
PHYSICAL REVIEW E 101, 012608 (2020)

Crystal structures in binary hard-sphere colloid-droplet mixtures with patchy cross interactions
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A binary mixture of droplets and patchy colloids, where patches are arranged in tetrahedral symmetry, is
studied with Metropolis Monte Carlo simulations. The colloidal patches attract droplets, while both the colloid-
colloid and the droplet-droplet interactions are hard sphere like. We find stable crystal structures with atomic
analogs ZnS, CaF2, and fcc or hcp (face centered cubic or hexagonal close packed) of the droplets coexisting with
a dispersed fluid of the colloids. The simulated crystal structures agree well with those predicted by close-packing
calculations for an intermediate range of droplet-colloid size ratios. A discrepancy between the simulations
and theoretical predictions occurs at low and high size ratios. The results of the simulations for mixtures with
anisotropic colloid-droplet interactions reveal a richer phase diagram, with ZnS-gas and ZnS-fluid coexistence,
as compared to the isotropic case. For the example of a square planar patch arrangement, we find a particular
crystal structure, consisting of two interpenetrating fcc or hcp lattices with right bond angles. Such a structure
has no known atomic analog. Our study of generic models of anisotropic colloid-droplet mixtures could provide
a promising way towards the fabrication of novel and complex colloidal structures.
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I. INTRODUCTION

The designed self-assembly of colloidal particles is a topic
of strong current interest [1]. In particular, creating colloidal
crystal structures has attracted much attention due to the
potential applications as chemical sensors [2], as well as
macroporous [3] and photonic materials [4,5]. Among the lat-
tice structures with three-dimensional (3D) complete photonic
band gaps in the visible light region, the diamond lattice is one
of the most promising candidates [6,7].

To date, however, such a structure has not been experimen-
tally fabricated despite recent advances in the fabrication of
complex colloidal particles with chemically or physically pat-
terned surfaces [8–14], as well as a large number of theoret-
ical suggestions for its colloidal self-assembly. For example,
Tkachenko [15] first reported that the diamond lattice can be
achieved by self-organization of DNA-covered colloids. The
key element of that scheme is that the colloidal spheres are
covered with short single-stranded DNA molecules, which
induce a type-dependent interaction between colloids. These
interactions are selective, reversible, and tunable. Further-
more, the formation of the diamond structure has been ob-
served in computer simulations of colloids whose surfaces
are decorated with attractive patches that are distributed in
tetrahedral symmetry [16]. The formation of the diamond
structure, however, requires systems with a seed crystal or a
complicated directional-dependent pair potential [16]. Since
then, the very rich phase diagram of tetrahedral patchy parti-
cles has been extensively investigated [17–23]. Unfortunately,
it was found that the diamond phase only occurs in a very
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narrow range of densities [19,23]. Additionally, at low pres-
sures and finite temperatures, the diamond is energetically
comparable to a bcc solid. The diamond structure is only
stable when the entropy increases, that is, when the interaction
range decreases. As the pressure increases, the bcc solid
becomes favored [19]. Doye et al. [24] also pointed out
that the crystallization of single-component tetrahedral patchy
colloids could be frustrated by the variety of local structures
that are possible in the liquid phase.

An alternative strategy is based on the use of binary mix-
tures [25]. de las Heras et al. [26,27] investigated the gel struc-
tures and percolation in a binary mixture of patchy colloids,
but these authors did not investigate crystal formation. The
phase behavior and the structure of binary colloidal crystals
are controlled by the size ratio of the two components, the
total packing fraction, and the relative composition. It was
found theoretically [28] and experimentally [29–31] that a
change in the diameter ratio between the two spherical species
has a dramatic effect on the phase diagram and produces a
variety of different crystal structures with symmetry of NaCl,
AlB2, and NaZn13, as well as Laves phases. Using a genetic
algorithm and the principle of maximization of the packing
density, Filion and Dijkstra [32] predicted additional crystal
structures at infinite pressure, such as HgBr2 and AuTe2.
Hopkins et al. [33,34] later investigated the densest packing of
binary hard-sphere mixtures and predicted a large number of
crystal structures with uncommon stoichiometries, including
LS6, LS10, LS11, L2S4, L3S7, and L6S6, of the large (L) and
small (S) spheres. Cottin and Monson [35] examined other
crystal structures with symmetry of ZnS and CaF2, and found
that in the cell theory approach, these structures would not be
stable. ZnS can be generated by repeating the fcc or hcp unit
cell of either species and filling half of the tetrahedral holes
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with the other species, namely, zinc blende or wurtzite. When
the two species in the zinc blende are identical, the diamond
structure is obtained. The structure of CaF2 is similar to that of
the zinc blende, but all of the tetrahedral holes are occupied.
In particular, both the structures of ZnS and CaF2 have been
recently predicted to display 3D complete band gaps [36].

In this paper, we investigate the structural behavior of a
binary mixture of hard-sphere colloids and emulsion droplets.
The colloid-droplet interaction is aimed at modeling the
Pickering effect modulated by a directional-dependent factor.
This model, as a colloidal version of the methane molecule
CH4, is a straightforward extension of the system with an
isotropic interaction studied by Fortini [37]. In the model,
first proposed by Román et al. [38], the colloidal particles are
able to penetrate the droplets. Fortini [37] and Schmidt and
co-workers [39–41] used a similar model to investigate the
cluster formation of spherical colloids, single-patch colloid, or
dumbbell-shaped colloids and reported good agreement with
experimental findings. However, the authors modeled and
simulated the colloid-droplet mixtures with isotropic interac-
tions. Here, we investigate a directionally dependent interac-
tion given by tetrahedral patches on the colloidal particles.
The droplets can only attach to the patches and not to the other
areas on the surface of the particles. For example, the model
could be realized by patches of different hydrophilicity than
the rest of the colloidal surface. By calculating the packing
fraction and total energy as a function of size ratios for the
candidate crystal structures with tetrahedral bonds, we make
predictions for the stability of different crystal structures at
infinite pressures. The result from these predictions shows
good agreement with simulation data for a certain broad range
of size ratio. In particular, we find that stable structures of ZnS
and CaF2, which are promising as photonic crystals [36], are
possible.

