very recently [28].
They found different regimes of network formation leading
to networks with different structures and sizes. A systematic
study of the transition from a fluid to a network in binary
mixtures of patchy colloids with varying functionality [29]
has shown the importance of network formation processes for
the understanding of transient networks. Transient networks
are an intermediate state between a fluid suspension and a
fully developed, static, percolated network.

In this article, we present a minimal model for transient
network formation in colloidal systems. The model is based
on a hysteretic process that describes the formation and an-
nihilation of bonds between colloidal particles with repulsive
cores. The bonds form the links of the network, while the
particles represent the nodes. The bonds are treated as (linear)
springs, inspired by the well-established bead and spring
model of polymer physics [30]. Additionally, the bonding
of a pair of particles is based on a hysteretic mechanism:
the spring is formed when the surfaces of the two particles
touch, and vanishes when the two particles separate above a
critical distance, rc. A similar model was proposed for wet
granular particles, i.e., the minimal capillary model [31,32].
For wet granular matter dissipative dynamics are considered
in molecular dynamics simulations for the collisions, and
the interaction between the grains due to capillary bridges is
modeled by a constant force. We perform Brownian dynamics
(BD) computer simulations of the minimal model in order
to study the deviation of static and dynamic properties from
those of a simple suspension of repulsive particles. Moreover,
we investigate the network formation properties of the model,
from a fluid to a transient network and from a transient to a
static network.

The paper is organized as follows. In Sec. II we introduce
the model and the simulation technique, as well as the van
Hove dynamic correlation function which we use as a means to

2470-0045/2016/93(4)/042601(8) 042601-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.042601


KRINNINGER, FORTINI, AND SCHMIDT PHYSICAL REVIEW E 93, 042601 (2016)

characterize the system. In Sec. III we present our results. First,
we study statistical properties of the bonding in Sec. III A. In
particular, we are interested in the lifetime of bonds from
formation to annihilation and the corresponding probability
distribution. We then focus on static properties, namely the
percolation transition and the fractal dimension of percolating
clusters of colloids in Sec. III B. In Sec. III C, we give an
overview of the detailed studies of the van Hove function as a
function of density ρ, the bond strength k, and the correlation
time. We investigate the change of correlation with increasing
the bond strength, up to the point where the system is no longer
fluid. This crossover manifests itself in a non-Gaussian shape
of the self part of the van Hove function and is discussed in
detail in Sec. III D. In Sec. IV we conclude and give an outlook
to possible future work within the framework of the proposed
model.

II. MODEL AND METHOD

We consider a three-dimensional system of N interacting
spherical Brownian particles with spatial coordinates ri , i =
1 . . . N . We neglect hydrodynamic interactions and describe
the dynamics with the overdamped Langevin equation

ṙi = γ −1Fi + ξ i(t), (1)

where γ is the friction coefficient. The deterministic force
on particle i is generated from the total potential energy UN

according to Fi = −∇iUN , where ∇i denotes the derivative
with respect to ri . The stochastic random force γ ξ i(t) is
Gaussian distributed with zero mean and autocorrelation
〈ξ i(t)ξ j (t ′)〉 = 2D01δij δ(t − t ′), where D0 is the Stokes-
Einstein diffusion coefficient, 1 denotes the 3 × 3 unit matrix,
δij is the Kronecker delta, and δ(·) indicates the Dirac
distribution.

The interaction potential UN is a pairwise, particle-particle
interaction potential tailormade for network formation. It
combines a repulsive interaction UREP with a harmonic
potential US for the links between the particles:

UN = 1

2

N∑
i=1

N∑
j=1
j �=i

[UREP(rij ) + νijUS(rij )], (2)

where rij = |ri − rj | and νij = 0,1 is a bonding degree of
freedom that determines whether particles i and j interact at
time t via a spring (νij = 1) or not (νij = 0). The linking,
and hence the value of νij , is history dependent, illustrated
by Fig. 1: when the surfaces of two particles i and j touch,
they become bonded by a spring (νij = 1). When the particles
separate above a critical distance rc the bond vanishes (νij =
0). For the repulsive core we use UREP = ε(σ/rij )12, where ε

is the unit of energy and σ is the particle diameter. UREP is
cut off and shifted at rcut/σ = 1.01 to avoid discontinuities in
the interaction potential. The harmonic potential is US(rij ) =
k
2 (rij − σ )2, where k is the stiffness of the spring determining
the bond strength. Here the equilibrium distance of the spring
is chosen to be the core size of the repulsive interaction, σ .

