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Memory-induced motion reversal in
Brownian liquids

Lucas L. Treffenstädt and Matthias Schmidt *

We study the Brownian dynamics of hard spheres under spatially inhomogeneous shear, using event-

driven Brownian dynamics simulations and power functional theory. We examine density and current

profiles both for steady states and for the transient dynamics after switching on and switching off an

external square wave shear force field. We find that a dense hard sphere fluid (volume fraction E0.35)

undergoes global motion reversal after switching off the shear force field. We use power functional

theory with a spatially nonlocal memory kernel to describe the superadiabatic force contributions and

obtain good quantitative agreement of the theoretical results with simulation data. The theory provides

an explanation for the motion reversal: internal superadiabatic nonequilibrium forces that oppose the

externally driven current arise due to memory after switching off. The effect is genuinely viscoelastic:

in steady state, viscous forces oppose the current, but they elastically generate an opposing current

after switch-off.

I. Introduction

The non-equilibrium properties of hard spheres under shear
have attracted considerable attention. Rheological experiments
under steady shear, e.g. using silica particles,1,2 show non-
Newtonian viscosity effects, with both shear thickening and
shear thinning occurring depending on the volume fraction.
Shear thinning was observed in Brownian dynamics (BD)
simulation, e.g. by Foss and Brady.3 Dhont et al. studied the
distortion of the microstructure of colloids using light scattering
experiments.4 Dhont and Nägele derived the viscoelastic response
of a suspension of colloids to shear from the Smoluchowski
equation.5 Fuchs and coworkers have developed theoretical
descriptions of these effects using mode coupling theory and
integration through transients.6–8 A thorough overview of the
nonlinear rheology of colloidal dispersions has been given
by Brader.9

Hard spheres under inhomogeneous shear exhibit a broad
range of effects. In particular, inhomogeneities in the shear rate
can induce particle migration10 and thus lead to inhomogeneities
in the density profile. Examples of this mechanism are lane
formation, where particles move in stacked layers separated by
low density bands,11,12 and deformation of boundary density
profiles of sheared systems in confinement.13–15 Jin et al. studied
flow instabilities in inhomogeneous shear with Browninan
dynamics simulations.16

The transient behaviour in the time evolution from equili-
brium to a sheared steady state and the reverse process from
steady shear to equilibrium has attracted similar attention.
Reinhardt et al.17 studied the distortion of the pair correlation
function under start-up shear. Koumakis et al.18 reported on
stresses in the start-up phase of shearing, in particular on the
dependence of the stress overshoot on the Peclet number
and on the volume fraction, using both simulation and experi-
ments with sterically stabilized PMMA spheres using confocal
microscopy and rheological measurements. Stress overshoot in
start-up and cessation of shear and the connection to the
microscopic fluid structure have also been studied.19 Ackerson
et al.20 reported on solid-like ordering of nearly hard spheres
under the influence of oscillatory shear. Krüger and Brader
applied dynamic density functional theory,21,22 extended to
sheared systems with a scattering kernel approach,13 to study
sedimentation of colloids under time-dependent shear,23 and
Metzger and Butler examined the time evolution of particle
clusters in periodic shear.24

Microscopic methods such as BD or molecular dynamics
simulations are based on equations of motions which are
instantaneous in time on the many-body level. However, on
the one-body level, nonequilibrium states are generally depen-
dent on the history of the system. By integrating out degrees
of freedom, coarse-grained methods can be obtained, which
generally have non-Markovian form, as can be shown with the
Mori–Zwanzig formalism.25,26 There is previous work done
to derive accurate memory kernels for generalised Langevin
equations for Brownian dynamics. Smith and Harris27 proposed
a method to approximate memory kernels and generate random
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forces with a given autocorrelation. Szymczak and Cichocki28

studied memory in the macroscopic dynamics of Brownian
systems. Bao et al.29 investigated breaking of ergodicity due to
memory in non-Markovian Brownian dynamics. Recently, iterative
methods have been developed to reconstruct memory kernels
for generalized Langevin equations from molecular dynamics
simulations by matching the force autocorrelation function or
the velocity autocorrelation function between both methods.30,31

In this paper, we examine a system of Brownian hard spheres
both in steady state under temporally constant but spatially
inhomogeneous shear as well as the transient dynamics after
switching the driving field both on and off. Fig. 1 shows a sketch
of the dynamics: starting in a well-defined equilibrium state, a
shear force field is switched on. The system needs some time to
relax into a steady state. Then, the shear force field is switched
off, and the system relaxes back into equilibrium. We report
in particular on the shape of the current profile in the steady
state under the influence of a square wave shear profile. This
particular form of shear is well suited to show and examine
nonlocal effects, since small regions of extreme shear rate alternate
with large regions of low shear rate. We find that the transition
in the current field between opposite flow directions is non-
monotonic. After switching-off of the driving shear force, the
current field reverses globally before settling into equilibrium.