This paper is organized as follows. In Sec. II, we describe
the model and methods. In Sec. III, we give the results for
mixtures with tetrahedral patches and compare theoretical and
simulation results. In Sec. IV, we briefly discuss other patch
arrangements. In Sec. V, we draw our conclusions. A detail
description of bond order parameters used and close-packing
calculations are given in Appendices A and B, respectively.

II. MODEL AND METHODS

We consider a mixture of Nc patchy colloidal particles of
diameter σc and Nd droplets of diameter σd . The droplets are
attracted to the patches, but not to the rest of the colloidal
surface. The colloid-colloid and droplet-droplet intraspecies
pair interactions are taken to be hard-sphere potentials,

φii(r) =
{∞, r < σi

0 otherwise, (1)

between particles of the same species i = c (colloid) or i = d
(droplet).

The patchy colloid-droplet pair interaction does not contain
a hard core, but rather models the Pickering effect [42] of solid
particles adsorbed at a fluid interface. The interaction potential
is defined as

φcd
(
ri j, αi jkmin

) = uPW(ri j ) f
(
ri j, αi jkmin

)
, (2)

FIG. 1. Illustration of one tetrahedral patchy colloid and one
droplet. Colloid i (gray sphere) has four patches (green parts) de-
termined by a set of unit vectors {uk

i } (k = 1–4) and patch size of
half-opening angle δ. Droplet j (pink sphere) is located at the colloid
surface. αi jk is the angle formed between patch k on colloid i and the
vector ri j connecting the centers of colloid i and droplet j, and kmin is
the patch that minimizes the magnitude of this angle. The case shown
is when αi jkmin = 0, i.e., the patch kmin points along the direction of
the vector ri j . The contact angle θ is used to control the distance
between colloid i and droplet j.

where ri j is the distance vector connecting the centers of
colloid i and droplet j and ri j = |ri j |; αi jk is the angle between
ri j and the unit vector pointing from the center of colloid
i towards its kth patch; αi jkmin = min αi jk with k = 1, 2, 3, 4
(see Fig. 1); and uPW(ri j ) is an isotropic parabolic well (PW)
of depth ε, as used in Ref. [37],

uPW(r) =
{

A(r − B)2 + C, r < σd +σc
2

0 otherwise,
(3)

with parameters A, B, and C given by

A =
−ε +

√
ε2 + r2

0

2r2
0

,

B = σd + σc

2
− r0,

C =
ε −

√
ε2 + r2

0

2
, (4)

where

r0 = σd

2
(1 + cos θ ), (5)

with θ being the contact angle between droplets and colloids.
In practice, the r0 parameter is used to control the contact
angle between droplets and colloids.

The parabolic well uPW(r) is modulated in Eq. (2) by
the factor f (ri j, αi jkmin ), which is a Gaussian-like function
depending on the alignment of patches with the distance
vector ri j . This potential is quite similar to that used by Noya
et al. [43] and given by

f
(
ri j, αi jkmin

) = exp

(
−4α2

i jkmin

δ2

)
, (6)

where δ is the half-opening angle, which determines the
widths of the patches. Obviously, as 1/δ → 0, the anisotropic
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potential in Eq. (2) become isotropic, f (ri j, αi jkmin ) = 1. As
shown in Fig. 1, the half-opening angle δ is related to the
contact angle θ and the diameter ratio by

sin δ = σd

σc
sin θ. (7)

The surface coverage χ is defined as the the (relative) ratio
of the attractive surface area and the total surface area, and
therefore relates to the half opening angle δ and the number
of patches np by

χ = np sin2

(
δ

2

)
. (8)

The total interacting energy Utot is the sum of all colloid-
colloid, droplet-droplet, and colloid-droplet pair interactions,

Utot

kBT
=

Nc∑
i< j

φcc(|ri − r j |) +
Nd∑
i< j

φdd (|Ri − R j |)

+
Nc∑
i

Nd∑
j

φcd
(|ri − R j |, αi jkmin

)
, (9)

where kB is the Boltzmann constant, T is the temperature, ri is
the center-of-mass position of colloid i, and R j is the center-
of-mass position of droplet j.

We carry out Metropolis Monte Carlo (MC) simulations in
the canonical ensemble, with 107 MC cycles for equilibration
and 105 MC cycles for data production. In each MC cycle,
all particles are attempted to be moved once on average. The
droplets can only move translationally, whereas the colloids
can both translate and rotate with adjustable trial moves to
achieve an acceptance probability of around 50%. The initial
random configuration of nonoverlapping spherical particles is
prepared in a cubic box with periodic boundary condition. The
simulations are carried out for the total number of colloids and
droplets in the range 500–1000, i.e., at different particle pack-
ing fractions. The depth of the parabolic well is set to 10 kBT
to ensure state points within the crystal phase region (see
Fig. 2(b) of Ref. [37]). Such a strongly short-ranged attraction
could lead a suppression of collective motion and hence pro-
duce unphysical dynamics. To overcome this limitation, many
algorithms have been proposed by the use of collective moves
of clusters such as the rejection-free geometric cluster [44]
or “virtual-move” Monte Carlo scheme [45]. In this study,
however, we employ a standard Monte Carlo simulation with
sequential moves of single particles and neglect the collective
motion of particles in the cluster. In order to check the validity
of the method used, we compared the resulting phase diagram,
i.e., energy versus droplet packing fraction, for an isotropic
pair interaction from Brownian dynamics simulations [37]
with that of the current standard Monte Carlo simulation and
find good agreement in the timescales considered. To improve
the statistical quality, each physical quantity is simulated in
five independent runs and then averaged.

To analyze the local structure of a given particle in the
computer simulations, we employ the averaged local bond
order parameters proposed by Lechner and Dellago [46],
which allows us to distinguish liquidlike, fcc-like, hcp-like,
and bcc-like particles. For details of the averaged bond order
parameters, see Appendix A.

