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We construct a variational theory for the inertial dynamics of classical many-body systems out of equi-
librium. The governing (power rate) functional depends on three time- and space-dependent one-body
distributions, namely, the density, the particle current, and the time derivative of the particle current.
The functional is minimized by the true time derivative of the current. Together with the continuity
equation, the corresponding Euler-Lagrange equation uniquely determines the time evolution of the
system. An adiabatic approximation introduces both the free energy functional and the Brownian free
power functional, as is relevant for liquids governed by molecular dynamics at constant tempera-
ture. The forces beyond the Brownian power functional are generated from a superpower (above the
overdamped Brownian) functional. Published by AIP Publishing. https://doi.org/10.1063/1.5008608

I. INTRODUCTION

In two remarkable papers, Archer1,2 formulated a micro-
scopic approach for the description of the dynamics of atomic
liquids or more generally: classical many-body systems, which
are governed by Newtonian inertial dynamics. Systems that are
appropriately described by his theory include dense atomic
and molecular liquids. The approach is based on an equation
of motion for the microscopic position- and time-dependent
one-body density profile ρ(r, t), resolved on the particle time
and length scale. The theory is based on arguments that are
similar to those used in order to derive dynamical density func-
tional theory (DDFT) for overdamped Brownian dynamics.3–5

DDFT is a highly successful approach, which uses concepts
from the exact formulation of equilibrium statistical mechan-
ics via (equilibrium) density functional theory (DFT).3,6–8

In equally remarkable papers, Marconi, Tarazona, and Mel-
chionna9–13 have developed again a microscopic approach that
goes beyond the overdamped region of DDFT.

DFT for classical fluids and solids is based on the exact
variational principle δΩ[ρ]/δρ(r) = 0, where ρ(r) is the equi-
librium one-body density and Ω[ρ] is the grand potential
functional.3,8 The variational principal states thatΩ[ρ] is min-
imized by the true equilibrium density distribution. Here an
arbitrary position-dependent external potential V ext(r) can act
on the system and, in general, will generate an inhomogeneous
density distribution, ρ(r) , const. DFT addresses situations
where a system is in equilibrium at constant temperature T
and chemical potential µ. However, proper canonical informa-
tion, at fixed particle number, can be obtained from DFT14–16

and used in a dynamical, particle-conserving adiabatic
theory.17

The DDFT for overdamped Brownian systems3–5

describes the dynamics on the level of ρ(r, t). The effect of the
internal interactions is represented by a one-body force field,
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�∇δF[ρ]/δρ(r, t), where F[ρ] is the intrinsic Helmholtz free
energy functional. If the system is out of equilibrium, e.g., via
the action of a dynamically varying external potential V ext(r, t),
then a nonvanishing one-body particle current distribution
J(r, t) develops. However, DDFT constitutes an approxima-
tion that only includes internal forces that originate from the
free energy functional F[ρ]. Here, an adiabatic reference state
is defined via the condition that its (equilibrium) density dis-
tribution is the same as that of the nonequilibrium system at a
specific time. The difference between the full forces that act
in nonequilibrium and the adiabatic forces constitute supera-
diabatic (over adiabatic) forces. Through explicit Brownian
dynamics simulations, it was shown that the superadiabatic
forces can be highly nontrivial:18,19 they can be of a similar
magnitude as the adiabatic forces and of the same or of the
opposite sign.

Power functional theory (PFT)20 goes beyond DDFT in
that it provides a formally exact variational approach that
derives the exact overdamped Brownian dynamics from an
extremal principle of a power (energy per time) functional. The
superadiabatic forces are obtained from an excess (over ideal
gas and superadiabatic) “free” power functional Pexc

t [ρ, J].
Here the functional depends nonlocally in space and in time on
the density and the current, i.e., memory effects are accounted
for. The framework has been used in a number of ways, such
as to derive time-dependent nonequilibrium Ornstein-Zernike
relations,21 to obtain the nonequilibrium dynamics via formal
functional integration,22 and to express the dynamic test parti-
cle limit for the dynamic two-body liquid structure (van Hove
function)23,24 in an exact way.25 Recent applications include
the treatment of active Brownian particles.26

PFT was generalized to (nonrelativistic) quantum many-
body systems,27 as described by the Schrödinger equation.
Such systems are conventionally treated using time-dependent
quantum DFT.28,29 The quantum PFT is fundamentally differ-
ent from this approach, as it is based on an extremal princi-
ple for the time derivative of the current distribution, J̇(r, t).
Using J̇ as the fundamental variational variable, instead of J
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as in the over-damped (classical) case, permits to implement
the inertial effects that are present in the quantum dynam-
ics. The Schrödinger equation and the Smoluchowski (i.e.,
Fokker-Planck) equation for overdamped Brownian classical
motion share many structural features, such as being both first
order in time. However, the fact that the quantum mechanical
wave function is complex-valued, as opposed to the real-valued
probability distribution of the classical case, changes the nature
of the motion from driven-diffusive in the classical case to
inertial in the quantum case, where, e.g., waves can propagate
without driving. While the interference phenomena of quan-
tum mechanical motion are absent in the classical Newtonian
dynamics, the effect of inertia are equally important in both
cases. Hence one would expect that the inertial classical case
also requires formulating the extremal principle for J̇ rather
than for J. The differences of both types of dynamics should
however appear in the structure of the resulting equations of
motion.

In the present paper, we derive such a variational theory for
classical Newtonian systems. Our starting point is the (many-
body) extremal principle due to Gauss, Appell, and Gibbs.30

The presentation follows closely that of the quantum case.27

We show how overdamped Brownian dynamics can be used
as a reference for the present inertial systems. This strategy
could be useful in situations where a global temperature is
meaningful.

This paper is organized as follows. Our starting point is
many-body Hamiltonians of the form described in Sec. II A.
We formulate the dynamics of the relevant one-body dis-
tribution functions in Sec. II B. The one-body variational
theory, based on the power rate functional, is presented in
Sec. II C. For effectively isothermal situations, we describe in
Sec. II D, how a Brownian reference system can be system-
atically incorporated via the power functional framework for
overdamped dynamics. The additional forces, due to inertial
effects, are then derived from a superpower (above Brownian
power) functional.

II. VARIATIONAL THEORY
A. Many-body dynamics

We consider N classical point particles, with position
coordinates rN ≡ {r1. . .rN}, and a many-body Hamiltonian
of the form

H =
∑

i

p2
i

2m
+ u(rN ) +

∑
i

vext(ri, t), (1)

where the sums run over all N particles, u(rN ) is the (intrinsic)
interparticle interaction potential and vext(r, t) is a position-
and time-dependent external one-body potential. The kine-
matic momentum of particle i = 1. . .N is given by

pi = πi − qA(ri, t), (2)

where πi is the canonical momentum of particle i, q is the
electrical particle charge, and A(r, t) is the position- and time-
dependent magnetic vector potential. Phase space is spanned
by the set {rN , πN}, where πN = {π1, . . ., πN}.

Newton’s equations of motion are

dri

dt
=

pi

m
, (3)

dpi

dt
= f i, (4)

where f i is the force acting on particle i, given as a phase space
function,

f i = −∇iu − ∇iv
ext
i − qȦi +

q
m

pi × Bi, (5)

where vext
i = vext(ri, t) and the magnetic field acting on par-

ticle i is Bi ≡ B(ri, t), obtained from the vector potential
via B(r, t) = ∇ × A(r, t); furthermore Ȧi ≡ ∂A(ri, t)/∂t.
Equation (5) represents the sum of all forces that act on par-
ticle i, with contributions due to the interparticle interaction
potential, the external potentials, and the Lorentz force. Note
that −qȦ(r, t) constitutes a non-conservative external force
field.

The time evolution of the probability distribution in
phase space, Φ(rN , πN , t), is then governed by the Liouville
equation,

∂Φ(rN , πN , t)
∂t

= −
∑

i

(pi

m
·
∂

∂ri
+ f i ·

∂

∂πi

)
Φ(rN , πN , t). (6)

We next construct a description on the level of space- and
time-dependent one-body fields.

B. One-body distribution functions

Consider first the density “operator” ρ̂i(r, t) = δ(r − ri)
of particle i, where δ(·) indicates the three-dimensional Dirac
distribution. Here the term operator (and the caret symbol)
indicates particular r-dependent phase space functions that
serve the purpose of building averages. The equation of motion
for ρ̂i(r, t) is of continuity form,

d ρ̂i(r, t)
dt

= −∇ · Ĵi(r, t), (7)

where ∇ indicates the derivative with respect to r, and the
current operator of particle i is given by

Ĵi(r, t) = δ(r − ri)
pi

m
, (8)

where both ri and pi are evaluated at time t. Differentiating
(8) in time yields, upon using (4),

m
dĴi(r, t)

dt
= δ(r − ri)f i + ∇ · τ̂i(r, t), (9)

where f i is given by (5) and the one-body momentum current
(or microscopic kinematic stress tensor) of particle i is defined
as

τ̂i(r, t) = −
pipi

m
δ(r − ri), (10)

where the pair of momentum vectors on the right-hand side
forms a dyadic product. The second term on the right-hand
side of (9) describes the transport effects that are due to the
one-body description; note that transport effects are absent in
the motion on the level of individual particles, as described by
(4) and (5).
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We build expectation values via the standard procedure,
e.g., for the particle-labeled density operator ρ̂i(r, t), the
corresponding average is

ρ(r, t) =

〈∑
i

ρ̂i(r, t)

〉
≡

∫
drN dπN

Φ(rN , πN , t)
∑

i

ρ̂i(r, t),

(11)
where Φ(rN , πN , t) satisfies (6) and is normalized at all times,
∫ drN dπNΦ(rN ,πN , t) = 1. Corresponding average expressions
for the one-body current J(r, t) and momentum current tensor
distribution τ(r, t) are obtained by using Ĵi(r, t) and τ̂i(r, t),
respectively, instead of ρ̂i(r, t) in (11).

Building the expectation value of (7) and integrating in
time yields

ρ(r, t) = ρ(r, t0) −
∫ t

t0

dt ′∇ · J(r, t ′), (12)

J(r, t) = J(r, t0) +
∫ t

t0

dt ′J̇(r, t ′), (13)

where t0 is an initial time, at which the state of the system is
assumed to be known. Eqs. (12) and (13) allow one to deter-
mine ρ(r, t) and J(r, t), provided that the time derivative of
the current, J̇(r, t), is known. One way of obtaining J̇(r, t) is to
build the expectation value of (9) and summing over i, which
yields

mJ̇(r, t) = f int(r, t) −
(
qȦ(r, t) + ∇vext(r, t)

)
ρ(r, t)

+ qJ(r, t) × B(r, t) + ∇ · τ(r, t), (14)

where the interparticle interactions generate the intrinsic one-
body force density field

f int(r, t) = −

〈∑
i

δ(r − ri)∇iu

〉
. (15)

The four additive contributions on the right-hand side of Eq.
(14) have a clear interpretation: The first term is due to inter-
particle interactions, the second and the third terms represent
the external force acting on the density distribution, and the
fourth term constitutes a transport contribution.

C. Power rate functional for Newtonian dynamics

In the following, we construct an alternative to (14) and
(15), by expressing the physical dynamics via a variational
approach. We start on the many-body level and introduce a set
of (real-valued) many-body acceleration fields on phase space,
aN ≡ {a1(rN , πN , t). . .aN (rN , πN , t)}, which acts as varia-
tional variables. In the spirit of Gauss’ principle of least con-
straint, as formalized independently by Appell and Gibbs,30

we define an instantaneous functional of the acceleration fields
as

Gt =

∫
drN dπN

∑
i

(f i − mai)2

2m
Φ −

∫
dr

m
2〈 ρ̂〉

〈dĴ
dt

〉2
, (16)

where ρ̂(r, t) =
∑

i ρ̂i(r, t), the total time derivative of Ĵ(r, t) is
given via (9) summed over all i and the probability distribution
Φ(rN , πN , t) is evaluated at time t.

Minimizing (16) with respect to aN at fixed time t implies
that at the minimum

δGt

δai(rN , πN , t)
= 0, (17)

for all i = 1. . .N, and that the trial fields satisfy

mai(rN , πN , t) = f i(rN , πN , t) (18)

at time t. The equality in (17) and (18) is attained for the specific
aN at the minimum. Correspondingly, pN and rN , and hence
τ̂N ≡ τ̂1 . . . τ̂N via (10), are then determined by integrating
(3) and (4).

As a further central property, Gt acts as a generator for the
one-body field of interest, via functional differentiation,

δGt

δqȦ(r, t)
= J̇(r, t). (19)

In order to connect the many-body description with the
one-body level, we introduce a constraint on the acceleration
fields aN via imposing that

J̇(r, t) =

〈∑
i

(
aiδ(r − ri) +

∇ · τ̂i(r, t)
m

)〉
, (20)

where J̇(r, t) is regarded as a prescribed “target” one-body
function. Hence in general, there will be many choices of
aN that are compatible with a given J̇(r, t); we indicate this
relationship (20) by aN → J̇.

Performing a constrained search31,32 for the minimum,

Gt[ρ, J, J̇] = min
aN→ρ,J,J̇

Gt , (21)

establishes Gt as a functional of the three one-body fields
ρ(r, t), J(r, t), and J̇(r, t). If J(r, t) and ρ(r, t) have those val-
ues that correspond to the physical dynamics, then Gt[ρ, J, J̇]
is minimized by the true J̇(r, t) and hence possesses vanishing
(functional) derivative,

δGt[ρ, J, J̇]

δJ̇(r, t)

�����ρ,J
= 0. (22)

We proceed by splitting the total power rate (21) into
intrinsic and external contributions,

Gt[ρ, J, J̇] = Gint
t [ρ, J, J̇] −

∫
dr J̇(r, t)

·

(
qJ(r, t) × B(r, t)

ρ(r, t)
− qȦ(r, t) − ∇vext(r, t)

)
,

(23)

where the intrinsic power rate functional Gint
t [ρ, J, J̇] is inde-

pendent of the external fields. Due to (19), the splitting (23)
constitutes a Legendre transform from Gt to Gint

t . Inserting
(23) into the one-body variational Eq. (22) yields an equality
of (negative) internal and external contributions

δGint
t [ρ, J, J̇]

δJ̇(r, t)
=

qJ(r, t) × B(r, t)
ρ(r, t)

− qȦ(r, t) − ∇vext(r, t),

(24)
where the left-hand side contains the interparticle interactions,
as well as acceleration and transport effects. The right-hand
side represents the sum of all external forces acting on the
system.
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We further decompose the intrinsic power rate functional
Gint

t [ρ, J, J̇] into ideal (i.e., noninteracting) and excess (above
ideal) contributions according to

Gint
t [ρ, J, J̇] = Gid

t [ρ, J, J̇] + Gexc
t [ρ, J, J̇], (25)

where the intrinsic contribution for ideal motion is

Gid
t [ρ, J, J̇] =

∫
dr

J̇(r, t)
ρ(r, t)

·

(
mJ̇(r, t)

2
− ∇ · τid(r, t)

)
, (26)

with the ideal momentum current being a one-body field that
we assume to have the factorized dyadic form

τid(r, t) = −m
J(r, t)J(r, t)

ρ(r, t)
. (27)

The excess contribution Gexc
t [ρ, J, J̇] in (25) contains both the

effects of the interparticle interactions u(rN ) and the effects
beyond the factorized form (27) of the ideal motion. Inserting
(25) and (26) into (24) yields an exact relation for the time
derivative of the current,

mJ̇(r, t) = −ρ(r, t)
δGexc

t [ρ, J, J̇]

δJ̇(r, t)
+ ∇ · τid(r, t)

+ qJ(r, t) × B(r, t) − ρ(r, t)(qȦ(r, t) + ∇vext(r, t)),
(28)

which together with the continuity equations (12) and (13)
forms a closed set of equations of motion for the one-body
fields. Note that the splittings (23) and (25) define Gint

t [ρ, J, J̇]
and Gexc

t [ρ, J, J̇], respectively. Hence these relations do not
constitute assumptions. The dynamical problem is now encap-
sulated in the complexity of the dependence of Gexc

t [ρ, J, J̇]
on its arguments. Comparing Eqs. (14) and (28) yields the
identification

δGexc
t [ρ, J, J̇]

δJ̇(r, t)
=

f int(r, t) + ∇ ·
(
τ(r, t) − τid(r, t)

)
ρ(r, t)

, (29)

where the functional derivative is evaluated at the minimum
of the functional, i.e., for the true value of J̇(r, t).

The (approximate) description of the effects of inter-
particle interactions can now be formulated using appro-
priate model forms for the excess power rate functional
Gexc

t [ρ, J, J̇].

D. Brownian reference system

We next use an overdamped Brownian reference system.
This could be useful in cases where molecular chaos has estab-
lished an effective temperature T. Using a reference system
is a well-established strategy for systematically construct-
ing approximations. Recall that in the case of overdamped
Brownian motion, the “adiabatic state” is used as a refer-
ence and treated via the corresponding equilibrium free energy
functional, F[ρ]. Within the PFT for Brownian overdamped
motion, the total time derivative Ḟ[ρ] forms a (an additive)
contribution to the power functional. In particular, the time
derivative of the excess free energy functional, Ḟexc[ρ], rep-
resents the adiabatic effects of the internal interactions on the
motion of the Brownian system. The nonequilibrium forces
that act in addition to the adiabatic forces (“superadiabatic
forces”) are obtained from the superadiabatic excess power

functional Pexc
t [ρ, J]. Neglecting these superadiabatic forces

leads to the DDFT equation of motion. Here we perform a sim-
ilar strategy, but use not only the adiabatic state as a reference
for the dynamic system, but rather use an overdamped Brow-
nian system as a reference for the Newtonian system. In order
to facilitate this concept on the technical level, it is straight-
forward to convert the excess power functional contributions
to power rates via a total time derivative.

Hence we split the interaction contribution to the power
rate functional according to

Gexc
t [ρ, J, J̇] = F̈exc[ρ] + Ṗexc

t [ρ, J] + Gspo
t [ρ, J, J̇]. (30)

Here Fexc[ρ] is the excess (over ideal gas) intrinsic free energy
density functional of equilibrium DFT, Pexc

t [ρ, J] is the supera-
diabatic (excess) power functional of Ref. 20 that determines
the dynamics of overdamped Brownian systems, and Gspo

t is
the remaining (“superpower” or “superoverdamped”) contri-
bution, which is hence defined by (30). The overdots indicate
total time derivatives.

We recall that the time derivative of the excess free energy
functional is20

Ḟexc[ρ] =
∫

drJ ·
δF[ρ]
δρ

, (31)

where we use the short-hand notation δF[ρ]/δρ
= δF[ρ]/δρ(r)|ρ(r)=ρ(r ,t ). Equation (31) can be obtained in
a straightforward way by using the functional chain rule,
then replacing, via the continuity equation, the occurring time
derivative ρ̇(r, t) by the negative divergence of the current, and
subsequently performing a spatial integration by parts. Note
that (31) is an instantaneous (Markovian) expression, as one
would expect from using the adiabatic state, which contains
no detailed (memory) dynamic information.

Again via the functional chain rule and spatial integration
by parts, the time derivatives can be carried out and one obtains
the results

F̈exc[ρ] =
∫

drJ̇ · ∇
δFexc[ρ]
δρ

+
∫

drdr′J′J : ∇∇′
δ2Fexc[ρ]
δρ′δρ

, (32)

Ṗexc
t [ρ, J] =

∫
drJ · ∇

δPexc
t [ρ, J]

δρ
+
∫

drJ̇ ·
δPexc

t [ρ, J]

δJ
,

(33)

where the arguments r, t have been left away for clarity, the
prime indicates dependence on r′, t, and the colon indicates
a double tensor contraction. The forces can now be obtained
from functional derivatives as

−
δF̈exc[ρ]

δJ̇(r, t)
= −∇

δFexc[ρ]
δρ(r, t)

= −
δḞexc[ρ]
δJ(r, t)

, (34)

−
δṖexc

t [ρ, J]

δJ̇(r, t)
= −

δPexc
t [ρ, J]

δJ(r, t)
, (35)

where the last expression in (34) is that used in the Brownian
power functional, and the equality between the very left- and
right-hand side of (34) already holds on general grounds.

We hence obtain the splitting of the excess force into adi-
abatic, overdamped Brownian, and superpower contributions
as
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−
δGexc

t [ρ, J, J̇]

δJ̇(r, t)
= −

δ

δJ̇(r, t)
(F̈exc + Ṗexc

t + Gspo
t )

= −∇
Fexc[ρ]
δρ(r, t)

−
δPexc

t [ρ, J]

δJ(r, t)
−
δGspo

t [ρ, J, J̇]

δJ̇(r, t)
,

(36)

which can be input into (28).

III. CONCLUSIONS

In conclusion, we have presented a variational theory for
the many-body dynamics of classical systems with inertial
Newtonian dynamics. The theory complements the previously
formulated cases of overdamped Browian20 and nonrelativis-
tic quantum systems.27 The central equation of motion is of
Euler-Lagrange form and contains the time derivative of the
microscopic time-dependent current distribution, J̇(r, t), as the
central unknown field. Integration in time then yields both the
current and the density distributions.

The presented theory is structurally very close to that for
the quantum case. In particular, in the limit ~→ 0, the classi-
cal case is recovered. While this might be expected on general
grounds (and is an indication for the self-consistency of the
entire approach), on a technical level, it is nothing but surpris-
ing, given the difference in actual calculations, i.e., the bracket
structure of the quantum mechanical expectation values. Note
that the factorization (27) constitutes an approximation in the
classical (statistical) problem.

Generalizing the nonequilibrium Ornstein-Zernike equa-
tion for overdamped motion21 to the Newtonian case consti-
tutes an exciting and challenging prospect for future work,
as does developing concrete approximations. In particular,
addressing viscosity and the presence of memory effects con-
stitutes an important research task33 for the future. Further-
more, making connections to the very recently developed
approximation for the Brownian superadiabatic functional34

should be very worthwhile. It also remains to be seen whether
neglecting all excess contributions except for the adiabatic
forces (as is done in DDFT) could be a useful approximation
under certain conditions and whether in this case, connec-
tions to established models, such as, e.g., model H,35 can be
made.
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