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We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free
power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-
body systems. The functional depends on the local velocity gradient and is systematically obtained from
treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are
beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is
demonstrated by comparison to simulation results.
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The response of complex systems to external stresses is
important, both from an applied point of view of control of
flow properties, but also from a fundamental interest in
understanding the collective nonequilibrium behavior of
many-body systems [1]. In particular, colloidal dispersions,
when exposed to shear flow, display a wealth of striking
nonequilibrium phenomena, ranging from the nonlinear
rheological behavior of fluids [1] and glasses [2] to shear
banding phase transitions [3–5]. Much theoretical work has
been carried out on the basis of the Smoluchowski many-
body equation for overdamped Brownian systems [1]. On
its basis dynamical density functional theory (DDFT) [6–9]
has been used in order to study rheological properties of
model fluids. Brader, Krüger, and their co-workers [10–15]
have supplemented DDFT by further physically motivated
contributions, such as, e.g., kinetic (flow kernel) consid-
erations, in order to address a range of specific rheological
problems. Their approach relies on considering two-point
distribution functions, which they incorporate into DDFT.
Power functional theory (PFT) [16] is a formally exact

and general dynamical approach that rather operates on the
level of the time-dependent one-body density ρðr; tÞ and the
current distribution Jðr; tÞ. A minimization principle deter-
mines the current at position r and time t, and hence the time
evolution of the system. The many-body problem is encap-
sulated in the excess (over ideal gas) superadiabatic (over
free energy) contribution to the free power functional
Pexc
t ½ρ; J�, which is in general a spatially and temporally

nonlocal functional of both density and current. The result-
ing (superadiabatic) forces are obtained from functional
differentiation of Pexc

t with respect to Jðr; tÞ, upon holding
ρðr; tÞ fixed. The superadiabatic forces act in addition to
the adiabatic forces; the latter are generated from the
(equilibrium) free energy functional. On the basis of PFT,
nonequilibrium Ornstein-Zernike relations [17,18] were
systematically derived. However, the central object of the
theory, Pexc

t , remains to a large extent unknown at present,
which hampers the application of PFT to concrete problems.

In this Letter, we construct an explicit approximation for
Pexc
t , based on a reformulation of PFT using the local

velocity gradient field and the microscopic stress tensor as
its conjugate field. This enables us to (i) connect PFT to
rheology, and (ii) systematically construct an approximate
superadiabatic excess functional. As we demonstrate, in
rheological problems the superadiabatic forces describe
viscous effects. These can be large and can even be the sole
effects present, i.e., in cases where the adiabatic effects
vanish, such as in bulk steady shear flow. Hence, rather than
merely correcting DDFT, our current approach offers the
study of entirely distinct areas of physics. To test the
validity of our approach, we study the time evolution of a
system of hard particles and find excellent agreement
between theory and Brownian dynamics simulation results.
We envisage future applications to nonequilibrium phe-
nomena, such as shear ordering [3–5,10–15], laning tran-
sitions [19], active fluids [20], the dynamics of hard disks
[21], hard spheres [22], and hard rods [23], magnetic
transport [24], and the dynamics of colloidal sedimentation
[25], of capacitive systems [26,27], of polymers [28], of
protein adsorption [29], and of quantum systems [30].
The first part of the Letter is a fully microscopic and self-

contained formulation of PFT using the velocity gradient
field ∇vðr; tÞ. We show that one can express the super-
adiabatic functional (i.e., the nonequilibrium contribution
due to the interparticle interactions) as Pexc

t ½ρ;∇v�. Based
on this, we present in Eqs. (29) and (30) explicit expres-
sions, which are amenable to direct physical interpretation.
In particular Eq. (30) is based on the symmetry arguments
that apply to a simple fluid. We apply and test the theory
subsequently in our model hard core system.
The starting point of PFT is a generator on the many-

