
This journal is©The Royal Society of Chemistry 2018 Soft Matter

Cite this:DOI: 10.1039/c7sm02515g

Active ideal sedimentation: exact two-dimensional
steady states

Sophie Hermann and Matthias Schmidt

We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both

translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding

Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is

given as a series, where each term is a product of an orientation-dependent Mathieu function and a

height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition.

Numerical evaluation of the suitably truncated analytical solution shows the formation of two different

spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and

in their variation of the orientation-averaged density with height.

I. Introduction

Active Brownian particles show uncommon behaviour in their
collective motion, aggregation, and motility-induced phase
separation.1 Due to the self-propulsion, such ‘‘swimmers’’ form
prototypical nonequilibrium systems. In experimental setups,
self-propelled particles are realized e.g. in the form of bacteria
(such as Escherichia coli)2 or Janus colloids dispersed in a
suitable solvent.3 Because of the diverse range of problems
and applications, the topic of active matter has received much
current interest.1,2,4 In particular aggregation at confining
walls and the influence of gravity were investigated by theory,
simulation and experiment, as we summarize in the following.

Palacci et al.3 made the first step to experimentally determine
nonequilibrium properties of swimmers in dilute suspensions.
The authors developed a special experimental setup, which
allowed them to adjust and stabilize the H2O2-concentration in
the solvent and thereby regulate the swim velocity of the Janus
particles. The mean square displacement of individual colloidal
spheres, which undergo translational and rotational diffusion,
was measured. The experimental results were found to be in
accordance with the theoretical prediction of Howse et al.,5

obtained in the Stokes regime. In the sedimentation experiment
an exponential decay of the density distribution with increasing
height was found, with a quadratically in swim speed increasing
sedimentation length (or effective temperature). Under gravity
the authors also observed an accumulation of particles at the
bottom of the sample, which could theoretically be reproduced

by Enculescu and Stark6 using classical perturbation theory and
numerical simulations.

The three-dimensional numerical results of ref. 6, obtained
upon neglecting hydrodynamic and interparticle interactions
due to low swimmer concentration, are in accordance with
the observations of Palacci et al.3 Enculescu and Stark also
discovered a polar order of the particles, at the bottom of
the system directed towards the lower wall, and at the upper
region of the system aligned against the orientation of gravity.
According to their results, such orientational order should
increase and become detectable in experiments, when either
the particle radius or the effective gravitational strength is
increased. The results were based on corresponding Langevin
and Fokker–Planck equations for a dilute suspension, where
particle interactions can be neglected.

An analytical solution of the three-dimensional Fokker–Planck
equation without gravity in the special case of thin films, and
therefore neglecting rotational diffusion, was given by Elgeti and
Gompper.7 Their solution shows good agreement with their
computer simulations obtained via multi-particle collision
dynamic of colloids between two near walls. The authors also
investigated the limit of small Peclet numbers by expanding
the density distribution in spherical harmonics. In both cases,
and in their simulations, particle adhesion at boundaries was
observed, numerically as an exponential decay for small Peclet
numbers and as a power-law decay for larger Peclet numbers,
analytically as a linear combination of several exponentials.
This aggregation could be explained by the orientation of
active particles at walls, here described in second order of
Peclet number. As it is a result of the Brownian dynamics
of spheres, the authors concluded hydrodynamic interactions
would promote the effect of accumulation, since they impede
rotational diffusion.
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A further analytical solution for a two-dimensional system of
active ideal-gas-like Brownian particles was given by Lee,8 who
considered an infinite channel without gravity, no interactions
except with walls and negligible translational diffusion. In this
case the Fokker–Planck equation separates into an angle- and a
height-dependent part. The angle-dependent part is solved by
Mathieu functions. The height-dependent part is solved by an
exponential. The full solution is then expressed as a series,
where each term is a product of a Mathieu function and an
exponential. Although Lee discussed the boundary conditions,
the constant prefactors have been left undetermined. Due to
the further simplification that particles can only move in six
different spatial directions in a discretized model, the ratio of
particle number at the wall to the number in the channel
becomes calculable and the result depends on the strength of
rotational diffusion. Space between upper and lower boundary
was divided into two regions, each with independent rotational
diffusion coefficients, and several cases of two equal as well as
of two different coefficients were examined.

