
PHYSICAL REVIEW E OCTOBER 2000VOLUME 62, NUMBER 4
Topological defects in nematic droplets of hard spherocylinders

Joachim Dzubiella, Matthias Schmidt, and Hartmut Lo¨wen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 22 June 1999; revised manuscript received 17 May 2000!

Using computer simulations we investigate the microscopic structure of the singular director field within a
nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an
overall topological charge, the particles are either confined to a two-dimensional circular cavity with homeo-
tropic boundary or to the surface of a three-dimensional sphere. Both systems exhibit half-integer topological
point defects. The isotropic defect core has a radius of the order of one particle length and is surrounded by
free-standing density oscillations. The effective interaction between two defects is investigated. All results
should be experimentally observable in thin sheets of colloidal liquid crystals.

PACS number~s!: 61.30.Jf, 83.70.Jr, 77.84.Nh
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I. INTRODUCTION

Liquid crystals~LC! show behavior intermediate betwee
liquid and solid. The coupling between orientational and p
sitional degrees of freedom leads to a large variety of m
sophases. The microscopic origin lies in anisotropic part
shapes and anisotropic interactions between the particles
constitute the material. The simplest, most liquidlike L
phase is the nematic phase where the particles are ali
along a preferred direction while their spatial positions a
like in an ordinary liquid, homogeneously distributed
space. The preferred direction, called the nematic direc
can be macroscopically observed by illuminating a nem
sample between crossed polarizers.

There are many different systems that possess a nem
phase. Basically, one can distinguish between molecular
where the constituents are molecules and colloidal LCs c
taining mesoscopic particles, e.g., suspensions of toba
mosaic viruses@1#. Furthermore, there is the possibility o
self-assembling rodlike micelles@2#, which can be studied
with small-angle neutron scattering@3#.

There are various theoretical approaches to deal w
nematic liquid crystals. On a coarse-grained level one m
use Ginzburg-Landau theories, including phenomenolog
elastic constants. The central idea is to minimize an app
priate Frank elastic energy with respect to the nematic di
tor field @4#. Second, there are spin models, like t
Lebwohl-Lasher model, see, e.g., Refs.@5–7#. There the ba-
sic degrees of freedom are rotators sitting on the sites
lattice and interacting with their neighbors. The task is
sample appropriately the configuration space. The third c
of models consists of particles with orientational and po
tional degrees of freedom. Usually, the interaction betw
particles is modeled by an anisotropic pair potential. E
amples are Gay-Berne particles, e.g.,@8,9#, and hard bodies
e.g., hard spherocylinders~HSC! @10#. Beginning with the
classical isotropic-nematic phase transition for the limit
thin, long needles due to Onsager@11#, our knowledge has
grown enormously for the system of hard spherocylinde
The bulk properties have recently been understood up
close packing. The phase diagram has been calculate
computer simulations@12#, density-functional theory@13#,
and cell theory@14#. There are various stable crystal phas
PRE 621063-651X/2000/62~4!/5081~11!/$15.00
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like an elongated face-centered-cubic lattice with anABC
stacking sequence, a plastic crystal, smectic-A phase, and
nematic and isotropic fluid. Besides bulk properties, one
investigated various situations of external confinement, l
nematics confined to a cylindrical cavity@15# or between
parallel plates@16,17#. Also effects induced by a single wa
have been studied, like depletion-driven adsorption@18#, an-
choring @19#, wetting @20#, and the influence of curvatur
@21#. Furthermore, solid bodies immersed in nematic pha
experience nontrivial forces@22–24#, and point defects ex-
perience an interaction@25#.

Topological defects within ordered media are deviatio
from ideal order, loosely speaking, that can be felt at
arbitrary large separation distance from the defect posit
Complicated examples are screw dislocations in crystal
lattices and inclusions in smectic films@26#. To deal with
topological defects the mathematical tools of homoto
theory may be employed@27# to classify all possible struc
tures. The basic ingredients are the topology of both the
bedding physical space and the order parameter space
the case of nematics, there are two kinds of stable topol
cal defects in three dimensions~3D!, namely point defects
and line defects, whereas in two dimensions~2D! there are
only point defects. These defects arise when the system
quenched from the isotropic to the nematic state@28#. Also
the dynamics have been investigated@29# experimentally. On
the theoretical side, there is the important work within t
framework of Landau theory by Schopohl and Sluckin on
defect core structure of half-integer wedge disclinations@30#
and on the hedgehog defect core@31# in nematic and mag-
netic systems. The latter predictions have been confirm
with computer simulations of lattice spin models@32#. The
topological theory of defects has been used to prove th
uniaxial nematic either melts or exhibits a complex biax
structure@33#. Sonnet, Kilian, and Hess@34# have considered
droplet and capillary geometries using an alignment ten
description.