body level [16], defined as

Rt ¼
Z

drNΨðrN; tÞ
X
i

�
γ

2
~v2i − ~vi · Fi þ _Vext;i

�
; ð1Þ
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where γ is the friction constant, ΨðrN; tÞ is the time-
dependent many-body probability distribution in configu-
ration space of N particles, spanned by rN ≡ fr1…rNg,
where ri is the position coordinate of particle i ¼ 1;…; N,
~viðrN; tÞ is the trial velocity function of particle i, FiðrN; tÞ
is the total force acting on particle i, and _Vext;i ≡∂Vextðri; tÞ=∂t is the partial time derivative of the external
one-body potential Vext. Below we demonstrate the con-
nection of Eq. (1) to standard observables, such as the
density profile and the current distribution. Before doing
so, we first connect Eq. (1) to the many-body dynamics.
The “real” velocity viðrN; tÞ of particle i arises, in the over-
damped limit with no hydrodynamic interactions consid-
ered here, as

γviðrN; tÞ ¼ FiðrN; tÞ; ð2Þ

where

FiðrN; tÞ ¼ −kBT∇i lnΨðrN; tÞ − ∇iuðrNÞ
− ∇iVextðri; tÞ þXðri; tÞ þ γvsolðri; tÞ; ð3Þ

where kB is the Boltzmann constant, T is absolute temper-
ature, ∇i indicates the derivative with respect to ri, uðrNÞ is
the interparticle interaction potential, Xðr; tÞ is a noncon-
servative external force field, and vsolðr; tÞ is the imposed
velocity field of the (implicit) solvent; here, r is the space
coordinate. The many-body (free power) functional (1) is
constructed in such a way that minimization with respect to
all ~viðrN; tÞ [i.e., imposing that ∂Rt=∂ ~viðrN; tÞ ¼ 0] sets
each trial velocity equal to the corresponding real velocity,
~viðrN; tÞ ¼ viðrN; tÞ, due to the quadratic dependence
[Eq. (1)] of Rt on ~vi [16]. Hence, the physical dynamics
reside at the minimum of a parabola in the space of trial
velocities. This process is carried out at each point in time,
and the resulting dynamics for ΨðrN; tÞ is equal to that
given by the Smoluchowski equation [16]. The many-body
functional (1) is significant as it acts as a generator of
averages of interest, with one (primary) example being
δRt=δXðr; tÞ ¼ −Jðr; tÞ, evaluated at the minimum,
where the one-body current distribution is the microscopic
average

Jðr; tÞ ¼
Z

drNΨðrN; tÞ
X
i

δðr − riÞviðrN; tÞ ð4Þ

with δð·Þ being the (three-dimensional) Dirac distribution.
Here, we start by considering the functional derivative of

Rt with respect to the velocity gradient of the solvent, and
obtain

δRt

δ∇vsolðr; tÞ
¼ σðr; tÞ; ð5Þ

where the local and time-resolved stress distribution σðr; tÞ
is a one-body second-rank tensor field. Any microscopic
definition of σðr; tÞ is necessarily nonunique [31], as can be
gleaned from the fact that the (driving) force density is
obtained via the divergence,

∇ · σðr; tÞ ¼ γJðr; tÞ; ð6Þ

where Jðr; tÞ is the average (4). Clearly, Eq. (6) is invariant
under adding a divergenceless tensor field to σðr; tÞ. In
practice, carrying out the derivative (5) of Eq. (1) requires
us to specify an inversion operation to ∇. For simplicity, we
choose this to be the convolution with a radial, inverse
square distance vector field,