We employ state-of-the-art event driven Brownian dynamics
simulations,32 which solve the problem of infinite gradients in
the hard sphere interaction potential by evolving the system
continuously with ballistic motion between BD timesteps. At
fixed timesteps, the velocities of the particles are randomised
according to a Maxwell distribution.

In addition to observations in simulation, the system is
examined in the framework of power functional theory
(PFT),33 which describes the full non-equilibrium dynamics of
many-particle systems, beyond the adiabatic approximation
made in dynamical density functional theory (DDFT). DDFT
is an extension of equilibrium density functional theory (DFT)
to nonequilibrium systems,34,35 which approximates the time
evolution of the system through a series of adiabatic states,
where the internal forces can be calculated from an equivalent
equilibrium system with matching instantaneous density.36

However, this approximation leads to shortcomings, such as
underestimation of relaxation times.34 There have been attempts
to correct these shortcomings via empirical corrections, see
e.g. ref. 37 and 38.

Superadiabatic forces were shown to occur in a variety of
systems, such as Gaussian core particles,39 hard spheres40 and
active Brownian particles.41 We extend here an approximation
for superadiabatic forces for Brownian hard spheres, presented
recently by de las Heras and Schmidt40 by introducing a
diffusing memory kernel. This approximation derives forces
from the gradient of the velocity field. The free parameters in
this model – memory time, memory diffusion constant, and
overall memory strength – are determined using a least-squares
fit to BD simulation data.

This paper is organised as follows: in Section II, we intro-
duce the considered system and our PFT approach. Section III
contains implementation details for the BD simulations.
Sections IV and V cover results in steady state and during
transients, respectively. We draw conclusions and provide an
outlook in Section VI.

II. Model and power functional theory

We consider a fluid of N monodisperse hard spheres with
diameter s. The system has planar geometry with Cartesian
coordinates r = (x,y,z) and we take s as the unit of length.
Isotropy is broken by an external shear force field

fext(r) = fext(x)êz, (1)

where êz is the unit vector in the z-direction and fext = |fext| is the
modulus of the force field. Since the intrinsic dynamics are
diffusive, we choose as the unit of time the diffusion time
t = s2/D with diffusion constant D = kBT/g, where kB is the
Boltzmann constant, T indicates the absolute temperature, and
g is the friction constant against the implicit solvent.

The particle positions r1,. . .,rN � rN evolve in time according
to the Langevin equation of motion

g_riðtÞ ¼ f int;iðrNÞ þ fextðri; tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

p
RiðtÞ (2)

where fint,i = �riu(rN) is the internal force that all other
particles exert on particle i due to the interaction potential
u(rN) and Ri(t) is a delta-correlated Gaussian random white
noise with hRi(t)i = 0 and RiðtÞRjðt 0Þ

� �
¼ dðt� t 0Þdij1, where d(�)

is the Dirac distribution, dij indicates the Kronecker delta, and 1

is the 3 � 3 unit matrix.
The one-body density distribution is defined as

rðr; tÞ ¼
X
i

dðr� riÞ
* +

; (3)

where h�i indicates an average over the noise and over initial
microstates. The one-body current distribution is defined as

Jðr; tÞ ¼
X
i

dðr� riÞviðtÞ
* +

; (4)

Fig. 1 Sketch of the time evolution of the system, external force (solid red
line) and system response (dashed purple line) in arbitrary units. The system
was in equilibrium at negative times. An external force is switched on at
t = 0, and the system is monitored during the transient into a steady state as
well as in the steady state itself. At time t = T, the external force is switched
off and the system is observed until it has reached equilibrium again.
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where, in a numerical simulation, vi must be calculated with a
finite difference centred at time t.42 The velocity field v(r,t) is
defined as

vðr; tÞ ¼ Jðr; tÞ
rðr; tÞ: (5)