One of the major theoretical goals in research of colloidal
crystals is to predict which crystal structure will be formed
if the components of the system and their interactions are
given. One relevant approach in predicting crystal structures
involves free-energy calculations of different structural pro-
posals. From these results, one would select the structure with
the lowest free energy as that one to occur in nature. An alter-
native way to predict crystal structures for hard-sphere(-like)
systems is to deal with packing arguments. The fundamental
reason for using packing arguments is that crystal structures
with a higher closed-packed density permit a larger local free
volume for each sphere, resulting in a higher translational
entropy and therefore a lower free energy [32].

According to Villars et al. [47], there are 147 clas-
sical atomic structures adopted by roughly 5000 binary
compounds. This large number of structures results from a
combination of composition, crystal system (unit-cell dimen-
sions), space group, and occupation number. Fortunately, if
we restrict our considerations to a given coordination number
of four (with regular tetrahedral symmetry), then a much
smaller number of candidate crystal structures needs to be
considered, i.e., ZnS (zinc blende), ZnS (wurtzite), NaTl (zintl
phase), CaF2 (flourite), O2Si (β − cristobalite),1 and Cu2O
(cuprite). We denote these crystal structures by DnCm where
two sets of spheres (D,C) represent droplets and colloids,
respectively; n, m are integer numbers.

We define the packing fraction η as the ratio of the volume
occupied by the spheres to the total volume in which they
are enclosed. Based on an approach proposed by Parthé [48]
and Sanders et al. [29], we calculate the packing fraction η

and total potential energy Utot as a function of size ratio, q =
σd/σc, for the above crystal structures; see Appendix B for
details. In a set of crystal structures of interest, the structure
which has the highest packing fraction and lowest energy at
a specific value of q will more likely occur than any other
structures.

III. RESULTS FOR TETRAHEDRAL PATCHES

Given the large parameter space that controls our model,
we decided to compute the stable phases at infinite pressure
to guide our simulation study. In order to do so, we need to
calculate the close-packing curves and the total energy of the
closed-packed structures.

A. Fixed contact angle θ = 140◦

Figure 2(a) shows close-packing curves for the various
structural proposals at the contact angle θ = 140◦. Each struc-
ture is characterized by a unique close-packing curve, ex-
cept that the ZnS-zinc-blende and the ZnS-wurtzite structure
have the same one since they belong to the same homeotect
structure [49], i.e., all of the different structure types have
equal composition and the same kind of surroundings. The
equations used are reported in Appendix B. The curves for
ZnS [see Eqs. (B1), (B6), (B9)] and CaF2 [Eqs. (B12), (B13),

1The chemical formula SiO2 is reversed to be consistent with the
interchanged role of the two species.
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FIG. 2. (a) Close-packing curve as dependent upon the size ratio
q for the ZnS, NaTl, CaF2, O2Si, and Cu2O structure at θ = 140◦. A
horizontal dashed line is added to indicate the maximum packing
fraction (0.74) of a monodispersed system of hard spheres corre-
sponding to fcc or hcp. (b) The scaled total energy per particle Utot/N ,
with N the total number of particles, is plotted against q for different
structures. Notice the logarithmic scales of η and q.

(B14)] show three distinct branches corresponding to C-C
(colloid-colloid) contact, C-D (colloid-droplet) overlap, and
D-D (droplet-droplet) contact regions. The NaTl structure has
no C-D contact region, while O2Si and Cu2O have no C-C
contact region.

Figure 2(b) shows the total energy per particle, Utot/N ,
with N = Nc + Nd , as a function of the size ratio for the
candidate structure types. From the total-energy curves and
close-packing curves, we predict the phase diagram at infinite
pressures because, for a given size ratio q, stable structures
have the lowest energy and the largest packing fraction. We
see from Figs. 2(a) and 2(b) that structural phase transitions
occur at discontinuity points of the close-packing curves, i.e.,
at q = 0.29 (phase transition from Cu2O to ZnS), q = 0.95
(ZnS-CaF2), and q = 2.18 (CaF2-fcc or -hcp of droplets with
a dispersed fluid of colloids). Table I summarizes the stable
structures at different size ratios q for the contact angle θ =
140◦.

To examine the stability of these crystal structures at finite
pressures, we carry out MC simulations for different size
ratios q = 0.22, 0.75, 0.97, and 1.5 at a fixed contact angle
θ = 140◦. The total packing fraction and composition are
predetermined according to each structure of interest. For

TABLE I. Structures predicted theoretically for different values
of size ratios at infinite pressure and θ = 140◦.

Size ratio (q = σd
σc

) Structure type

q < 0.29 Cu2O
0.29 < q < 0.95 ZnS
0.95 < q < 2.18 CaF2

q > 2.18 fcc or hcp of droplets + fluid of colloids

q = 0.22, we find a homogenous fluid phase instead of the
Cu2O crystalline phase as predicted by theory. This result
can be explained as follows. Since the attractive area fraction
of colloids, which is related to the droplet ratio according
to Eqs. (7) and (8), is relatively small, the probability of
capturing the droplets at the colloid surface is low. Note also
that the depth of the colloid-droplet interaction potential is
still kept the same, while the width becomes significantly
narrower. Therefore, the system behaves nearly as a highly
asymmetric binary hard-sphere mixture, which was shown to
be in the fluid phase at q = 0.2 [50] and at the packing fraction
of particles equal to that in our simulations.