Solon et al.9 compared the behaviour of active Brownian
colloids with that of run-and-tumble particles. Both particle
types differ in rotation: the former have slow angular diffusion,
whereas the latter show discrete jumps in their orientation.
Using fluctuating hydrodynamics the authors investigated the
influence of rotation on motility-induced phase separation.
Furthermore they considered ideal gas-like particles in external
fields such as gravity and harmonic traps. Apart from escaping
from traps, qualitatively similar results were generated for both
models. Calculations of steady state of two-dimensional Brownian
swimmers during sedimentation seem to be equivalent to Lee,8

except for an additional gravitational term. Neglecting transla-
tional diffusion, the Fokker–Planck equation still separates and
analytic solution leads to a sum of products of even Mathieu
functions and exponentials. However these authors only took one
special summand into account.

One possibility to include boundary conditions was shown
by Wagner et al.10 for two-dimensional Brownian swimmers in
a channel, in a constant flux and in a gravitational field. Based on
the separation of the Fokker–Planck equation without transla-
tional diffusion, a general density distribution is constructed as a
linear combination in accordance with Lee8 and Solon et al.9 Even
an orientational order of the colloids in the channel as described
by Enculescu and Stark6 was found. The authors constructed a
computational technique to approximate unknown parameters
by an iterative fit. The general technique can be transferred to
find the expansion factors of further systems. Application to a
sedimentation system reproduces previous results in density
distribution away from the bottom (e.g. as reported in ref. 9)
and gives an approximate solution near the wall.

In this paper we investigate two-dimensional active Brownian
particles sedimenting in a gravitational field. The interparticle
interactions are neglected. The system is bound by a lower hard
wall. We present the exact analytical solution of the steady state
Smoluchowski eqn (4) including translational and rotational
diffusion. This case goes beyond the above discussed literature,
where at least one diffusion term was neglected in deriving

analytic solutions. We formulate the considered problem in
Section IIA and solve it in Section IIB. Our solution (16) is a
linear combination, where each term is a product of a height-
dependent exponential and an orientation-dependent Mathieu
function. In either limit of passive particles and of negligible
translation diffusion, known relations are reproduced, such as
e.g. the barometric law, see Section IIC, where we also derive an
asymptotic expansion for the case of small values of the ratio of
swim persistence length and gravitational length. We present
numerical results in Section IID. Finally, conclusions and an
outlook are given in Section III.

II. Active ideal sedimentation
A. Formulation of the problem

Consider a suspension of active Brownian swimmers with buoyant
mass m sedimenting with velocity vg = mg/g due to a linear
gravitational field �gez, where g is the gravitational acceleration,
g is the translational friction constant, and ez is the unit vector
in the (upward) vertical direction. The particle orientation is
described by a unit vector x, which indicates the direction of
self-propelled motion with constant swim velocity s. This direc-
tion changes by continuous rotational diffusion with diffusion
constant Drot = kBT/grot, where T indicates the temperature, kB the
Boltzmann constant and grot the rotational friction constant.
Analogously, the translational diffusion coefficient is defined
as D = kBT/g. Due to the small density of colloids in certain
experimental solutions, we neglect interactions between the particles
in the following, in line with the work by Palacci et al.,3 and by
Enculescu and Stark.6

The continuity equation11 relates the one-body density r, the
translational current J and the rotational current Jo via

@

@t
rðr;x; tÞ ¼ �r � Jðr;x; tÞ � rx � Jxðr;x; tÞ; (1)

where t indicates time, r indicates position, r indicates the
spatial (r) and rx the orientational (x) derivative. When the
combination of swimming and sedimentation is modelled as
an external force, gsx � mgez, then in the overdamped limit the
translational and rotational currents are, respectively, given by

J(r,x,t) = �Drr(r,x,t) + (sx � vgez)r(r,x,t), (2)

Jx(r,x,t) = �Drotrxr(r,x,t). (3)