∇−1fðrÞ ¼
Z

dr0
r − r0

4πjr − r0j3 fðr
0Þ; ð7Þ

where fð·Þ is a test function. ∇ · ∇−1fðrÞ ¼ fðrÞ is indeed
the identity, as can easily be checked upon exploiting the
identity δðrÞ ¼ ∇ · ½r=ð4πjrj3Þ�.
The specific form of σðr; tÞ then emerges as a micro-

scopic average from Eq. (5) upon spatial integration by
parts,

σðr; tÞ ¼
Z

drNΨðrN; tÞ
X
i

ðr − riÞFiðrN; tÞ
4πjr − rij3

; ð8Þ

where the vector product on the right-hand side is a dyadic.
For the special case of pairwise interparticle forces, the form
(8) was suggested byWajnryb et al. [32], but apparently not
used further. A common alternative is that given by Irving
and Kirkwood [33]; however, its extension to higher
than two-body forces becomes increasingly cumbersome.
Equation (8) does not suffer from this deficiency.
As a consequence of the structure of Eq. (8), the force

density relationship (6) follows upon observing the factor γ
from Eq. (2). The stress tensor distribution (8) carries
further significance, as it allows us to define an integrated
stress ΣðtÞ via spatial integration of the stress distribution
σðr; tÞ over R3,

ΣðtÞ ¼
Z

drσðr; tÞ ð9Þ

¼ −
1

3

Z
drNΨðrN; tÞ

X
i

riFiðrN; tÞ; ð10Þ

where the form (10) follows from inserting Eq. (8) into
Eq. (9) and carrying out the r integration. The negative
trace of the stress tensor, −TrΣðtÞ, is the (averaged)
Clausius virial [34]. Equations (6) and (10) attest to the
fact that Eq. (8) is a meaningful definition of a general local
and time-resolved stress distribution. In the following we
use Eq. (8) in order to formulate power functional theory on
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the tensorial level of the microscopic stress distribution and
the velocity gradient.
PFT elevates the variational principle on the one-body

level, via constructing, from Eq. (1), a one-body “free
power” functional Rt that depends on the one-body density
distribution ρðr; tÞ, and on Jðr; tÞ, and which can be split
according to

Rt ¼ Pid
t þ Pexc

t þ Ḟ − Xt; ð11Þ

where Pid
t is the ideal dissipation functional,

Pid
t ¼

Z
dr

γJðr; tÞ2
2ρðr; tÞ ; ð12Þ

and Pexc
t is the excess (over ideal) contribution, which

arises from the presence of internal interactions, Ḟ ¼R
drJðr; tÞ · ∇δF=δρðr; tÞ [16] is the total time derivative

of the (equilibrium) intrinsic Helmholtz free energy density
functional F½ρ�, and Xt is the external power, given by the
simple space- and time-local expression

Xt ¼
Z

dr(Jðr; tÞ · fextðr; tÞ − ρðr; tÞ _Vextðr; tÞ); ð13Þ

where the total external force field is fextðr; tÞ ¼
−∇Vextðr; tÞ þXðr; tÞ þ γvsolðr; tÞ. Here, ρðr; tÞ ¼R
drNΨðrN; tÞPiδðr − riÞ is the microscopic one-body

density distribution.
The variational principle [16] states that Rt is minimized

by the true current at time t, at fixed density ρðr; tÞ, which
implies that

δRt

δJðr; tÞ
����
ρ

¼ 0: ð14Þ

The density distribution can then be updated according
to the continuity equation ∂ρðr; tÞ=∂t ¼ −∇ · Jðr; tÞ.
Inserting the decomposition (11) into Eq. (14) yields the
equation of motion [16]

γvðr; tÞ ¼ −kBT∇ ln ρ − ∇
δFexc

δρðr; tÞ −
δPexc

t

δJðr; tÞ
����
ρ

þ fextðr; tÞ;

