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We present a microscopic theory for the nonequilibrium interfacial tension γgl of the free interface
between gas and liquid phases of active Brownian particles. The underlying square gradient treatment and
the splitting of the force balance in flow and structural contributions is general and applies to
inhomogeneous nonequilibrium steady states. We find γgl ≥ 0, which opposes claims by Bialké et al.
[Phys. Rev. Lett. 115, 098301 (2015)] and delivers the theoretical justification for the widely observed
interfacial stability in active Brownian dynamics many-body simulations.
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The interfacial tension (or “surface tension”) of the
free interface between two coexisting bulk phases is
one of the most important quantities in the description
of a wide range of interfacial phenomena. The tension γgl
between coexisting gas and liquid bulk phases plays a
particularly central role due to the high symmetry of the
coexisting fluid phases. It is a key quantity in the Kelvin
equation for capillary condensation, for the strength of the
thermal capillary wave spectrum, and for the Laplace
pressure in droplets.
The typical valuesof the interfacial tensionvary overmany

orders ofmagnitude, when going frommolecular to colloidal
systems.Using the particle size σ and the thermal energy kBT
as the natural scales, the scaled interfacial tension γglσ2=kBT
is typically of the order of unity. The dependence on σ is
particularly dramatic when going from atoms to colloids. An
associated factor of 103 of increase in length scale translates
into a decrease of γgl by a factor of 10−6, as e.g., theoretically
[1–3] and experimentally [4–6] demonstrated in phase
separated colloid-polymer mixtures, where confocal micros-
copy can be used to great effect in studying e.g., droplet
coalescence [7] and viscous fingering [8].
Very notably, the existence of the interfacial tension is

the mechanism by which macroscopic fluid interfaces, such
as in droplets and soap bubbles, attain a minimal geometric
shape. The phase separated system minimizes the product
of γgl and the interfacial area of the interface. As γgl is
independent of curvature in a first approximation, this
amounts to minimizing the interfacial area alone. This
effect is e.g., commonly exploited in microscopic computer
simulation work, where the use of periodic boundary
conditions and suitable elongated box geometries offers
the system a preferred (short) direction for the choice of
interface orientation, and hence a stabilizing mechanism
that truncates large scale fluctuations. This also applies to
active Brownian particles, i.e., colloids where the diffusive
motion is supplemented by directed self-propulsion and

which phase separate at large enough swimming strength
[9–12]. Typical experiments rely on catalyzing a chemical
reaction to induce such “swimming” [13].
There is much current progress in the description of free

equilibrium interfaces, such as e.g., geometry-induced
capillary emptying [14], the local structure factor near
an interface [15], and Goldstone modes and resonances in
the fluid interfacial region [16]. A variety of related deep
theoretical topics have been addressed recently, including
the curvature dependence of the surface free energy of
liquid drops and bubbles [17], the adsorption of nano-
particles at fluid interfaces [18], the free energy of com-
plex-shaped objects [19], the characterization of the
“intrinsic” density profile for liquid surfaces [20–22],
and the interface tension of curved interfaces [23].
All of the above physical understanding is necessarily

based on the fundamental property γgl ≥ 0. This seemingly
indisputable fact was recently challenged based on com-
puter simulation work by Bialké et al. [24] in active
Brownian particles. The authors of Ref. [24] used the
pressure tensor route and found their results for the
interfacial tension to be negative. They argue that this
“is a genuine nonequilibrium effect that is rationalized in
terms of a positive stiffness.” Patch et al. [25] reproduce the
negative result using an expression for γgl similar to that of
Ref. [24], but with a different method for calculating the
active contribution. From analysis of the interfacial (capil-
lary wave) fluctuations, both groups find a positive value
for the interfacial stiffness [24,25]. Lee constructs a coarse-
grained model with an effective surface tension that is
positive, and he is able to describe his simulation data [26].
Solon et al. [27] in their numerical analysis find a negative
value for the tension, but they also state that their
framework supports both positive and negative values.
Marconi and Maggi [28] state that the tension would turn
out to be negative in their theory. Subsequently, Marconi
et al. [29] through analytical work have reconsidered the
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problem of the mechanical derivation of γgl, but these
authors do not report numerical results from their theory
and they do not comment on the sign of γgl in Ref. [29]. Das
et al. [30] investigated different expressions for the micro-
scopic stress. The authors state that in their treatment the
surface tension of active systems can be determined, but
they have not done so in Ref. [30]. Considering the
influence of activity on the gas-liquid interface of the
Lennard-Jones system, Paliwal et al. [31] use the pressure
tensor route and find a negative contribution from their
swim term, but overall positive values for γgl across a wide
parameter range.
Here we demonstrate, based on a nonequilibrium gen-