For steady states the temporal change in the one-particle
density distribution vanishes, qr/qt = 0. Assuming further
translational invariance perpendicular to gravity simplifies
the dependence of the one-body density to r(r,x) = r(z,x). In
a two-dimensional system, the orientation can be described by
a single angle y, such that x(y) = (sin y,cos y), where y = 0
characterises upward facing particles (in positive z-direction)
and y = �p indicates downward facing particles. In combination
with the uniform, infinite x-extension of the system, this causes
an even (in y) density distribution r(z,y) = r(z,�y). Furthermore
the orientational Laplace operator simplifies to a second partial
derivative: (rx)2 = q2/qy2.
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Applying these properties and inserting the currents (2) and
(3) in the continuity eqn (1) leads to a steady-state Smoluchowski
equation of the form:6

D
@2

@z2
rðz; yÞ � s cos y� vg

� � @
@z

rðz; yÞ þDrot @
2

@y2
rðz; yÞ ¼ 0: (4)

Due to the 2p-periodicity of the variable y, the one-body
density is also periodic, r(z,y) = r(z,y� 2p). As a lower boundary
of the system we consider a hard wall at z = 0. Therefore there is
no vertical flux at this height,4,12

Jzðz ¼ 0; yÞ ¼ �D @

@z
rðz; yÞ

����
z¼0
þ s cos y� vg
� �

rðz ¼ 0; yÞ ¼ 0:

(5)

Furthermore the particle density vanishes for negative values
of z,

r(z,y) = 0 8z o 0. (6)

With the given boundary and the downward direction of
gravity, the density profile also vanishes far away from the wall,

lim
z!1

rðz; yÞ ¼ 0: (7)

B. Solution of the Smoluchowski equation

In order to motivate our analytic solution of the Smoluchowski
eqn (4), we first consider three selected special cases.

(i) Passively sedimenting particles have no swim velocity,
s = 0, and no preferred orientation, hence r(z,x) = r(z). Their
steady state density distribution is described by the celebrated
barometric law

r(z) p exp(�vgz/D) = exp(�leqz), (8)

which can be straightforwardly obtained by solving eqn (4) for
the case of s = 0. Here the gravitational length in equilibrium is

leq
�1 = D/vg = kBT/(mg). (9)

(ii) For active colloids the solution of the Smoluchowski
eqn (4) with negligible translational diffusion, D = 0, can be
separated into a product of an angle- and a height-dependent
part r(z,y) p f (y)p(z).8–10 It turns out that p(z) p exp(�lz), i.e.
the result is again exponentially decaying with l�1 representing
the gravitational length.8–10 In this case the constant l is obtained
by requiring a 2p-periodic dependence on y.

(iii) In sedimentation experiments of active colloids one
finds an exponentially decaying particle density r(z) along the
vertical axis: in three dimensions Palacci et al.3 found an
increasing gravitational length with increasing swim velocity.
Ginot et al.13 observed the exponential decay in a two-
dimensional, dilute suspension of Janus particles on a slightly
tilted plane.

Inspired by these special cases and experimental observa-
tions, one might expect the same z-dependence in the most
general case of (4), despite the fact that a separation of variables
is no longer possible. Our chosen ansatz is therefore

r(z,y) p f (y,l)exp(�lz), (10)

where l is assumed to be constant and both f and l are yet to be
determined. Insertion of the ansatz into (4) leads to a second
order linear differential equation for f, which can be reordered
as a Mathieu equation14

@2

@Z2
f ðl; ZÞ þ ðaðlÞ � 2qðlÞ cosð2ZÞÞf ðl; ZÞ ¼ 0: (11)

Here the angular variable y is rescaled as

Z = y/2, (12)

and a and q are independent of Z and defined as

a(l) = 4Dl2/Drot � 4vgl/Drot, (13)

q(l) = �2sl/Drot. (14)

The differential eqn (11) has the Mathieu cosine and Mathieu
sine functions as solutions. Considering the symmetry of
f (y) = f (�y), only even functions, i.e. the Mathieu cosines
C(a,q,Z), are relevant. The corresponding characteristic curve of
order n, represented by the function an(q(l)), confines regions in
the parameter space of q and a [as given by (13) and (14)] where
the Mathieu functions are stable. Since the particle orientation y
attains values between �p and p, the coordinate transformation
(12) renders f (Z) to be p-periodic in Z. This constitutes a non-
trivial condition, because the Mathieu functions are aperiodic in
general. Periodicity can be constructed with the special relation

an(q(l)) = a(l) (15)

between a and q. For real values of n, the Mathieu cosine is
periodic with an arbitrary frequency; integer value of n guarantee
2p-periodicity; even integers n lead to p-periodicity in Z, as
is requested. In order to distinguish from general aperiodic
Mathieu functions C(a,q,Z), the notation changes to cen(q,Z) for
periodic Mathieu cosine functions. In order to satisfy the con-
straint (15), given an even value of n, one needs to determine a
corresponding suitable value for l. This task can be done either
by computer algebra systems or by series expansion.15