The investigation of equilibrium topological defects
nematics has received a boost through a striking possib
to stabilize defects by imprisoning the nematic phase wit
a spherical droplet. The droplet boundary induces a n
trivial effect on the global structure within the droplet. Mor
over, it can be experimentally controlled in a variety of wa
5081 ©2000 The American Physical Society
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5082 PRE 62DZUBIELLA, SCHMIDT, AND LÖWEN
to yield different well-defined boundary conditions, name
homeotropic or tangential ones. One famous experime
system is polymer-dispersed LCs. Concerning nematic d
lets, there are various studies using the Lebwohl-Las
model @5–7#. There are investigations of the droplet sha
@35,36#, the influence of an external field@37#, chiral nematic
droplets@38#, structure factor@39#, and ray propagation@40#.
Also simulations of Gay-Berne droplets have been p
formed @41#. Other systems that exhibit topological defec
are nematic emulsions@42–44# and defect gels in cholesteri
LCs @45#. The formation of disclination lines near a fre
nematic interface was reported@46#.

In this work we are concerned with the microscopic stru
ture of topological defects in nematics. We use a model
rodlike particles with a pairwise hard core interactio
namely hard spherocylinders. It accounts for both the ori
tational degrees of freedom as well as the positional deg
of freedom of the particles constituting the nematic. Es
cially, it allows for mobility of the defect positions. Thi
system is investigated with Monte Carlo computer simu
tions. There exist successful simulations of topological l
defects using hard particles, namely integer@47# and half-
integer line defects@48#.

Here, we undertake a detailed study of the microsco
structure of the defect cores focusing on the behavior of
local nematic order and on the density field, an import
quantity that has not been studied in the literature yet. A
theoretical prediction, we find that the arising half-integ
point defects are surrounded by an oscillating density in
mogeneity. This can be verified in experiments. We also
vestigate the statistical properties of two defects interac
with each other extracting the distribution functions of t
positions of the defect cores and their orientations. These
not accessible in mean-field calculations. We emphasize
both properties, the free-standing density wave which is
to microscopiccorrelationsand the defect position distribu
tion which is due tofluctuations, cannot be accessed by
coarse-grained mean-field-type calculation.

The paper is organized as follows: In Sec. II our theor
ical model is defined, namely hard spherocylinders withi
planar spherical cavity and on the surface of a sphere.
comparison, we also propose a simplified toy model
aligned rods. Section III is devoted to the analytical to
employed, such as order parameter and density profiles.
tion IV gives details about the computer simulation tec
niques used. The results of our investigation are given
Sec. V and we finish with concluding remarks and a disc
sion of the experimental relevance of the present work
Sec. VI.

II. MODEL

A. Hard spherocylinders

We considerN identical particles with center-of-mass p
sition coordinatesr i5(r xi ,r yi) and orientationsni , where
the indexi 51, . . . ,N labels the particles. Each particle has
rodlike shape: It is composed of a cylinder of diameters and
length L2s and two hemispheres with the same diame
capping the cylinder on its flat sides. In 3D this geomet
shape is called a spherocylinder, see Fig. 1. The 2D analo
sometimes called discorectangle as it is made of a recta
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and two half disks. We assume a hard core interaction
tween any two spherocylinders that forbids particle overl
Formally, we may write

U~r i ,ni ;r j ,nj !5H ` if particles i and j overlap

0 else.
~1!

The geometric overlap criterion involves a sequence of
ementary algebraic tests. They are composed of scalar
vector products between the distance vector of both parti
and both orientation vectors. The explicit form can be fou
e.g., in Ref.@49#. The bulk system is governed by two d
mensionless parameters, namely the packing fractionh,
which is the ratio of the space filled by the particle ‘‘mat
rial’’ and the system volumeV. In two dimensions it is given
by h5(N/V)@s(L2s)1ps2/4#. The second parameter i
the anisotropyp5L/s which sets the length-to-width ratio
The bulk phase diagram in 3D was recently mapped out
computer simulation@12# and density-functional theory@13#.
The nematic phase is found to be stable for anisotropiep
.5. In 2D the phase diagram is not known completely b
there is an isotropic to nematic phase transition for infinit
thin needles@50#. The nematic phase is also present in
system of hard ellipses@51,52# verified by computer simula-
tions. In 2D the nematic-isotropic transition was investiga
using density-functional theory@53# and scaled-particle
theory@54#. There is work about equations of state@55#, and
direct correlation functions@56# within a geometrical frame-
work.

B. Planar model

To align the particles near the system boundary hom
tropically we apply a suitably chosen external potential. T
particles are confined within a spherical cavity represent
the droplet shape. The interaction of each HSC with
droplet boundary is such that the center of mass of e
particle is not allowed to leave the droplet, see Fig. 2. T
corresponding external potential is given by

Uext~r i !5H 0 if ur i u,R2L/2

` else, ~2!

whereR is the radius of the droplet and we chose the orig
of the coordinate system as the droplet center. The sys

FIG. 1. Two hard spherocylinders with position coordinatesr i

andr j , and orientationsni andnj . The width of the particles iss;
the total rod length is denoted byL.
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PRE 62 5083TOPOLOGICAL DEFECTS IN NEMATIC DROPLETS OF . . .
volume isV5pR2. This boundary condition is found to in
duce a nematic order perpendicular to the droplet bound
as the particles try to stick one of their ends to the outs
@57#. Hence the topological charge is one. In the limit,p
51, we recover the confined hard sphere system rece
investigated in 2D@58# and 3D@59–61#.

C. Spherical model

A second possibility to induce an overall topologic
charge is to confine the particles to a non-planar, cur
space, which we chose to be the surface of a sphere in th
dimensional space. The particles are forced to lie tangent
on the sphere with radiusR, see Fig. 3. Mathematically, thi
is expressed as

ur i u5R, ~3!

r i•ni50. ~4!

The director field on the surface of a sphere has to h
defects. This is known as the ‘‘impossibility of combing
hedgehog.’’ The total topological charge@27# is two. The
topological charge is a winding number that counts the nu
ber of times the nematic director turns along a closed p

FIG. 2. Homeotropic boundary conditions for the planar drop
The particle centers~points! are not allowed to cross a circle wit
diameterR2L/2 ~dashed line!. Then the shape of each particle lie
inside a circle with radiusR.

FIG. 3. Spherical system. Each particle with positionr i and
orientationni is forced to lie tangentially on the surface of a sphe
ry
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around the defect. It may have positive and negative, inte
or half-integer values, namely 0,61/2,61, . . . .

D. Aligned rods

To investigate pure positional effects we study a furth
simplified model where the orientation of each rod
uniquely determined by its position. Therefore we consid
an arbitrary unit vector fieldn(r ) describing a given nematic
order pattern. In reality, the particles fluctuate around t
mean orientation. Here, however, we neglect these fluc
tions by imposingni5n(r i). In particular, we chose the di
rector field to possess a singular defect with topologi
charget, see Fig. 4. The precise definition of this direct
field n(t)(r ) is postponed to the next section@and given
therein in Eq. ~5!#. The case of parallel aligned rods,n
5const, has been used to study phase transitions to hig
ordered liquid crystals@62#.

III. ANALYTICAL TOOLS

A. Order parameters

In order to analyze the fluctuating particle positions a
orientations, we probe against a director field possessin
topological defect with charget. It is given by

n(t)~q,r !5D= (t)~r !q, ~5!

where the rotation matrix is

D= (t)~a!5S cos~ tf! 2sin~ tf!

sin~ tf! cos~ tf!
D , ~6!

with f5arctan(ay /ax), and a5(ax ,ay) being a 2D vector.
The vectorq is the orientation of particles if one approach
the defect along thex direction.

As an order parameter, we probe the actual particle or
tationsni against the ideal ones

.

.

FIG. 4. Model of aligned rods. Each particle~discorectangles!
has an orientation according to a prescribed director field~lines!.
The position of the arising 1/2 defect is indicated by a filled circ
the orientation by an arrow.
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S(t)~c,q;r !52^@ni•n(t)~q,r i2c!#2& r21, ~7!

where the radial average is defined aŝ•••& r

5^( i 51
N d(ur i8u2r ) . . . &/^( i 51

N d(ur i8u2r )&, with r i85r i2c
and ^•••& is an ensemble average. Normalization in Eq.~7!
is such that usually 0<S(t)<1, where unity corresponds t
ideal alignment, and zero means complete dissimilarity w
the defect of charget at positionc and vectorq, Eq. ~5!. ~In
general,21<S(t),1 is possible, where negative values i
dicate an anticorrelation.!

If c andq are not dictated by general symmetry consid
ations~e.g.,c50 because of the spherical droplet shape!, we
need to determine both quantities. To that end we mea
the similarity of an actual particle configuration compared
a defect, Eq.~5!. We probe this inside a spherical regio
aroundc with radiusR* using

I (t)~c,q!5
2

~R* !2E0

R*
dr rS(t)~c,q;r !, ~8!

whereR* is a suitably chosen cutoff length. We maximiz
I (t)(c,q) with respect toc andq. The value at the maximium
is

l (t)5max
c,q

$I (t)~c,q!%, ~9!

and the argument at the maximum isq(t).
Before summarizing the quantities we compute during

simulation, let us note thatq(t) andl (t) are eigenvector and
the corresponding~largest! eigenvalue of a suitable tenso
To see this, we attribute to each particle the general ten

Qi
(t)52@D= (t)~r i2c!ni ^ D= (t)~r i2c!ni #21= , ~10!

where ^ denotes the dyadic product and1= is the identity
matrix. Summing over particles gives

Q= (t)5(
i

Qi
(t) . ~11!

Note that fort50 the usual bulk nematic order parameter
recovered.1 The order parameter profile, Eq.~7!, is then ob-
tained as

S(t)~c,q,r !5^q•Q= (t)
•q& r , ~12!

and then the relationl (t)q(t)5Q= (t)q(t) holds, if the sum over
i in Eq. ~11! is restricted to particles located inside a sphe
cal region of radiusR* aroundc.

Let us next give three combinations oft,c,q that apply to
the current model. First, we investigate the~bulk! nematic
order, t50. We resolve this as a function of the distan
from the droplet center, hencec50. The nematic director
q(0) is obtained from Eq.~9! with R* 5R. The order param-
eter, defined in Eq.~7!, then simplifies to

1The constants in Eq.~10! depend on the dimensionality of th
system and are different from 3D, where, e.g.,Q= (0)5(3/2)( ini

^ ni21= /2 holds.
h

-

re

e

r
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S(0)~r !52^~ni•q(0)!2& r21. ~13!

Second, we probe for starlike order, hencet51, c50. As
we do not expect spiral arms of the star pattern to occur,
can setq5ex , whereex is the unit vector in thex direction.
We can rewrite Eq.~7! as

S(1)~r !52^~ni• r̂ i !
2& r21, ~14!

where r̂ i5r i /ur i u.
Third, we investigatet51/2 defects. To that end, we nee

to search forc andq, as these are not dictated by the sym
metry of the droplet. Hence we numerically solve Eq.~9!
with R* 52L ~see Sec. IV B!. We obtain

S(1/2)~r !52^@ni•n(1/2)~q(1/2),r i2c(1/2)!#2& r21. ~15!

The distribution of thepositionsof the particles is ana-
lyzed conveniently using the density profiler(r ) aroundc,
which we define as

r~r !5K ~2pr !21
1

N (
i 51

N

d~ ur i2cu2r !L . ~16!

We consider two cases: the density profile around the ce
of the droplet, i.e.,c50, and around the position of a hal
integer defect,c5c1 ,c2.

It is convenient to introduce a further direction of at
51/2 defect by

d5D= (1/2)~q(1/2)!q(1/2). ~17!

The vectord is closely related toq(1/2) by a rotation opera-
tion, where the rotation angle is the angle betweenq(1/2) and
thex axis. The directiond is where the field lines are radia
see the arrow in Fig. 4.

B. Defect distributions

For a given configuration of particles the planar nema
droplet has a preferred direction given by the global nem
directorq(0). Each of the two topological defects has a po
tion ci and an orientationdi , i 51,2. These quantities can b
set in relation to each other to extract information about
average defect behavior and its fluctuations. In particular,
investigated the following probability distributions depen
ing on a single distance or angle.

Concerning single defect properties, we investigate
separation distance from the droplet center,

P~r !5~2pr !21
1

2 (
i 51,2

^d~ uci u2r !&, ~18!

and the orientation relative to the nematic director,

P~u!5
1

2 (
i 51,2

^d„arccos~di•q(0)!2u…&. ~19!

Between both defects there is a distance distribution,

P~c12!5~2pc12!
21^d~ uc12c2u2c12!&, ~20!

and an angular distribution between defect orientations,
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P~u12!5^d„arccos~d1•d2!2u12…&, ~21!

which can equivalently be defined withq1
(1/2),q2

(1/2) by using
the identity arccos(d1•d2)52 arccos(q1

(1/2)
•q2

(1/2)).

IV. COMPUTER SIMULATION

A. Monte Carlo

All our simulations were performed with the canonic
Monte Carlo technique keeping particle numberN, volume
V, and temperatureT constant; for details we refer to Re
@63#. To simulate spherocylinders with only hard intera
tions, each Monte Carlo trial is exclusively accepted wh
there is no overlap of any particles. One trial always cons
of a small variation of position and orientation of one HS

For the planar case the translation for the particlei is
constructed by adding a small random displacementDr i to
the vector r i , similarly the rotation consists of adding
small random vectorDni to the directionni with Dni•ni
50.

To achieve an isotropic trial on the surface of the sphe
the rotation matrixM= is applied simultaneously to the vec
tors r i andni . It is defined as

M= ªS 12c1a2c gs1abc 2bs1agc

2gs1bac 12c1bc a1bgc

bs1gac 2as1gbc 12c1g2c
D ~22!

with s5sinDu andc512cosDu. a,b,g are for every trial
randomly chosen Cartesian coordinates of the unit ve
specifying the rotation axis,Du is a small random angle
With this method a simultaneous translation and rotation
warranted by keeping the vectorsr i and ni normalized and
perpendicularly oriented.

The maximal variation in all cases is adjusted such t
the probability of accepting a move is about 50%. The ov
lap criteria were checked by comparing the second vi
coefficient of two- and three-dimensional HSC with simu
tion results, where the excluded volume of two HSC we
calculated. Each of the runs I–VII was performed with
3107 trials per particle. One-tenth of each run was discard
for equilibration. Especially the strongly fluctuating distan
distribution between both defects,P(c12), needs good statis
tics. All quantities were averaged over 25 partial runs, fr
which also error bars were calculated.

An overview of the simulated systems is given in Table
The systems I–VII are planar. System I is the reference.
study finite-size effects, system II has half as many partic
and system III has twice as many particles as I. To inve
gate the dependence on the thermodynamic parameters
tem IV has a lower packing fractionh, and system V has a
higher one compared to system I. The other thermodyna
parameter is the anisotropy, which is smaller for system
and higher for system VII compared to the system I. To ke
the nematic phase stable for the short rods of system VI,
packing fractionh had to be increased. The packing fracti
of the dense system V ish50.4143. The spherical system
has the same number of particlesN, packing fractionh, and
anisotropyp as the reference~I!. The radius of the sphere i
-
n
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half the radius of the planar droplet. The aligned rod mo
has the same parameters as the reference system~I!.

B. Technical issues

We discuss briefly a projection method for the spheri
problem and a search algorithm to find defect positions.
order to perform calculations for the spherical system
interesting vectors in three dimensions are projected t
two-dimensional plane. Imagine a given vectorc from the
middle of the sphere pointing to an arbitrary point of t
surface. We convert a positionr i and orientationni to the
vectorsr i

p andni
p in a plane perpendicular toc through

r i
p5r i2~c•r i !c, ~23!

ni
p5ni2~c•ni !c. ~24!

After obtaining a set$r i
p ,ni

p% of three-dimensional vector
this way, we transform them into a set of two-dimension
vectors by typical algebraic methods. As a reference the p
jection of thex unit vector of the fixed three-dimensiona
coordinate system is always the x orientation of the ‘‘new
coordinate-system in two dimensions. The results show
curvature effects are small.

To investigate the radial structure and interactions of
disclinations it is necessary to localize the centers of the
point defects. As described in Sec. IV, thel (1/2) parameter
measures the degree of order of a half-integer defect
chosen area, so the task is to find the two maxima ofl (1/2) in
the droplet. In the planar case, we do this search with
following algorithm: A circular test-probe samples the dro
let on a grid with a grid spacing of 5s. At this point all the
particles in the circle are taken to calculatel (1/2) in the de-
scribed way. After sampling the grid both maxima are sto
and for every maximum a refining Monte Carlo search
performed. The surrounding of the size of the grid spacing
randomly sampled and the probe is only moved whenl (1/2)

increases. The search is stopped when the probe does
move for 200 trials. In the spherical case the method is
same, but the grid is projected onto the sphere surface
the calculations ofl (1/2) were performed with projected two
dimensional vectors as described before.

TABLE I. Overview of the simulated parameter range: numb
of particlesN, anisotropyp, packing fractionh, scaled droplet di-
ameter 2R/L. Systems I–VII are planar; the system nam
‘‘sphere’’ corresponds to spherical geometry.

System N p h 2R/L

I 2008 21 0.3321 19.05
II 1004 21 0.3321 13.41
III 4016 21 0.3321 26.94
IV 1750 21 0.2894 19.05
V 2500 21 0.4143 19.05
VI 1855 16 0.4143 18.75
VII 3050 31 0.3321 19.35
Sphere 2008 21 0.3321 9.53
Aligned 2008 21 0.3321 19.05
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It is important to chose an adequate radiusR* for the
probe. IfR* is too large, the probe overlaps both defects.
they have opposite orientations on the average, the loc
point of the maximum deviates from the point we are int
ested in. If theR* is too small, an ill-defined position result
as fluctuations become more important. The simulation
sults show that a good choice isR* 52L. Although this defi-
nition contains some freedom, we find the defect position
be a robust quantity. A detailed discussion is given in
following section.

V. RESULTS

A. Order within the droplet

Let us discuss the order parametersS(t) as a function of
the radial distance from the center of the droplet; see Fig
S(0) is the usual bulk nematic order parameter, but radia
resolved. It reaches values of 0.6–0.75 in the middle of
droplet, r ,2L, indicating a nematic portion that breaks th
global rotational symmetry of the system. Forr .3L, S(0)

decays to values slightly larger than the isotropic value o
The decrease, however, is not due to a microscopically
tropic fluid state, as can be seen from the behavior ofS(1).
This quantity indicates globally starlike alignment of pa
ticles for r .3L. It vanishes in the nematic ‘‘street’’ in the
center of the droplet. The distance whereS(0) andS(1) inter-
sect is an estimate for the defect positions. In Fig. 5
finite-size behavior ofS(t) is plotted for particle numbersN
51004, 2008, 4016 corresponding to systems II, I, and
There is a systematic shift of the intersection point ofS(0)

andS(1) to larger values as the system grows; the numer
values arer /L52.54,2.91,3.87. However, ifr is scaled by
the droplet radiusR, a slight shift to smaller values is ob
served as the system size grows. Keeping the medium-s
system I as a reference, we have investigated the impa
changing the thermodynamic variables. For different pack
fractions,h50.2894~IV !, 0.3321~I!, 0.4143~V!, we found
that the intersection distances arer /L53.90, 2.91, 1.43. In
the bulk, upon increasing the density the nematic or
grows. Here, this happens for the star orderS(1). But this
increase happens on the cost of the nematic street~seeS(0))

FIG. 5. Nematic order parametersS(t) as a function of the radia
distancer from the droplet center, scaled by the rod lengthL. Star
orderS(1) and bulk orderS(0) is shown. System I is reference, II ha
halved, and III has a doubled particle number. See Table I fo
compilation of system parameters. Error bars are only given fo
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at smallr values. Increasingh leads to a compression of th
inhomogeneous, interesting region in the center of the dr
let. A similar effect can be observed upon changing the ot
thermodynamic variable, namely the anisotropyp. The nem-
atic street is compressed for longer rods,p531 ~VII !, r /L
51.33. Shorter rods,p516, need a higher density to form
nematic phase, so the values for systems~I!, r /L53.16, and
~VI !, r /L52.91, are similar, as both effects cancel out.

The behavior ofS(1) is similar to the findings for a three
dimensional droplet, where a quadratic behavior nearr 50
was predicted within Landau theory@31#. A simulation study
using the Lebwohl-Lasher model@32# confirmed this finding
and revealed that a ringlike structure that breaks the sphe
symmetry is present. A comparison to the results for a
capillary by Andrienko and Allen@47# seems qualitatively
possible as they find alignment of particles predominan
normal to the cylinder axis. Their findings are consiste
with the behavior ofS(1). Although our system is simpler a
it only has two spatial dimensions, we could also estab
the existence of a director field that breaks the spherical s
metry by considering the order parameterS(0).

Having demonstrated that the system exhibits a bro
rotational symmetry, we have to assure that no freezing
a smectic or even crystalline state occurs. Therefore we
radial density profilesr(r ), wherer is the distance from the
droplet center, in Fig. 6. The density shows pronounced
cillations for larger near the boundary of the system. The
become damped upon increasing the separation dist
from the droplet boundary and practically vanish after tw
rod lengths for intermediate density and four rod lengths
high density. Approaching the droplet center,r 50, the den-
sity reaches a constant value for the weakly nematic syst
I, IV, and V. For the strongly nematic systems, V with hig
density and VII with large anisotropy, a density decay at
center of the droplet occurs. This effect is not directly caus
by the boundary as the density oscillations due to pack
effects are damped. It is merely due to the topological
fects present in the system. Quantitatively, the relative
crease is@r(3L)2r(0)#/r(3L)50.11 ~V!, 0.09 ~VII !. The
finite-size corrections for systems II and III are negligible

From both, the scissorlike behavior of the nematic ord
~Fig. 5! and from the homogeneity of the density profi

a
.

FIG. 6. Radially resolved density profilesr(r ) as a function of
the distance from the droplet centerr scaled by the particle length
L. System I is reference, compared to the lower~IV ! and higher~V!
packing fractions and lower~VI ! and higher~VII ! anisotropies. The
inset shows the behavior near the origin where a density decr
for V and VII appears forr ,2L.
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away from the system wall~Fig. 6!, we conclude that the
system is in a thermodynamically stable nematic phase,
seems to contain two topological defects with charge 1/2

In a 2D bulk phase, two half-integer~1/2! defects are
more stable than a single integer~1! defect, as the free en
ergy is proportional to the square of the charge. However
the finite system of the computer simulation that is also
fected by influence from the boundaries, it could also
possible that the defect pair merge into a single one@47,34#.

Next we investigate the defect positions and their ori
tations. To illustrate both, a snapshot of a configuration
the planar system is shown in Fig. 7~I!. One can see the
coupling of the nematic order from the first layer of particl
near the wall to the inside of the droplet. The particles n
the center of the droplet are aligned along a nematic dire
~indicated by the bar outside the droplet!. The two emerging
defects are depicted by symbols. See Fig. 8 for a snapsh
the spherical system. There the total topological charge is
induced by a system boundary but by the topology of
sphere itself.

B. Defect core

The positions of the defects are defined by maxima of
l (1/2) order parameter; see Sec. III for its definition. In Fig.
l (1/2) is plotted as a function of the spatial coordinatesr x and
r y for one given configuration. There are two pronounc
maxima, indicated by bright areas, which are identified as
positions of the defect coresc1 and c2. There are severa
more local maxima appearing as gray islands. These
identified as statistical fluctuations already present in
bulk nematic phase.

A drift of the positions of a defect core was also report
in @32#. Here we follow this motion, to investigate the su
rounding of the defects. The order parameterS(1/2) is radially
resolved around the defect position in Fig. 10. It has a p
nounced maximum aroundr 51.2L. For smaller distances i
decreases rapidly due to disorder in the core region.

FIG. 7. Snapshot of a typical particle configuration for the p
nar system I. The particles are rendered dark. The two black s
bols inside the droplet indicate positions and orientations of defe
The black bar outside the droplet indicates the global nematic
rectorq(0).
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larger distances the influence from the second defect par
decreases the half-integer orderS(1/2). Increasing the overal
density and increasing the anisotropy leads to a more
nounced hump. The finite-size corrections,~II and III! and
the boundary effects~sphere! are negligible. However, the
curves show two artifacts: A rise nearr 50 and a jump at the
boundary of the search probe,r 52L. In the inset the profile
around a bulk defect is shown. It has a plateau value ins
the probe,r ,2L, and vanishes outside. If we subtract th
contribution from the pure data~I!, continuous behavior a
r 52L can be enforced.

However, the model does not account for 3D effects l
the ‘‘biaxial escape,’’ namely the sequence planar uniax

-
-

s.
i-

FIG. 8. Snapshot of a typical particle configuration for t
spherical system. The particles are rendered dark. There is on
defect on the left side and one on the right side. They point aw
from each other.

FIG. 9. Order parameterl (1/2) as a function of spatial coordi
natesr x ,r y . Bright areas correspond to large values; dark ar
correspond to small values ofl (1/2). The two bright spots near the
center are identified as topological defects, the gray islands as
defects.
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biaxial-uniaxial with increasing distance from the core cen
@34#, as the particles are only 2D rotators. Schopohl a
Sluckin @30# found an interfacelike behavior between the
ner and outer parts of a disclination line in 3D. In our syst
we do not find a sign of an interface between the isotro
core and the surrounding nematic phase. This might be
to a small interface tension and a very weak bulk nema
isotropic phase transition.

By radially resolving the probability of finding a particl
around a defect center, we end up with density profiles
picted in Fig. 11. The defect is surrounded by density os
lations with a wavelength of the particle length. The finit
size dependence is small. To estimate the influence from
system wall, one may compare with the spherical system
shows slightly weaker oscillations. This might be due to c
vature effects, as the effective packing fraction is sligh
smaller as the linear particles may escape the spherical
tem. The toy model of aligned rods also exhibits a nontriv
density profile, showing a decrease towards small dista
and oscillations compared to rotating rods. In all cases
first peak has a separation distance of half a particle len
from the defect center. The second peak appears atr 53/2L.
Again the search probe induces an artificial structure ner

FIG. 10. Order parameter profilesS(1/2) around the defect cente
as a function of the scaled distancer /L from the defect center. The
reference system I is to be compared with lower~IV ! and higher~V!
packing fractions and lower~VI ! and higher~VII ! anisotropies. The
inset showsS(1/2) for bulk defects and for the difference between
and the bulk.

FIG. 11. Density profile as a function of the distance from t
defect center. System I is reference, II has fewer particles, III
more. The spherical and aligned models are shown.
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52L. From this analysis, we can conclude that the osci
tions are due to packing effects. The density oscillations
come more pronounced at higher density, and for larger
isotropy, see Fig. 12.

C. Defect position

In the planar system, each defect is characterized by
radial distancer from the center, and the angleu between its
orientation and the global nematic directorq(0). We discuss
the probability distributions of these quantities. In Fig. 13 t
distribution for finding the defect at a distancer from the
center is shown. Generally, the distributions are very bro
This indicateslarge mobility of the defects. Changing th
thermodynamical variables has a large effect. For the str
ger nematic systems V and VII, the distribution becom
sharper with a pronounced maximum atr 51.5L. Decreasing
the anisotropy weakens the nematic phase, so system IV
a very broad distribution. The inset shows that the distrib
tion becomes broader upon increasing system size.

D. Interactions between two defects

A complete probability distribution of both positions o
the defect cores can be regarded as arising from an effec

s

FIG. 12. Same as Fig. 11, but for lower~IV ! and higher~V!
packing fractions and shorter~VI ! and longer particles~VII ! com-
pared to system I.

FIG. 13. Probability distributionP(r ) for the distance of a de-
fect from the center of the dropletr /L for lower ~IV ! and higher~V!
packing fractions and shorter~VI ! and longer particles~VII ! com-
pared to system I. The inset shows the finite-size behavior
halved~II ! and doubled~III ! particle numbers.
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interaction potentialVeff(c1 ,c2) between the defects. The la
ter play the role of quasiparticles. The effective interact
arises from averaging over the particle positions while ke
ing the defect positions constant. The effective interact
and the probability distribution are related viaP(c1 ,c2)
}exp@2bVeff(c1 ,c2)#.

Instead of the full probability distribution, we show it
dependence on the separation distance between both de
and on their relative orientation. In Fig. 14 the probabil
distribution of finding two defects at a distancec12 is shown.
It has small values for small as well as largec12. Hence at
small distances the defects repel each other. At large
tances their effective interaction is attractive. Increasing
nematic order by increasing the density~V! or rod length
~VII ! causes the average defect separation distance to sh
The rise nearr /L51 is an artifact: These are events whe
the search algorithm does not find two different defects,
merely finds the same defect two times. To avoid the pr
lem a cutoff atr 5L was introduced. The finite-size behavi
is strong; see the inset. The large system~III ! allows the
defects to move further away from each other, whereas in
smaller system~II ! they are forced to be closer togethe
However, from the simulation data, it is hard to obtain t
behavior in the limitR/L→`.

This is somewhat in contrast to the phase diagram of a
capillary @34# containing isotropic, planar-radial, and plana
polar structures, if one is willing to identify the dependen
on temperature with our athermal system. There it was fo
that the transition from the planar-polar to the planar-rad
structure happens upon increasing the temperature~and
hence decreasing the nematic order!.

The difference angleu12 between both defect orientation
in the planar system, see Fig. 15, is most likelyp, hence the
defects point on average away from each other. However
orientations are not very rigid. For the least ordered sys
IV there is still a finite probability of finding the defects wit
a relative orientation of 90°. Even for the strongly nema
systems V and VII the angular fluctuations are quite lar
The inset in Fig. 15 shows the distribution of the angleu

FIG. 14. Probability distributionP(c12) for the separation dis-
tance between both defect positions scaled by the particle lengt
lower ~IV ! and higher~V! packing fractions and shorter~VI ! and
longer spherocylinders~VII ! as compared to system I. The ins
shows the finite-size behavior for halved~II ! and doubled~III ! par-
ticle numbers compared to I.
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between the defect orientation and the global nematic di
tor. A clear maximum nearp/2 occurs. Again, the distribu
tions become sharper as density or anisotropy increase.

E. Outlook

Finally, it is worth mentioning that the spherical syste
still contains surprises. See Fig. 16 for an unexpected c
figuration, namely an assembly of three positive 1/2 defe
sitting at the corners of a triangle and a negative-1/2 defec
its center. This is remarkable, because the negative de
could annihilate with one of the outer positive defects.

In all cases, integer defects seem to dissociate into h
integer defects. The complete equilibrium defect distribut
of hard spherocylinders lying tangentially on a sphere
mains an open question.

VI. CONCLUSIONS

In conclusion, we have investigated the microsco
structure of topological defects of nematics in a spheri

for
FIG. 15. Probability distributionP(u12) for the difference angle

between both defect orientations. The reference system I is to
compared with lower~IV ! and higher~V! packing fractions, and
lower ~VI ! and higher~VII ! anisotropies. The inset shows the di
tribution P(u) of the difference angle between the direction of o
of the defects and the global nematic director for the same par
eters.

FIG. 16. Triangular configuration of three positive defec
around a spontaneously formed negatively charged defect~central
dot!.
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droplet with the appropriate homeotropic boundary and
particles lying on the surface of a sphere. We have used
spherocylinders as a model system for a lyotropic nem
liquid crystal. This system allows us to study the statisti
behavior of the microscopic rotational and positional degr
of freedom. For this system we find half-integer topologic
point defects in two dimensions to be stable. The defect c
has a radius of the order of one particle length. As an imp
tant observation, the defect generates a free-standing de
oscillation. It possesses a wavelength of one particle len
Considering the defects as fluctuating quasiparticles we h
presented results for their effective interaction. The mic
scopic structure revealed by radially resolving density a
order parameter profiles around the defect position is ide
cal for the planar and the spherical system.

An experimental investigation using anisotropic colloid
particles@64,65# like tobacco mosaic viruses or carbon nan
tubes is highly desirable to test our theoretical predictio
Then larger accessible system sizes can be exploited. Als
interest is the long-time dynamical behavior of the motion
topological defects. The advantage of colloidal systems o
e
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molecular liquid crystals is the larger length scale that
ables real-space techniques like digital video-microscopy
be used.

From a more theoretical point of view it would be inte
esting to describe the microstructure of topological defe
within the framework of density-functional theory. Usin
phenomenological Ginzburg-Landau models, one could t
the elastic constants of the HSC model as an input, and c
calculate the defect positions and check against our sim
tions.

Finally we note that we currently investigate the thre
dimensional droplets that are filled with spherocylinders.
this case more involved questions appear, as both point
line defects may appear.
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@14# H. Graf, H. Löwen, and M. Schmidt, Prog. Colloid Polym. Sc

107, 177 ~1997!.
@15# Z. Bradac, S. Kralj, and S. Zumer, Phys. Rev. E58, 7447

~1998!.
@16# A. Borstnik and S. Zumer, Phys. Rev. E56, 3021~1997!.
@17# T. Gruhn and M. Schoen, Phys. Rev. E55, 2861~1997!.
@18# R. Sear, Phys. Rev. E57, 1983~1998!.
@19# P. C. Schuddeboom and B. Je´rôme, Phys. Rev. E56, 4294
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