Figure 3 shows simulation snapshots for the size ratio
q = 0.75. In Fig. 3(a), the large (yellow) spheres represent
the colloids, while the small (green) spheres represent the
droplets. It can be seen that the colloids and droplets assemble
into a periodic three-dimensional lattice, where each colloid
is surrounded by four droplets (green spheres) located at the
attractive (blue) patches of this colloid. Figure 3(b) shows
the snapshot of the same system, but each particle is colored
corresponding to its state [46]. A coexistence phase of fcc and
hcp for both the droplets and colloids can be observed, which
results from a marginal difference in the free energy between
two competing structures. In order to take further steps in
potential applications, such as photonic band-gap materials
that are required to stabilize a selected crystal polymorph from
competing structures, i.e., removal of the hexagonal ordering
of colloids or droplets from random stackings of fcc and
hcp crystal, one could introduce polymers with appropriate
geometries used as depletants into the void symmetries of the
binary crystal phase. The introduction, as shown in recent
studies by Mahynski and co-workers [51–54], produces a

FIG. 3. (a) Snapshot of the colloid-droplet mixture in the final
stage of the computer simulation at q = 0.75, ηc = 0.348, ηd =
0.146, Nd/Nc = 1. Large dark yellow spheres represent the colloids;
smaller green spheres represent the droplets. Each colloid is deco-
rated by four attractive patches (blue) on its surface. (b) Same as (a),
but the state of each particle is identified by the local average bond
order parameters.
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FIG. 4. (a) MC simulation results for the colloid-droplet radial
distribution function gcd (r) as a function of the scaled distance r/σc.
Inset: the number of droplets ncd (r) as a function of the distance
r/σc from a reference colloid, which is determined by integration
of gcd (r). (b) Angular distribution function g(ω) of colloid-droplet-
colloid (C-D-C) and droplet-colloid-droplet (D-C-D) angles ω. The
label 109.05◦ marks the bond angle of a regular tetrahedron.

significant entropy difference in the different polymorphs,
and therefore provides a sufficient driving force to uniquely
select a single polymorph. An alternative strategy proposed
by Romano and Sciortino [55] is based on a rational design of
patch shape and symmetry, called patterning symmetry, that
also removes the structural polymorphism and the formation
of random stacks of competing structures. The colloid-droplet
radial distribution function given in Fig. 4(a) shows well-
defined long-ranged peaks characteristic of a specific crystal
phase. Furthermore, the coordination number as a function of
the scaled distance [see the inset of Fig. 4(a)] and angular dis-
tribution functions [Fig. 4(b)] strongly confirm the existence
of regular tetrahedral bonds of the droplets with the colloids.
These results enable us to classify the phase of the colloid-
droplet mixture at q = 0.75 as the ZnS crystal structure, which
is in good accordance with the result predicted by the theory;
cf. Table I.

For the case of q = 0.97, the total packing fraction for
the perfect CaF2 structure once formed (η = 0.748) is so
high that an initialization from a random configuration of
droplets and colloids could not be performed with our present
algorithm, and hence we set the composition Nd/Nc to be
the same as for the case of q = 0.75. As a result, when the
CaF2 structure is formed, it will have some missing bonds.
Despite the lack of some bonds, the CaF2 structure is still
easily detected by analyzing angular distribution functions. As

0

2

4

6

8

0 40 80 120 160

70.53◦
109.5◦

g
(ω

)

ω (deg)

C-D-C
D-C-D

FIG. 5. Angular distribution functions for the colloid-droplet
mixture at q = 0.97, ηc = 0.257, ηd = 0.234, and Nd/Nc = 1. The
labels 70.53◦ and 109.05◦ indicate two pronounced peaks that are
characteristic of the CaF2 structure.

shown in Fig. 5, two pronounced peaks at 70.53◦ and 109.5◦
in the colloid-droplet-colloid angular distribution function
and one peak at 109.5◦ in the droplet-colloid-droplet angular
distribution function demonstrate the occurrence of the CaF2

structure. This result again agrees well with the theoretical
prediction. At a higher size ratio, e.g., q = 1.5, different from
a binary crystal phase observed in the case of the isotropic
colloid-droplet pair interaction [37] and from the CaF2 phase
for q < 2.18 given in Table I, we find a fcc or hcp phase of the
droplets coexisting with a fluid of the colloids.

Stability of the ZnS structure with respect to
anisotropy of the interaction

In order to investigate the equilibrium phases for the ZnS
structure, which was shown to be a promising candidate for
3D complete photonic band-gap materials [36], we carry
out simulations for each state point in the (ηd , ηc) plane,
with ηd (ηc) the droplet (colloid) packing fraction for q =
0.75. At first, we consider two cases: isotropic [i.e., setting
f (ri j, αi jkmin ) = 1 in Eq. (2)] and anisotropic colloid-droplet
pair interaction (cf. Sec. II).

As shown in Figs. 6(a) and 6(b), for both cases, we find a
region where the fluid is stable (marked by blue filled squares)
and a region where gas-liquid separation occurs (orange cir-
cles). In addition to that, for the anisotropic colloid-droplet
pair interaction, we find a region where the system separates
into a gas and a ZnS crystal (empty squares) and another
region where the system separates into a fluid and a ZnS
crystal (red triangles).

B. Variation of the contact angle parameter

The variation of the contact angle θ changes the disconti-
nuity points in the close-packing curves, leading to different
transition regions for the crystalline structures. In Fig. 7, we
map out the phase diagram in the (θ − q) representation.
We also show the comparison between the phase diagram
obtained from the theory (differently colored regions) and
the simulation results (differently shaped symbols). We find
that the simulated state points of ZnS and CaF2 show good
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FIG. 6. (ηd , ηc) phase diagrams of the colloid-droplet binary
mixture with the diameter ratio q = 0.75 and θ = 140◦: (a) isotropic
colloid-droplet pair potential, (b) anisotropic colloid-droplet pair
potential. The symbols indicate the following phases as detected by
visual inspection of the MC configurations: : fluid; : gas+liquid;

: ZnS + gas; : ZnS + liquid.

agreement with the phase regions predicted from the the-
oretical calculation, whereas at low (q < 0.3–0.4) or high
(q > 1.3) values of q, a discrepancy of the simulation result
from the theoretical prediction can be observed. We interpret
this discrepancy as a result of the finite pressure considered
in the computer simulations. Furthermore, the simulations
are performed at a fixed value of the temperature, and the
attraction strength, while the size ratio and the contact angle
are varied. Such changes affect the effective droplet-colloid

0.25

0.50

1.00

2.00

4.00

110 120 130 140 150 160 170 180

q

θ (deg)