Assuming all constants of the system (except for l) to be
positive, there are two solutions for each even order n. One
solution is positive, l+

Z 0, and one is negative, l� r 0. An
exception is the case n = 0 and vg = 0, where the only suitable
value is l = 0.

The complete solution is therefore an infinite linear combi-
nation of the solutions for each even n. It is hence given as

rðz; yÞ ¼
X1
n¼0

b2nce2n q l2nþð Þ; Zð Þ exp �l2nþzð Þ½

þ c2nce2n q l2n�ð Þ; Zð Þ exp �l2n�zð Þ�;

(16)

where the remaining free parameters b2n and c2n are constants,
which can be determined by the boundary conditions.

The series (16) only contains contributions with positive n,
because the results for positive and negative n are equivalent.
We give an alternative derivation of (16) in Fourier space in
Appendix A. Reinserting (16) into (4) readily proofs that each
summand and hence also the linear combination (16) satisfies

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
7 

Fe
br

ua
ry

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
07

/0
2/

20
18

 1
4:

46
:2

7.
 

View Article Online

http://dx.doi.org/10.1039/c7sm02515g


Soft Matter This journal is©The Royal Society of Chemistry 2018

(4) by definition of the Mathieu functions. This derivation is
shown in detail in Appendix B.

Positive gravitational lengths (l+)�1 belong to b2n, so this
solution branch can describe normal gravitation. Negative values
l� imply a with z increasing density profile, which can appear for
aggregation towards an upper confining wall and for creaming if
m o 0. In the special case of l = 0 both the Mathieu function and
the exponential become constant. This contribution to the
solution is hence independent of height and orientation, as is
relevant for determining the bulk density in case of no gravity.

Here, for the case of a lower hard wall boundary, a semi-
infinite system (z 4 0), an effective particle mass m 4 0, and a
gravitational strength g 4 0, only positive inverse gravitational
lengths l+ stay relevant due to the physical limit (7). Accordingly
all factors that belong to any l� or to l = 0 are set to zero, c2n = 0,
which simplifies the one-body density (16) to

rðz; yÞ ¼
X1
n¼0

b2nce2n q l2nð Þ; Zð Þ exp �l2nzð Þ: (17)

The remaining condition of vanishing current (5) determines the
values of b2n. A single free scalar parameter remains, which fixes
a global prefactor of all constants b2n; this can be identified from
the integrated density, rtot ¼

Ð Ð
dydzrðz; yÞ in the system.

Using an alternative ansatz r(z,y) p f (y,l)exp(lz), instead of
(10), will lead to no additional solutions, because an(q) with n
an even integer is an even function in q.15 Therefore only the
signs of l+ and l� interchange, which cancels the different sign
of the ansatz and gives the identical results (16) and (17).

C. Limiting cases and asymptotic expansion

In order to gain a more intuitive understanding of the derived
solution (17), we consider special limits and its asymptotic
behaviour.

In the case of passive sedimentation (confined again by a
hard wall at z = 0), the particles have no swim velocity, so s = 0
and therefore q = 0, cf. (14). The Mathieu cosine in the reduced
solution (17) become Cða; q ¼ 0; ZÞ ¼ cos

ffiffiffi
a
p

Zð Þ, which is a direct
consequence of the Mathieu equation. Considering the physical
argument that passive colloids have an arbitrary orientation
when no torques act, leads us to expect an angle-independent
one-body density. The cosine function is constant, when
a(l) = 4l(D/l � vg)/Drot = 0. Because of the limit (7), l = 0 is not a
suitable value, so all constants b2n have to vanish apart from the
term where leq = vg/D. The density follows as r(z) p exp(�vgz/D),
i.e. the barometric formula (8) is recovered correctly.

It is worthwhile to point out that the barometric law is not
contained in the analytic results of Wagner et al.10 and Solon
et al.,9 due to their assumption of negligible diffusion, D = 0.
When imposing this condition on our parameters in the
Mathieu function, then (14) leaves q unchanged, and (13)
reduces to a = �4vgl/Drot. This relation, and considering only
the contribution n = 0, renders our more general solution (17)
equivalent to the one-body density distribution found by
Solon et al.9 We hence can interpret their result as describing
the correct behaviour away from the wall as we show below.

The complete linear combination for D = 0 seems consistent
with the exponential Mathieu function series of Wagner et al.,10

although these authors express their solution with objects,
which are only ‘‘related to Mathieu functions’’.10

We find it useful to define both an active Peclet number
Pe = sR/D and a gravitational Peclet number a = vgR/D according
to Enculescu et al.6 The particle radius R is obtained from
R2 = 3D/4Drot and used as a characteristic length scale, e.g. in
order to define the dimensionless height z̃ = z/R.

To give a more explicit version of r(z,y) in eqn (17) and
derive further simple, analytic relations, we consider large
heights in the system, where the behaviour is hardly influenced
by the lower wall. Therefore we assume that the order n = 0 is
dominant, as this constitutes the slowest decaying contribu-
tion. We demonstrate below in Section IID, Fig. 1(a), that this is
indeed the case. Additionally we assume that |q| is small, which
corresponds to gravitational lengths l0

�1 larger than the per-
sistence length s/Drot. The expansion of the zeroth order
characteristic curve in the limit of small |q|,16

a0ðqÞ ¼ �
1

2
q2 þO q4

� �
; (18)

can be used to determine l0 (15). When taking just the first
non-vanishing order into account, then one gets, using (13) and
(14), an expression for the asymptotic, nontrivial gravitational
length l̂ scaled with leq (9),

leq
l̂
¼ 1þ s2

2DDrot
¼ 1þ 2

3
Pe2 ¼ Deff

D
: (19)

Fig. 1 Inverse sedimentation length l, cf. (15), scaled with leq = R/a.
(a) Results are shown as a function of the order n for fixed active Peclet
numbers Pe = 0, 3, 4.5, 6 (as indicated). The line is a guide to the eye that
highlights the asymptotic behaviour. (b) Same as (a) but as a function of Pe
for fixed n = 0, 1, 2, 3 (as indicated). In both cases a = 0.5 and R = 1.
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In the last step l̂ = vg/Deff was assumed, so that (19) is identical
to the value of Deff in literature,17,18 which were often obtained
from mean square displacement in long-time limit. In three
dimensions Palacci3 and Enculescu6 found a quite similar
relation, with the only difference being a 2/9 instead of the
2/3 prefactor of Pe2.

The limit of small |q| also allows to expand the Mathieu
functions16 to

ffiffiffi
2
p

ce0ðq; yÞ ¼ 1� q

2
cos yþ q2

32
ðcos 2y� 2Þ þ O q3

� �
: (20)

The entire asymptotic solution r̂ might be written, based on the
results (19) and (20) and the more general solution (17), as

r̂ðz; yÞ ¼ 1þ sl̂
Drot

cos y

 !
expð�l̂zÞ: (21)

The corresponding mean polarization of swimmers can be
found as

hcos yi ¼
Ð Ð

dydzr̂ðz; yÞ cos yÐ Ð
dydzr̂ðz; yÞ ¼ 2aPe

3þ 2Pe2
; (22)

using (19) and (20) up to and including linear order in q. Again,
Enculescu6 gained a structurally equivalent result for the mean
particle orientation, except for a different prefactor, which we
attribute to the different spatial dimensionality of both problems.
Note that the polarization of the full system (including all n)
has to vanish, since there are no acting torques.

D. Numerical results

In the following we numerically evaluate the full solution (17) in
case of a lower hard wall, (5)–(7). To determine numerical
values for the inverse gravitational lengths l2n, eqn (15) is
solved numerically (using Mathematica 8.019 and the included
normalization of Mathieu functions). The results, scaled with
the equilibrium gravitational length leq

�1 (9), are shown in
Fig. 1 as a function of the order n (Fig. 1(a)) and as a function
of Pe (Fig. 1(b)).

As Fig. 1(a) demonstrates, a monotonic increase of l2n

occurs with increasing value of n, approaching a linear beha-
viour for large orders n. Changing the value of Pe has only a
small effect on the values of l2n; the differences become
increasingly small as n grows. Due to the determined structure
of the solution, i.e. proportional to a linear combination of
exp(�l2nz), see (17), higher order terms n are important close to
the wall, but these decay quickly and hence become less influential
for increasing values of z. Therefore neglecting all terms except
n = 0 is indeed appropriate far away from the lower wall.
Reliable results in regions closer to the wall can be obtained
by including additionally higher orders.

Fig. 1(b) shows l2n/leq as a function of Pe. Increasing values
of Pe are equivalent to an increase of the ratio of swim velocity s
and a typical diffusive velocity D/R. For the case n = 0 (black
curve) a monotonic decrease of l0/leq occurs. The shape is
almost identical to the function determined by asymptotic
expansion (19); we have left this curve away in the plot for

clarity. Hence at large heights we expect an overall expanded
distribution r (cf. (17)) with raising Pe. For n 4 0 an interesting
non-monotonic behaviour occurs. While beyond Pe E 6 still a
decrease of l2n/leq occurs, for smaller values of Pe an initial
increase of l2n/leq is found. The position of the maximum
between both types of behaviour shifts to larger values of Pe
upon increasing the order n. We expect this type of behaviour to
be reflected in the density distribution not only in the form of
stretching of the orientational averaged density profile �r for
large z, but also in a compression of �r for small z. This is in
accordance with our numerical results discussed below. The
(further) accumulation in the region of the lower wall arises
from those parts of the solution, which are of higher order n
and decay fast due to a larger corresponding value of l2n/leq.
Regarding the maxima-evolution of l with increasing n this
accumulation gets stronger and more concentrated to the value
z = 0 as more active the particles are. Combining these two
aspects of simultaneously expanding and compressing of the
one-body density r, confirms swimming as a mechanism of
local particle separation according to orientation, as argued by
Elgeti et al.7

In the complete result (17), an infinite number of constants
b2n still remain to be determined by boundary conditions. In
our numerical calculations we include terms up to an order ñ,
assuming the distribution r(z,y) not directly at the wall to be
nearly unaffected by higher contributions n 4 ñ (see Fig. 1).
Due to the truncation the boundary condition cannot be satisfied
exactly in general. Hence we take the squared flux in z-direction
at (through) the wall (5) as a cost function. We express the
minimization problem for this cost function as a system of linear
equations, which we solve numerically for the set of coefficients
b2n. For the considered parameter range it is in many cases
sufficient to choose ñ around 10. We check adequate conver-
gence by comparing of the average of the density distribution
over z, �r(y), to a constant, which we expect as no external torques
are present.7 Furthermore we monitor the change in r(z,y) when
including one order further, ñ + 1, and take care that this change
is insignificant on the scale of the plots.

Illustrative, normalized one-body densities r(z̃,y) as a func-
tion of the dimensionless height z̃ and the angle y are shown
in Fig. 2 (cf. ref. 6 for three dimensions). In Fig. 2(a) different
values of orientation are fixed, namely downward, sideward and
upward facing swimmers and Fig. 2(b) keeps different selected
values of height constant. Downward swimming particles are
mostly located near the ground, hindered by the lower wall to
swim further down. Upward pointing swimmer are more likely
in the bulk of the fluid. This is an aspect, which was also
described in literature by Elgeti7 and Enculescu,6 as well as the
roughly exponential, with height decaying density r(z̃,y) due to
gravity (cf. ref. 3, 6, 10 and 20). Gravity is hence the reason
for maximum density r at the lower wall z̃ = 0. However, for
strong, upward swimming colloids (Pe/a 4 1) we find that this
maximum position shifts to finite heights z̃, cf. Fig. 2(a).

Altogether the results for two-dimensional one-body densi-
ties r are qualitative similar to the distributions gained from
three dimensional, numerical simulations by Enculescu et al.6
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This accordance extends to the orientational averaged distribu-
tions �r(z̃,y) with varying active Peclet numbers (Fig. 3).