eralization of the microscopic treatment of the interface
pioneered by van derWaals [32], that indeed the tension
γgl ≥ 0 for phase-separated active Brownian particles. Its
scaled value in natural units is of order unity, and vanishes
with a 3=2 (mean-field) exponent near the critical point.
This proves, on a sound theoretical footing, the hitherto
unexplained stability of the planar active gas-liquid inter-
face and demonstrates the route ahead to the quantitative
description of nonequilibrium interfacial properties and
phenomena. Our treatment is based on discriminating
between structural forces that generate the tension and
the flow force balance which does not.
Our mechanism for bulk phase separation is based on the

exact translational one-body force balance equation [33,34],

γv ¼ fid þ fint þ γsω; ð1Þ

where the friction force on the left-hand side is balanced by
the ideal diffusive force fid, the internal force fint, and the
free swim force γsω on the right-hand side. The friction
constant is indicated by γ and s denotes the constant free
swim speed. The velocity v, the density ρ, fid, and fint all
depend on position r and orientation ω, but not on time as
we are considering steady states. Furthermore, we assume
(i) the interface between the dense (liquid) and the dilute
(gas) phases to be perpendicular to the x axis and (ii)
translational invariance with respect to other spatial coor-
dinates. Hence the density varies along the x axis of the
system. The ideal diffusive force field is given exactly
as fid ¼ −kBT∇ ln ρ. The internal force field consists
of adiabatic and superadiabatic contributions and is
defined as

fint ¼ fad þ fsup ¼ −
1

ρ

�X
i

δi∇iuðr1;…; rNÞ
�
; ð2Þ

where δi ¼ δðr − riÞδðω − ωiÞ is used as a shorthand
notation with δ the Dirac delta function, u indicates the
interparticle interaction potential, ∇i is the derivative with
respect to position ri of the i ¼ 1;…; N particle, and h·i is
an average in steady state. The adiabatic force field fad is
defined by the right-hand side of Eq. (2) but taken in an

equilibrium system under the influence of an “adiabatic”
external potential that generates the true density profile ρ
[35–37]. Here the corresponding equilibrium system has
no flow (s ¼ 0). Because of the rotational symmetry of the
spherical particles considered here fad is independent of the
particle orientation ω. From classical density functional
theory [38], applied to the adiabatic system, it is known that
fad is a gradient field obtained as fad ¼ −∇μad [39].
The superadiabatic force field is defined as the

difference fsup ¼ fint − fad, cf. Eq. (2). From power func-
tional theory [35] follows that fsup is a functional of the
density profile, but also of the velocity profile.
We split Eq. (1) into a flow equation and a structural

equation, given, respectively, by

γv ¼ fflow þ γsω; ð3Þ

0 ¼ fid þ fad þ fstruc; ð4Þ

where the superadiabatic force field is the sum of a flow and
a structural contribution, fsup ¼ fflow þ fstruc. The splitting
is unique. The superadiabatic flow force field fflow
describes the influence of the internal interactions on the
flow. The structural force field fstruc is that part of the total
internal force field that influences the spatial structure,
together with the adiabatic force field fad and the ideal term
(which is small in the present situation). Note that it is the
functional dependence of fsup and hence of fstruc on velocity
which renders Eq. (4) (highly) nontrivial. Since fid and fad
are gradient contributions, fstruc necessarily needs to be a
gradient field, fstruc ¼ −∇μstruc, which defines μstruc as the
negative integral of fstruc. Integrating Eq. (4) in space thus
leads to

μid þ μad þ μstruc ¼ μb ¼ const; ð5Þ

where μb is the constant value in the bulk fluid and the
sum determines the total chemical potential. The difference
to the equilibrium situation is the dependence of μstruc
on the (nonvanishing) flow profile. Conceptually, the
three chemical potential contributions play the same role
as in equilibrium in that their respective gradient is a
force field.
The ideal chemical potential μid ¼ kBT ln ρ is for sim-

plicity reduced to the orientation-independent expression

μid ¼ kBT ln ρ0; ð6Þ

with the rotational averaged density ρ0 ¼
R
dωρ=2π. The

approximation is reasonable, since the ideal chemical
potential is numerically small in the present situation,
as is the corresponding ideal diffusive force (see e.g.,
Ref. [24]). Furthermore, ρ0 is a main contribution of the
Fourier decomposed density ρ and both densities ρ and ρ0
coincide in bulk. Since within the used approximations μid
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and μad are rotationally invariant, Eq. (5) implies that μstruc
and, hence, fstruc are also independent of orientation.
We further discriminate between local and nonlocal

contributions in Eq. (5). The ideal chemical potential μid
is a purely local expression and μad is also a local term since
we base it on a local density approximation. Further
nonlocal contributions to μad were found to be negligible
in the present case. Hence the only considerable nonlocal
contribution is contained in μstruc, which we split into a sum
of local and nonlocal terms, μstruc ¼ μlocstruc þ μnloc. The
nonlocal superadiabatic chemical potential is approximated
as the lowest order gradient contribution,

μnloc ¼ −∇ · ðm∇ρ0Þ þ 1

2
ð∇mÞ · ð∇ρ0Þ; ð7Þ

where the coefficient m can depend on density ρ0 and on
velocity v. Note that μnloc vanishes in both bulk phases due
to the constant density ρb ¼ ρg; ρl, where ρg and ρl are the
constant densities in the gas and liquid phase. Thus, bulk
chemical potential and local chemical potential coincide in
bulk, μb ¼ μlocðρbÞ.
For the local chemical potential, μloc¼μidþμadþμlocstruc,

the corresponding nonequilibrium local pressure, Ploc ¼
Pid þ Pad þ Ploc

struc, can be obtained from the Gibbs-Duhem
relation [40]:

∂Ploc

∂ρ0 ¼ ρ0
∂μloc
∂ρ0 : ð8Þ

From Eqs. (5) and (7) follows directly that μlocðρlÞ ¼
μlocðρgÞ ¼ μb, and using the Gibbs-Duhem relation (8)
leads to PlocðρlÞ ¼ PlocðρgÞ ¼ Pb. The combination of both
relations allows us to determine both coexistence densities
ρg and ρl and hence the phase diagram of the system,
cf. Ref. [41].
As we have identified the structural gradient force

contributions, we can proceed in a purely mechanical
way. Hence the gas-liquid interfacial tension is given
by [32,38]

γgl ¼
Z

dx
�
m
2
ð∇ρ0Þ2 −W

�
: ð9Þ

Equation (9) consists of a nonlocal and a local part. The
first, nonlocal contribution results from an (interfacial)
square gradient expansion with coefficient m. The second,
local term is given as

−W ¼ ψ − ψb ¼ ðμloc − μbÞρ0 − ðPloc − PbÞ; ð10Þ

where ψ ¼ μlocρ0 − Ploc and ψb ¼ μbρ0 − Pb contain the
above introduced nonequilibrium (local) chemical potential
and pressure. Note that ψb is not a constant bulk con-
tribution, since ρ0 still depends on x. In equilibrium ψ can

be identified as the local Helmholtz free-energy density and
ψb is the corresponding double tangent line.
The chemical potential balance Eq. (5) can then be

rewritten as

∂W
∂ρ0 þ∇ · ðm∇ρ0Þ −

1

2
ð∇mÞ · ð∇ρ0Þ ¼ 0; ð11Þ

where we used Eq. (7) to express the nonequilibrium
chemical potential and the derivative of Eq. (10) with
respect to density, −∂W=∂ρ0 ¼ μloc − μb. The first integral
with respect to x of Eq. (11) is

W þ 1

2
m

�∂ρ0
∂x

�
2

¼ 0; ð12Þ

where we used the planar symmetry of the density ρ0 to
simplify the spatial derivative ∇ to êx∂=∂x. Rewriting the
interfacial tension (9) with relation (12) leads to three
alternative forms:

γgl ¼
Z

∞

−∞
m

�∂ρ0
∂x

�
2

dx ð13Þ

¼ −2
Z

∞

−∞
Wdx ð14Þ

¼
Z

ρl

ρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2mW

p
dρ0: ð15Þ

The numerical values of Eqs. (13)–(15) only coincide if the
functions ρ0, m, and W are chosen reasonably and satisfy
Eq. (12). Thus, whether a choice of these three functions is
appropriate can be gauged by the agreement of the value
for γgl obtained from either of Eqs. (13)–(15). This provides
a check for the approximations for m and W as introduced
below.
Equation (13) does not depend on the local contribution

W and is thus referred to as the nonlocal route. The relation
(14) is independent of the coefficient m of the nonlocal
term. It is denoted as the local route, as the integrand is the
local quantity W. Expression (15) is called the no-profile
route, as it is independent of the density distribution ρ0. In
practice it can be useful to calculate γgl without knowledge
of ρ0. In the equilibrium limit of passive particles (s ¼ 0)
and vanishing particle velocity v ¼ 0, our expressions for
the interfacial tension coincide with the known equilibrium
relations, cf. e.g., Ref. [32].
We apply our general theory for the nonequilibrium

interfacial tension to a system of two-dimensional active
particles which interact via a Weeks-Chandler-Anderson
potential. This is a Lennard-Jones potential cut at its
minimum and shifted to be continuous. The corresponding
energy scale is ϵ and the characteristic length scale σ is also
referred to as the diameter of the spherical particles. The
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orientational motion is freely diffusive with rotational
diffusion constant kBT=γω, where γω denotes the rotational
friction constant. The rotational averaged density can be
approximated with high accuracy as a hyperbolic tangent
profile [12],

ρ0ðxÞ ¼
ρg þ ρl

2
þ ρl − ρg

2
tanh

�
x
λ

�
; ð16Þ

where λ indicates the interfacial width. The coexistence
densities ρg and ρl were determined from the pressure
and chemical potential balance at theoretical coexistence
and coincide with results from simulations very
well [41,42].
The chemical potential contributions are chosen in

accordance with Ref. [41]. The ideal term is given by
relation (6). For the adiabatic chemical potential we use the
local density approximation on a scaled particle theory for
two-dimensional hard disks [43]. This yields

μad ¼ kBT½− lnð1 − η0Þ þ η0ð3 − 2η0Þ=ð1 − η0Þ2�; ð17Þ

where the rescaled packing fraction η0 ¼ 0.8η models
the soft Weeks-Chandler-Anderson potential. The pack-
ing fraction η ¼ ρ0=ρj and ρj ¼ const indicates the
jamming density, where the motion comes to arrest.
The remaining μstruc corresponds to the quite life
chemical potential [41], which in homogeneous bulk
is given as

μbstruc ¼
e1γγω

2kBT
v2b

ρb
ρj
; ð18Þ

where the strength is determined by the dimensionless
constant e1. The expression (18) is linear in bulk density
ρb, quadratic in the bulk speed vb, and the resulting force
acts toward the liquid phase. Note that due to its velocity
dependence μbstruc is a genuine nonequilibrium expression.
To obtain the local structural chemical potential, we
expand Eq. (18) across the interface using the orienta-
tional averaged density ρ0 instead of ρb and the known
linear decrease vloc ¼ sð1 − ρ0=ρjÞ [11] for the speed vb.
This yields

μlocstruc ¼
e1
6
Pe2kBT

�
1 −

ρ0
ρj

�
2 ρ0
ρj
; ð19Þ

where the introduced Péclet number is Pe ¼ sσγ=kBT ¼
3sγω=kBTσ. This dimensionless constant relates active
swimming to rotational diffusion.
The nonlocal chemical potential is approximated in the

simplestway,with a constant coefficientm¼e2Pe2kBT=6ρ2j ,
such that Eq. (7) simplifies to μnloc ¼ −m∇2ρ0 and one
obtains

μnloc ¼ −
e2Pe2

6

kBT
ρj

∇2
ρ0
ρj

; ð20Þ

where the amplitude is determined by the dimensionless
constant e2. One can show within the power functional
framework [33,35] that μstruc is an intrinsic quantity and can
be written as a kinematic functional, hence only dependent
on density ρ and velocity v. Therefore, μlocstruc and μnloc are
“naturally“independent of the swim speed and Eq. (19) can
be expressedwithout s as an intrinsic expression [41,44]. The
local pressure can be determined straightforwardly from the
Gibbs-Duhem relation Eq. (8).
The parameters of the system are chosen as follows.

The system is at temperature kBT=ϵ ¼ 0.5, has a rotational
friction coefficient γω=γσ2 ¼ 1=3, a jamming density of
ρj2πσ

2 ¼ 1.4, and the dimensionless prefactors e1 ¼
0.0865 and e2 ¼ 0.0385. Requiring e2 to be constant
and the chemical potential balance (5) to be satisfied,
the interfacial width λ is determined. The swim speed s
changes with Péclet number, Pe ¼ sσγ=kBT, while the
other parameters are kept constant. We use the approx-
imations for the orientational averaged density profile ρ0,
the chemical potential contributions Eqs. (6), (17), (19),
and (20), and the corresponding pressures to determine the
interfacial tension by evaluating the expressions (13)–(15).
The results from the three methods are displayed in

Fig. 1. We find the behavior of the function W and of the
interfacial tension to be qualitatively similar to what is
found in equilibrium [32]. Figure 1 shows γgl as a function
of Pe. The interfacial tension is only different from zero for

FIG. 1. Interfacial tension γgl determined from the nonlocal
route Eq. (13) (full blue line), from the local route Eq. (14) (dash-
dotted yellow line), and from no-profile route Eq. (15) (dotted red
line) in dependence of the Péclet number Pe. Close to the critical
point the tension increases with a critical exponent of 3=2, as
indicated by the dashed black line. The inset also shows γgl but in
a double-logarithmic plot and the x axis is shifted by the critical
Péclet number and, hence, is Pe-Pecrit.
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Péclet numbers larger than Pecrit ¼ 59.3 [41], when the
system phase separates. Here the critical value of the Péclet
number [41] is determined by the magnitude of e1. The
tension increases with rising particle activity and hence
with the Péclet number (cf. Fig. 1). Close to the critical
point γgl increases with a critical exponent of 3=2, as
indicated by the black dashed line. This corresponds to the
theoretical mean-field coefficient of the van der Waals
theory, which might be expected since there are many
similarities between both descriptions. In order to empha-
size the agreement of the interfacial tension with a function
proportional to ðPe − PecritÞ3=2, both quantities are dis-
played in a double logarithmic plot (cf. the inset of Fig. 1).
For Péclet numbers close to the critical point, the functions
nearly have the same slope. Far from the critical point the
interfacial tension increases faster than with the critical
exponent. For a detailed simulation study of the bulk
critical behavior of active Brownian particles, see Ref. [45].
The values of the tension are positive, γgl > 0, which

directly explains the stability of the interface. This is in
contrast to Bialké et al. [24], who calculated a negative
interfacial tension using the pressure tensor. The results for
three differentmethods, the nonlocal route Eq. (13), the local
route Eq. (14), and the no-profile route Eq. (15), agree to a
very satisfying degree (cf. Fig. 1). Even far from equilib-
rium, for example, at Pe ¼ 200, the respective results
deviate by only about 3%. This indicates that the chemical
potential balance (5) and hence the structural force balance
(4) are both satisfied with very good accuracy. Finally, the
splitting (3) and (4) [together with (9) within a square
gradient approximation] forms a general route toward the
interfacial tension of out-of-equilibrium interfaces.We have
also ascertained that the “flow” equation of motion (3)
creates a vanishing contribution to the interfacial tension in
the present system, since after orientational integration the
associated pressure tensor contributions either vanish or are
isotropic. Hence the splitting (3) and (4) does not imply
omission of any relevant terms.
Because of the square gradient character of our treat-

ment, we do not find layering effects at the interface, which
would require us to take account of nonlocal interfacial
packing effects [20]. Furthermore, our treatment yields the
“intrinsic density profile” [21,22], as large scale capillary
wave fluctuations are neglected. Thus, interesting future
work could be devoted to studying capillary wave fluctua-
tions and the wave vector dependence of the interfacial
tension [21,22]. Furthermore, it would be interesting to
relate our treatment to that presented in Ref. [27] and to
consider fluctuations beyond mean field that could alter the
value of the critical scaling exponent.
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