Cu2O

ZnS

CaF2

FCC/HCP of droplets
+fluid of colloids

FIG. 7. Phase behavior of binary colloid-droplet mixtures deter-
mined by the theoretical prediction at infinite pressures (differently
colored regions) and by computer simulation (differently shaped
points): crosses indicate the homogeneous fluid phases (red), circles
indicate ZnS phases (blue), asterisks indicate CaF2 phases (green),
and triangles represent fcc or hcp of droplets-fluid of colloids coex-
istence (pink). The vertical and horizontal axes indicate the size ratio
q and contact angle θ between droplets and colloids, respectively.

attraction strength, and thus the second virial coefficient, as
shown by Noro and Frenkel [56] for short-ranged, isotropic
potentials, and Foffi and Sciortino [57] for patchy potentials.
As a result, the simulated points at small size ratios and
contact angles correspond to lower effective droplet-colloid
attraction [see Eqs. (2), (6), and (7)] or, equivalently, to higher
temperatures. This may explain why the fluid phase is more
stable at small size ratios and contact angles.

IV. NONTETRAHEDRAL PATCH ARRANGEMENTS

We next discuss the results obtained by means of computer
simulations for some particular cases of the patch arrange-
ment. It is well known that the stable crystal structure of
a binary atomic compound depends not only on the com-
position, concentration, and atomic size, but also on the
coordination number (valence) as well as on the bond angles
between atoms. A variety of questions arises naturally for
crystals of corresponding colloid-droplet mixtures, e.g., how
the crystal structure changes if the patch arrangement on the
colloid surface changes or how the patch properties such
as size, position, and strength of the attraction affect the
resulting crystal structure. In principle, a variety of types of
patch arrangements on the colloid surface is possible based
on cluster configurations [39,58–60] and recent experimental
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FIG. 8. (a),(b) Same as Figs. 3(a) and 3(b), respectively, but for
patches that are arranged in square planer symmetry. The droplets
(green spheres) are attached to the attractive patches (blue area
part) of the colloids (yellow spheres) in a three-dimensional ordered
structure. (c) Angular distribution functions for the colloid-droplet-
colloid and droplet-colloid-droplet exhibit one strong peak at 90◦, in-
dicating right bond angles between two species. (d) The coordination
number as a function of the scaled distance with different numbers
of patches np: square planar (np = 4) and octahedral patch (np = 6)
arrangement. The dashed lines indicate the coordination number of
ideal crystal structures.
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findings [8]. We first consider the case where patches are
arranged in a square. In detail, each colloid has its four patches
positioned at the corners of the square, which lie on a great
circle of the spherical colloid surface. For a set of parameters,
q = 0.7, θ = 140◦, ηc = 0.375, ηd = 0.128, and Nd/Nc = 1,
Figs. 8(a) and 8(b) show that the resulting equilibrium phase
obtained from the simulations consists of two interpenetrating
fcc or hcp lattices with the bond angle between colloids with
droplets (and vice versa) equaling nearly 90◦ [Fig. 8(c)]. To
the best of our knowledge, this crystal structure has no known
atomic analog.

In octahedral patchy symmetry, each colloid has its six
droplets arranged around a central colloid, defining the ver-
tices of an octahedron. The resulting phase of the octahedral
patchy colloid-droplet mixture is very similar to that of the
planar square patchy colloid-droplet mixture, as described
above, but with the important difference that the colloid-
droplet coordination number equals six instead of four [see
Fig. 8(d)]. Therefore, the octahedral patchy colloid-droplet
mixture forms the NaCl/NiAs structure.

V. CONCLUSIONS

In summary, we studied a binary patchy colloid-droplet
mixture by means of Metropolis MC simulations, in com-
bination with the calculation of close-packing curves. The
colloid-colloid and droplet-droplet pair interactions are taken
to be purely hard-core potentials, while the colloid-droplet
pair interaction has an attractive well that is parabolically
dependent on distance in order to model the Pickering ef-
fect. This cross interaction is modulated by a Gaussian-like
function to characterize a directional colloid-droplet pair in-
teraction. Although the Gaussian-like potential is used as a
generic model, its corresponding quantities can be controlled
by the asymmetric wetting property of the colloid surface with
the droplets, i.e., attractive parts are partial wetting, whereas
the repulsive parts correspond to nonwetting or drying.

The analysis of the close-packing curves and total energy
for a set of perfect structure proposals that possess regularly
tetrahedral bond angles enables one to predict stable crystal
structures at infinite pressures. The simulation results show
the stability of the ZnS and CaF2 structure, and fcc or hcp
phase of large spheres with a dispersed fluid of small spheres,
which is in good agreement with the theoretical predictions for
a specific range of size ratios, i.e., q = 0.4–1.3. Discrepancies
of theoretical predictions from simulations appear at low and
high size ratios. More precisely, only the homogeneous fluid
phase is observed at q = 0.27, instead of the Cu2O phase
as predicted by theory. In addition, fcc- or hcp-fluid phase
coexistence can be observed in the simulation at q = 1.5,
instead of the CaF2 structure. Note also that although micro-
or nanosized colloidal crystals of ZnS and CaF2 are promising
in photonic applications, they have not yet been synthesized in
experiments. Therefore, our simulation results can be a useful
guide to prepare these structures.

Furthermore, the (ηd , ηc)-phase diagram at q = 0.75 in the
case of the anisotropic interaction exhibits a richer variety of
phases compared to that of an isotropic interaction. We found
that ZnS-gas and ZnS-fluid phase separations are possible.

Based on a unique configuration of colloidal clusters, we
examined crystal structures for colloid-droplet mixtures in
which the patches on the colloid surface are arranged in a
well-defined polyhedron. As an example of octahedral patch
symmetry, the NaCl/NiAs crystal structure can be observed.
However, there is no atomic analog to the crystal structure of
binary mixtures with patches arranged in square plane sym-
metry. These findings suggest that binary mixtures of patchy
colloids and emulsion droplets could provide a different way
to control the formation of increasingly complex colloidal
crystal structures.