For comparison, the case of no swimming (Pe = 0,
r(z) p exp(�leqz) according to (8)) is also shown in Fig. 3(a).
With different, finite swim velocity, Pe a 0, the curves �r(z)
intersect (other parameters unchanged), which is caused by the
formation of two regimes. These regimes are even more apparent
when plotting the results on a logarithmic-linear scale (Fig. 3(b)).
Close to the lower wall, one finds a fast decay of �r(z), which
changes to a more slowly, single exponential decay, here at
approximately z = 5R. As already concluded from Fig. 1(b), the
fast decay gets located more strongly at the lower wall for
increasing values of the Peclet number; the difference between
the two regimes becomes more apparent.

III. Conclusion and outlook

We have presented an analytical solution of the steady state
Smoluchowksi equation of sedimenting active Brownian parti-
cles in an infinitely dilute suspension confined by a lower hard
wall. We assumed an exponential density decay in height with a
constant gravitational length and determined with this ansatz
the orientational distribution to be given by Mathieu functions.
The linear combination of possible solutions is consistent with
two known limits, namely passive colloids in a gravitational
field and negligible translational diffusion in the active system.
The latter assumption was applied before8–10 to analytically
determine the steady state density distribution of active colloids
from the Smoluchowski equation within the approximation.
Since the equilibrium barometric law is not included, one could
argue that this is not a good approximation. The solution given in
the present work reconciles these limits and it is in accordance with
asymptotic cases as well as with qualitative trends of the one-body
density distribution, known from experiments (e.g. ref. 3 and 13)
and simulations (e.g. ref. 6) in three dimensions.

In future work one could try to apply the here presented
solution (16) to further interesting cases. An example might be
to investigate the relation of this solution to the analytical
result of Elgeti et al.7 These authors considered active particles
without gravity between two closely separated walls with dis-
tance d, so the inverse rotational Peclet number Drotd/s could be
neglected. They found a strong wall accumulation effect and a
one-body density r(z,y) p exp(�sd cos(y)z/D), which can be
interpreted as containing an angle-dependent inverse gravita-
tional length l. It is not clear whether this possibly can be
modelled by a series of suitable solutions with constant values
of l. Furthermore constructing a mathematical proof of the
completeness of our solution remains a worthwhile research
task for the future.

Ginot et al.13 observed experimentally an exponential
density decay in height far away from the confinement in a
two-dimensional sedimentation setup. The gravitational length
increased with increasing swim speed of active Janus particles
in their dilute suspension. One could try to perform a quanti-
tative comparison between the measured density distribution
and the slowest decaying order of our analytical result. It would
also be interesting to compare the orientation-dependent

Fig. 2 One-body density r(z,y), normalized by the integrated density rtot.
(a) Results are shown as a function of the dimensionless height z̃ for fixed
orientation angle y = 0, p/2, p (as indicated by the arrow). (b) Same as (a),
but as a function of y for fixed z̃ = 0, 0.3, 0.9, 3.5 (as indicated by the
arrow). In both cases n = 7, Pe ¼

ffiffiffi
3
p

, a ¼
ffiffiffiffiffiffiffiffi
3=4

p
, R ¼

ffiffiffiffiffiffiffiffi
3=4

p
.

Fig. 3 (a) Orientation-averaged one-body density �r(z̃), normalized by its
value �r(z̃ = 0) at the lower wall, for different values of Pe = 0, 0.5, 1.0, 1.5,
3.5, 4.0 (as indicated by the arrow). The curves for Pe = 3.5, 4.5 are cut off
for clarity. (b) Same as (a) but on a logarithmic scale �r(z̃)/�r(0). The legend is
equivalent to (a). The chosen parameter are ñ = 9, a = 0.1, R ¼

ffiffiffiffiffiffiffiffi
3=4

p
(except ñ = 15 for Pe = 3.5).
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density distribution, which would be a worthwhile quantity to
be measured in future experiments.

