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Superadiabatic demixing in nonequilibrium colloids
Thomas Geigenfeind1, Daniel de las Heras 1* & Matthias Schmidt 1*

Dispersed colloidal particles that are set into systematic motion by a controlled external field

constitute excellent model systems for studying structure formation far from equilibrium.

Here we identify a unique demixing force that arises from repulsive interparticle interactions

in driven binary colloids. The corresponding demixing force density is resolved in space and in

time and it counteracts diffusive currents which arise due to gradients of the local mixing

entropy. We construct a power functional approximation for overdamped Brownian dynamics

that describes superadiabatic demixing as an antagonist to adiabatic mixing as originates

from the free energy. We apply the theory to colloidal lane formation. The theoretical results

are in excellent agreement with our Brownian dynamics computer simulation results for

adiabatic, structural, drag and viscous forces. Superadiabatic demixing allows to rationalize

the emergence of mixed, laned and jammed states in the system.
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The concept of mixing entropy in multi-component systems
is profound for our understanding and quantitative
description of complex systems. In equilibrium, mixing

entropy can overcome strong energetic repulsion that arises due
to internal interactions between the constituent particles. It is a
driving mechanism, if not an antagonist, for a wide range of
structuring and self-assembly phenomena1–12. The systems and
phenomena where mixing entropy plays a crucial role cover a
broad range, ranging from the fundaments of liquid state theory
to specific applications.

Mixing entropy was shown to be relevant for the determination
of the equation of state of binary mixtures of hard spheres1. It
determines phase behavior, such as entropy-driven phase tran-
sitions of colloid-polymer mixtures2, liquid-liquid immiscibility
in polymer solutions3, and the demixing transition in athermal
mixtures of colloids and flexible self-excluding polymers4. For the
liquid crystal physics displayed by anisotropic particles, mixing
entropy plays a role for the isotropic-nematic-nematic phase
separation for bidisperse rod-like particles5, and for rod-plate
mixtures, where biaxiality competes with demixing6. Mixing
entropy is relevant for percolation in binary and ternary mixtures
of patchy colloids7, and for selectivity in spatially inhomogeneous
binary fluid mixtures8.

Important technological applications where mixing entropy is
relevant include the capacitive mixing for harvesting the free
energy of solutions9, and in ‘blue energy’ from ion adsorption and
electrode charging in sea and river water10. Although in none-
quilibrium the situation is much less clear, gradients of position-
resolved mixing entropy fields were shown to be relevant e.g., for
the dynamics of liquid films with soluble surfactant11. Beyond the
soft matter realm, mixing entropy is relevant for the stability of
metallic alloys12.

Here, we identify and describe a competing effect that occurs in
genuine nonequilibrium and that can counteract diffusive forces
generated by the mixing entropy in a similar way that explicit
interparticle repulsion does in equilibrium. We show that this
effect is “superadiabatic” in character, i.e., it acts above all effects
that can be understood on the basis of an equilibrium (“adia-
batic”) reference state and its free energy. As we show, super-
adiabatic demixing is a genuine nonequilibrium effect and a
corresponding unique superadiabatic force density distribution
can be identified that acts spatially and temporally resolved in
nonequilibrium systems. As both a relevant application and a
demonstration of the concept we revisit the well-studied phe-
nomenon of colloidal lane formation in oppositely driven binary
mixtures, where for the first time we are able to rationalize
quantitatively, on the basis of a physical model of the underlying
superadiabatic effect, the emergence of nonequilibrium structure
formation in this system.

Results
Lane formation. We show in Fig. 1 characteristic snapshots of a
colloidal mixture of two species with repulsive interparticle
interactions driven in opposite directions. At low driving, Fig. 1a,
the diffusive forces generated by the entropy of mixing dominate
and the system remains in a homogeneous state with both species
flowing through each other. At high driving however the species
segregate into two lanes, Fig. 1b. Lane formation constitutes a
genuine nonequilibrium self-organization process that has
attracted much interest in the literature since it occurs in strik-
ingly different areas, ranging from colloidal systems13–18,
plasmas19,20, and lattice models21, to different kinds of living
systems, such as bacteria in channels22, ant trails23, and groups of
pedestrians24. Laning has also been studied when the external
driving directions of the two species are non-parallel to each

other25, have high shear rates26, or other characteristics such as
rotating magnetic field in channels, and periodic driving
with different friction coefficients27–29. Studies were devoted to
the influence of noise and of hydrodynamic interactions30,31,
as well as the characteristics of the transition toward laning in
two-dimensional systems32. Although the primary focus is
on purely repulsive model systems, such as model suspensions
of charged colloids, laning has also been shown to appear in
systems governed by attractive33 and by dipolar34 interparticle
interactions.

Physical mechanisms for laning were attributed to rectification
of diffusion on the particle scale35. The pair correlation functions

Fig. 1 Characteristic snapshots of a two-dimensional colloidal mixture in
a homogeneous (gravitational) external field. Particles of species 1
(orange) possess a positive buoyant mass, i.e., the external force acting on
them is directed downwards. Particles of species 2 (blue) have a negative
buoyant mass and hence upwards directed external force acting on them.
The arrows indicate the direction of the different forces in the system. The
color of the arrow shows the species on which the forces act, and its size
indicates the relative magnitude of the force as compared to the other
forces. At low external driving (a) the system is homogeneous. Forces only
act in the flow ŷ-direction. At high external driving (b) the system
segregates into lanes. The forces acting in the gradient x̂-direction
(diffusive, adiabatic, and structural) balance each other. The small white
arrows indicate the direction of the velocity inside the lanes.
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were considered to be the key observables to quantify the laning
phenomenon36. Theoretical treatments have been scarce. Based
on phenomenological versions of dynamical density functional
theory Chakrabarti and coauthors14,15 obtained a dynamical
instability as a steady-state bifurcation of the density field around
the onset of structural inhomogeneity in the simulations. Poncet
et al.36 used linearized stochastic density functional theory for the
pair correlation functions. Kohl et al.37 used a microscopic
approach, based on Kirkwood’s superposition approximation as a
closure relation, to also calculate nonequilibrium pair correlations
in strongly interacting driven binary mixtures. Wächtler et al.33

performed a stability analysis based on dynamical density
functional theory.

Despite this progress, a systematic theoretical framework
that would describe laning has not yet been formulated. Here,
we present a comprehensive theory for driven binary mixtures
that operates on the level of one-body correlation functions,
such as (partial) density and current distributions. The general
framework constitutes a closed theory, based on the power
functional concept for mixtures38,39. We present an approx-
imate form of the superadiabatic free power functional, which is
a functional generator of the nonequilibrium force distribu-
tions. Crucially, we demonstrate that the superadiabatic
demixing force fields are kinematic functionals, i.e., depend
not only on the density, but also on the flow fields. The
theory allows us to quantitatively describe the stability of
lane formation.

Dynamical one-body description. Let the positions of N particles
in d spatial dimensions be indicated by r1, …rN ≡ rN. We con-
sider systems that are composed of different species, labeled by α.
The set N α contains all particle indices i that belong to species α.
The dynamics of the system are governed by the coupled Lan-
gevin equations for overdamped Brownian motion,

γ_ri ¼ �∇iuðrNÞ þ fext;iðri; tÞ þ ξiðtÞ; ð1Þ
where γ is the friction constant against the implicit solvent (we
consider γ to be the same for all particles), the overdot denotes a
time derivative, ∇i indicates the derivative with respect to ri, u(rN)
is the interparticle interaction potential, fext,i(r, t) is an external
force field acting on particle i at position r at time t; here r is a
generic position coordinate. Furthermore ξi(t) is a stochastic
white noise force with vanishing mean, 〈ξi(t)〉= 0, and auto-
correlation given by

hξiðtÞξjðt0Þi ¼ 2γkBT1δijδðt � t0Þ; ð2Þ
where the angles denote an average over the realizations of the
noise, kB indicates the Boltzmann constant, T is absolute tem-
perature, 1 is the d × d-unit matrix, and δ(⋅) is the Dirac delta
distribution. In practice, we discretize the equations of motion,
Eq. (1), with a finite time step Δt, and integrate in time using the
Euler algorithm.