The dynamics of (3) and (4) can be expressed as

gv(r,t) = fint + fext � kBTr ln r, (6)

@

@t
rðr; tÞ ¼ �r � Jðr; tÞ; (7)

with the total internal one-body force field given by the configura-
tional average

f intðr; tÞ ¼
1

r

X
i

dðr� riÞf int;i

* +
: (8)

Eqn (6) constitutes the one-body force balance relationship where
the negative friction force (left hand side) is equal to the sum of
internal, external and diffusive one-body forces (right hand side).
The one-body continuity equation (7) is a consequence of local
particle conservation and it links the density profile and the
current distribution to each other. The set of equations (6)
and (7) is exact and can be obtained from averaging over the
many-body Smoluchowski equation (see, e.g., ref. 33).

The internal force field consists of two parts according to

fint = fad + fsup, (9)

with the adiabatic force (fad) and the superadiabatic force (fsup)
contributions.33,36 The adiabatic force is defined as the internal
force acting in a constructed equilibrium system with an external
potential Vad(r) chosen such that the equilibrium density matches
the instantaneous density r(r,t). The underlying map from the
equilibrium density distribution to the external potential Vad

has been shown by Evans43 and Mermin.44 Thus, fad depends
only on the density at time t.

The superadiabatic force field, in contrast, depends in
general on the history of both r(r,t0) and J(r,t0) for t0 r t,
making (6) in general an implicit equation. This distinction
physically defines the splitting of internal forces. Superadia-
batic forces can be measured in particle-based simulations36

and they are absent in dynamical density functional theory.34,35

Power functional theory is based on the free power func-
tional Rt[r, J], which captures in a formally exact way the full
many-body dynamics. Rt is microscopically defined33 and it
satisfies an instantaneous minimisation principle with respect
to the current. As a result, the functional derivative with respect
to the current distribution vanishes at the minimum,

dRt½r; J�
dJðr; tÞ ¼ 0 ðminÞ; (10)

where the density is held fixed upon building the derivative.
The functional dependence of Rt[r, J] is also on the history of
the system, i.e. on r(r,t̃) and J(r,t̃) for t̃ o t. Eqn (10) determines
the current J(r,t) at time t, which then allows together with the
continuity eqn (7) to evolve the system in time.

The free power functional Rt[r, J] consists of a sum of
intrinsic and external contributions.33 The intrinsic contribu-
tion is composed of an adiabatic part that is the time derivative
of the adiabatic free energy (

:
F) and a superadiabatic part (Pt)

which is the genuine nonequilibrium contribution. Both are
combined together with the external power Xt via33

Rt =
:
F + Pt � Xt. (11)

Inserting the decomposition (11) in the condition (10) and
carrying out the functional derivatives leads to the force balance
relation (6). In order to illustrate this, we briefly describe all
occurring terms; details can be found in ref. 33.

The time derivative of the intrinsic Helmholtz free energy
functional F[r] is given by

_F ¼
ð
drJ � r dF ½r�

drðr; tÞ: (12)

The (Helmholtz) free energy functional F [r] consists of a sum
of an ideal gas part and an excess contribution, Fexc[r], which
arises due to the interparticle interactions. Hence

F ½r� ¼ kBT

ð
drr½lnðrL3Þ � 1� þ Fexc½r�; (13)

where the first term on the right hand side is the ideal gas free
energy functional; L is the (irrelevant) thermal de Broglie
wavelength. In the results presented below we choose the Rosenfeld
functional45 in order to approximate the excess free energy
functional Fexc[r] for hard spheres.

The (negative) functional derivative of
:
Fexc with respect to J

generates the adiabatic force field fad via

fadðr; tÞ ¼ �
d _Fexc

dJðr; tÞ ¼ �r
dFexc½r�
drðr; tÞ : (14)

As Fexc[r] is a density functional and hence independent of the
current, the adiabatic force field fad is also a functional of only
the density profile r at time t.

The external power Xt, as it appears in the decomposition of
the total free power (11), depends on the external force field fext,
as well as on the time derivative

:
Vext of the external potential.

The external power is an instantaneous space integral over
these one-body fields according to

Xt ¼
ð
drðJ � fext � r _VextÞ: (15)

In the present application the external force field fext(r,t) is the
sum of the shearing force field (1) and an additional conserva-
tive force field �rVext(r) which we use in order to induce
particle migration effects. In the present application Vext is
independent of time and hence

:
Vext = 0.

Finally, Pt consists of a sum of the ideal gas contribution
(Pid

t ) and an excess part (Pexc
t ), according to

Pt = Pid
t + Pexc

t . (16)
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The ideal gas dissipation functional is given by the position-
and time-local expression

Pid
t ½r; J� ¼ g

ð
dr
J2

2r
: (17)

The superadiabatic free power functional Pexc
t [r, J] contains all

genuine nonequilibrium effects that arise from the interparti-
cle interactions. In general, its dependence on r and J is
nonlocal in both space and in time, with the temporal depen-
dence being of the ‘‘history’’, i.e. the behaviour at earlier times,
as is clear from causality. The superadiabatic force field fsup, cf.
eqn (9), is generated via functional differentiation,

fsupðr; tÞ ¼ �
dPexc

t ½r; J�
dJðr; tÞ : (18)

Pexc
t is specific to the type of interparticle interaction potential

and must in general be approximated. This status is very
similar to that of the excess free energy functional Fexc[r] in
equilibrium DFT. Here, we choose the velocity gradient form,40

given by

Pexc
t ¼

1

2

ð
dr

ð
dr0
ðt
�1

dt 0rðr; tÞ½Zðr � vÞ � ðr0 � v0Þ

þ zðr � vÞðr0 � v0Þ�rðr0; t 0ÞKðr� r0; t� t 0Þ;
(19)

where v = v(r,t) is the velocity field as defined in (5); we use the
shorthand v0 = v(r0,t0) to express dependence on the primed
space and time arguments, and r0 indicates the derivative with
respect to r0.

Pexc
t depends not only on the instantaneous density and

velocity fields, but also on the history of the system, and it is
non-local in space. The constants z and Z indicate the volume
viscosity and the shear viscosity, respectively. The coupling to
the history is governed by the memory kernel K(r � r0,t � t0).
The kernel is normalised to unity, such that

Ð
dr
Ð
dtKðr; tÞ ¼ 1.

We consider two different functional forms of K. The first
form, KL, is chosen as a simple reference. It is taken to be local
in space and to possess a purely exponential temporal decay:

KL(r,t) = d(r)tM
�1 exp(�t/tM)Y(t), (20)

with tM indicating the memory time and Y(�) denoting the
Heaviside step function. We expect the form (20) to perform
well in cases of small shear gradients, where it models time-
dependent behaviour independent of spatial correlation effects.

The second version is spatially non-local. We base its functional
form on the diffusive nature of the underlying microscopic
dynamics. Hence we assume that that interactions between distant
particles propagate according to an effective diffusion process,
characterized by a corresponding memory diffusion constant DM.
Specifically we assume the memory kernel to possess the form

KDðr; tÞ ¼
e�r

2=ð4DMtÞ�t=tM

ð4pDMtÞ3=2tM
YðtÞ; (21)

where the memory time tM sets the time scale for the decay, as
above. We shall call the form (21) the diffusing memory kernel,
since the spatial part corresponds to a diffusion process. The

constants tM and DM are adjustable parameters that in principle
are determined by the underlying interparticle interactions.

The timescale tM controls the exponential decay of the
memory effect. DM has the units of (length)2 per time and it
controls how fast information propagates from point r0 to point r
in (19) via a diffusion process. In the limit of t0 - t, the spatial
part of KD approaches the Dirac delta distribution. Therefore,
there are no instantaneous non-local interactions in this model.

In steady state, the density and the current do not depend on
time, i.e. r(r,t) = rs(r) and J(r,t) = Js(r) with r�Js = 0. In this case,
the time integral in (19) acts only on K and, as K is known from
(20) or (21), can be carried out explicitly. The respective results
for both kernels are

K s
L ¼

ðt
�1

KLðr� r0; t� t 0Þdt 0 ¼ dðr� r0Þ; (22)

K s
D ¼

ðt
�1

KDðr� r0; t� t 0Þdt 0

¼ 1

4ptMDMjr� r0j exp �
jr� r0jffiffiffiffiffiffiffiffiffiffiffiffiffi
tMDM

p
� �

:

(23)

Thus, K s
L does not depend on the parameter tM and K s

D

depends only on a new length scale

sM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tMDM

p
; (24)

which can be interpreted as an effective interaction length in
steady state. The parameters tM and DM can therefore not be
independently determined from measurements of one-body
quantities in steady state. However, one can determine the
value of sM. In steady state, it is less computationally intensive
to obtain accurate density and current profiles from particle
simulations, so sM can be determined with high accuracy.
Knowledge of sM then reduces the number of free parameters
to be determined with measurements in the full time evolution.

For the given system, all integrals in y and z in Rt[r, J] can be
explicitly carried out, since density and current are by construc-
tion homogeneous in these directions. Thus, the current
only depends on one space coordinate x and time t: J(x,t) =
Jx(x,t)êx + Jz(x,t)êz, where Jx is the current in gradient direction
êx, and Jz is the current in flow direction êz.

It should be noted that the form of Pexc
t applied here contains

no coupling between the flow direction and the gradient direc-
tion of J. Therefore, a system with an initially homogeneous
density and no external force acting in the x direction will always
remain homogeneous in this approximation, whereas in reality,
structural migration forces occur. Pexc

t can be extended to include
these effects,39 but that is beyond the scope of this work. Instead,
we impose the density profile rBD obtained in BD simulations via
an external potential Vext(x), chosen so that rBD(x) is the equili-
brium density in the potential.

We numerically minimize Rt[r, J] for a given r(x,t) at time t using
a generic nonlinear numerical optimiser,46 thus solving the Euler–
Lagrange-eqn (10) and obtaining J(x,t). Using the continuity equation
(7), we numerically evolve r in time, i.e. proceed by one time step Dt
and repeat the procedure. Then, we compare results for r(x,t) and
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J(x,t) calculated with PFT to results for the same quantities sampled
in BD simulations. We determine the free parameters Z, tM, and DM

that appear in Pexc
t [as given by (19) together with the alternative

forms for the memory kernel (20) and (21)] by using a least-squares
fit to the simulation results for the velocity field. Here the simulation
results are obtained via sampling at fixed times during the transient
time evolution. For steady states we average over time. We start from
reasonable estimates for the parameters and use a nonlinear
numerical optimiser46 with a derivative-free optimisation routine.47

III. Brownian dynamics simulations

We employ event-driven Brownian dynamics simulations32 to
integrate the Langevin equation (2) and obtain particle trajec-
tories. We use N = 1090 particles in a simulation box of size
10 � 10 � 15 s3 with periodic boundary conditions in all
directions. By choosing a strongly inhomogeneous shear force
field, we expect to clearly showcase the importance of nonlocal
interactions. Our choice of a field that is periodic in x relieves
us from the need for Lees–Edwards boundary conditions,48

which are commonly used for periodic systems with constant
shear rate. We calculate one-body quantities such as density
and current by averaging over many-body trajectories.

We obtain the steady state current and density profile by
averaging 106 trajectory samples from a runlength of 103t after
an initial relaxation period of 2t. For start-up dynamics, the
system is simulated in equilibrium for an initial 0.1t, after which
shear is switched on and the system is evolved for a further 0.4t.
Dynamics after switch-off are simulated initially for 1.5t under
shear, after which the shear force is switched off and the system
is evolved for a further 0.1t. In our experience, this protocol is
sufficient to ensure that a steady state has been reached, given
our parameters. Time-dependent current and density profiles for
the dynamics in full non-equilibrium are then calculated per
timestep via an average over 104 realisations.

IV. Steady state

We subject our system to a strongly inhomogeneous, but steady,
square wave external force in z direction with an amplitude of

5
kBT

s
and a period of 5s (see Fig. 2). After a short time E10�1t, the

system settles into a steady state (qtr = qt J = 0).
This state has some interesting properties (Fig. 2, current

and density profile in steady state). The BD results indicate
that, even though no external force is acting in the x direction,
the density profile becomes inhomogeneous. This effect is
driven purely by superadiabatic forces and is thus a true none-
quilibrium effect. Phenomenological approaches to incorporate
such forces into DDFT have been proposed in ref. 9 and 23.
Stuhlmüller et al.39 have studied shear induced particle migra-
tion in a system of Gaussian core particles with PFT. In our PFT
calculations, we impose the inhomogeneous density sampled
in BD with a temporally constant external potential Vext(x).