Future work could be directed towards developing and ap-
plying density functional theories [61,62] for colloid-droplet
mixtures, possibly along the lines of of fundamental-measure
theory [63,64], as derived for additive soft core mixtures [65]
and binary nonadditive hard-sphere mixtures [66]. The patchy
interactions could potentially be included along the lines of
work of de las Heras and co-workers, who have convincingly
shown that Wertheim theory is reliable in predicting the
properties of patchy particle systems; see Refs. [26,67–70].
Having such a density functional theory (DFT) would allow
one to study, e.g., capillary phase behavior [71].
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APPENDIX A: BOND ORDER PARAMETERS

In order to characterize the local environment of a given
particle i, Steinhardt et al. [72] proposed rotationally invariant
bond order parameters, defined as

ql (i) =
√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2, (A1)

where qlm is the complex function given by

qlm(i) =
{

0 if Nb(i) = 0
1

Nb(i)

∑Nb(i)
j=1 Ylm(θi j, ϕi j ) otherwise, (A2)

where Ylm(θi j, ϕi j ) are spherical harmonics, and θi j and ϕi j

are the polar and azimuthal angles of the relative vector ri j

between particle i and j with respect to an arbitrary reference
frame. Nb(i) is the number of the nearest neighbors of the
particle i, l is an integer, and m is an integer which runs from
−l to l .

Recently, Lechner and Dellago [46] have introduced a
modified version of the Steinhardt et al. order parameters in
such a way that the additional information derived from the
second nearest neighbors is taken into account, defining the
so-called averaged bond order parameters,

q̄l (i) =
√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2 (A3)
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TABLE II. Bond order parameters for different structures [74,75].

Geometry q̄4 q̄6 w̄4 w̄6

fcc 0.19094 0.57452 −0.15932 −0.0136
hcp 0.09722 0.48476 0.13410 −0.01244
bcc 0.03637 0.51069 0.15932 0.01316
SC 0.76376 0.35355 0.15932 0.01316
Icosahedral 0 0.66332 0 −0.16975
Liquid 0 0 0 0

and

w̄l (i) =
∑

m1+m2+m3=0

(
l l l
m1 m2 m3

)
q̄lm1 (i)q̄lm2 (i)q̄lm3 (i)(∑l

m=−l |q̄lm(i)|)3/2 ,

(A4)

where the coefficient ( l l l
m1 m2 m3

) is the Wigner 3 − j sym-
bol [73]. The integers m1, m2, and m3 run from −l to l ,
but with the constraint m1 + m2 + m3 = 0, and q̄lm(i) is
defined as

q̄lm(i) = 1

Ñb(i)

Ñb(i)∑
k=0

qlm(k). (A5)

Here, the sum for k runs for all neighboring particles Ñb(i)
of particle i, plus the particle i itself. In our analysis, the
neighbors of particle i are defined as those particles located
within the distance cutoff corresponding to the first minimum
of radial distribution functions. Using the averaged bond
order parameters allows one to improve the accuracy of the
distinction of different crystalline phases and clusters, i.e., fcc,
hcp, and bcc. The crystalline structure around a given particle
is sufficiently determined by the combination of three average
local bond order parameters q̄6, w̄4, and w̄6. The values of
bond order parameters for several perfect crystal structures are
listed in Table II.

In order to classify the state of particles into liquidlike,
fcc-like, hcp-like, and bcc-like, we use the following criteria
[76]. First, if q̄6 < 0.3, the particle is classified as liquidlike.
Otherwise, if q̄6 > 0.3, it is considered as crystalline. If the
particle is crystalline and w̄6 > 0, it is classified as bcc-like. If
the particle is not bcc-like but crystalline, w̄4 will be checked.
If w̄4 > 0, the particle is hcp-like, and otherwise it is fcc-like
(see Table III).

TABLE III. Criterion to determine the state of a particle based on
average local bond order parameters [76].

State of a particle q̄6 w̄4 w̄6

Liquid q̄6 < 0.3
bcc structure q̄6 > 0.3 w̄6 > 0
hcp structure q̄6 > 0.3 w̄4 > 0 w̄6 < 0
fcc structure q̄6 > 0.3 w̄4 < 0 w̄6 < 0

FIG. 9. Sketches of the structure and possible arrangements of
zinc-blende structure. (a) Cubic unit cell containing four D (bright)
spheres and four C (dark) spheres; the bond between the D and C
spheres is indicated by a line connecting them together. (b) Arrange-
ment with C-C (colloid-colloid) contact. (c) Arrangement with C-D
(colloid-droplet) overlapping. (d) Arrangement with D-D (droplet-
droplet) contact in the unit cell.

APPENDIX B: CLOSE-PACKING CALCULATIONS

In a regular tetrahedral structure, a central colloid has four
droplets that are located at the corners of a tetrahedron such
that the bond angles are ∼109.5◦. From the crystallographic
data for known atomic structure types [47], we find a small
number of the crystal structures with DnCm stoichiometry
that possess a regular tetrahedral bond distribution, including
ZnS (zinc blende), ZnS (wurtzite), NaTl (zintl phase), CaF2

(flourite), O2Si (β − cristobalite), and Cu2O (cuprite) struc-
ture type. We note that the constraint condition for the D-C-D
(droplet-colloid-droplet) bond angle is ∼109.5◦, whereas the
C-D-C (colloid-droplet-colloid) bond angle is arbitrary. The
packing fraction η as a function of size ratio q = σd/σc,
with σd (σc) the diameter of droplets (colloids), which is
known as the close-packing curve, usually has three branches
corresponding to different contact regions between spherical
particles. We discuss the close-packing curve for all structure
types found in the following.