We define the one-body density and current distribution
functions, respectively, for each species α as

ραðr; tÞ ¼
X
i2N α

δðr� riÞ
* +

; ð3Þ

Jαðr; tÞ ¼
X
i2N α

δðr� riÞvi
* +

; ð4Þ

where the angles denote an average both over the noise as
before, but also over the set of initial states; the velocity of

particle i is given by a symmetric time derivative, vi(t)=
(ri(t + Δt) − ri(t − Δt)) ∕ (2Δt) (see e.g., appendix A of ref. 40 for
the derivation). We obtain the microscopically resolved velocity
profile of species α as the ratio

vαðr; tÞ ¼
Jαðr; tÞ
ραðr; tÞ

: ð5Þ

The continuity equation holds individually for each species,

∂ρα
∂t

¼ �∇ � Jα; ð6Þ

where ∇ indicates the derivative with respect to r.
The one-body equation of motion translates the sum of all

forces that act into local motion. The dynamics on the one-body
level are specified by the (exact) force density balance relationship

γJα ¼ �kBT∇ρα þ Fαint þ ραf
α
ext; ð7Þ

where the three terms on the right hand side constitute the force
densities due to thermal diffusion, internal interactions, and
external influence. Due to the overdamped character of the
dynamics, the sum of these forces directly induces a current, cf.
the left hand side of Eq. (7). Here, the internal force density field
arises from the interparticle interaction potential u(rN) and is
defined via the average

Fαintðr; tÞ ¼ �
X
i2N α

δðr� riÞ∇iuðrNÞ
* +

: ð8Þ

Furthermore the external force field fαextðr; tÞ in Eq. (7) acts on
particles of species α, hence the external force acting on particle
i 2 N α, as appearing in the Langevin equation, Eq. (1), is given
by fext;iðri; tÞ ¼ fαextðri; tÞ.

The internal one-body force density distributions can be split
into adiabatic and superadiabatic one-body contributions38,39,41,
according to

Fαint ¼ Fαad þ Fαsup: ð9Þ
Here, the adiabatic force density distribution Fαadðr; tÞ is defined

as the internal force density that occurs in a corresponding
“adiabatic” equilibrium system that is defined by having the same
partial density distributions as the nonequilibrium system,
ρadα ðrÞ ¼ ραðr; tÞ, ∀α. The adiabatic force density is also defined
by Eq. (8), but with the crucial alteration that the average is now
taken over an equilibrium probability distribution (i.e., that of the
adiabatic system). Here, the external “adiabatic” one-body
potentials Vα

adðrÞ act on species α in order to stabilize the given
partial density distributions, via (conservative) force fields
�∇Vα

adðrÞ.
The superadiabatic force density distribution Fαsupðr; tÞ in Eq.

(9) contains therefore all nonequilibrium effects which arise due
to the presence of the flow in the system.

Dividing Eq. (7) by the partial density ρα and using Eqs. (5)
and (9) we obtain the species-resolved force balance:

γvα ¼ �kBT∇lnρα þ fαad þ fαsup þ fαext: ð10Þ
The total density profile ρ(r, t) and the total current

distribution J(r, t) can be obtained, respectively, by summation
of Eqs. (3) and (4) over all species, i.e.,

ρðr; tÞ ¼
X
α

ραðr; tÞ; ð11Þ

Jðr; tÞ ¼
X
α

Jαðr; tÞ: ð12Þ
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In analogy to the partial velocity, Eq. (5), the mean total
velocity is then obtained as

vðr; tÞ ¼ Jðr; tÞ
ρðr; tÞ : ð13Þ

Summing the species-resolved continuity equation, Eq. (6),
over all species and using Eqs. (11) and (12) yields the total
continuity relation as

∂ρ

∂t
¼ �∇ � J: ð14Þ

Analogously, summing the species-resolved force density
balance, Eq. (7), over all species yields the total force density
balance,

γJ ¼ �kBT∇ρþ Fint þ Fext; ð15Þ
where the total internal force density field is Fint ¼

P
α F

α
int, with

the force density Fαint acting on species α defined via Eq. (8) and
the total external force density given by Fext ¼

P
α ραf

α
ext.

We next divide Eq. (15) by the total density profile ρ(r, t) and
use the definition of the total velocity profile, Eq. (13), in order to
obtain

γv ¼ �kBT∇lnρþ f int þ fext; ð16Þ
where we have defined the total internal and external force fields,
fint(r, t) and fext(r, t), respectively, as

f int ¼ Fint=ρ; ð17Þ

fext ¼
X
α

ρα
ρ
fαext: ð18Þ

As we demonstrate below, fint(r, t) is one crucial one-body field
that enables us to rationalize the nonequilibrium behavior of
driven mixtures.

We restrict ourselves in the following to binary mixtures, such
that the species are labeled by α= 1, 2. We view the total force
field fint to act on both species in the same way, and also
introduce a differential force density Gint(r, t) which drives the
two species through and against each other. Hence using fint and
Gint we express the underlying species-resolved internal force
density fields Fαint for α= 1, 2 as

Fð1Þint ¼ ρ1f int þ Gint; ð19Þ

Fð2Þint ¼ ρ2f int � Gint: ð20Þ
We can invert this relationship and use Eq. (17) to obtain

Gint ¼
ρ2
ρ
Fð1Þint �

ρ1
ρ
Fð2Þint : ð21Þ

Hence Eqs. (17) and (21) express a variable transformation

from the species-resolved force densities Fð1Þint ðr; tÞ and Fð2Þint ðr; tÞ to
the total force field fint(r, t) and the differential force density
Gint(r, t). As we demonstrate below, each of the new one-body
fields describes a unique physical effect. Briefly, fint contains
effects that are also present in a one-component system, while
Gint contains the genuine mixture contributions, such as drag and
superdemixing.

The dynamics of the total density field are still governed by
Eq. (16). To describe the mixture contributions, we introduce the
density difference ρΔ and the current difference JΔ, respectively, via

ρΔ ¼ ρ2 � ρ1; ð22Þ

JΔ ¼ J2 � J1; ð23Þ
where the continuity equation ∂ρΔ ∕ ∂t=−∇ ⋅ JΔ is readily
obtained from subtraction of the species-resolved continuity

equations, Eq. (6). We define the differential external force
density as

FΔext ¼ Fð2Þext � Fð1Þext � ρ2f
ð2Þ
ext � ρ1f

ð1Þ
ext : ð24Þ

The corresponding equation of motion is obtained by building
the difference of the species-resolved one-body force density
balance, Eq. (7), for α= 1 and 2, which yields

γJΔ ¼ �kBT∇ρΔ þ f intρΔ þ 2Gint þ FΔext; ð25Þ
where, as before, fint(r, t) is given by Eq. (17) and Gint(r, t) is
given by Eq. (21). The structure of Eq. (25) is crucial for the
dynamics of driven mixtures. The differential current (left hand
side) emerges from four different types of force density (right
hand side): the first term is the ideal diffusive force density field
due to gradients in the density difference. The second term
generates a transport effect on ρΔ which is induced by the
presence of fint. The third term is a genuine mixture contribution
that acts directly on the density difference; recall the definition of
Gint, Eq. (21). The fourth term is due to the external influence, cf.
Eq. (24).

We next split the fields into adiabatic contributions (i.e., those
that can be understood on the basis of a corresponding
equilibrium system with the same partial density profiles) and
superadiabatic contributions of genuine nonequilibrium char-
acter, according to

f int ¼ fad þ f sup; ð26Þ

Gint ¼ Gad þ Gsup: ð27Þ
Due to linearity, the same variable transformation as before,

Eqs. (17) and (21), relates the terms on the right hand side with
the species-resolved force densities, Eq. (9). Hence for the
adiabatic contributions:

fad ¼ Fad=ρ; ð28Þ

Gad ¼
ρ2
ρ
Fð1Þad � ρ1

ρ
Fð2Þsup; ð29Þ

where the total adiabatic force density is defined as Fad ¼
P

α F
α
ad.

For the superadiabatic contributions:

f sup ¼ Fsup=ρ; ð30Þ

Gsup ¼
ρ2
ρ
Fð1Þsup �

ρ1
ρ
Fð2Þsup; ð31Þ

where the total superadiabatic force density is defined as
Fsup ¼

P
α F

α
sup.

We summarize by inserting the adiabatic-superadiabatic
splitting, Eqs. (26) and (27), into the velocity equation of motion,
Eq. (16), and into the differential current, Eq. (25), which yields,
respectively,

γv ¼ �kBT∇lnρþ fad þ f sup þ fext; ð32Þ

γJΔ ¼ �kBT∇ρΔ þ ρΔfad þ ρΔf sup

þ 2Gad þ 2Gsup þ FΔext:
ð33Þ

Equations (32) and (33) form the basis of our subsequent
classification of the different types of occurring physical effects.