Furthermore it would be interesting to take the effect of
direct interparticle interactions into account, possibly within
the power functional framework.21,22 One would then expect
that packing effects induce correlations on the scale of the
particles, as occurs in equilibrium.23 Interacting active Brownian
particles display fluid–fluid phase separation, which is known in
passive systems to lead to striking phenomena under gravity,
such as the occurrence of ‘‘floating’’ phases.24,25 As orientational
degrees of freedom are relevant in active systems, one might also
investigate the relationship to sedimentation of passive rotator
systems.25,26 One could attempt to classify the occurring
phenomena via the concept of sedimentation paths,27 provided
that the concept of the chemical potential is generalized to
nonequilibrium situations.28,29
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Appendix A: derivation in Fourier space

In the following an alternative derivation of the series solution
(16) starting from eqn (4) is shown. The notation is the same as
before introduced in Section II. Applying a Fourier transform in
the z-coordinate to (4) gives a Mathieu equation

@2

@Z2
~rðk; ZÞ þ ða� 2q cosð2ZÞÞ~rðk; ZÞ ¼ 0; (A1)

with the constants a(k) = �4Dk2/Drot + 4ivgk/Drot, q(k) = 2isk/Drot

and

~rðk; ZÞ ¼
ð1
�1

dz expð�ikzÞrðz; ZÞ (A2)

the Fourier transformed, one-body density distribution r(z,Z),
where k is the wave number corresponding to z. For the
demand of a 2p-periodic solution in angle y the parameter a
and q need to satisfy an(q(k)) = a(k), analogue to eqn (15), with n
an even integer, which constitutes an implicit equation for k.
However no real solution of k could be found. A comparison
with passive sedimentation indicates that k might be an
imaginary quantity. Those passive particles have a swim velo-
city of zero and therefore orientation has no influence on their
motion. The general Fokker–Planck equation of active colloids
(4) simplifies in this (passive) case to

D
@2

@z2
rðzÞ þ vg

@

@z
rðzÞ ¼ 0: (A3)

Applying the Fourier transform gives

k(�Dk � ivg)~r(z) = 0, (A4)

which can be easily solved according to Tailleur and Cates30 by

~rðzÞ ¼ adðkÞ þ bd kþ i
vg

D

� �
(A5)

Following the reasoning of Tailleur and Cates30 the constant a
can be neglected considering the vanishing flux at z = 0. Thus
only imaginary values of k appear in the solution. The inverse
transform gives again the well-known barometric formula (8).

Transfer of the idea of imaginary wave numbers k to the
general case goes along with the ansatz

~r(z) p f (y,k)d(k + il) (A6)

containing a Dirac delta function d(�). The function (A6) can be easily
inverse transformed back to real space to ~r(z) p f (y,�il)exp(�lz),
where f (y,�il) has to satisfy the relation (A1). It turns out that
this condition is the same as eqn (11) with equivalent relations
for y, a(l) and q(l) (cf. (12)–(14)). As before, possible values of l
are fixed by periodicity in y and the linear combination of all
suitable expressions results a relation, which is exactly identical
to the previous result (16).

Appendix B: verification of the solution

Inserting the solution (16) on the right hand side of the
Fokker–Planck eqn (4) one gets

D
@2

@z2
rðz; yÞ � s cos y� vg

� � @
@z

rðz; yÞ þDrot @
2

@y2
rðz; yÞ

¼
X1
n¼0

b2n

�
Dl2n2 þ l2n s cos y� vg

� �

þDrot @
2

@y2

	
ce2nðq; ZÞ exp �l2nzð Þ:

(B1)

Because of the linear structure of the Smoluchowski equation
one could neglect the second solution branch in the verifica-
tion, c2n = 0 8n, without loss of generality. Use the definition of
the Mathieu equation to determine the second derivative of
ce2n(q(l2n),Z) in order to transform (B1) to

X1
n¼0

b2n



Dl2n2 þ l2n s cos y� vg

� �

�Drot

4
ða� 2q cos yÞ

�
ce2nðq; ZÞe�l2nz

¼
X1
n¼0

b2n l2n Dl2n þ s cos y� vg
� ��

� Dl2n � vg � s cos y
� �

l2n

ce2nðq; ZÞe�l2nz ¼ 0:

(B2)

In the second step, the coefficients a and q were inserted and
the summands simplified, which gives zero and is therefore
equivalent to the left hand side of eqn (4).
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