1. Zinc blende (ZnS)

The zinc-blende structure is named after the mineral zinc
blende (sphalerite) in which the two types of spheres form two
interpenetrating fcc lattices. The zinc-blende structure has two
regular tetrahedral symmetries: each droplet is surrounded
by four colloids and, conversely, each colloid is surrounded
by four droplets, positioned at four vertices of the regular
tetrahedron [see Fig. 9(a)]. We consider each branch of the
close-packing curve separately in the following.

a. Colloid-colloid contact (C-C contact)

For small q, the positions of the droplet spheres are not
uniquely defined and colloid-colloid contacts occur as shown
in Fig. 9(b), and hence a = 2

√
2rc, with a the cubic unit-cell
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parameter. The packing fraction for this branch of the close-
packing curve is given by

η = 4 × 4
3πr3

c + 4 × 4
3πr3

d

a3
= π (q3 + 1)

3
√

2
, (B1)

where rd and rc are the radius of droplets and colloids,
respectively. The factor 4 in front of the volume of the colloid
and the droplet is the number of colloids and droplets in the
unit cell.

As q increases, the droplet spheres touch and then, at
a particular value of q, overlap with their nearest-neighbor
colloid spheres [Fig. 9(b)]. The overlap distance is directly
related to the contact angle θ , the droplet radius rd , and the
colloid radius rc. When the overlap occurs, we have

a = 2
√

2rc,
a
√

3

4
= rd + rc − r0, (B2)

where r0 = rd (1 + cos θ ). One obtains a bound for q
(q � q1) as

q1 = 1 − √
3/2

cos θ
. (B3)

b. Colloid-droplet overlap (C-D overlap)

For q > q1, the colloidal spheres are no longer in contact
with each other, but the droplets and colloidal spheres still
overlap; thus,

η = 4 × 4
3πr3

c + 4 × 4
3πr3

d − 16V0

a3
, (B4)

where V0 is the volume of the intersection region formed by
one colloid and one droplet sphere, given by

V0 = π (rd + rc − B)2
(
B2 + 2Brc + 2Brd − 3r2

c − 3r2
d + 6rcrd

)
12B

, (B5)

where B is the center-center distance between the droplet and the colloid at which the parabolic well has a minimum value (see
the definition of the parabolic well in the main text). Multiplication by the factor of 16 in Eq. (B4) is due to the number of bonds
between the colloids and droplets in the unit cell. Equation (B4) for the second branch of the close-packing curve becomes

η = π
√

3{4 + q3(3q − 4) + q cos θ [4(q3 − 3q2 − 1) + q2 cos θ (6q + 4 cos θ − q cos2 θ )]}
16(q cos θ − 1)4

. (B6)

As q is large enough, the droplet spheres can touch each
other and the overlaps between the colloid and droplet spheres
are still kept. We have the second bound q2 (q � q2) [see
Fig. 9(c)],

a
√

2 = 4rd ,

a
√

3

4
= rd + rc − r0,

(B7)

i.e.,

q2 = 1

cos θ + √
3/2

. (B8)

c. Droplet-droplet contact (D-D contact)

For q > q2, the positions of the colloidal spheres become
no longer unique and droplets are in contact with each other
[Fig. 9(d)]. The packing fraction η is similar to that of the
colloid-colloid contact, but a = 2

√
2rd , and, therefore,

η = π
√

2

6

(
1 + q3

q3

)
. (B9)

2. Wurtzite (ZnS)

The wurtzite and zinc-blende structure belong to a set
of homeotect structure types; i.e., every D sphere has the
same number of nearest D neighbors and the same number of
nearest C neighbors, and, conversely, every C sphere has the
same number of nearest D neighbors and C neighbor atoms.
Therefore, the wurtzite and zinc-blende structure have the
same close-packing curve [48,49].

Similarly, we calculate the close-packing curve for the
other crystal structures. The results are given below.

3. Zintl phase (NaTl)

The compound NaTl is a classical example of a zintl phase
whose thallium (C) partial structure is the diamond lattice.
However, different from all structures listed, the close-packing
curve for the NaTl structure has only two branches, i.e.,
one for C-C contact and the other for D-D contact. This
means that C-D overlap is impossible, and hence the NaTl
structure cannot be a candidate for stable structures based on
the Pickering mechanism.

a. Colloid-colloid contact (C-C contact)

The packing fraction for this branch of the close-packing
curve is given by

η = π
√

3

16
(1 + q3), (B10)

with 0 � q � 1.

b. Droplet-droplet contact (D-D contact)

η = π
√

3

16

(
1 + q3

q3

)
, (B11)

with q � 1.
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4. Flourite (CaF2)

a. Colloid-colloid contact (C-C contact)

η = π

12
(2 + q3), (B12)

with 0 � q � 1−√
3

cos θ
.

b. Colloid-droplet overlap (C-D overlap)

η = π
√

3[32 − 48q3 + 45q4 + 8q cos θ (6q3 − 9q2 − 4) + q3(20q cos 2θ + 8 cos 3θ − q cos 4θ )]

64(q cos θ − 1)4
, (B13)

with 1−√
3

cos θ
< q � 1

cos θ+√
3/2

.
c. Droplet-droplet contact (D-D contact)

η = π
√

2

6

(
1 + q3

q3

)
, (B14)

with q > 1
cos θ+√

3/2
.

5. β − cristobalite(O2Si)

a. Colloid-colloid contact (C-C contact)

If there is only C-C contact, then the D diameter must be zero. Hence, q = 0 and η = 0.34 as C spheres are located at the
positions of the diamond lattice.

b. Colloid-droplet overlap (C-D overlap)

η = π
√

3{4 + 3q4 − q cos θ [4 + 12q2 + q2 cos θ (q cos2 θ − 4 cos θ − 6q)]}
64(q cos θ − 1)4 , (B15)

with 0 < q � 1
cos θ+√

3/2
.

c. Droplet-droplet contact (D-D contact)

η = π

12
√

2

1 + 2q3

q3
, (B16)

with q > 1
cos θ+√

3/2
.

6. Cuprite (Cu2O)

a. Colloid-colloid contact (C-C contact)

Similarly to the β − cristobalite structure, only C-C contact occurs if the D diameter is zero, and hence η = 0.68 as C spheres
are located at body-center-cubic positions.

b. Colloid-droplet overlap (C-D overlap)

η = π
√

3{4 + 3q4 − q cos θ [4 + 12q2 + q2 cos θ (q cos2 θ − 4 cos θ − 6q)]}
32(q cos θ − 1)4

, (B17)

with 0 < q � 1
cos θ+√

3/2
.

c. Droplet-droplet contact (D-D contact)

η = π

6
√

2

(1 + 2q3)

q3
, (B18)

with q > 1
cos θ+√

3/2
.

012608-10



CRYSTAL STRUCTURES IN BINARY HARD-SPHERE … PHYSICAL REVIEW E 101, 012608 (2020)

[1] Special Issue on “Designed Colloidal Self-Assembly,” edited
by A. V. Petukhov and G. J. Vroege (MDPI publishing, Basel,
2017).

[2] J. H. Holtz and S. A. Asher, Nature (London) 389, 829 (1997).
[3] P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin, J. Am.

Chem. Soc. 121, 7957 (1999).
[4] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature

(London) 386, 143 (1997).
[5] Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, Nature

(London) 414, 289 (2001).
[6] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65,

3152 (1990).
[7] M. Maldovan and E. L. Thomas, Nat. Mater. 3, 593 (2004).
[8] Y. Wang, Y. Wang, D. R. Breed, V. N. Manoharan, L. Feng,

A. D. Hollingsworth, M. Weck, and D. J. Pine, Nature (London)
491, 51 (2012).

[9] G.-R. Yi, D. J. Pine, and S. Sacanna, J. Phys. Condens. Matter
25, 193101 (2013).

[10] E. Bianchi, R. Blaak, and C. N. Likos, Phys. Chem. Chem.
Phys. 13, 6397 (2011).

[11] Q. Chen, S. C. Bae, and S. Granick, Nature (London) 469, 381
(2011).

[12] X. Mao, Q. Chen, and S. Granick, Nat. Mater. 12, 217 (2013).
[13] A. B. Pawar and I. Kretzschmar, Macromol. Rapid Commun.

31, 150 (2010).
[14] D. J. Kraft, J. Groenewold, and W. K. Kegel, Soft Matter 5,

3823 (2009).
[15] A. V. Tkachenko, Phys. Rev. Lett. 89, 148303 (2002).
[16] Zhang, A. S. Keys, T. Chen, and S. C. Glotzer, Langmuir 21,

11547 (2005).
[17] E. Bianchi, P. Tartaglia, E. Zaccarelli, and F. Sciortino, J. Chem.

Phys. 128, 144504 (2008).
[18] F. Romano, E. Sanz, and F. Sciortino, J. Phys. Chem. B 113,

15133 (2009).
[19] F. Romano, E. Sanz, and F. Sciortino, J. Phys. Chem. 132,

184501 (2010).
[20] F. Romano, E. Sanz, and F. Sciortino, J. Phys. Chem. 134,

174502 (2011).
[21] E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, and G. Kahl,

J. Phys. Chem. 136, 214102 (2012).
[22] G. Doppelbauer, E. G. Noya, E. Bianchi, and G. Kahl, J. Phys.:

Condens. Matter 24, 284124 (2012).
[23] F. Smallenburg and F. Sciortino, Nat. Phys. 9, 554 (2013).
[24] J. P. K. Doye, A. A. Louis, I.-C. Lin, L. R. Allen, E. G. Noya,

A. W. Wilber, H. C. Kok, and R. Lyus, Phys. Chem. Chem.
Phys. 9, 2197 (2007).

[25] A.-P. Hynninen, J. H. J. Thijssen, E. C. M. Vermolen, M.
Dijkstra, and A. van Blaaderen, Nat. Mater. 6, 202 (2007).

[26] D. de las Heras, J. M. Tavares, and M. M. Telo da Gama, Soft
Matter 7, 5615 (2011).

[27] F. Seiferling, D. de las Heras, and M. M. T. da Gama, J. Chem.
Phys. 145, 074903 (2016).

[28] A. R. Denton and N. W. Ashcroft, Phys. Rev. A 42, 7312
(1990).

[29] M. J. Murray and J. V. Sanders, Philos. Mag. A 42, 721 (1980).
[30] S. Hachisu and S. Yoshimura, Nature (London) 283, 188

(1980).
[31] M. Hasaka, H. Nakashima, and K. Oki, Trans. Jpn. Inst. Met.

25, 65 (1984).
[32] L. Filion and M. Dijkstra, Phys. Rev. E 79, 046714 (2009).

[33] A. B. Hopkins, Y. Jiao, F. H. Stillinger, and S. Torquato, Phys.
Rev. Lett. 107, 125501 (2011).

[34] A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. E
85, 021130 (2012).

[35] X. Cottin and P. A. Monson, J. Chem. Phys. 102, 3354 (1995).
[36] M. Maldovan, C. K. Ullal, W. C. Carter, and E. L. Thomas, Nat.

Mater. 2, 664 (2003).
[37] A. Fortini, Phys. Rev. E 85, 040401(R) (2012).
[38] F. L. Román, M. Schmidt, and H. Löwen, Phys. Rev. E 61, 5445

(2000).
[39] I. Schwarz, A. Fortini, C. S. Wagner, A. Wittemann, and M.

Schmidt, J. Chem. Phys. 135, 244501 (2011).
[40] H. Pham Van, A. Fortini, and M. Schmidt, Phys. Rev. E 93,

052609 (2016).
[41] H. Pham Van, A. Fortini, and M. Schmidt, Materials 10, 361

(2017).
[42] P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).
[43] E. G. Noya, C. Vega, J. P. K. Doye, and A. A. Louis, J. Chem.

Phys. 132, 234511 (2010).
[44] J. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004).
[45] S. Whitelam and P. L. Geissler, J. Chem. Phys. 127, 154101

(2007).
[46] W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707 (2008).
[47] P. Villars, K. Mathis, and F. Hulliger, in The Structures of Binary

Compounds, edited by F. R de Boer and D. G. Pettifor (North-
Holland, Amsterdam, 1989).

[48] E. Parthé, Z. Kristallogr. Cryst. Mater. 115, 52 (1961).
[49] E. Parthé, