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Topological defects in nematic droplets of hard spherocylinders
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Using computer simulations we investigate the microscopic structure of the singular director field within a
nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an
overall topological charge, the particles are either confined to a two-dimensional circular cavity with homeo-
tropic boundary or to the surface of a three-dimensional sphere. Both systems exhibit half-integer topological
point defects. The isotropic defect core has a radius of the order of one particle length and is surrounded by
free-standing density oscillations. The effective interaction between two defects is investigated. All results
should be experimentally observable in thin sheets of colloidal liquid crystals.

PACS numbgs): 61.30.Jf, 83.70.Jr, 77.84.Nh

[. INTRODUCTION like an elongated face-centered-cubic lattice with/ABC
stacking sequence, a plastic crystal, smeétiphase, and

Liquid crystals(LC) show behavior intermediate between nematic and isotropic fluid. Besides bulk properties, one has
liquid and solid. The coupling between orientational and po-4nvestigated various situations of external confinement, like
sitional degrees of freedom leads to a large variety of menematics confined to a cylindrical cavifyL5] or between
sophases. The microscopic origin lies in anisotropic particlgarallel plateg16,17. Also effects induced by a single wall
shapes and anisotropic interactions between the particles thiaave been studied, like depletion-driven adsorpfit8i, an-
constitute the material. The simplest, most liquidlike LC choring[19], wetting [20], and the influence of curvature
phase is the nematic phase where the particles are align¢@l]. Furthermore, solid bodies immersed in nematic phases
along a preferred direction while their spatial positions aregxperience nontrivial force22—24], and point defects ex-
like in an ordinary liquid, homogeneously distributed in perience an interactiof25].
space. The preferred direction, called the nematic director, Topological defects within ordered media are deviations
can be macroscopically observed by illuminating a nematidrom ideal order, loosely speaking, that can be felt at an
sample between crossed polarizers. arbitrary large separation distance from the defect position.

There are many different systems that possess a nemat@omplicated examples are screw dislocations in crystalline
phase. Basically, one can distinguish between molecular LClaittices and inclusions in smectic filnj26]. To deal with
where the constituents are molecules and colloidal LCs cortopological defects the mathematical tools of homotopy
taining mesoscopic particles, e.g., suspensions of tobacdbeory may be employef27] to classify all possible struc-
mosaic viruseg1l]. Furthermore, there is the possibility of tures. The basic ingredients are the topology of both the em-
self-assembling rodlike micellg], which can be studied bedding physical space and the order parameter space. For
with small-angle neutron scatterifg]. the case of nematics, there are two kinds of stable topologi-

There are various theoretical approaches to deal witltal defects in three dimensiori8D), namely point defects
nematic liquid crystals. On a coarse-grained level one magnd line defects, whereas in two dimensid@B) there are
use Ginzburg-Landau theories, including phenomenologicabnly point defects. These defects arise when the system is
elastic constants. The central idea is to minimize an approguenched from the isotropic to the nematic s{@8]. Also
priate Frank elastic energy with respect to the nematic directhe dynamics have been investigaf@d] experimentally. On
tor field [4]. Second, there are spin models, like thethe theoretical side, there is the important work within the
Lebwohl-Lasher model, see, e.g., Rdfs-7]. There the ba- framework of Landau theory by Schopohl and Sluckin on the
sic degrees of freedom are rotators sitting on the sites of defect core structure of half-integer wedge disclinatil8¢
lattice and interacting with their neighbors. The task is toand on the hedgehog defect cdB1] in nematic and mag-
sample appropriately the configuration space. The third classetic systems. The latter predictions have been confirmed
of models consists of particles with orientational and posi-with computer simulations of lattice spin mod¢&2]. The
tional degrees of freedom. Usually, the interaction betweemopological theory of defects has been used to prove that a
particles is modeled by an anisotropic pair potential. Ex-uniaxial nematic either melts or exhibits a complex biaxial
amples are Gay-Berne particles, e[8.,9], and hard bodies, structurg[33]. Sonnet, Kilian, and He484] have considered
e.g., hard spherocylinde$1SC) [10]. Beginning with the droplet and capillary geometries using an alignment tensor
classical isotropic-nematic phase transition for the limit ofdescription.
thin, long needles due to Onsadérl], our knowledge has The investigation of equilibrium topological defects in
grown enormously for the system of hard spherocylindersnematics has received a boost through a striking possibility
The bulk properties have recently been understood up tto stabilize defects by imprisoning the nematic phase within
close packing. The phase diagram has been calculated Iay spherical droplet. The droplet boundary induces a non-
computer simulationg12], density-functional theory13], trivial effect on the global structure within the droplet. More-
and cell theorny{14]. There are various stable crystal phasespover, it can be experimentally controlled in a variety of ways
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to yield different well-defined boundary conditions, namely
homeotropic or tangential ones. One famous experimental
system is polymer-dispersed LCs. Concerning nematic drop-
lets, there are various studies using the Lebwohl-Lasher
model [5—7]. There are investigations of the droplet shape
[35,36], the influence of an external fie[@7], chiral nematic
droplets[38], structure factof39], and ray propagatiof?0].
Also simulations of Gay-Berne droplets have been per-
formed[41]. Other systems that exhibit topological defects
are nematic emulsiorfg2—44 and defect gels in cholesteric
LCs [45]. The formation of disclination lines near a free
nematic interface was report@do].

In this work We are concgrned W't.h the microscopic struc- FIG. 1. Two hard spherocylinders with position coordinates
ture' of topolpglcal Qefects |n'ne'mat|cs. We use a modgl fo%ndrj , and orientations; andn; . The width of the particles is';
rodlike particles with a pairwise hard core interaction, e total rod length is denoted ty
namely hard spherocylinders. It accounts for both the orien-

tational degrees of freedom as well as the positional degreesq two half disks. We assume a hard core interaction be-

of freedom of the particles constituting the nematic. Espeyyeen any two spherocylinders that forbids particle overlap.
cially, it allows for mobility of the defect positions. This Formally, we may write

system is investigated with Monte Carlo computer simula-

tions. There exist successful simulations of topological line o f particles i and j overlap
defects using hard particles, namely inte¢#7] and half- U(ri,ni;ry,ny)= 0
integer line defect$48].

Here, we undertake a detailed study of the microscopicrhe geometric overlap criterion involves a sequence of el-
structure of the defect cores focusing on the behavior of th@mentary a|gebraic tests. They are Composed of scalar and
local nematic order and on the density field, an importaniector products between the distance vector of both particles
quantity that has not been studied in the literature yet. As @nd both orientation vectors. The explicit form can be found,
theoretical prediction, we find that the arising half—integere.g” in Ref.[49]. The bulk system is governed by two di-
point defects are surrounded by an oscillating density inhomensionless parameters, namely the packing fraction
mogeneity. This can be verified in experiments. We also inwhich is the ratio of the space filled by the particle “mate-
vestigate the statistical properties of two defects interactingijg|” and the system volum¥. In two dimensions it is given
with each other extracting the distribution functions of thepy ;= (N/V)[ (L — o) + m02/4]. The second parameter is
positions of the defect cores and their orientations. These ak@e anjsotropyp=_L/o which sets the length-to-width ratio.
not accessible in mean-field calculations. We emphasize thathe pulk phase diagram in 3D was recently mapped out by
both properties, the free-standing density wave which is dugomputer simulatiofi12] and density-functional theoffyL3].
to microscopiccorrelationsand the defect position distribu- The nematic phase is found to be stable for anisotropies
tion which is due tofluctuations cannot be accessed by a ~5 |y 2D the phase diagram is not known completely but
coarse-grained mean-field-type calculation. there is an isotropic to nematic phase transition for infinitely

The paper is organized as follows: In Sec. Il our theoretyyin needleq50]. The nematic phase is also present in a
ical model is defined, namely hard spherocylinders within asystem of hard ellipse$1,52 verified by computer simula-
planar spherical cavity and on the surface of a sphere. FQjons. In 2D the nematic-isotropic transition was investigated
comparison, we also propose a simplified toy model Ofysing density-functional theory53] and scaled-particle
aligned rods. Section IIl is devoted to the analytical toolsineory[54]. There is work about equations of st#§&], and

employed, such as order parameter and density profiles. Segject correlation functiong56] within a geometrical frame-
tion IV gives details about the computer simulation tech-yqrk.

nigues used. The results of our investigation are given in
Sec. V and we finish with concluding remarks and a discus-

sion of the experimental relevance of the present work in _ .
Sec. VI. To align the particles near the system boundary homeo-

tropically we apply a suitably chosen external potential. The
particles are confined within a spherical cavity representing
the droplet shape. The interaction of each HSC with the
A. Hard spherocylinders droplet boundary is such that the center of mass of each
particle is not allowed to leave the droplet, see Fig. 2. The
corresponding external potential is given by

else.

B. Planar model

Il. MODEL

We consideN identical particles with center-of-mass po-
sition coordinates;=(r,;,ry;) and orientations;, where
the indexi=1, ... N labels the particles. Each particle has a o if Iri|<R-L/2
rodlike shape: It is composed of a cylinder of diameteand Uelri) =
length L— o and two hemispheres with the same diameter e
capping the cylinder on its flat sides. In 3D this geometric
shape is called a spherocylinder, see Fig. 1. The 2D analog ishereR is the radius of the droplet and we chose the origin
sometimes called discorectangle as it is made of a rectangtef the coordinate system as the droplet center. The system

o else, 2
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FIG. 2. Homeotropic boundary conditions for the planar droplet.
The particle center§points are not allowed to cross a circle with
diameterR—L/2 (dashed ling Then the shape of each particle lies
inside a circle with radiu®.

volume isV=7R?. This boundary condition is found to in-
duce a nematlc order pgrpendlcular to_ the droplet bound_ary FIG. 4. Model of aligned rods. Each particldiscorectangles
as the particles try to stick one of their ends to the outsidg s an orientation according to a prescribed director fitigs).

[57]. Hence the topologicgl charge is one. In the linit,  The position of the arising 1/2 defect is indicated by a filled circle,
=1, we recover the confined hard sphere system recenthe orientation by an arrow.

investigated in 20058] and 3D[59-61].
around the defect. It may have positive and negative, integer,

C. Spherical model or half-integer values, namely91/2,+1, .. ..
A second possibility to induce an overall topological
charge is to confine the particles to a non-planar, curved D. Aligned rods

space, which we chose to be the surface of a sphere in three-
dimensional space. The particles are forced to lie tangentiallgi
on the sphere with radiuR, see Fig. 3. Mathematically, this
is expressed as

To investigate pure positional effects we study a further
mplified model where the orientation of each rod is
uniquely determined by its position. Therefore we consider
an arbitrary unit vector field(r) describing a given nematic

Iri|=R, (3) order pattern. In reality, the particles fluctuate around this
mean orientation. Here, however, we neglect these fluctua-
ri-n=0. (4)  tions by imposingn;=n(r;). In particular, we chose the di-

rector field to possess a singular defect with topological
The director field on the surface of a sphere has to haveharget, see Fig. 4. The precise definition of this director
defects. This is known as the “impossibility of combing a field n)(r) is postponed to the next sectijand given
hedgehog.” The total topological charg@7] is two. The therein in Eq.(5)]. The case of parallel aligned rods,
topological charge is a winding number that counts the num= const, has been used to study phase transitions to higher-
ber of times the nematic director turns along a closed patlordered liquid crystal§62].

IIl. ANALYTICAL TOOLS

A. Order parameters

\<~ In order to analyze the fluctuating particle positions and
orientations, we probe against a director field possessing a

' ( topological defect with charge It is given by
X \,;‘,(\ v

- n®(q,n)=D"ng, (5

where the rotation matrix is

4 )

coqtg) —sin(tey)

sinté)  coste) |’ ®

Q(t) (a)=

with ¢=arctang,/a,), and a=(ay,a,) being a 2D vector.
The vectorq is the orientation of particles if one approaches
the defect along th& direction.

FIG. 3. Spherical system. Each particle with positignand As an order parameter, we probe the actual particle orien-
orientationn; is forced to lie tangentially on the surface of a sphere.tationsn; against the ideal ones
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sOc.an=2([n-naqr-01-1 (7 SO(r)=2((n;- ¢(®)?),~ 1. (13

where the radial average is defined aé --), Second, we probe for starlike order, hemeel, c=0. As
=(=N 8|/ |=r) .. HEN8(r/|—1)), with r/=rj—c  we do not expect spiral arms of the star pattern to occur, we
and(---) is an ensemble average. Normalization in Ef.  can setg=g,, wheree, is the unit vector in the direction.

is such that usually € S"<1, where unity corresponds to We can rewrite Eq(7) as

ideal alignment, and zero means complete dissimilarity with ) -

the defect of chargeat positionc and vectorg, Eq. (5). (In S =2((n;-r)%)— 1, (14
general,— 1<S(V<1 is possible, where negative values in- -

dicate an anticorrelation. wherer;=ri/|r|.

If ¢ andq are not dictated by general symmetry consider- Third, we investigaté=1/2 defects. To_ that end, we need
ations(e.g.,c=0 because of the spherical droplet shape to search forc andq, as these are not dl_ctated by the sym-
need to determine both quantities. To that end we measuf@€try of the droplet. Hence we numerically solve ES)
the similarity of an actual particle configuration compared toWith R*=2L (see Sec. IV B We obtain
a defect, Eq.5). We probe this inside a spherical region 12), oy 12), ~(1/2 U212
aroundc with radiusR* using SN =2([n-nTAq D= )P - 1. (19)

The distribution of thepositionsof the particles is ana-
2 J’R*dr rSO(cqir) ®) lyzed conveniently using the density profiidér) aroundc,
(R*)2Jo U which we define as

|(t)(C,q) =

whereR* is a suitably chosen cutoff length. We maximize
1®(c,q) with respect tac andq. The value at the maximium
is

N
o= @m) G 3 alr-d-n). 19

We consider two cases: the density profile around the center
AO=max1V(c,q)}, (99 of the droplet, i.e.c=0, and around the position of a half-
¢4 integer defectc=c,,C;.

. Cat th _ @ It is convenient to introduce a further direction ofta
and the argument al the maximumgs’. = 1/2 defect by

Before summarizing the quantities we compute during the

simulation, let us note that® and\(® are eigenvector and d=DW2q(112))g(1/2), (17)

the correspondinglarges} eigenvalue of a suitable tensor. B

To see this, we attribute to each particle the general tensorThe vectord is closely related t@? by a rotation opera-

© © © tion, where the rotation angle is the angle betwg€ff and

Q' =2[D¥(ri—com@D™(ri—c)nJ=1, (10  thex axis. The directiord is where the field lines are radial;
- see the arrow in Fig. 4.

where ® denotes the dyadic product addis the identity

matrix. Summing over particles gives B. Defect distributions
. For a given configuration of particles the planar nematic
Q=2 Q. (1)) droplet has a preferred direction given by the global nematic
b= directorq®). Each of the two topological defects has a posi-

tion ¢, and an orientatiod; , i=1,2. These quantities can be
set in relation to each other to extract information about the
average defect behavior and its fluctuations. In particular, we
investigated the following probability distributions depend-
S(‘)(C,q,r)=(q~ Q(t).q>r, (12 ing on a single distance or angle.

N Concerning single defect properties, we investigate the
and then the relation®@g®=Q®q® holds, if the sum over separation distance from the droplet center,
i in Eq. (11) is restricted to particles located inside a spheri- 1
cal region of radiusR* aroundc.. . |3(r):(277r)—1E z (8(|c|—1)), (18)

Let us next give three combinations €, q that apply to i=12

the current model. First, we investigate ttmlk) nematic ) ] ) o
order, t=0. We resolve this as a function of the distance@nd the orientation relative to the nematic director,
from the droplet center, henae=0. The nematic director 1
q'? is obtained from Eq(9) with R* =R. The order param- P(O)== > (5(arccosd;-q?)—6)). (19)
eter, defined in Eq(7), then simplifies to 2512

Note that fort=0 the usual bulk nematic order parameter is
recovered. The order parameter profile, E€}), is then ob-
tained as

Between both defects there is a distance distribution,

The constants in Eq.10) depend on the dimensionality of the P(C10)=(27C10) N (|c1— ol —C10)), (20)
system and are different from 3D, where, e @)= (3/2);n;
®n;—1/2 holds. and an angular distribution between defect orientations,
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P(60,,)={d5(arccosd; -d,) — 6,)), (22) TABLE I ngrview of the simulated .parameter range: number
of particlesN, anisotropyp, packing fractions, scaled droplet di-
. . . L12) - (172) ) ameter R/L. Systems I-VII are planar; the system named
which can equivalently be defined withi?,q5"? by using “sphere” corresponds to spherical geometry.
the identity arccosy; - d,) =2 arccos({?- g§"').

System N p n 2R/L
IV. COMPUTER SIMULATION I 2008 21 0.3321 19.05
A. Monte Carlo Il 1004 21 0.3321 13.41
Il 4016 21 0.3321 26.94
All our simulations were performed with the canonical |y 1750 21 0.2894 19.05
Monte Carlo technique keeping particle numibgrvolume  , 2500 21 0.4143 19.05
V, and temperaturd@ constant; for details we refer to Ref. 1855 16 0.4143 18.75
[63]. To simulate spherocylinders with only hard interac-,, 3050 31 0.3321 19.35
tions, each Monte Carlo trial is exclusively accepted Wheréphere 2008 21 0.3321 953

there is no overlap of any particles. One trial always consist
of a small variation of position and orientation of one HSC.
For the planar case the translation for the particlis
constructed by adding a small random displacenmentto
the vectorr;, similarly the rotation consists of adding a
small random vectoiAn; to the directionn; with An;-n;

Aligned 2008 21 0.3321 19.05

half the radius of the planar droplet. The aligned rod model
has the same parameters as the reference system

=0.

To achieve an isotropic trial on the surface of the sphere, B. Technical issues
the rotation matrixM is applied simultaneously to the vec- e discuss briefly a projection method for the spherical
torsr; andn;. It is defined as problem and a search algorithm to find defect positions. In

order to perform calculations for the spherical system all
interesting vectors in three dimensions are projected to a
M:=| —ystBac 1-c+pc a+Byc (220  two-dimensional plane. Imagine a given vectofrom the
Bs+yac —as+yBc 1l—c+92c middle of the sphere point_ir_1g to an a_rbitrary point of the
surface. We convert a positian and orientatiom; to the
vectorsr? andnP in a plane perpendicular through

1-c+a’c ystaBc —pPBs+ayc

with s=sinAf andc=1—cosAd. «,3,y are for every trial

randomly chosen Cartesian coordinates of the unit vector rP=r,—(c-r))c, (23
specifying the rotation axisA 6 is a small random angle.
With this method a simultaneous translation and rotation is
warranted by keeping the vectarsandn; normalized and
perpendicularly oriented.

The maximal variation in all cases is adjusted such thaffter obtaining a sefrP,nP} of three-dimensional vectors
the probability of accepting a move is about 50%. The overthis way, we transform them into a set of two-dimensional
lap criteria were checked by comparing the second viriavectors by typical algebraic methods. As a reference the pro-
coefficient of two- and three-dimensional HSC with simula-jection of thex unit vector of the fixed three-dimensional
tion results, where the excluded volume of two HSC werecoordinate system is always the x orientation of the “new”
calculated. Each of the runs I-VII was performed with 5 coordinate-system in two dimensions. The results show that
x 10’ trials per particle. One-tenth of each run was discardedurvature effects are small.
for equilibration. Especially the strongly fluctuating distance To investigate the radial structure and interactions of the
distribution between both defect8(c;,), needs good statis- disclinations it is necessary to localize the centers of the two
tics. All quantities were averaged over 25 partial runs, frompoint defects. As described in Sec. IV, th€/? parameter
which also error bars were calculated. measures the degree of order of a half-integer defect in a

An overview of the simulated systems is given in Table I.chosen area, so the task is to find the two maxima(8f in
The systems |-VII are planar. System | is the reference. Tahe droplet. In the planar case, we do this search with the
study finite-size effects, system Il has half as many particlesfollowing algorithm: A circular test-probe samples the drop-
and system Il has twice as many particles as I. To investilet on a grid with a grid spacing ofd At this point all the
gate the dependence on the thermodynamic parameters, sysrticles in the circle are taken to calculate’? in the de-
tem IV has a lower packing fraction, and system V has a scribed way. After sampling the grid both maxima are stored
higher one compared to system I. The other thermodynamiand for every maximum a refining Monte Carlo search is
parameter is the anisotropy, which is smaller for system Viperformed. The surrounding of the size of the grid spacing is
and higher for system VII compared to the system |. To keepandomly sampled and the probe is only moved whéf?
the nematic phase stable for the short rods of system VI, thincreases. The search is stopped when the probe does not
packing fractionn had to be increased. The packing fraction move for 200 trials. In the spherical case the method is the
of the dense system V ig=0.4143. The spherical system same, but the grid is projected onto the sphere surface and
has the same number of particispacking fractiony, and  the calculations ok (*2) were performed with projected two-
anisotropyp as the referencé). The radius of the sphere is dimensional vectors as described before.

nP=n;—(c-nj)c. (24
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FIG. 5. Nematic order paramete8€) as a function of the radial :_hesdistancle_ frorfn the droplet cem(;asc?rlledl byht’he p:rt:'.dﬁ Ie\rllgth
distancer from the droplet center, scaled by the rod lengttStar . System | is reference, compared to the loWet) and higher(V)

orders® and bulk ordes® is shown. System | is reference, Il has packing fractions and lowei/I) and higherVII) anisotropies. The

halved, and Il has a doubled particle number. See Table | for z#gf% Zzzﬁlltgzpbeez;rzvflg:g?ll_r the origin where a density decrease

compilation of system parameters. Error bars are only given for .

o at smallr values. Increasingy leads to a compression of the
It is important to chose an adequate radRis for the  jnpomogeneous, interesting region in the center of the drop-
probe. IfR* is too large, the probe overlaps both defects. Asig¢ A similar effect can be observed upon changing the other
they have opposite orientations on the average, the Iocatqﬁermodynamic variable, namely the anisotrgpyrhe nem-
point of the maximum deviates from the point we are inter-iic street is compressed for longer rogs: 31 (VI1), r/L
ested in. If theR* is too small, an ill-defined position results, _— 1.33. Shorter rods)= 16, need a higher density to form a

as fluctuations become more important. The simulation resematic phase, so the values for systéhisr/L=3.16, and
sults show that a good choiceR& =2L. Although this defi- V1), r/L=2.91, are similar, as both effects cancel out.

nition contains some freedom, we find the defect position to The behavior o8& is similar to the findings for a three-

be a 'robust quantity. A detailed discussion is given in thedimensional droplet, where a quadratic behavior mead
following section. was predicted within Landau theofg1]. A simulation study
using the Lebwohl-Lasher modg32] confirmed this finding
V. RESULTS and revealed that a ringlike structure that breaks the spherical
symmetry is present. A comparison to the results for a 3D
capillary by Andrienko and Allei47] seems qualitatively
Let us discuss the order paramet&f8 as a function of possible as they find alignment of particles predominantly
the radial distance from the center of the droplet; see Fig. Snormal to the cylinder axis. Their findings are consistent
S s the usual bulk nematic order parameter, but radiallywith the behavior o&™®). Although our system is simpler as
resolved. It reaches values of 0.6—0.75 in the middle of the: only has two spatial dimensions, we could also establish
droplet,r <2L, indicating a nematic portion that breaks the the existence of a director field that breaks the spherical sym-
global rotational symmetry of the system. For3L, S  metry by considering the order parame8sP.
decays to values slightly larger than the isotropic value of 0. Having demonstrated that the system exhibits a broken
The decrease, however, is not due to a microscopically isarotational symmetry, we have to assure that no freezing into
tropic fluid state, as can be seen from the behavio®®k  a smectic or even crystalline state occurs. Therefore we plot
This quantity indicates globally starlike alignment of par- radial density profileg(r), wherer is the distance from the
ticles forr>3L. It vanishes in the nematic “street” in the droplet center, in Fig. 6. The density shows pronounced os-
center of the droplet. The distance wh&® andS*) inter-  cillations for larger near the boundary of the system. They
sect is an estimate for the defect positions. In Fig. 5 thesecome damped upon increasing the separation distance
finite-size behavior 08" is plotted for particle number  from the droplet boundary and practically vanish after two
=1004, 2008, 4016 corresponding to systems Il, I, and lll.rod lengths for intermediate density and four rod lengths for
There is a systematic shift of the intersection pointS®  high density. Approaching the droplet centess 0, the den-
andS!) to larger values as the system grows; the numericasity reaches a constant value for the weakly nematic systems
values arer/L=2.54,2.91,3.87. However, if is scaled by I, IV, and V. For the strongly nematic systems, V with high
the droplet radiusR, a slight shift to smaller values is ob- density and VII with large anisotropy, a density decay at the
served as the system size grows. Keeping the medium-sizesnter of the droplet occurs. This effect is not directly caused
system | as a reference, we have investigated the impact @y the boundary as the density oscillations due to packing
changing the thermodynamic variables. For different packingffects are damped. It is merely due to the topological de-
fractions, 7=0.2894(1V), 0.3321(l), 0.4143(V), we found fects present in the system. Quantitatively, the relative de-
that the intersection distances art =3.90, 2.91, 1.43. In crease i§p(3L)—p(0)]/p(3L)=0.11(V), 0.09 (VIl). The
the bulk, upon increasing the density the nematic ordefinite-size corrections for systems Il and Il are negligible.
grows. Here, this happens for the star or@P. But this From both, the scissorlike behavior of the nematic order
increase happens on the cost of the nematic stseeS(?) (Fig. 5 and from the homogeneity of the density profile

A. Order within the droplet
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FIG. 7. Snapshot of a typical particle configuration for the pla- FIG. 8. Snapshot of a typical particle configuration for the
nar system |. The particles are rendered dark. The two black synspherical system. The particles are rendered dark. There is one 1/2
bols inside the droplet indicate positions and orientations of defectddefect on the left side and one on the right side. They point away
The black bar outside the droplet indicates the global nematic difrom each other.
rectorg(®.

larger distances the influence from the second defect partner
away from the system wallFig. 6), we conclude that the decreases the half-integer orc&?’z). Increasing the overall
system is in a thermodynamically stable nematic phase, ar@€nsity and increasing the anisotropy leads to a more pro-
seems to contain two topological defects with charge 1/2. hounced hump. The finite-size correctiori,and I11) and

In a 2D bulk phase, two half-integel/2) defects are the boundary eﬁect_{;spherée are negligible. However, the
more stable than a single integdl) defect, as the free en- CUrves show two artifacts: A rise near0 and a jump at the
ergy is proportional to the square of the charge. However, ifPoundary of the search prolres 2L. In the inset the profile
the finite system of the computer simulation that is also afaround a bulk defect is shown. It has a plateau value inside
fected by influence from the boundaries, it could also behe prober<2L, and vanishes outside. If we subtract this
possible that the defect pair merge into a single @e34. contribution from the pure datél), continuous behavior at

Next we investigate the defect positions and their orieny =2L can be enforced. _
tations. To illustrate both, a snapshot of a configuration of However, the model does not account for 3D effects like
the planar system is shown in Fig.(l). One can see the the “biaxial escape,” namely the sequence planar uniaxial-
coupling of the nematic order from the first layer of particles
near the wall to the inside of the droplet. The particles near
the center of the droplet are aligned along a nematic directol
(indicated by the bar outside the dropleEhe two emerging
defects are depicted by symbols. See Fig. 8 for a snapshot ¢

the spherical system. There the total topological charge is no =
induced by a system boundary but by the topology of the
sphere itself. 2
B. Defect core r,/L ¢
The positions of the defects are defined by maxima of the
A2 order parameter; see Sec. Il for its definition. In Fig. 9, -2
A2 is plotted as a function of the spatial coordinatgand
ry for one given configuration. There are two pronounced -4

maxima, indicated by bright areas, which are identified as the
positions of the defect cores; and c,. There are several
more local maxima appearing as gray islands. These art
identified as statistical fluctuations already present in the
bulk nematic phase.

A drift of the positions of a defect core was also reported
in [32]. Here we follow this motion, to investigate the sur-  FiG. 9. Order parametex(*? as a function of spatial coordi-
rounding of the defects. The order param&@ef? is radially natesr,,ry. Bright areas correspond to large values; dark areas
resolved around the defect position in Fig. 10. It has a procorrespond to small values af'?. The two bright spots near the
nounced maximum around=1.2L. For smaller distances it center are identified as topological defects, the gray islands as bulk
decreases rapidly due to disorder in the core region. Fodefects.
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FIG. 10. Order parameter profil&@? around the defect center FIG. 12. Same as Fig. 11, but for lowél) and higher(V)
as a function of the scaled distanoé from the defect center. The packing fractions and short¢€vl) and longer particlegVIl) com-
reference system | is to be compared with low®t) and higherV) pared to system I.
packing fractions and lowel/1) and higher(VIIl) anisotropies. The
inset showsS) for bulk defects and for the difference between | =2L. From this analysis, we can conclude that the oscilla-
and the bulk. tions are due to packing effects. The density oscillations be-

come more pronounced at higher density, and for larger an-

biaxial-uniaxial with increasing distance from the core centelisotropy, see Fig. 12.
[34], as the particles are only 2D rotators. Schopohl and
Sluckin[30] found an inte_rfac_elik_e be_ha\{ior between the in- C. Defect position
ner and outer parts of a disclination line in 3D. In our system _ _ )
we do not find a sign of an interface between the isotropic I the planar system, each defect is characterized by its
core and the surrounding nematic phase. This might be du@dial distance from the center, and the anglebetween its
to a small interface tension and a very weak bulk nematicorientation and the global nematic directff’. We discuss
isotropic phase transition. the probability distributions of these quantities. In Fig. 13 the

By radia”y reso|ving the probab|||ty of f|nd|ng a partide distribution for flndlng the defect at a distancefrom the
around a defect center, we end up with density profiles decenter is shown. Generally, the distributions are very broad.
picted in Fig. 11. The defect is surrounded by density oscil-This indicateslarge mobility of the defects. Changing the
lations with a wavelength of the particle length. The finite- thermodynamical variables has a large effect. For the stron-
size dependence is small. To estimate the influence from th@er nematic systems V and VII, the distribution becomes
system wall, one may compare with the spherical system. [gharper with a pronounced maximunrat1.5.. Decreasing
shows slightly weaker oscillations. This might be due to cur-the anisotropy weakens the nematic phase, so system IV has
vature effects, as the effective packing fraction is slightly@ very broad distribution. The inset shows that the distribu-
smaller as the linear particles may escape the spherical sydon becomes broader upon increasing system size.
tem. The toy model of aligned rods also exhibits a nontrivial
density profile, showing a decrease towards small distance D. Interactions between two defects

and oscillations compared to rotating rods. In all cases the complete probability distribution of both positions of

first peak has a separation distance of half a particle lengt,e yefect cores can be regarded as arising from an effective
from the defect center. The second peak appears-8&(2L.

Again the search probe induces an artificial structure near

60 I

50
0.35 w0l

P(r)

p(r) 30 ¢

20 |

03
10

r?L FIG. 13. Probability distributiorP(r) for the distance of a de-
fect from the center of the dropletL for lower (IV) and higher(V)
FIG. 11. Density profile as a function of the distance from the packing fractions and shorté¥l) and longer particle$VIll) com-
defect center. System | is reference, Il has fewer particles, Il hapared to system I. The inset shows the finite-size behavior for
more. The spherical and aligned models are shown. halved(ll) and doubledlll) particle numbers.
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FIG. 14. Probability distributiorP(c,,) for the separation dis- FIG. 15. Probability distributiodP(6,) for the difference angle
tance between both defect positions scaled by the particle length fdretween both defect orientations. The reference system | is to be
lower (IV) and higher(V) packing fractions and short¢¥1) and ~ compared with lower(IV) and higher(V) packing fractions, and
longer spherocylinder§Vil) as compared to system I. The inset lower (VI) and higher(VIl) anisotropies. The inset shows the dis-
shows the finite-size behavior for halvét)) and doubledlll) par-  tribution P(6) of the difference angle between the direction of one
ticle numbers compared to . of the defects and the global nematic director for the same param-

eters.

interaction potentiaV/.¢(c; ,c,) between the defects. The lat- between the defect orientation and the global nematic direc-
ter play the role of quasiparticles. The effective interactiontor. A clear maximum neatr/2 occurs. Again, the distribu-
arises from averaging over the particle positions while keeplions become sharper as density or anisotropy increase.
ing the defect positions constant. The effective interaction

E. Outlook
and the probability distribution are related vR(c;,c,) Finally. it i h t'u (_)0 that th herical )
exf —BVer(cr,C2) ] inally, it is worth mentioning that the spherical system

still contains surprises. See Fig. 16 for an unexpected con-

Instead of the full probability distribution, we show its . . "
q d th tion dist bet both def f|%urat|on, namely an assembly of three positive 1/2 defects
ependence on the separation distance between both dete ing at the corners of a triangle and a negative-1/2 defect in

and on their relative orientation. In Fig. 14 the probability jis center. This is remarkable, because the negative defect
distribution of finding two defects at a distancg is shown.  could annihilate with one of the outer positive defects.

It has small values for small as well as largg. Hence at In all cases, integer defects seem to dissociate into half-
small distances the defects repel each other. At large disnteger defects. The complete equilibrium defect distribution
tances their effective interaction is attractive. Increasing thef hard spherocylinders lying tangentially on a sphere re-
nematic order by increasing the densily) or rod length mains an open question.

(VIl') causes the average defect separation distance to shrink.

The rise near/L=1 is an artifact: These are events where VI. CONCLUSIONS

the search algorithm does not find two different defects, but In conclusion, we have investigated the microscopic
merely finds the same defect two times. To avoid the probstructure of topological defects of nematics in a spherical
lem a cutoff atr =L was introduced. The finite-size behavior

is strong; see the inset. The large systéih) allows the
defects to move further away from each other, whereas in the
smaller system(ll) they are forced to be closer together.
However, from the simulation data, it is hard to obtain the
behavior in the limitR/L —oc.

This is somewhat in contrast to the phase diagram of a 3D
capillary[34] containing isotropic, planar-radial, and planar-
polar structures, if one is willing to identify the dependence
on temperature with our athermal system. There it was found
that the transition from the planar-polar to the planar-radial
structure happens upon increasing the temperatarel
hence decreasing the nematic opder

The difference angl@,, between both defect orientations
in the planar system, see Fig. 15, is most likelyhence the
defects point on average away from each other. However, the
orientations are not very rigid. For the least ordered system
IV there is still a finite probability of finding the defects with
a relative orientation of 90°. Even for the strongly nematic  FIG. 16. Triangular configuration of three positive defects
systems V and VIl the angular fluctuations are quite largearound a spontaneously formed negatively charged détectral
The inset in Fig. 15 shows the distribution of the angle dot).
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droplet with the appropriate homeotropic boundary and formolecular liquid crystals is the larger length scale that en-
particles lying on the surface of a sphere. We have used hambles real-space techniques like digital video-microscopy to
spherocylinders as a model system for a lyotropic nematibe used.

liquid crystal. This system allows us to study the statistical From a more theoretical point of view it would be inter-
behavior of the microscopic rotational and positional degreegsting to describe the microstructure of topological defects
of freedom. For this system we find half-integer topologicalwithin the framework of density-functional theory. Using
point defects in two dimensions to be stable. The defect corghenomenological Ginzburg-Landau models, one could take
has a radius of the order of one particle length. As an importhe elastic constants of the HSC model as an input, and could
tant observation, the defect generates a free-standing densiyg|culate the defect positions and check against our simula-
oscillation. It possesses a wavelength of one particle lengthjgns.

Considering the defects as fluctuating quasiparticles we have Finally we note that we currently investigate the three-
presented results for their effective interaction. The microgimensional droplets that are filled with spherocylinders. In

scopic structure revealed by radially resolving density anghis case more involved questions appear, as both point and
order parameter profiles around the defect position is identitine defects may appear.

cal for the planar and the spherical system.

An experimental investigation using anisotropic colloidal
particles[64,65 like tobacco mosaic viruses or carbon nano-
tubes is highly desirable to test our theoretical predictions.
Then larger accessible system sizes can be exploited. Also of It is a pleasure to thank dgen Klaus, Karin Jacobs,
interest is the long-time dynamical behavior of the motion ofHolger Stark, and Zsolt Neeth for useful discussions, and
topological defects. The advantage of colloidal systems ovelHolger M. Harreis for a critical reading of the manuscript.
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