ð15Þ

where the (negative) friction force (left-hand side) is
balanced by the sum of ideal diffusive, excess adiabatic,
superadiabatic, and external forces (right-hand side); here,
the velocity field is defined as the ratio

vðr; tÞ ¼ Jðr; tÞ=ρðr; tÞ: ð16Þ

The excess adiabatic force is fadxðr; tÞ ¼
−∇δFexc½ρ�=δρðr; tÞ, where the excess (above ideal) free

energy functional Fexc is defined via F½ρ� ¼ Fexc½ρ� þ
kBT

R
drρ( lnðρΛ3Þ − 1), where Λ is the (irrelevant) de

Broglie wavelength.
Although this (original) formulation of PFT (15) [16]

permits us to obtain the full time evolution of the density
and current fields of the system, the stresses that act do not
appear. To provide access, we perform a change of
variables, from the current Jðr; tÞ to the gradient of the
velocity field,∇vðr; tÞ. Using Eq. (7) and spatial integration
by parts we can rewrite the external power (13) as

Xt ¼ −
Z

dr(σextðr; tÞ∶∇vðr; tÞ þ _Vextðr; tÞρðr; tÞ); ð17Þ

where the colon indicates a double tensor contraction, and
the external stress is defined as

σextðr; tÞ ¼ ∇−1½ρðr; tÞfextðr; tÞ�: ð18Þ

Because of the structure of Eqs. (11) and (17), we can
generate the velocity gradient tensor field via functional
differentiation,

δRt

δσextðr; tÞ
¼ ∇vðr; tÞ: ð19Þ

Using the splitting (11) further, we also perform integration
by parts to express the ideal and adiabatic contributions,
respectively, as

Pid
t ¼ −

1

2

Z
drσðr; tÞ∶∇vðr; tÞ; ð20Þ

Ḟ ¼
Z

drσadðr; tÞ∶∇vðr; tÞ; ð21Þ

where the total stress σðr; tÞ is a functional of ∇vðr; tÞ and
ρðr; tÞ via Eqs. (6) and (16), and the adiabatic stress
σadðr; tÞ is given by

σadðr; tÞ ¼ −∇−1ρðr; tÞ∇ δF
δρðr; tÞ : ð22Þ

We can now reformulate the variational principle (14) as

∇ ·
δRt

δ∇vðr; tÞ
����
ρ

¼ 0; ð23Þ

where the density ρðr; tÞ is kept fixed under the variation.
An equivalent form is

δRt

δ∇vðr; tÞ
����
ρ

¼ σstatðr; tÞ; ð24Þ
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where σstatðr; tÞ is a “static” stress that generates vanishing
force density, ∇ · σstatðr; tÞ ¼ 0.
We next exploit the decomposition (11), and first

consider the velocity gradient form of the ideal dissipation
functional (20). Carrying out the functional derivative [at
constant density ρðr; tÞ] yields

δPid
t

δ∇vðr; tÞ
����
ρ

¼ −σðr; tÞ; ð25Þ

where the factor of 1=2 from Eq. (20) cancels with the two
possibilities to carry out the integration by parts [i.e., σðr; tÞ
is not kept constant during the variation].
As the functional derivative of Eq. (17) and of Eq. (21)

is straightforward, we are now in a position to rewrite
Eq. (24) as

σðr; tÞ ¼ σadðr; tÞ þ σsupðr; tÞ þ σextðr; tÞ þ σstatðr; tÞ;
ð26Þ

where the superadiabatic stress tensor σsupðr; tÞ is obtained
from the superadiabatic excess functional via

σsupðr; tÞ≡ δPexc
t

δ∇vðr; tÞ
����
ρ

ð27Þ

¼ −∇−1
�
ρðr; tÞ δPexc

t

δJðr; tÞ
����
ρ

�
: ð28Þ

As a result of the variable transformation between J, v, and
∇v, at fixed density, the excess free power functional can be
alternatively and equivalently expressed as Pexc

t ½ρ; J�,
Pexc
t ½ρ; v�, or Pexc

t ½ρ;∇v�.
The theory laid out so far is an exact reformulation of the

many-body problem in nonequilibrium. Its complexity is
entirely contained in the functional form of Pexc

t . It requires
approximations to make further progress. To lowest order
in ∇v, we assume a bilinear form, which is nonlocal in
space and time:

Pexc
t ¼ kBT

Z
dr

Z
dr0

Z
t

0

dt0ρðr; tÞ∇vðr; tÞ

∶Mðr − r0; t − t0Þ∶∇vðr0; t0Þρðr0; t0Þ; ð29Þ

where Mðr; tÞ is a fourth-rank tensor that carries no
physical units and depends in general functionally on
the density distribution; the state of the system is assumed
to be known at the initial time t ¼ 0. The bilinear form (29)
implies the existence of a power series, and constitutes
plausibly its lowest order term. Note that terms linear in the
current (or equivalently in ∇v) describe the external power
Xt (13) and the (adiabatic) free energy rate Ḟ½ρ�, cf. its
explicit expression below (12).

On long time scales and for small inhomogeneities we
may further approximate, and use a Markovian and
spatially local approximation. Because of rotational sym-
metry we obtain the simple form

Pexc
t ¼ 1

2

Z
drρ½nrotð∇ × vÞ2 þ ndivð∇ · vÞ2�; ð30Þ

where nrot and ndiv are parameters with units of
energy × time. Hence, the dynamical shear and volume
viscosity are given, respectively, by

η ¼ ρnrot; ζ ¼ ρndiv ð31Þ

with units of Pa s ¼ N s=m2 ¼ J s=m3. When starting from
Eq. (29) the viscosities can then be obtained as moments of
the memory kernel M. The full (fourth-rank) viscosity
tensor ηðr; r0; t; t0Þ is obtained as the functional derivative

η ¼ δσsupðr; tÞ
δ∇vðr0; t0Þ ¼

δ2Pexc
t

δ∇vðr0; t0Þδ∇vðr; tÞ
����
ρ

; ð32Þ

which then gives a response expression σsup ¼R
dr0dt0η∶∇v. Note that η constitutes an abstract object

that typically can be reduced by symmetry considerations.
However, the general form arises quite naturally, see, e.g.,
the Boltzmann-type DDFT by Anero and Español [35], the
coarse-graining approach by Hütter and Brader [36], and
Olmsted’s review on shear banding [37].
Assuming constant viscosities and density, the super-

adiabatic force density that follows from Eq. (30) has the
familiar Stokes form of hydrodynamics [34]:

ρfsupðr; tÞ≡ −
δPexc

t

δvðr; tÞ ð33Þ

¼ ηð∇2v − ∇∇ · vÞ þ ζ∇∇ · v: ð34Þ

In the more general case, without the above restrictions,
Eq. (33) yields

ρfsupðr; tÞ ¼ ∇ρnrot · ∇v − ∇ρnrot∇ · v þ ∇ρndiv∇ · v;

ð35Þ

where the leftmost derivatives act on each entire
expression.
As a proof of concept we apply the power functional

approach developed here to a 1D system of hard particles,
and compare the results to Brownian dynamics (BD)
simulations. A 1D system of hard particles is an ideal test
case since the exact equilibrium density functional is
known [38]. Hence, differences between the time evolution
predicted by PFTand that obtained with BD simulations are
primarily due to the use of an approximate PFT. As our
system contains a reduced number of particles, the use of
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different statistical ensembles (grand canonical for the
derivative of the free energy in PFT and canonical in
BD) might, in principle, be an additional source of
discrepancy between theory and simulations. To minimize
this effect, we have selected cases for which the equilibrium
density profiles obtained with density functional theory and
BD are very similar. In other cases it would be necessary to
first obtain the canonical data from grand canonical density
functional theory [39,40].
We study the time evolution of a system of N hard

particles of size L in a box of length H with
periodic boundary conditions. The system is initially in
equilibrium in an external potential given by VextðxÞ ¼
V0 sinð2πxN=HÞ with x the spatial coordinate. At t ¼ 0 we
switch off the external potential and study the time
evolution both with BD and PFT. Here, we model the
superadiabatic excess functional (30) by