We carry out Brownian dynamics (BD) simulations with a
fixed time step of δt/τB = 8 × 10−5, with the Brownian time
τB = σ 2/D0. The fundamental units of the system are σ , γ ,
and ε. All simulations are performed at a reduced temperature

FIG. 1. Sketch of the forming and vanishing of a bond between
two particles. The equilibrium distance of the spring, r0, is the contact
distance of the particles. The arrows indicate the direction of the
motion of the particle. (a) No interaction because the particles are too
far apart from each other. (b) The distance of the particles is smaller
than rc, but still no interaction because no previous contact between
the particles has occurred. (c) After the contact, the bond is formed
and remains as long as the distance between the particles is smaller
than rc. (d) The spring vanishes because the particles are too far apart
from each other.

of kBT /ε = 2, where kB is the Boltzmann constant, and a fixed
critical distance of the hysteretic spring of rc/σ = 1.5. The
particles are placed in a cubic periodic box with side length
L = (N/ρ)1/3, where ρ = N/V , with V being the volume
of the simulation cube. We investigate the properties of the
system as a function of the density ρ, and the strength of the
hysteretic links, k. We carried out simulations with a density
of ρσ 3 = 0.1 to 0.5 in steps of 0.05 and ρσ 3 = 0.6, and bond
strengths of kσ 2/ε = 0, 10, 20, 40, and 70. Furthermore, for
kσ 2/ε = 40 and 70 the densities ρ/σ 3 = 0.01 and 0.05 were
considered.

A. van Hove correlation function

We characterize the dynamical correlations using the van
Hove function G(r,t) [33,34]. It characterizes the spatial and
the temporal distribution of pairs of particles, as is relevant for
fluid states. G(r,t)dr can be interpreted as the number of parti-
cles j in a volume element dr at position r under the condition
that there was a particle i at the origin at time t = 0. G(r,t) is
related to the intermediate scattering function F (k,t), which
is measurable in x-ray or neutron scattering experiments,
via spatial Fourier transform, and to the dynamic structure
factor S(k,ω) via spatial and temporal Fourier transform.
Further motivation for considering G(r,t) stems from recent
theoretical progress in formulating an exact generalization
of the Ornstein-Zernike relation to nonequilibrium situations
[35,36]. Here dynamical correlation functions are related to
functional derivatives of a generating (free power dissipation)
functional [37]. An alternative theoretical description rests on
the dynamical test particle limit [38,39], which was recently
treated within the power functional approach [40].

The van Hove function is defined as [33,34]

G(r,t) = 1

N

〈
N∑

i=1

N∑
j=1

δ(r + rj (0) − ri(t))

〉
, (3)
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where 〈·〉 indicates the ensemble average; δ(·) is the (three-
dimensional) Dirac delta function. It is possible to split G(r,t)
into a self- and a distinct part. In the first case the double
sum is restricted to i = j and Gself (r,t) describes the average
motion of a particle that was at the origin at the initial time. The
distinct part, Gdist(r,t), where i �= j , represents the remaining
N − 1 particles, considering that any arbitrary particle j was
located at rj = 0 at t = 0. Therefore,

G(r,t) = 1

N

〈
N∑

i=1

δ(r + ri(0) − rj (t))

〉

+ 1

N

〈
N∑

i,j=1
i �=j

δ(r + rj (0) − ri(t))

〉

≡ Gself (r,t) + Gdist(r,t). (4)

Hence the self-part describes the dynamics of only one tagged
particle, while Gdist represents the remaining N − 1 particles.
Therefore, the normalization of the self- and distinct parts is∫

dr Gself (r,t) = 1, (5)∫
dr Gdist(r,t) = N − 1. (6)

The initial time behavior for t = 0 of G(r,t) is given by

G(r,0) = δ(r) + 1

N

〈
N∑

i,j=1
i �=j

δ(r + rj (0) − ri(t))

〉

= δ(r) + ρg(r), (7)

where g(r) is the pair correlation function. Hence Gself (r,0) =
δ(r) and Gdist(r,0) = ρg(r). As time passes, the δ function
broadens into a bell-shaped curve, and the peaks of Gdist

decrease and disappear. For t → ∞ the correlation vanishes
and G(r,t) becomes a constant, where Gself (r,t → ∞) = 0,
and Gdist(r,t → ∞) = ρ.

One important property for a homogeneous bulk fluid is that
the van Hove function only depends on the distance r = |r|,
because of the isotropy: G(r,t) = Gself (r,t) + Gdist(r,t).

The free motion of one single particle in Brownian
dynamics is a random walk; hence free diffusion occurs with
the diffusion coefficient D0. In this situation the self-part of
the van Hove function is given by the solution of the diffusion
equation [34,38]:

∂

∂t
Gself (r,t) = D0∇2Gself (r,t), (8)

which is

Gself (r,t) = (4πD0t)
−3/2 exp

(
− r2

4D0t

)
. (9)

For the many-body system this expression is exact for ρ → 0,
as the interactions between the particles can be neglected in this
limit. In systems with finite density Eq. (9) is an approximation
where D0 becomes an effective diffusion coefficient, which is
a function of density, D(ρ). Increasing the interaction between
the particles further, i.e., by strong bonding in the current work,
can lead to the shape of Gself (r,t) deviating from a Gaussian.

The deviation can be quantified (in three dimensions) by the
non-Gaussian parameter

α2(t) = 3〈r4(t)〉
5〈r2(t)〉2

− 1, (10)

where 〈rμ(t)〉 = ∫
dr rμGself (r,t) is the μth spatial moment of

Gself (r,t) [41,42]. For a strict Gaussian α2 = 0.

B. Mean first passage time

A simple theoretical description of bond lifetime is given
by the mean first passage time τ for a particle in an external
potential. In the framework of the Kramer’s problem in
one dimension it is possible to calculate τ from the adjoint
Smoluchowski equation [43]. In this approach the motion of a
single Brownian particle in an external potential is considered.
The purpose is to calculate the mean time it takes the particle
to escape the potential, i.e., when it reaches a certain end
point. The starting position of the particle, x, is between a
reflective barrier, located at the point a and the end point b,
with a < x < b. With these assumptions one can calculate the
mean first passage time in one dimension as a function of the
starting position x [43].

In order to adopt this theory to our model, we consider a pair
of bonded particles in three dimensions. One particle serves
as the origin of the coordinate system and the other particle
escapes the harmonic potential generated by the bond between
the colloids. Therefore, we choose for the external potential
U = US . Furthermore, we generalize the calculation of τ to
three dimensions, starting with the three dimensional adjoint
Smoluchowski equation

D exp

(
U (r)

kBT

)
∇ ·

[
exp

(
−U (r)

kBT

)
∇τ (r0)

]
= −1, (11)

where r0 is the starting point of the particle in the harmonic
potential. Because the total interaction potential only depends
on the distance between the particles it can be written as

D exp

(
U (r)

kBT

)
1

r2

∂

∂r

[
r2 exp

(
−U (r)

kBT

)
∂τ (r0)

∂r

]
= −1.

(12)

Integrating twice leads to the mean first passage time τ :

τ (r0) = 1

D

∫ rb

r0

dy
1

y2
exp

(
U (y)

kBT

) ∫ y

ra

dz z2 exp

(
−U (z)

kBT

)
,

(13)

where r0 is the starting position, ra is the position of the
reflecting barrier, and rb is the end position. In the current
work the values for r0, ra , and rb are r0/σ = 1, ra/σ = 1, and
rb/σ = 1.5, and for D we choose D = 2D0, as the origin is
given by a diffusively moving particle; see, e.g., Ref. [44].
Hence Eq. (13) is only exact if there is one pair of bonded
particles, i.e., ρ → 0. At finite densities the collisions with
surrounding particles lead to a different lifetime of the bonds.

III. RESULTS

A. Bond statistics

We start by investigating the properties of the dynamic
bond formation process. We consider the time scale on which
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FIG. 2. Bond lifetime statistics. (a) Histogram of the number
of bonds that break over time, NBB for parameters ρσ 3 = 0.4 and
kσ 2/ε = 10. The black line is a fit to an exponentially decaying
function. (b) Fit parameter τlife as a function of density, for different
bond strengths: kσ 2/ε = 0 (black solid line), 10 (red dashed line), 20
(green dashed-dotted line), 40 (blue dashed-dashed-dotted line), and
70 (purple dotted line).

a spring is active, i.e., how much time passes between the
formation and the annihilation of a certain bond. We study
this process by varying systematically the mean density and
the bond strength. In Fig. 2(a), we present a histogram of the
bond lifetime for the parameters ρσ 3 = 0.4 and kσ 2/ε = 10,
where NBB(t) marks the number of broken bonds after they
existed for a time t . The black curve is a fit to the function
NBB(t) = N0 exp(−t/τlife), where τlife is the average lifetime
of the bond. Results for τlife for further parameters are shown
in Fig. 2(b). We observe that either increasing ρ or k leads to an
increase of the lifetime. A harder spring (increasing k) leads to
a stronger attraction between the bonded pairs, which makes
it harder for the particles to separate from each other above
the critical distance rc, resulting in an increased bond lifetime.
The increase in density causes an increase in the number of
collisions, and therefore makes it more unlikely for a particle
to separate from its bonded partner, increasing the lifetime.

The results for the mean first passage time, τ and τlife,
are summarized in Table I. Comparing these values with
the simulation results, we find some discrepancies, which
are entirely expected. First, the calculation Eq. (13) neglects
the repulsive core interaction, which is a small error, as
the cutoff length is chosen rather short, compared to the
maximal possible spring length. Second, Eq. (13) is only
exact for ρ → 0. Third, there is statistical error. Especially

TABLE I. Mean first passage times τ for different bond strengths
k as calculated by Eq. (13) and simulation results for ρσ 3 = 0.1 and
0.6.

kσ 2/ε 0 10 20 40 70

τ/τB from Eq. (13) 0.388 0.472 0.588 1.000 2.764
τlife/τB for ρσ 3 = 0.1 0.174 0.273 0.482 4.389 872.476
τlife/τB for ρσ 3 = 0.6 0.273 0.483 0.831 16.839 908.690

for kσ 2/ε = 40 and 70, the particles get very sticky, and bond
breaking becomes rare, making the statistical error the most
dominant in these systems. For kσ 2/ε = 0 and kσ 2/ε = 10
the accordance of τlife at ρσ 3 = 0.1 with the calculated mean
first passage times is quite good. But as the density increases,
the discrepancy between the theoretically predicted values and
the one sampled from simulated data increases, as expected.
For kσ 2/ε = 20 in the low density regime (ρσ 3 = 0.1) the
deviation from the theory is higher than in the cases before. In
the case of kσ 2/ε = 40 the comparison between calculation
and simulation is only reasonable for low densities, where we
find τlife/τB = 3.589 for ρσ 3 = 0.01 and τlife/τB = 3.786 for
ρσ 3 = 0.05. For increasing density the differences between
calculation and simulation increase further. As mentioned
above, the comparison for kσ 2/ε = 70 is hardly possible and
the differences between the values is large even in the low
density case, where the simulations give τlife/τB = 822.596 for
ρσ 3 = 0.01 and τlife/τB = 519.481 for ρσ 3 = 0.05. Despite
quantitative discrepancies with the simulations, the theory
captures the correct trend of increasing relaxation times for
increasing density and bond strength.

B. Percolation and fractal dimension

We further investigate the structural properties of the system
by investigating the percolation transition and the fractal
dimension of percolated systems. We are interested in the
critical density ρc above which 50% of the particles in the
system belong to one cluster [45], and especially in the
dependence of ρc on the hysteretic bond strength k. A cluster is
an ensemble of particles that are connected so that it is possible
to reach any particle in the cluster by following a path of bonds,
regardless of the starting particle. Figure 3(a) shows the results
for PL, which is the ratio NCL/N , with NCL being the number
of particles in the biggest cluster, and N the total number of
particles, as a function of density. The colors indicate different
bond strengths. Clearly the percolation threshold ρc decreases
as k is increased. The reason is the magnitude of the attractive
pair interaction that increases with k; a particle bonded with
a strong hysteretic spring to a cluster is more unlikely to
break away from it, compared to a system with smaller k.
This suggests that strong bonding supports increased cluster
growth and increased stability of the cluster over time. The
latter means that strongly interacting particles form percolating
clusters that are stable.

The snapshots in Figs. 3(b) and 3(c) show the system at
t/τB = 80. The colors indicate different clusters, where brown
is the largest cluster and white particles do not belong to any
cluster. In (b) the system with the parameters kσ 2/ε = 10 and
ρσ 3 = 0.3 is not percolated, i.e., the largest cluster does not
contain 50% of the particles. In (c) the system is percolated.
Almost all particles belong to the percolating cluster for
kσ 2/ε = 40 and ρσ 3 = 0.3, where the particles act sticky. The
snapshots reveal voids in the cluster, and therefore suggest a
fractal dimension of the percolating cluster of df < 3.

In order to characterize the fractal structure, we calculate
the cumulative sum of the radial distribution function g(r) =
Gdist(r,t = 0),

n(r) = 4πρ

∫ r

0
r ′2g(r ′)dr ′. (14)
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FIG. 3. Percolation transition. (a) Probability that a particle
belongs to the largest cluster, PL, as a function of the particle
density. The different colors represent different strengths of the
hysteretic spring. (b) Simulation snapshot of a percolated system with
ρ/σ 3 = 0.3 and kσ 2/ε = 10. The largest cluster is colored in brown
while white particles are not part of any cluster. (c) Snapshot with
ρ/σ 3 = 0.3 and kσ 2/ε = 40 where the percolating cluster shows
a fractal dimension < 3. The coloring is similar to (b). (d) Radial
distribution function for parameters ρσ 3 = 0.2 and kσ 2/ε = 70 (red
dashed curve), and ρσ 3 = 0.5 and kσ 2/ε = 10 (black solid curve),
representing both percolated systems. (e) Cumulative sum, n(r), of
(d) in double-log representation.

It can be shown that n(r) is related to the distance by a power
law above a certain decay length

n(r) ∝ rdf , (15)

with df being the fractal dimension [46]. The result is shown in
Fig. 3(e), while in Fig. 3(d) the corresponding result for g(r) is
displayed. The black curve, where ρσ 3 = 0.5 and kσ 2/ε = 10,
shows a percolated system, where the fractal dimension is
df = 3. In the double-log plot of n(r) this manifests itself
by a straight line with slope 3. The red curve represents
a percolated system with ρσ 3 = 0.2 and kσ 2/ε = 70. The
percolating cluster has a fractal dimension of df = 2.31, which
is the slope of the red curve in Fig. 3(e) when it starts to
asymptotically approach the black line, around 3 � r/σ � 5.
Percolating clusters can be only found for systems with
strong bonding, i.e., kσ 2/ε = 40 and 70. With decreasing
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FIG. 4. van Hove correlation function for ρσ 3 = 0.2. The left
column shows the self part of the van Hove function; the right
column shows the distinct part at times t/τB = 0.08 (black solid
line), t/τB = 0.8 (red dashed line), and t/τB = 8 (green dotted line).
(a),(b) kσ 2/ε = 0, (c),(d) kσ 2/ε = 10, (e),(f) kσ 2/ε = 20, (g),(h)
kσ 2/ε = 40, and (i),(j) kσ 2/ε = 70.

density, df decreases. These values of the fractal dimension
are consistent with fractal dimensions found in other colloidal
systems [1,47,48], at intermediate densities and interaction
strengths [49]. The relative error of df is rather large and can
be estimated to be 15%. The reason is that it is not always
clear how to estimate the decay length from the graphical
representation. Another error source is the fitting of a line to
the relevant part of n(r).

C. van Hove correlation function

In Fig. 4 we show the results for the van Hove function
for the density ρσ 3 = 0.2. The left column shows the self-
part Gself in semilogarithmic representation, while the right
column shows Gdist on a linear scale. The different colors
and line styles indicate the different correlation times, where
black solid is t/τB = 0.08, red dashed is t/τB = 0.8, and green
dotted is t/τB = 8. In Fig. 4 in the first row kσ 2/ε = 0 [panels
(a) and (b)], in the second row kσ 2/ε = 10, in the third row
kσ 2/ε = 20, and in the last row kσ 2/ε = 70.

For increasing k we observe an increase of the maximum
height of the self-part Gself , as well as a decrease of its width
(faster decay of the self-part of the correlation function). The
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FIG. 5. Same as Fig. 4 but for ρσ 3 = 0.3.

reason is that at high k the particles are more strongly bonded
and they have a reduced mobility. Up to kσ 2/ε = 20 the shape
of Gself is still a Gaussian, as expected for fluid systems [34].
If k is increased beyond kσ 2/ε = 40, the shape of the self-
part changes. This indicates the transition from a fluid to a
network behavior. The deviation is quantified in more detail
in Sec. III D. We point out that deviations of the self-part of
the van Hove function from a Gaussian behavior correspond
to the presence of the α and β relaxation processes in the self
intermediate scattering function [38].

After the transition, the maximum of Gself increases by
about two orders of magnitude and a fast decay of the
correlation function, compared to fluid systems, indicates
the presence of highly immobile particles in this region.
Increasing the density has a similar effect on Gself as
increasing k, though the reasons are different. The increase
in ρ leads to an increase of the number of collisions between
particles, which also reduces their mobility. In comparable
work, where only the density of a hard-sphere suspension is
increased [38], no crossover from a Gaussian shape was found,
suggesting that the reduction of mobility is due to the hysteretic
bonding.

The distinct part of the van Hove function shows an increase
of the height of the first peak for t/τB = 0.08, as k is increased.
The probability of finding a particle in the first correlation shell
is increased, as k is increased. For t/τB = 0.8 the peaks start
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FIG. 6. Same as Fig. 5, but ρσ 3 = 0.4.

to disappear and for t/τB = 8 Gdist is a constant in the fluid
regime. For kσ 2/ε � 40, Gdist shows many oscillations, which
only decrease in their amplitude, but do not vanish completely
over time. This refers to a shell-like local structure, which is
moderately stable over time, representing an arrested system.
The dependency on density is comparable to that on k, but
plays a more minor role. The reasons are similar to the ones
given above. However, the transition to an arrested system is
not observed, when only the density is increased.

Figure 5 shows the results for G(r,t) for ρσ 3 = 0.3. The
configuration of the panels and the color code are the same
as in Fig. 4. The observations are comparable to those for
ρσ 3 = 0.2 and again we find a deviation from a Gaussian shape
for Gself for kσ 2/ε = 40. This indicates that the transition from
a fluid to a transient network occurs around kσ 2/ε � 40. This
conclusion is supported by Fig. 6 where the van Hove function
for ρσ 3 = 0.4 is shown. The configuration of the panels is
similar to Fig. 5. As in the previous case, the deviation from
a Gaussian in Gself and the arrested oscillations in Gdist are
observed.

These results show that the model allows the tuning of the
system’s behavior from that of a fluid to that of a static network.
The crossover is characterized by a transient network behavior.
The system shows fluidlike dynamics with a reduced mobility
of the particles, when bonds with finite strength are present.
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FIG. 7. Parameter α2 as a function of density. The panels show
different correlation times, while the colors and symbol style refer
to different bond strengths. In (a) the correlation time is τ/τB = 0.8,
in (b) 3.2, in (c) 6.4, and in (d) 8. The color and symbol code is the
same for all times, with black crosses for kσ 2/ε = 0, red stars for
kσ 2/ε = 10, green crosses for 20, blue diamonds for 40, and purple
triangles for kσ 2/ε = 70.

D. Non-Gaussian parameter

We next quantify the deviation of the self van Hove function
from a fluid Gaussian behavior, by means of the parameter α2,
defined in Eq. (10). The results for α2 are shown in Fig. 7
as a function of density and for different correlation times
t/τB = 0.8, 3.2, 6.4, and 8. The color and symbol code refers
to the bond strength. We observe that α2 < 0.1 for all systems
with kσ 2/ε < 40, regardless of density and time. Hence these
systems can be regarded as fluid in the limit of the statistical
error. For kσ 2/ε = 40 the accordance of Gself with a Gaussian
is quite good for ρσ 3 = 0.1 for all times, but decreases rapidly
as ρ is increased until ρσ 3 ≈ 0.3. Above this density the
increase of α2 slows down and for t/τB = 0.8, α2 almost
saturates. The same behavior occurs for kσ 2/ε = 70, but the
non-Gaussian parameter always has a higher value than for
kσ 2/ε = 40. The saturation can be explained by the rate of
collisions in the system, as a collision results in strong bonding
for kσ 2/ε = 40 and 70. In systems with ρσ 3 < 0.3 collision
events are rarer than in denser systems, indicating that more
particles remain mobile because they diffuse freely between
the collision events. The second moment of Gself , which
determines its width, decreases as time passes, and k and ρ are
increased (see, e.g., Fig. 6). Moreover, the fourth moment, the
kurtosis, decreases too (see also Fig. 6), but more rapidly than
the second moment, because in total α2 increases. Therefore,
α2 quantifies the immobility of the particles compared to
a fluid. We observe that α2 increases gradually when ρ is
increased. By varying k and ρ, we can tune the system in a

way that the deviation from a Gaussian of Gself , α2 covers the
dynamics of the system from fluid to fully static.

IV. CONCLUSION

In conclusion, we have shown that the proposed model
of hysteretic bond formation displays a variety of properties
that are consistent with network formation. Depending on the
strength of the bonding springs, we observe a crossover from
transient network formation to an arrested quasistatic network.
We have used the two-body time-dependent (van Hove)
correlation function to characterize the dynamic structure. A
clear crossover from a fluid behavior at low spring constants
to an arrested liquidlike structure at high spring constants
and high densities is observed. This manifests itself in a
clearly non-Gaussian shape of the self-part and an increased
correlation length and time in the distinct part for high
spring constants. Moreover, the crossover is quantized by the
non-Gaussian parameter α2, which allows a more precise study
of the crossover in the parameter range.

Moreover, we have found that the mobility of the particles
can be tuned in the fluid regime by variation of the bond
strength and the density. Our model can describe loose
transient networks, where the rate of bonding and annihilation
of bonds is high, as well as a strongly interacting network,
in which new bonds last over a long period of time. This is
supported by our statistical analysis of the bond forming and
vanishing process.

In future work, it would be very interesting to complement
our simulation work by a theoretical approach that would
describe network formation in fluids. One possible candidate
for such a theory is the recent power functional approach,
where the dynamics of a Brownian many-body system is
obtained from a variational principle on the one-body level
[37]. Generalizing this approach in order to introduce the
hysteretic bond formation process constitutes an interesting
research task for the future.

The results presented in this paper pave the way to the
analysis of the behavior of transient network formation with
varying hysteretic behavior. The model allows one to change
the critical parameters of the hysteretic interaction and evaluate
the effects on network formation. Hence one is able to identify
the signature behavior of hysteretic systems. Known examples
of these systems, such as those governed by capillary forces,
could also provide experimental confirmation. Discovering
nonobvious hysteretic behavior could be of importance for
characterizing the network formation behavior of polymers or
polymer particles, such as those used in the paint and coating
industries [50].
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[28] C. S. Dias, N. A. M. Araújo, and M. M. Telo da Gama, Phys.

Rev. E 90, 032302 (2014).

[29] D. de las Heras, J. M. Tavares, and M. M. Telo da Gama, Soft
Matter 7, 5615 (2011).

[30] G. Strobl, The Physics of Polymers (Springer, Berlin, 2007).
[31] P. Krinninger, A. Fischer, and A. Fortini, Phys. Rev. E 90, 012201

(2014).
[32] S. Herminghaus, Adv. Phys. 54, 221 (2005).
[33] L. van Hove, Phys. Rev. 95, 249 (1954).
[34] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Elsevier Science, Amsterdam, 2013).
[35] J. M. Brader and M. Schmidt, J. Chem. Phys. 139, 104108

(2013).
[36] J. M. Brader and M. Schmidt, J. Chem. Phys. 140, 034104

(2014).
[37] M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101

(2013).
[38] P. Hopkins, A. Fortini, A. J. Archer, and M. Schmidt, J. Chem.

Phys. 133, 224505 (2010).
[39] A. J. Archer, P. Hopkins, and M. Schmidt, Phys. Rev. E 75,

040501 (2007).
[40] J. M. Brader and M. Schmidt, J. Phys.: Condens. Matter 27,

194106 (2015).
[41] C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton,

Phys. Rev. E 60, 3107 (1999).
[42] A. Rahman, Phys. Rev. 136, A405 (1964).
[43] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford

University Press, Oxford, 2001).
[44] J. Reinhardt, F. Weysser, and J. M. Brader, EPL 102, 28011

(2013).
[45] A. A. D. Stauffer, Introduction To Percolation Theory (Taylor

and Francis, Philadelphia, 1994).
[46] T. Vicsek, Fractal Growth Phenomena (World Scientific Pub-

lishing Co. Ptr. Ltd., Singapore, 1989).
[47] W. Poon, A. D. Pirie, and P. N. Pusey, Faraday Discuss. 101, 65

(1995).
[48] A. Fortini, Phys. Rev. E 85, 040401(R) (2012).
[49] In the limit of low densities and large interaction strengths

the system will reach a fractal dimension df � 1.7, typical
of systems formed from diffusion-limited cluster aggregation
(DLCA).

[50] J. L. Keddie and A. F. Routh, Fundamentals of Latex Film
Formation, Processes and Properties (Springer, New York,
2010).

042601-8

http://dx.doi.org/10.1103/PhysRevE.67.021302
http://dx.doi.org/10.1103/PhysRevE.67.021302
http://dx.doi.org/10.1103/PhysRevE.67.021302
http://dx.doi.org/10.1103/PhysRevE.67.021302
http://dx.doi.org/10.1103/PhysRevLett.92.054302
http://dx.doi.org/10.1103/PhysRevLett.92.054302
http://dx.doi.org/10.1103/PhysRevLett.92.054302
http://dx.doi.org/10.1103/PhysRevLett.92.054302
http://dx.doi.org/10.1140/epje/i2004-10022-4
http://dx.doi.org/10.1140/epje/i2004-10022-4
http://dx.doi.org/10.1140/epje/i2004-10022-4
http://dx.doi.org/10.1140/epje/i2004-10022-4
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
http://dx.doi.org/10.1021/ma00031a024
http://dx.doi.org/10.1021/ma00031a024
http://dx.doi.org/10.1021/ma00031a024
http://dx.doi.org/10.1021/ma00031a024
http://dx.doi.org/10.1016/S0377-0257(99)00046-4
http://dx.doi.org/10.1016/S0377-0257(99)00046-4
http://dx.doi.org/10.1016/S0377-0257(99)00046-4
http://dx.doi.org/10.1016/S0377-0257(99)00046-4
http://dx.doi.org/10.1021/ma0001640
http://dx.doi.org/10.1021/ma0001640
http://dx.doi.org/10.1021/ma0001640
http://dx.doi.org/10.1021/ma0001640
http://dx.doi.org/10.1016/j.jmps.2011.05.005
http://dx.doi.org/10.1016/j.jmps.2011.05.005
http://dx.doi.org/10.1016/j.jmps.2011.05.005
http://dx.doi.org/10.1016/j.jmps.2011.05.005
http://dx.doi.org/10.1122/1.550391
http://dx.doi.org/10.1122/1.550391
http://dx.doi.org/10.1122/1.550391
http://dx.doi.org/10.1122/1.550391
http://dx.doi.org/10.1021/la000317c
http://dx.doi.org/10.1021/la000317c
http://dx.doi.org/10.1021/la000317c
http://dx.doi.org/10.1021/la000317c
http://dx.doi.org/10.1016/S0378-4371(98)00420-8
http://dx.doi.org/10.1016/S0378-4371(98)00420-8
http://dx.doi.org/10.1016/S0378-4371(98)00420-8
http://dx.doi.org/10.1016/S0378-4371(98)00420-8
http://dx.doi.org/10.1088/0953-8984/17/15/L02
http://dx.doi.org/10.1088/0953-8984/17/15/L02
http://dx.doi.org/10.1088/0953-8984/17/15/L02
http://dx.doi.org/10.1088/0953-8984/17/15/L02
http://dx.doi.org/10.1103/PhysRevLett.103.228301
http://dx.doi.org/10.1103/PhysRevLett.103.228301
http://dx.doi.org/10.1103/PhysRevLett.103.228301
http://dx.doi.org/10.1103/PhysRevLett.103.228301
http://dx.doi.org/10.1039/c5sm01887k
http://dx.doi.org/10.1039/c5sm01887k
http://dx.doi.org/10.1039/c5sm01887k
http://dx.doi.org/10.1039/c5sm01887k
http://dx.doi.org/10.1088/0953-8984/15/1/306
http://dx.doi.org/10.1088/0953-8984/15/1/306
http://dx.doi.org/10.1088/0953-8984/15/1/306
http://dx.doi.org/10.1088/0953-8984/15/1/306
http://dx.doi.org/10.1209/0295-5075/78/26002
http://dx.doi.org/10.1209/0295-5075/78/26002
http://dx.doi.org/10.1209/0295-5075/78/26002
http://dx.doi.org/10.1209/0295-5075/78/26002
http://dx.doi.org/10.1063/1.3089620
http://dx.doi.org/10.1063/1.3089620
http://dx.doi.org/10.1063/1.3089620
http://dx.doi.org/10.1063/1.3089620
http://dx.doi.org/10.1006/jcis.2000.7150
http://dx.doi.org/10.1006/jcis.2000.7150
http://dx.doi.org/10.1006/jcis.2000.7150
http://dx.doi.org/10.1006/jcis.2000.7150
http://dx.doi.org/10.1021/nl0493500
http://dx.doi.org/10.1021/nl0493500
http://dx.doi.org/10.1021/nl0493500
http://dx.doi.org/10.1021/nl0493500
http://dx.doi.org/10.1021/la0513611
http://dx.doi.org/10.1021/la0513611
http://dx.doi.org/10.1021/la0513611
http://dx.doi.org/10.1021/la0513611
http://dx.doi.org/10.1103/PhysRevLett.97.168301
http://dx.doi.org/10.1103/PhysRevLett.97.168301
http://dx.doi.org/10.1103/PhysRevLett.97.168301
http://dx.doi.org/10.1103/PhysRevLett.97.168301
http://dx.doi.org/10.1063/1.3596749
http://dx.doi.org/10.1063/1.3596749
http://dx.doi.org/10.1063/1.3596749
http://dx.doi.org/10.1063/1.3596749
http://dx.doi.org/10.1103/PhysRevE.90.032302
http://dx.doi.org/10.1103/PhysRevE.90.032302
http://dx.doi.org/10.1103/PhysRevE.90.032302
http://dx.doi.org/10.1103/PhysRevE.90.032302
http://dx.doi.org/10.1039/c0sm01493a
http://dx.doi.org/10.1039/c0sm01493a
http://dx.doi.org/10.1039/c0sm01493a
http://dx.doi.org/10.1039/c0sm01493a
http://dx.doi.org/10.1103/PhysRevE.90.012201
http://dx.doi.org/10.1103/PhysRevE.90.012201
http://dx.doi.org/10.1103/PhysRevE.90.012201
http://dx.doi.org/10.1103/PhysRevE.90.012201
http://dx.doi.org/10.1080/00018730500167855
http://dx.doi.org/10.1080/00018730500167855
http://dx.doi.org/10.1080/00018730500167855
http://dx.doi.org/10.1080/00018730500167855
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1063/1.4820399
http://dx.doi.org/10.1063/1.4820399
http://dx.doi.org/10.1063/1.4820399
http://dx.doi.org/10.1063/1.4820399
http://dx.doi.org/10.1063/1.4861041
http://dx.doi.org/10.1063/1.4861041
http://dx.doi.org/10.1063/1.4861041
http://dx.doi.org/10.1063/1.4861041
http://dx.doi.org/10.1063/1.4807586
http://dx.doi.org/10.1063/1.4807586
http://dx.doi.org/10.1063/1.4807586
http://dx.doi.org/10.1063/1.4807586
http://dx.doi.org/10.1063/1.3511719
http://dx.doi.org/10.1063/1.3511719
http://dx.doi.org/10.1063/1.3511719
http://dx.doi.org/10.1063/1.3511719
http://dx.doi.org/10.1103/PhysRevE.75.040501
http://dx.doi.org/10.1103/PhysRevE.75.040501
http://dx.doi.org/10.1103/PhysRevE.75.040501
http://dx.doi.org/10.1103/PhysRevE.75.040501
http://dx.doi.org/10.1088/0953-8984/27/19/194106
http://dx.doi.org/10.1088/0953-8984/27/19/194106
http://dx.doi.org/10.1088/0953-8984/27/19/194106
http://dx.doi.org/10.1088/0953-8984/27/19/194106
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1103/PhysRev.136.A405
http://dx.doi.org/10.1103/PhysRev.136.A405
http://dx.doi.org/10.1103/PhysRev.136.A405
http://dx.doi.org/10.1103/PhysRev.136.A405
http://dx.doi.org/10.1209/0295-5075/102/28011
http://dx.doi.org/10.1209/0295-5075/102/28011
http://dx.doi.org/10.1209/0295-5075/102/28011
http://dx.doi.org/10.1209/0295-5075/102/28011
http://dx.doi.org/10.1039/FD9950100065
http://dx.doi.org/10.1039/FD9950100065
http://dx.doi.org/10.1039/FD9950100065
http://dx.doi.org/10.1039/FD9950100065
http://dx.doi.org/10.1103/PhysRevE.85.040401
http://dx.doi.org/10.1103/PhysRevE.85.040401
http://dx.doi.org/10.1103/PhysRevE.85.040401
http://dx.doi.org/10.1103/PhysRevE.85.040401