Ideal mixture. In order to highlight the fundamental none-
quilibrium effects, we particularize to an “ideal”mixture, in which
the internal interactions do not depend on the type of particle.
Formally, this implies that the value of the internal interaction
potential u(rN) is unchanged under permutation of the positions.
For pair potentials (as we consider below) the inter-species pair
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potentials ϕαα(r) are identical to each other and are identical to
the cross interaction potential ϕαα0 ðrÞ between particles of dif-
ferent species α and α0. Hence, ϕαα0 ðrÞ ¼ ϕðrÞ, where ϕ(r) is a
universal function. Given that all the internal interactions are the
same, the adiabatic force field only has a nontrivial component,
fαad ¼ fad, where fad is universal (independent of species). No
differential component occurs in the adiabatic system, hence Gad

= 0, which simplifies the dynamics, cf. Eq. (33). Importantly, this
symmetry does not apply to the external force field. Hence, in
general fαextðr; tÞ≠ fα

0
extðr; tÞ for α≠ α0, which imprints differences

into the kinematic one-body fields ρα and Jα during the time
evolution. Such driving is far from trivial. One might picture
differently colored particles being driven through each other.

Next, we consider a special simplifying situation consisting of
steady states characterized by a single direction of the flow along
which all vector fields point, i.e., v, v1, v2, J, J1, J2 are all collinear.
In the simulation results shown below this is the ŷ-direction (the
flow is in the “vertical” direction). All gradients in the system also
share a common direction, which is orthogonal to the flow. In the
simulations, this is the x̂-direction (the system is “horizontally”
inhomogeneous). Such “perpendicular flow” geometry forms a
class of common nonequilibrium situation encompassing e.g.,
simple shear flow, steady flow between parallel plates etc.

We split the superadiabatic forces into viscous (subscript
“visc”), drag, and structural (subscript “struc”) contributions
according to

f sup ¼ fvisc þ f struc; ð34Þ

Gsup ¼ Gdrag þ Gstruc; ð35Þ
where, as we show, fvisc is a viscous force field that arises from
total shear motion, fstruc is a structural force field that sustains
gradients of the total density distribution, Gdrag is a super-
adiabatic force density distribution that describes the friction
effect that occurs due to counterflow (i.e., when vΔ ≠ 0), and Gstruc

is the superadiabatic demixing force density. We demonstrate the
validity of this interpretation below. On a formal level, the
splitting in Eqs. (34) and (35) is uniquely defined by fvisc and
Gdrag acting collinear with the flow, and fstruc and Gstruc acting
perpendicular to it.

We can now separate the equations of motion according to the
direction of the forces. In the flow direction, using Eqs. (34) and
(35), we obtain from Eqs. (32) and (33), respectively,

γv ¼ fvisc þ fext; ð36Þ

γJΔ ¼ ρΔfvisc þ 2Gdrag þ FΔext; ð37Þ
which indicates that the total (scaled) flow (γv) arises from a
competition of the external driving (fext) and the viscous forces
(fvisc). The differential current (γJΔ) is counteracted by a transport
effect that the viscous forces exert on the density difference
(ρΔfvis), and the drag that any counterflow of the two species
induces (2Gdrag), and it is driven by the external differential force
density (FΔext).

In the gradient direction, we also use Eqs. (32) and (33),
respectively, to obtain

0 ¼ �kBT∇ln ρþ fad þ f struc ð38Þ

0 ¼ �kBT∇ρΔ þ ρΔðfad þ f strucÞ þ 2Gstruc: ð39Þ
Here, remarkably, the external forces do not appear explicitly.

Equation (38) constitutes a force balance relationship, where the
sum of the diffusive force, the adiabatic force, and the structural
force cancel, such that no motion occurs. Equation (39) is crucial
for understanding the physics of driven mixtures: The sum of the

diffusive force density difference, −kBT ∇ ρΔ, and the effect of
total adiabatic and structural force fields on the density difference,
ρΔ(fad+ fstruc), is balanced by the structural differential force
density, 2Gstruc. This implies that Gstruc ≠ 0 can induce a density
contrast ρΔ ≠ 0 in the system.

We can now revert to the species-labeled description and start
from the general relationship

vα ¼ ρv ± JΔ
ρ ± ρΔ

; ð40Þ

where the upper sign (+) applies to species 1, and the lower sign
(−) applies to species 2. Application to the perpendicular
geometry results in the following balance relations in the flow
direction and in the gradient direction

γvα ¼ fvisc ±
Gdrag

ρα
þ fαext ðflowÞ; ð41Þ

0 ¼ fad þ f struc ±
Gstruc

ρα
� kBT∇lnρα ðgradÞ; ð42Þ

where again ± corresponds to α= 1, 2. As we have four
equations for the four unknown superadiabatic fields, we can
solve for these, with the results:

fvisc ¼ γv � fext; ð43Þ

Gdrag ¼
γ

2
ðJΔ � ρΔv þ ρΔfext � FΔextÞ ð44Þ

f struc ¼ kBT∇lnρ� fad; ð45Þ

Gstruc ¼
kBT
ρ

ρ1∇ρ2 � ρ2∇ρ1
� �

; ð46Þ

where fext is the total external force field given by the
linear combination, Eq. (18), and FΔext is the differential external
force density defined via Eq. (24); both fields depend on the
partial density profiles. As all quantities on the right hand side of
Eqs. (43–46) are accessible in simulations, we have formulated a
means to obtain a complete splitting of the nonequilibrium force
contributions in the system.

The total species-resolved superadiabatic force field is then
given by

fαsup ¼ fvisc ±
Gdrag

ρα
þ f struc ±

Gstruc

ρα
; ð47Þ

where the first and the second term on the right hand side act in
flow direction, and the third and the fourth term act in the
gradient direction; again ± corresponds to α= 1, 2.

At the end of the results section we also analyze briefly a
second case in “planar” geometry, in which there is only a single
direction in the system (ŷ) along which the flow occurs and also
all gradients point. The system is transitionally invariant in x̂. As
the flow occurs in the direction of the gradients, in general, such
situations will be nonstationary, i.e., time-dependent.

Power functional approximation. Power functional theory38

(PFT) is an exact variational approach to nonequilibrium
dynamics in overdamped Brownian systems. PFT reduces to
density functional theory in equilibrium. Within PFT, the
superadiabatic force is obtained as a functional derivative with
respect to the current,

fαsup ¼ � δPexc
t ½fρα0 ; Jα0 g�

δJα
: ð48Þ

Here Pexc
t is the superadiabatic excess power functional38, which

is a functional of the density and current profiles of both species
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{ρα, Jα}. The superadiabatic force is therefore also a functional of
both types of one-body fields: density profiles and current
profiles.

Approximations for Pexc
t in monocomponent systems based on

a series expansion of gradients of the velocity field have been
proposed in refs. 42,43. The resulting superadiabatic forces
describe viscous42 and structural effects43. In a binary mixture,
besides the velocity gradients, the velocity difference between
both species vΔ= v2− v1 is a further key ingredient to construct
approximated power functionals44.

The following approximation for Pexc
t reproduces semiquanti-

tatively all types of superadiabatic forces in the system considered
here:

Pexc
t ¼ Cvisc

2

Z
drρ2 ∇ ´ vð Þ2 ð49Þ

þCdrag

2

Z
drρ1ρ2v

2
Δ ð50Þ

�Cstruc

X
α

Z
drρ2v2Δ∇ � Jα ð51Þ

þ Dstruc

X
α

Z
drρ2 ð∇ ´ vαÞ ´ vΔ½ �0 � vΔ; ð52Þ

where ρ2 indicates the square of the total density profile, as
defined Eq. (11). The functional consists of four different terms,
each one accounting for one type of superadiabatic force. The
spatial dependence is local in density and semi-local (via the
gradient) in velocity. The functional form in Eqs. (49–52) is based
on expressions that contain low powers of the density and
velocity profiles. The expressions in Eqs. (49) and (51) are of
velocity gradient form42, with the former describing viscous42 and
the latter describing structural effects43. Furthermore, the
differential velocity vΔ, which captures the degree of interflow
of the two components, appears quadratically in Eq. (50) as is
appropriate to describe drag effects44. It couples in Eq. (51) to the
divergence of the current, which creates a structural force. Finally,
Eq. (52) generates the superdemixing force, as we will
demonstrate below.

The prefactors of each term in Eqs. (49–52) are positive
constants that represent the amplitude of the respective super-
adiabatic force contribution. We use these coefficients as fitting
parameters (Numerical values are given below in the caption of
the respective figure). In reality, these prefactors depend on
microscopic features of the model, as the interparticle potential
and are, in general, functionals of the density. The prime in
Eq. (52) indicates the following time integral

ð∇ ´ vαÞ ´ vΔ½ �0 ¼
Z t

0
dt0Kðt � t0Þð∇ ´ v0Þ ´ v0; ð53Þ

with K(t) being a temporal convolution kernel with normalization
∫dtK(t) = 1 and the primes on the right hand side indicate
dependence on t0. We do not investigate the specific form of K(t)
in the present work further, as we are primarily concerned with
steady states. The effective role that the kernel plays in steady
state is that the functional derivative in Eq. (48) does not act on
the primed terms.

The viscosity term. Equation (49), is the lowest order term in a
power series expansion in the velocity gradient42 and accounts
for the Stokes-like viscous force. A similar term containing
the square of the divergence of the average velocity, instead of
the square of the curl, does not produce any force in the
current setup, since the velocity profile is free of divergence.
The superadiabatic viscous force that results from differentiating

Eq. (49) is species-independent and given by

fvisc ¼
Cvisc

ρ
∇ρ2 � ∇v � ∇ � ρ2ð∇vÞ>

� �
ð54Þ

¼ Cvisc

ρ
∇xðρ2∇xvyðxÞÞŷ; ð55Þ

where the leftmost derivatives act on each entire expression, and
the second equation, Eq. (55), has been particularized for our
current setup vðrÞ ¼ vyðxÞŷ and constitutes a force in flow
direction.

The second term, Eq. (50), describes the drag of particles of
one species due to the flow of particles of the other species44.
The resulting superadiabatic force is species-dependent. The
corresponding force density is:

Gdrag ¼ Cdragρ1ρ2vΔ: ð56Þ
The structural superadiabatic force generated by the third term,

Eq. (51), is species-independent,

f struc ¼ �Cstruc∇ ρvΔð Þ2: ð57Þ
As we will see, this force balances the sum of the adiabatic force

and the diffusive force of the total density gradient.
The last term, Eq. (52), is also structural and the only one

generating the superdemixing. The force density obtained via
functional differentiation of Eq. (52) is

Gstruc ¼ �Dstrucρ
2
X
α

ð∇ ´ vαÞ ´ vΔ½ �0; ð58Þ
where only the functional derivative with respect to the unprimed
velocity difference in Eq. (52) produces a force due to the
structure of Eq. (53). Before presenting results, we first lay out the
specifics of the microscopic model that we consider.

Brownian dynamics simulations. In the following we explicitly
consider an equimolar two-dimensional binary mixture with a
total of N= 1066 particles (N 1 ¼ N 2 ¼ 532) interacting via the
same quasi-hard core pair potential ϕ(r)= ϵσ/r36. Here, σ denotes
the characteristic particle size, which sets our length scale, and ϵ
sets the energy scale. The particles are subject to a homogeneous
gravitational field in ŷ-direction,

fαext ¼ �mαgŷ; ð59Þ
where g is the acceleration due to gravity, ŷ is a unit vector along
the vertical ŷ-direction, and mα is the buoyant mass of species α.
The only difference between the two species is that they have
opposite buoyant masses, i.e., m1=−m2. Although we make use
of a gravitational field to illustrate the process of lane formation,
other external fields such as magnetic and electric fields can also
be used.

We simulate the system using Brownian dynamics simulations
performed in a square simulation box of length L/σ= 35 with
periodic boundary conditions in both directions. The total bulk
density is hence ρbσ2=Nσ2∕L2= 0.87. The temperature is fixed to
kBT/ϵ= 0.5. The particle trajectories are integrated in time via the
Euler algorithm with a discrete time step Δt/τ= 3.0 × 10−5 in
units of the reduced time τ= σ2γ/ϵ. The simulations of the laned
state are initialized with the particles randomly located in a
homogeneous state. Once the steady state is reached the system is
sampled for a total time of ~106 τ.

Laned state. The magnitude of the external force that drives the
two species against each other, mαg, highly influences the beha-
vior of the system. Without gravity, particles of both species form
an effectively homogeneous one-component system in equili-
brium, in which the only difference between the species is an
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arbitrary label. At low values of gravity, the steady state remains
homogeneously mixed, and the particles are driven slowly
through each other, see the characteristic snapshot in Fig. 1a for a
value of the external field m1g= 0.05 ϵ/σ. No forces act in the
x̂-direction. The internal interactions lead to weak superadiabatic
drag forces in the (flow) ŷ-direction that partially counteract the
external force.

For sufficiently high external driving, such as e.g., m1g= 1 ϵ/σ,
the two species segregate into two lanes, see Fig. 1b. Each lane is
characterized by the concentration of one species being
significantly higher than that of the other (minority) species. In
each lane there is a current of particles parallel to the external
force corresponding to the dominant species. As shown above,
there occur superadiabatic drag and viscous forces opposing the
external forces, see Eqs. (36) and (37). In addition, in the
(gradient) x̂-direction there is a balance of forces, cf. Eqs. (38) and
(39). The sum of the ideal diffusion and the adiabatic force tries
to mix the two species. These forces are, however, canceled by
structural superadiabatic forces that keep the system in the
demixed laned steady state. A brief animation of the particle flow
in the homogeneous and in the laned stated is shown in
Supplementary Movie 1.

The density profiles of the laned state are shown in Fig. 2a.
There, the right lane (x > 0) is dominated by species 1 that
possesses a positive buoyant mass, i.e., the external force is
directed downwards. In the left lane (x < 0) the majority of
particles belongs to species 2 with negative buoyant mass and
therefore an upwards directed external force. Although here
species 1 predominantly occupies the right lane, the state is
degenerated in the sense that a swap of the two lanes can be
compensated by a shift by L/2 in the x̂-direction (due to periodic
boundary conditions). The total density profile, Fig. 2a, increases
toward the centers of the lanes and decreases at the interfaces,
although it is quite homogeneous as compared to the single
species density profiles.

In Fig. 2b we show the velocity profiles. Only the flow
component of the velocity profiles vyα does not vanish in steady
state. The total velocity profile clearly shows the motion of

particles in opposite directions in the two lanes, irrespective of the
species. The total velocity is directed downwards in the right lane
and upwards in the left lane, while being zero at the interfaces, as
is consistent with the symmetry of the system.

Forces acting in flow direction. We focus first on the species
resolved force balance equation, Eq. (10). The flow components
of the forces and of the force densities are presented in Fig. 2c, d,
respectively. In what follows we focus the discussion on species 1.
Due to the symmetry of the system the behavior of species 2
follows directly. Only two types of forces act in flow direction, the
constant external force field fαext, Eq. (59), and the superadiabatic
force field due to interparticle interactions fαsup. Adiabatic (fαad)
and diffusive (�kBT∇lnρα) forces appear only when gradients of
the density profile are present. As the system is homogeneous in
the flow direction, such contributions do not occur in this
direction. Therefore, the internal forces in flow direction are
purely superadiabatic.

For those particles located in the lane for which its species is in
the majority (e.g., species 1 in the right lane in Fig. 2b), the
velocity and the external force are parallel, while the internal force
opposes both. For those particles in the lane for which its species
is in the minority (e.g., species 2 in the right lane in Fig. 2b) the
velocity and the external force are antiparallel. This is caused by a
strong internal force, mostly created by particles of the opposite
species which dominates the lane, that drags the particles of the
minority species. The force densities in flow direction are shown
in Fig. 2d. Force and force densities in gradient direction are
depicted in Fig. 2e, f, respectively. The force densities are the
actual contributions to the current of particles (up to a
multiplicative constant given by the inverse friction coefficient)
and are therefore a macroscopically accessible quantity.

Next, we split the species-resolved superadiabatic forces,
Eq. (47), in flow direction in its species-dependent and species-
independent contributions, Eq. (41), which are the viscous force
fvisc, Eq. (43), and the drag ±Gdrag, Eq. (44), respectively. Both are
of the superadiabatic kind.

Fig. 2 Lane formation. Kinematic fields: (a) total density profile ρ (black dotted line) and partial density profiles ρ1 (orange solid line) and ρ2 (blue dashed
line), (b) flow component of the total velocity profile vy (black dotted line), see Eq. (13), and of the partial velocity profiles vy1 (orange solid line) and vy2 (blue
dashed line). Species-resolved forces (c) and force densities (d) acting in flow direction, Eq. (10): external fαext (dashed lines), and superadiabatic fαsup (solid
lines), which is the sum of viscous and drag, cf. Eq. (47). Species-resolved forces (e) and force densities (f) acting in gradient direction: sum of adiabatic
and diffusive forces (dotted lines) and superadiabatic (solid lines), cf. Eq. (42). In all plots the line color indicates the species: orange (blue) for species 1
(2). The arrows indicate the direction of the force or force density. Black circles indicate points where the force or force density vanishes. All plots are for
driving m1g= 1.0ϵ∕σ and all values are presented as functions of the x-coordinate.
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The forces are shown in Fig. 3a, b, and the force densities in
Fig. 3c. The species-dependent term ±Gdrag is the dominant part
and describes the drag of one species due to motion of the other
species. For example, for species 1 this force density is high in the
lane of particles of species 2 (left lane) and points upwards. The
species-independent force fvisc points in the direction opposite to
the total velocity v, as corresponds to a viscous effect. The
amplitude of the viscous force is relatively small as compared to
that of the drag force. However, the maxima (absolute value) of
fvisc occur at the peaks of the partial densities. As a result, the
viscous force density ραfvisc introduces a relevant correction to the
dominant species-dependent force density, see Fig. 3c.

A comparison between the Stokes-like viscous force predicted
by our power functional approximation, Eq. (55), and the viscous
force measured in simulations is shown in Fig. 3b. The predicted
force has the correct sign everywhere (opposite of the total flow).
However, due to the spatially local approximation taken in
Eq. (55) and the strong driving conditions, the agreement is not

perfect. The drag force predicted by PFT, Eq. (56), also shows a
good agreement with the simulation data, see Fig. 3c.

Forces acting in gradient direction. In the gradient direction x̂,
which is perpendicular to the flow, no external force is applied
and the system is in steady state with no flow along this direction,
cf. Eq. (42). The density modulation (formation of lanes), Fig. 2a,
is solely created by the flow along ŷ, Fig. 2b.

The species-resolved net force balance, Eq. (10), vanishes in
the x̂-direction, and both adiabatic fαad and superadiabatic fαsup
forces contribute to the internal force. For species 1 the sum of
adiabatic and diffusive, �kBT∇lnρα, forces attempts to move
particles in the center of the simulation box to the left and
particles at the borders of the box to the right, see Fig. 2e, f.
Hence, as could be expected, the sum of the diffusive and the
adiabatic forces pushes particles outside of the majority lane and
therefore tries to mix the two species by eliminating density
gradients. The superadiabatic force in gradient direction balances
the diffusion and the adiabatic forces by pushing particles into
their majority lane and out of their minority lane, Fig. 2e, f. The
superadiabatic force is therefore the only force that creates and
sustains the demixing and segregation into lanes in steady state.
Superadiabatic forces are therefore crucial for the description of
lane formation, as expected given the nonequilibrium nature of
the phenomenon.

The adiabatic forces are obtained by sampling the internal
forces in the adiabatic equilibrium system. The adiabatic
equilibrium system is also a symmetric mixture with the same
quasi-hard interparticle interactions regardless of the species. The
only difference between the real nonequilibrium and the adiabatic
equilibrium systems is that the external nonconservative driving
force is switched off in the adiabatic equilibrium system and
replaced by conservative external forces generated by two
potentials Vα

ad that reproduce the same density profiles as in
nonequilibrium. The adiabatic potentials are obtained following
the procedure described in “Methods” section, where also results
are shown for the adiabatic potentials and the density profiles in
the adiabatic system.

In the adiabatic system, the external potential counteracts both
the ideal diffusive force �kBT∇lnρα and the adiabatic (internal)
force fαad. The diffusive force and the adiabatic force have two very
distinct effects, which are schematically illustrated in Fig. 4a.
Quantitative plots of both force and force density profiles for
species 1 are shown in Fig. 4b, c, respectively. Force and force
density profiles for species 2 are depicted in Fig. 4d, e. The
diffusive force is the only force that attempts to mix both species.
In contrast, the adiabatic force field is the same for all particles,
independently of the species, due to the symmetry of the internal
interactions. That is fαad ¼ fad, as discussed before. The adiabatic
force tries to eliminate the density gradients of the total density
profile ρ= ρ1+ ρ2 by pushing particles of both species toward the
interfaces between the two lanes.

We next split the species-resolved superadiabatic forces, Eq.
(47), into the species-independent fstruc, Eq. (45), and the species-
dependent ±Gstruc, Eq. (46), contributions in gradient direction.
Both contributions are of the structural type in the sense that they
sustain the density gradients and are non-dissipative. Fig. 5a
illustrates schematically the different effects of fstruc and Gstruc.
The actual profiles are displayed in Fig. 5b, c.

The species-independent superadiabatic force in gradient
direction, fstruc, pushes particles from the interfaces toward the
centers of the lanes, creating the total densty modulation, see
Fig. 5b. fstruc is almost the opposite of the adiabatic force fad, as
shown in Fig. 5d where we plot the adiabatic force, and −fstruc.
These two terms, however, do not exactly cancel each other as the

Fig. 3 Superadiabatic forces in flow directions as a function of the
x − coordinate. a Species-independent superadiabatic force fvisc (dark solid
green), species-dependent superadiabatic force acting on species 1 (solid
orange), Gdrag∕ρ1, and 2 (solid blue), −Gdrag∕ρ2. b Enlarged view of the
viscous force. c Species-dependent force density Gdrag acting on species 1
(solid orange), and species-independent force density acting on species 1
(orange-dark green), fviscρ1. The arrows (colored according to the
corresponding data set) indicate the direction of the force. The symbols
show the theoretical predictions for the viscous force (a), (b) force and the
drag force density (c). We have set Cvisc= 2ϵτσ2 and Cdrag= 8.5ϵτ in Eqs.
(55) and (56), respectively.
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sum of fstruc and the adiabatic force shows a clear signal (see
Fig. 5e) that cancels exactly the diffusive force orginated by
the gradient of the total density profile, cf. Eq. (45). This diffusive
term also describes a species-independent effect.

The species-dependent force density +Gstruc transports particles
of species 1 away from the left lane into the right lane, see Fig. 5c.
The term −Gstruc acts on particles of species 2 in the opposite
way. This superadiabatic contribution is precisely the opposite of
the contribution due to the local demixing, compare Fig. 5c and
the diffusive force density shown in Fig. 4c. Therefore, the species-
dependent term Gstruc sustains the demixing of the two species in
two lanes in steady state.

The sum of both superadiabatic structural terms in gradient
direction cancels the diffusive and the adiabatic contributions, cf.
Eq. (42). Our power functional approximation, Eqs. (57) and
(58), is in very good agreement with the simulation data for both
fstruc and Gstruc as shown in Fig. 5b, c, respectively.

Jammed state. We conclude the results section with a brief
discussion of the jammed state, see Fig. 6a. The jammed state
can be found at intermediate values of gravity, and in it flow
and gradient directions coincide. This state occurs if the two
species block each other during the diffusive process induced by

Fig. 4 Adiabatic forces. a Partial snapshots of the laned state at gravity m1g= 1.0ϵ∕σ. The arrows indicate the direction of the forces acting on species 1 and
2. The diffusive force field �kBT∇lnρα (violet arrows) tries to mix both species. The adiabatic force field (green) is the same for both species. Force (b) and
force density (c) profiles acting on species 1 in x̂-direction as a function of x: total force: adiabatic plus diffusion (orange dotted), diffusive force (violet
dashed), and adiabatic force (green solid). Panels d and e are the same as panels b and c, respectively, but for species 2: total force (blue dotted), diffusion
(violet dashed), and adiabatic (green solid).

Fig. 5 Superadiabatic forces in gradient direction. a Partial snapshots of the laned state (m1g= 1.0ϵ∕σ). The arrows indicate the direction of the species-
independent fstruc and dependent ± Gstruc superadiabatic forces in gradient direction. The brightness of the particles in the upper snapshot indicates the
total density modulation (brighter regions are less dense). Species-independent superadiabatic force fstruc (b) and species-dependent force density Gstruc

acting on species 1 (c). Lines are simulation data and symbols denote the power functional approximation given in Eqs. (45) and (58) with parameters
Cstruc= 10.5ϵτ2σ2, and Dstruc= 0.73ϵτ2. d Negative of the species-independent superadiabatic force−fstruc (dark green dashed) and the adiabatic excess
force fad (bright green solid). e Negative of the thermal diffusion force associated to the total density (blue) and sum of the species-independent
superadiabatic force and the adiabatic force (black dotted).
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the external field. The state is homogeneous in x̂-direction,
and it is characterized by a significant change of the total
density in ŷ-direction. The opposite external driving of the two
species leads to the formation of a compressed region with
similar concentrations of both species, high total density, and
incipient crystalline order. This region is surrounded by
two regions rich in particles of only one species that press
against the compressed area. In the jammed state, strong
superadiabatic forces act against the external fields. In addition,
the adiabatic and diffusive forces try to smooth the total density
profile. In contrast to the laned state, the demixing in the
jammed state occurs along the direction of the external driving
force. In our simulations the jammed state is metastable, but it
persists for very long times, which allows for systematic study
of the forces.

To characterize the jammed state we set the gravity to m1g=
0.7ϵ ∕ σ and split the time evolution of the system in time windows
of 20τ. Only those time windows in which the difference between
the maximum and the minimum of the total density is higher
than 0.2σ2 are considered to be in the jammed state. We have
found by visual inspection of microstates that this is a sufficiently
accurate criterion for identifying states that one would classify as
being transiently jammed. For flowing states and for less well-
characterized states, the density distribution is typically more
homogeneous, such that the chosen criterion removes these states
from the sampling. Using several simulations, we average over
these relevant windows for a total sampling time of 105 τ. The
density profiles, Fig. 6b, show the demixing along the ŷ-axis.
The particles of species 1 (2) accumulate at the top (bottom) of
the simulation box. In the center of the box there is a region with
similar concentrations of both species. The total density shows a
small modulation with a global maximum located in the middle
of the box (in each time window we translate the data such that
the maximum density occurs in the the middle of the box). The
velocity profiles are shown in Fig. 6c. Only the ŷ-component of
the velocity is non-zero. The total velocity is almost negligible
across the entire systemf. The velocity of species 1 almost
vanishes everywhere except at the bottom of the simulation box,
i.e., in the region rich in particles of species 2. Here, the velocity of
species 1 is negative. Hence, particles of species 1 move toward
the top of the simulation box (recall that we use periodic
boundary conditions) where the species 1 dominates. Exactly the
opposite behavior is observed in species 2, as expected due to
symmetry considerations.

The total current vanishes, see Fig. 6d, and the partial currents
are small and indicate that the system is still undergoing
compression. Given that the partial currents are not constant, it
is clear the system is not in steady state. Nevertheless, the currents
are very small and rather homogeneous, which justifies the
assumption of a quasi-steady state. For other systems the jammed
state has been observed to be steady. This is the case of a 2D hard
disk system with very low opposite driving at zero temperature45,
and also on a square lattice model21.

The species-resolved forces in ŷ-direction split into diffusion,
adiabatic, superadiabatic, and external, cf. Eq. (10). Plots of each
contribution are shown in Fig. 6e. We compute the adiabatic
force via the adiabatic potential, as described in “Methods”
section.

The (constant) external force for both species point in opposite
directions. The sum of the thermal diffusion and the adiabatic
force is for both species positive at the top and mostly negative at
the bottom of the simulation box. Hence, this force field tries to
smooth the density modulations by transporting particles away
from the center toward the low density regions. The super-
adiabatic force for species 1 is everywhere directed upwards
against the external force and has a maximum at the bottom of
the sample, the region dominated by species 2.

The thermal diffusion and the adiabatic force acting on species
1 are shown in Fig. 6f. The adiabatic force is positive at the top of
the box and negative at the bottom, moving particles away from
the center in order to smooth the total density profile. Similarly,
the ideal diffusion force tries to smooth the partial density profile
of species 1.

Recall that in the laned state, the diffusive force is the only
force counteracting the demixing, while the adiabatic force has a
phenomenologically irrelevant effect. In the jammed state,
however, the adiabatic force has a prominent effect, while the
diffusion term is only a small contribution to the forces present in
the adiabatic state. The flow in the jammed state is curl-free
instead of divergence-free (which is the case in in the laned state).
Hence, the leading terms in the expansion of the excess free
power for the viscous and the species-independent structural
forces will differ from those in Eqs. (49) and (52), respectively.

Discussion
By splitting the nonequilibrium superadiabatic forces of a binary
colloidal mixture into species-dependent and independent

Fig. 6 Jammed state formed at intermediate values of the external driving. a Characteristic snapshot. The orange (blue) arrows indicate the forces acting
on species 1 (2). b Total density profile ρ (black dotted line), and partial density profiles ρ1 (solid orange) and ρ2 (blue dashed). c Total velocity profile vy

(black dotted), and partial velocity profiles vy1 (orange solid) and vy2 (blue dashed). d Current profiles: total current profile jy (black dotted), and partial
current profiles jy1 (orange solid) and jy2 (blue dashed). e Forces acting in ŷ-direction: external (dashed), diffusive plus adiabatic (dotted), and superadiabatic
(solid). The color indicates the species: orange (blue) for species 1 (2). f Adiabatic and diffusive forces acting in ŷ-direction acting on species 1: Sum of both
forces (orange dotted), adiabatic (green solid), and ideal diffusion (purple dashed). Data obtained for a value of gravity m1g = 0.7ϵ∕σ. All quantities are
presented as a function of the y-coordinate.
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contributions, we have identified a structural force contribution
that induces demixing of two different species in nonequilibrium.
This superadiabatic force is responsible for the formation of lanes
in oppositely driven binary colloidal systems. The force coun-
teracts the ideal thermal diffusive force that arises as a con-
sequence of the mixing entropy generated by a gradient in
composition between the two lanes.

The entropy-driven demixing that occurs in equilibrium mix-
tures of hard bodies, see e.g., ref. 46, is a well-known phenom-
enon. There, the interparticle interactions generates an internal
adiabatic force that counteracts the ideal entropy of mixing
(diffusive force) and hence sustains the density gradients. The
mechanism behind the demixing in lane formation is completely
different. Here, the adiabatic force only leads to a minor mod-
ulation of the total density and does not attempt to demix the
species. Although we have analyzed ideal symmetric mixtures, we
expect this to be true also in asymmetric mixtures that could be
considered in future studies.

Lane formation is a purely superadiabatic effect. Consequently
a direct theoretical description of laning via dynamical density
functional theory47–49, in which only adiabatic forces are con-
sidered, is not possible and phenomenological ad-hoc corrections
must be included14. For the related, but different case of colloidal
suspensions in confinement, Aerov and Krüger argued50 that
dynamical density functional is insufficient to describe the effects
of shear.

We have presented here a different approach based on power
functional theory38, an exact variational approach for none-
quilibrium situations. Power functional theory incorporates
superadiabatic effects via a functional of both density and velo-
city profiles. Our power functional approximation reproduces
semiquantitatively all superadiabatic forces present in the
system, and, to the best of our knowledge, it constitutes the first
theoretical approach that describes lane formation from first
principles.

Although we have focused our study on lane formation, our
approach to analyze the force contributions and our power
functional approximation are general and applicable to other out-
of-equilibrium situations in multicomponent colloidal systems. In
particular, our work paves the way to study superadiabatic forces
inside channels where ratchet-like wall shapes can determine the
direction of the motion within the lanes51, and the description
using power functional theory of the complete dynamics of
sedimentation of binary mixtures from an initial uniform state to
the formation of the sedimentation-diffusion-equilibrium stack-
ing sequence52,53. The power functional approach presented here
can also help to understand the differences and similarities
between lane formation in oppositely driven mixtures and in one-
component sheared systems54,55. There, the formation of lanes in
steady state is induced by a shear field and likely sustained by a
superadiabatic force. It would be interesting to relate the laning
effect to the physics of active Brownian particles. The power
functional approach is well equipped for systematic investigation
of the underlying coupled nature of the nonequilibrium many-
body systems, as the different types of driving (whether
active44,56–58 or external as in the present case) enter explicitly;
the superadiabatic free power functional, however, is a universal
object, independent of the specific form of driving.

Methods
Adiabatic construction. The internal force field is a functional of the density and
the velocity profiles and can be split into adiabatic and superadiabatic con-
tributions. Mathematically, the adiabatic force is the term that depends only on
the density profile. Physically, the adiabatic force represents the internal force of
an equilibrium system that shares the same density profile(s) as the actual out-of-
equilibrium system. In ref. 41 Fortini et al. presented the first simulation method

for sampling the superadiabatic forces in a monocomponent BD nonequilibrium
system. The method relies on numerically finding the adiabatic external potential
that generates the desired density profile in equilibrium. A related and improved
iterative (custom flow) method to numerically find the adiabatic potential is
presented in ref. 40. We follow here another approach to find the adiabatic
potential, based on classical density functional theory (DFT)47. In DFT the
adiabatic force is a functional of the one-body density profiles, and given by the
functional derivative

fαad ¼ �∇
δFexc½fρα0 g�

δρα
; ð60Þ

where Fexc½fρα0 g� is the excess (over ideal) Helmholtz free energy functional.
The adiabatic system is obtained by finding the species-dependent adiabatic

external potentials Vα
adðx; tÞ, which are constructed such that the equilibrium one-

body densities for both species in the adiabatic (equilibrium) system equal those in
the nonequilibrium system. For the laned system, the system is homogeneous in
the flow ŷ-direction and therefore the adiabatic potentials can only depend on the x
—coordinate. In the adiabatic (equilibrium) system, the force balance reads

�kBT∇lnρα þ fαadðxÞ � ∇Vα
adðxÞ ¼ 0: ð61Þ

In order to sample the adiabatic reference system of the laned state, we use
Monte Carlo simulations with the same values of N α , L, and kBT as the
nonequilibrium BD system. We initialize the adiabatic system with a configuration
taken from the BD simulations and then equilibrate the system. The maximum
displacement each particle is allowed to move in one Monte Carlo step is set such
that 25–30% of the moves are accepted. We then sample data for ~1011 Monte
Carlo sweeps (MCS). A MCS is defined as an attempt to individually move all
particles in the system.

In refs. 40,41 iterative methods for finding the adiabatic potential that enters in
Eq. (61) are presented. An initial guess for the potential is iteratively adjusted until
the density profile equals the corresponding counterpart in the nonequilibrium
system. Here, we have to match two density profiles, one for each species. As the
modulation of the total density is small, a calculation of the adiabatic potentials
using a simple density functional based on the equation of state of scaled-particle
theory (SPT) for hard-disks yields excellent results. Within SPT the compressibility
factor of an homogeneous system of hard disks is Z= (1− η)−2 59, with η=
ρbπσ2∕4 the total packing fraction of the system. Here, ρb is the bulk number
density. An expression for the excess free energy per particle ψexc follows from Z

Fig. 7 Adiabatic potentials. a Adiabatic external potentials Vα
ad in the

adiabatic (equilibrium) system for species 1 (orange solid) and species 2
(blue dashed) as a function of x. b Total density profile ρ sampled via
Brownian Dynamics in nonequilibrium steady state (black dotted) and
via Monte Carlo in the corresponding adiabatic equilibrium system (violet
solid).
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via integration60:

ψexcðρbÞ ¼
Z η

0
dη0

Z � 1
η0

¼ �lnð1� ηÞ þ η

1� η
: ð62Þ

Using the above expression we construct an approximation for the excess free
energy functional:

βFexc½ρ� ¼
Z

dxρðxÞψexcð�ρÞ; ð63Þ

in which the excess free energy is evaluated in a weighted density given by

�ρðxÞ ¼ 1
σ

Z xþσ=2

x�σ=2
dx0ρðx0Þ: ð64Þ

Since the mixture is symmetric only the total density ρ= ρ1+ ρ2 enters the
expression for the excess free energy. The resulting adiabatic force fad via functional
differentiation is species-independent and directed along the gradient direction

fadðxÞ ¼ fαadðxÞ ¼ �∇
δFexc½ρ�
δρðxÞ : ð65Þ

Equations (61) and (65) yield an expression for the species-dependent adiabatic
potential

βVα
adðxÞ ¼ �ln ραΛα

� �� ψexcð�ρÞ
� 1

σ

R
dx0ρðx0Þ ∂ψexcð�ρÞ

∂�ρ ;
ð66Þ

where Λα is the (irrelevant) thermal wavelength of species α and the spatial
argument of �ρ and η was omitted for clarity.

Figure 7a displays results for the adiabatic potentials. As expected, the potential
for each species is high in the region of the respective minority lane and low in the
majority lane, with a total difference between maximum and minimum of
approximately 1.3ϵ (equal to 2.6kBT). The external forces created by the two
adiabatic potentials segregate the two species in the equilibrium system. In Fig. 7b,
we present the total density sampled in the adiabatic system and that in the
nonequilibrium system. Both systems have almost the same density profiles, which
shows the quality of the adiabatic construction. The species-dependent density
profiles in the adiabatic system are also in very good agreement with those in out-
of-equilibrium (not shown).

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Received: 17 June 2019; Accepted: 7 January 2020;

References
1. Vlasov, A. Y. & Masters, A. J. Binary mixtures of hard spheres: how far can

one go with the virial equation of state? Fluid Phase Equi. 212, 183 (2003).
2. Ramakrishnan, S., Fuchs, M., Schweizer, K. S. & Zukoski, C. F. Entropy driven

phase transitions in colloid-polymer suspensions: tests of depletion theories. J.
Chem. Phys. 116, 2201 (2002).

3. Paricaud, P., Galindo, A. & Jackson, G. Understanding liquid-liquid
immiscibility and LCST behaviour in polymer solutions with a Wertheim
TPT1 description. Mol. Phys. 101, 2575 (2003).

4. Paricaud, P., Varga, S. & Jackson, G. Study of the demixing transition in model
athermal mixtures of colloids and flexible self-excluding polymers using the
thermodynamic perturbation theory of Wertheim. J. Chem. Phys. 118, 8525
(2003).

5. Vroege, G. J. & Lekkerkerker, H. N. W. Theory of the isotropic nematic
nematic phase-separation for a solution of bidisperse rodlike particles. J. Phys.
Chem. 97, 3601 (1993).

6. Varga, S., Galindo, A. & Jackson, G. Phase behavior of symmetric rod-plate
mixtures revisited: biaxiality versus demixing. J. Chem. Phys. 117, 10412 (2002).

7. Seiferling, F., de las Heras, D. & Telo da Gama, M. Percolation in binary and
ternary mixtures of patchy colloids. J. Chem. Phys. 145, 074903 (2016).

8. Roth, R., Rauscher, M. & Archer, A. J. Selectivity in binary fluid mixtures:
static and dynamical properties. Phys. Rev. E 80, 021409 (2009).

9. Rica, R. A. et al. Capacitive mixing for harvesting the free energy of solutions
at different concentrations. Entropy 15, 1388 (2013).

10. Boon, N. & van Roij, R. Blue energy’ from ion adsorption and electrode
charging in sea and river water. Mol. Phys. 109, 1229 (2011).

11. Thiele, U., Archer, A. J. & Pismen, L. M. Gradient dynamics models for liquid
films with soluble surfactant. Phys. Rev. Fluids 1, 083903 (2016).

12. Guo, S. & Liu, C. T. Phase stability in high entropy alloys: formation of solid-
solution phase or amorphous phase. Prog. Nat. Sci. 21, 433 (2011).

13. Dzubiella, J., Hoffmann, G. P. & Löwen, H. Lane formation in colloidal
mixtures driven by an external field. Phys. Rev. E 65, 021402 (2002).

14. Chakrabarti, J., Dzubiella, J. & Löwen, H. Dynamical instability in driven
colloids. Europhys. Lett. 61, 415 (2003).

15. Chakrabarti, J., Dzubiella, J. & Löwen, H. Reentrance effect in the lane
formation of driven colloids. Phys. Rev. E 70, 012401 (2004).

16. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles.
Nature 437, 235 (2005).

17. Rex, M. & Löwen, H. Lane formation in oppositely charged colloids driven by
an electric field: chaining and two-dimensional crystallization. Phys. Rev. E 75,
051402 (2007).

18. Vissers, T. et al. Lane formation in driven mixtures of oppositely charged
colloids. Soft Matter 7, 2352 (2011).

19. Sütterlin, K. R. et al. Dynamics of lane formation in driven binary complex
plasmas. Phys. Rev. Lett. 102, 085003 (2009).

20. Du, C.-R., Sütterlin, K. R., Ivlev, A. V., Thomas, H. M. & Morfill, G. E. Model
experiment for studying lane formation in binary complex plasmas. EPL 99,
45001 (2012).

21. Ohta, H. Lane formation in a lattice model for oppositely driven binary
particles. EPL 99, 40006 (2012).

22. Menzel, A. M. Unidirectional laning and migrating cluster crystals in
confined self-propelled particle systems. J. Phys. Condens. Matter 25, 505103
(2013).

23. Couzin, I. D. & Franks, N. R. Self-organized lane formation and optimized
traffic flow in army ants. Proc. R. Soc. London B 270, 139 (2003).

24. Cividini, J., Hilhorst, H. & Appert-Rolland, C. Crossing pedestrian traffic
flows, the diagonal stripe pattern, and the chevron effect. J. Phys. A Math. Gen.
46, H5002 (2013).

25. Dzubiella, J. & Löwen, H. Pattern formation in driven colloidal mixtures: tilted
driving forces and re-entrant crystal freezing. J. Phys. Condens. Matter 14,
9383 (2002).

26. Gerloff, S., Vezirov, T. A. & Klapp, S. H. L. Shear-induced laning transition in
a confined colloidal film. Phys. Rev. E 95, 062605 (2017).

27. Wysocki, A. & Löwen, H. Oscillatory driven colloidal binary mixtures: axial
segregation versus laning. Phys. Rev. E 79, 041408 (2009).

28. Götze, I. O. & Gompper, G. Flow generation by rotating colloids in planar
microchannels. EPL 92, 64003 (2010).

29. Grünwald, M., Tricard, S., Whitesides, G. M. & Geissler, P. L. Exploiting non-
equilibrium phase separation for self-assembly. Soft Matter 12, 1517 (2016).

30. Rex, M. & Löwen, H. Influence of hydrodynamic interactions on lane
formation in oppositely charged driven colloids. Eur. Phys. J. E 26, 143 (2008).

31. Delhommelle, J. Should “lane formation” occur systematically in driven
liquids and colloids?. Phys. Rev. E 71, 016705 (2005).

32. Glanz, T. & Löwen, H. The nature of the laning transition in two dimensions.
J. Phys. Condens. Matter 24, 464114 (2012).

33. Wächtler, C. W., Kogler, F. & Klapp, S. H. L. Lane formation in a driven
attractive fluid. Phys. Rev. E 94, 052603 (2016).

34. Kogler, F. & Klapp, S. H. L. Lane formation in a system of dipolar
microswimmers. EPL 110, 10004 (2015).

35. Klymko, K., Geissler, P. L. & Whitelam, S. Microscopic origin and
macroscopic implications of lane formation in mixtures of oppositely driven
particles. Phys. Rev. E 94, 022608 (2016).

36. Poncet, A., Bénichou, O., Démery, V. & Oshanin, G. Universal long-ranged
correlations in driven binary mixtures. Phys. Rev. Lett. 118, 118002 (2017).

37. Kohl, M., Ivlev, A. V., Brandt, P., Morfill, G. E. & Löwen, H. Microscopic
theory for anisotropic pair correlations in driven binary mixtures. J. Phys. 24,
464115 (2012).

38. Schmidt, M. & Brader, J. M. Power functional theory for Brownian dynamics.
J. Chem. Phys. 138, 214101 (2013).

39. Brader, J. M. & Schmidt, M. Power functional theory for the dynamic test
particle limit. J. Phys. 27, 194106 (2015).

40. de las Heras, D., Renner, J. & Schmidt, M. Custom flow in overdamped
Brownian dynamics. Phys. Rev. E 99, 023306 (2019).

41. Fortini, A., de las Heras, D., Brader, J. M. & Schmidt, M. Superadiabatic forces
in Brownian many-body dynamics. Phys. Rev. Lett. 113, 167801 (2014).

42. de las Heras, D. & Schmidt, M. Velocity gradient power functional for
Brownian dynamics. Phys. Rev. Lett. 120, 028001 (2018).

43. Stuhlmüller, N. C. X., Eckert, T., de las Heras, D. & Schmidt, M. Structural
nonequilibrium forces in driven colloidal systems. Phys. Rev. Lett. 121, 098002
(2018).

44. Krinninger, P., Schmidt, M. & Brader, J. M. Nonequilibrium phase behaviour
from minimization of free power dissipation. Phys. Rev. Lett. 117, 208003
(2016).

45. Reichhardt, C. & Olson Reichhardt, C. J. Velocity force curves, laning, and
jamming for oppositely driven disk systems. Soft Matter 14, 490 (2018).

46. Adams, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven
microphase transitions in mixtures of colloidal rods and spheres. Nature 393,
349 (1998).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0287-5

12 COMMUNICATIONS PHYSICS |            (2020) 3:23 | https://doi.org/10.1038/s42005-020-0287-5 | www.nature.com/commsphys

www.nature.com/commsphys


47. Evans, R. The nature of the liquid-vapour interface and other topics in the
statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143 (1979).

48. Marconi, U. M. B. & Tarazona, P. Dynamic density functional theory of fluids.
J. Chem. Phys. 110, 8032 (1999).

49. Archer, A. J. & Evans, R. Dynamical density functional theory and its
application to spinodal decomposition. J. Chem. Phys. 121, 4246 (2004).

50. Aerov, A. A. & Krüger, M. Driven colloidal suspensions in confinement and
density functional theory: Microstructure and wall-slip. J. Chem. Phys. 140,
094701 (2014).

51. Oliveira, C. L., Vieira, A. P., Helbing, D., Andrade, J. S. & Herrmann, H. J.
Keep-left behavior induced by asymmetrically profiled walls. Phys. Rev. X 6,
011003 (2016).

52. de las Heras, D. et al. Floating nematic phase in colloidal platelet-sphere
mixtures. Sci. Rep. 2, 789 (2012).

53. de las Heras, D. & Schmidt, M. Phase stacking diagram of colloidal mixtures
under gravity. Soft Matter 9, 8636 (2013).

54. Scacchi, A., Archer, A. J. & Brader, J. M. Dynamical density functional theory
analysis of the laning instability in sheared soft matter. Phys. Rev. E 96, 062616
(2017).

55. Stopper, D. & Roth, R. Nonequilibrium phase transitions of sheared colloidal
microphases: results from dynamical density functional theory. Phys. Rev. E
97, 062602 (2018).

56. Krinninger, P. & Schmidt, M. Power functional theory for active Brownian
particles: general formulation and power sum rules. J. Chem. Phys. 150,
074112 (2019).

57. Hermann, S., Krinninger, P., de las Heras, D. & Schmidt, M. Phase coexistence
of active Brownian particles. Phys. Rev. E 100, 052604 (2019).

58. Hermann, S., de las Heras, D. & Schmidt, M. Non-negative interfacial tension
in phase-separated active Brownian particles. Phys. Rev. Lett. 123, 268002
(2019).

59. Helfand, E., Frisch, H. L. & Lebowitz, J. L. Theory of the two- and one-
dimensional rigid sphere fluids. J. Chem. Phys. 34, 1037 (1961).

60. Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids, 4th edn. (Academic
Press, London, 2013).

Acknowledgements
This work is supported by the German Research Foundation (DFG) via SCHM 2632/1-1.

Author contributions
T.G. performed the Brownian dynamics simulations and the analysis of the data. D.d.l.H.
and M.S. designed and conceived the work and developed the theory. All authors con-
tributed to the preparation of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42005-
020-0287-5.

Correspondence and requests for materials should be addressed to D.d.l H. or M.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0287-5 ARTICLE

COMMUNICATIONS PHYSICS |            (2020) 3:23 | https://doi.org/10.1038/s42005-020-0287-5 | www.nature.com/commsphys 13

https://doi.org/10.1038/s42005-020-0287-5
https://doi.org/10.1038/s42005-020-0287-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	Superadiabatic demixing in nonequilibrium colloids
	Results
	Lane formation
	Dynamical one-body description
	Ideal mixture
	Power functional approximation
	Brownian dynamics simulations
	Laned state
	Forces acting in flow direction
	Forces acting in gradient direction
	Jammed state

	Discussion
	Methods
	Adiabatic construction

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