Pexc
t ¼ kBT

Kðρ̄; tÞ
2

Z
H

0

dxρðx; tÞ½∂xvðx; tÞ�2; ð36Þ

where the velocity profile is defined via Eq. (16) and K is a
global prefactor (related to the kernel M) that depends on
the average density ρ̄ and the time t and takes into account
the memory effects. The superadiabatic force density
Isupðx; tÞ, which is neglected in DDFT, is given by the
functional derivative (33) of Pexc

t , multiplied by the one-
body density, i.e., Isup ¼ ρfsup.
We apply the numerical method of Ref. [41] to measure

Isupðx; tÞ using BD simulations, and compare to the
theoretical results. As we will see below, memory plays
an important role during the time evolution of the system.
We include memory effects in the time-dependent prefactor
Kðρ̄; tÞ of Pexc

t , cf. Eq. (36). The explicit dependence of K
on time will be the focus of a future study. Here, we are
only interested in the functional form of Pexc

t with the
velocity profile. Hence, to compare theory and simulations
we (i) obtain Isup and the density profile ρðx; tÞ at a given
time t using BD simulations, and (ii) use ρðx; tÞ as input of
our PFT and find the value of K that best reproduces the
simulation results. In other words, we fit the amplitude of
the superadiabatic force, but nothing else.
Figure 1 shows the density and the excess adiabatic and

superadiabatic force density profiles of systems with
N ¼ 15 (a) and N ¼ 20 (b) at time t ¼ 0.1τ with
τ ¼ L2γ=ðkBTÞ, and H=L ¼ 30. The excess adiabatic
and superadiabatic force densities are of the same order
of magnitude. In (a) superadiabatic and adiabatic forces are
out of phase, whereas the opposite is true in (b). These
examples highlight the important contribution of Pexc

t to the
force balance: the magnitude of the superadiabatic force is
not negligible and its structure is nontrivial. The agreement
between PFT and BD is excellent in all cases analyzed.
The insets of Fig. 1 show the prefactor K of Pexc

t , which
measures the magnitude of Isup, as a function of time for

systems with N ¼ 15 and 20 (H=L ¼ 30 in both cases). As
expected, the superadiabatic force vanishes for t ¼ 0 (since
the system is at equilibrium at t ¼ 0) and reaches a plateau
as time evolves due to the saturation of memory effects.
The reformulation of PFT in terms of the gradient of the

velocity field, as presented here, is amenable to the study of
stress-stress and strain rate–strain rate correlation functions
via functional differentiation, and corresponding nonequi-
librium Ornstein-Zernike relations [17,18].
In future work, the explicit study of memory effects is an

important topic. Higher (than bilinear) order contributions
to Pexc

t can be systematically constructed from combina-
tions of the scalars ∇ · v and ð∇ × vÞ2. The resulting
nonequilibrium forces go beyond the viscous forces that
follow from Eq. (30). Work along these lines will be
presented elsewhere [42]. Further possible interesting
applications include gravitational collapse [43] of mono-
layers and active microrheology [44].

(a)

(b)

FIG. 1. (a) Density profile ρðx; tÞ as a function of x (top panel)
in a periodic system with N ¼ 15 and size H ¼ 30 obtained with
Brownian dynamics simulations (only a small portion of the box
is shown). The bottom panel of (a) shows the scaled excess (over
ideal gas) adiabatic force density I�adx ¼ ρfadxL2=ðkBTÞ (blue
dash-dotted line) as a function of x. The scaled superadiabatic
force density I�sup ¼ IsupL2=ðkBTÞ is also shown according to
Brownian dynamics simulation (red dashed line) and the current
power functional theory (black solid line). Data taken at time
t ¼ 0.1τ after switching off the external potential. The inset in the
top panel shows the time evolution of K (prefactor in Pexc) as a
function of the scale time t=τ. In panels (b) we show the same
data as in panels (a) for a system with N ¼ 20 and H ¼ 30.
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