The harsh spatial step in the driving force field is reflected
in the current profile: the current reverses its orientation in a
region smaller than s/10. Inside the regions of near-constant
force, instead of a monotonic approach to the maximum, the
current profile displays an oscillation close to the edge. The
occurrence of this effect suggests a complex nonlocal inter-
action, supporting our corresponding approach in PFT.

Using a least-squares fit of the PFT velocity profile to the
BD velocity profile, we obtain values for the shear viscosity Z, as it
appears in Pexc

t , cf. (19), as well as for sM, cf. (24); the
latter variable is relevant for determining the parameters
of the diffusing memory kernel KD (23). Fig. 2 shows the
resulting velocity profiles from PFT. In the given case, we
obtain sM E s/3, which is of the order of the hard sphere radius.
The effective interaction in steady state is therefore short-ranged.

While not being perfect, the agreement between BD and PFT
is much better for the diffusing memory form (21) than it is for
the local form (20). Perhaps contrary to intuition, the profile
obtained from the local memory model is smoother and does
not represent the jump in the current profile that is observed in
BD. The reason for this becomes clear when considering the
effect of the spatial nonlocality of KD.

The velocity gradient qxvz has a large spike at the jump of the
velocity itself. In the local memory model, this spike contri-
butes evenly for every point in the history of the system. In the
diffusing model, it is smoothed out by the integral over x0 for
times t0o t. The penalty for a jump in the velocity is thus much
lower in the diffusing model.

Since Pexc
t depends only on inter-particle interactions and

not on external forces, and should be translationally invariant,
no spatially local memory kernel can accurately represent this
feature in the velocity profile, no matter how complex the
temporal behaviour. In other words, spatial nonlocality is not
only the most general form of memory, but it is required for
the correct description of strong inhomogeneities within the
velocity gradient approach.

V. Transient dynamics

We next investigate the transient dynamics into and out of the
steady state. First, we address the transient going from equili-
brium to a sheared system. The external shear force field is the

Fig. 2 Steady state current Jz(x) and density profile r(x) in BD simulation
under a square wave shear force fext(x) acting along êz. The plot shows only
part of the simulation box.
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same as above. It is switched on instantaneously at t = 0 and
switched off again at a later time. The system responds

instantly to the external force, with an instantaneous current
profile that has larger magnitude than the steady state current.
This instant response to the external force is consistent with the
fact that inertia is neglected in overdamped BD. Then, viscosity
slows the system down into the steady state (see Fig. 3).
This process takes finite time, because the particles need to

traverse, on average, the mean free path l ¼ ð
ffiffiffi
2
p

prs2Þ�1
between collisions,49 which takes, with diffusive dynamics,
about l2/D, which is E0.1t in our system.

The decay of the mean external power (15) into the steady
state can be described reasonably well with an exponential
decay model Xt/V = a exp(�t/b) + c, where a and c are parameters
with the dimension of power per volume, and b is a parameter
with the dimension of a time. Physically, c can be identified as
the mean steady state external power density, a as the initial
mean super-steady external power density, and b as the decay
time. However, the decay shows features beyond a simple
exponential, which are captured by PFT with diffusing memory
kernel. For times 0.05 r t/t r 0.1, the external power dips
below the plateau value, and the initial decay is steeper than
exponential.

Next, we explore the dynamics after switching off the shear
force (see Fig. 4). Surprisingly, the current does not relax

Fig. 3 Time evolution (on a logarithmic scale) of the scaled mean external
power Xt per volume after switching on the shear force at t = 0, from BD
simulation and PFT, together with a least-squares fit of a simple exponen-
tial decay a exp(�t/b) + c.

Fig. 4 Time evolution of the scaled current profile Jxs
2t as a function of x/s after switching off the shear force at t = 0, obtained from BD simulation

(symbols), and PFT with local memory kernel KL (dashed line) and diffusing memory kernel KD (solid line). The sign of the current flips globally after the
shear force is switched off, followed by a decay into equilibrium. The diffusing memory model in PFT significantly outperforms the local approach in
representing the BD current profiles.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
8 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
T

 B
A

Y
R

E
U

T
H

 o
n 

3/
3/

20
20

 7
:3

6:
23

 A
M

. 
View Article Online

https://doi.org/10.1039/c9sm02005e


1524 | Soft Matter, 2020, 16, 1518--1526 This journal is©The Royal Society of Chemistry 2020

monotonically into equilibrium, but rather undergoes a global
reversal first, and then smoothly equilibrates. This remarkable
result has perhaps been hinted at by Krüger and Brader,23 who
report ‘‘If the shear field is suddenly switched off, we find that
the equilibration dynamics show an interesting symmetry with
that following switch on[. . .].’’ Other than that, to the best of our
knowledge, this effect has not been reported in the literature.

Using the time-dependent velocity field measured in BD for
switch-on and switch-off, we can determine the remaining free
parameters in KL and KD. The exponential decay in both KL and
KD is one of the most simple forms of memory. Starting from an
initial equilibrium state, the memory integral at time t = 0
vanishes, because the velocity gradient vanishes at negative
times. Therefore, the superadiabatic force field is also zero just
after switching on, and the current is directly proportional to
the driving force. Memory then slowly builds up, with a
dynamical behaviour that is governed in our approximation
by the memory time tM. We obtain memory times of roughly
tM = 0.02t for switch-on. The superadiabatic forces oppose the
current, slowing the system into a steady state.

The steady state is truely reached once the current has not
changed over a few memory times tM and thus the memory
integral no longer changes. Then, the driving force can be
switched off and the transient back into equilibrium can be
observed. PFT accurately predicts the motion reversal observed
in BD and provides an explanation: in the steady state, the force
balance (cf. eqn (6)) includes adiabatic forces fad, external forces
fext and superadiabatic forces fsup. In the direction of shear,
fad�êz = 0 because of the homogeneity of r in z. As we know, fsup

is opposed to the external force. With fext = 0 after switching-off,
the superadiabatic excess forces still remain, because they arise
from the memory integral. Thus, the superadiabatic forces
become driving forces with an opposed direction of motion.
The system returns to equilibrium only after the memory has
cleared. The memory time obtained here is roughly tM = 0.01t.
While the decay of the counter-current is well described by the
exponential decay memory model up until t E 0.02t, it seems
to overestimate the rate of relaxation for later times (see Fig. 4).

VI. Conclusion

We have studied the Brownian hard sphere fluid under inho-
mogeneous, time-dependent shear with BD simulations and
PFT. In steady state, under strongly inhomogeneous shear,
spatially nonlocal memory shapes the current profile in ways
spatially local memory cannot. Non-local memory is therefore
required to describe general external forces acting on the fluid
with a true separation of intrinsic and extrinsic effects. Expo-
nential memory is an adequate and simple approximation that
well describes nonequilibrium dynamics after switching
(on and off) of an external field. The effect of motion reversal
after switch-off is surprising if thought about in a microscopic
picture, but has a straightforward explanation in PFT: slowing
memory forces in steady state become driving forces after the
shear force has been switched off. The rigorous framework of

PFT is therefore an appropriate tool to gain insight into the
behaviour of the Brownian hard-sphere fluid.

Non-local memory could be a relevant factor in the study of
inhomogeneous colloidal systems such as colloids undergoing
capillary collapse at an interface.50 We are also interested to
investigate the effect of the approximation presented here on
the bulk dynamics of hard spheres, such as the van Hove
correlation function, which has been studied recently experi-
mentally and with DDFT.51 To this end, we plan to employ PFT
in the dynamic test particle limit.21,22,52

The excess superadiabatic functional can be further developed
in two directions: spatially, structural forces can be incorporated
with higher orders of the velocity gradient. The diffusing nonlo-
cality provides good results, but has free parameters that need to
be tuned by BD simulation or other benchmarks. Instead, they
might be derived from the particle interaction, perhaps based on
fundamental measures to allow for a deeper physical interpreta-
tion. Temporally, the exponential decay model could be improved.
Research on memory in molecular dynamics provides a jumping-
off point.30 Recently, Jung et al.31 presented a method to obtain
memory kernels that could be adapted to our approach.

It would also be interesting to investigate the implications of
the diffusing memory kernel (21) in the context of the non-
equilibrium Ornstein–Zernike relation for the dynamical two-
body structure.53,54

Finally, we expect the current reversal effect, presented here
for Brownian hard spheres, to be reproducible in an experi-
mental realisation with colloidal particles. External forces could
be applied either mechanically, using a rheometer with a
specifically designed geometry that approximates the step
shear, or with optical methods. However, hydrodynamic inter-
actions, which are neglected in our study, will likely induce
additional effects.
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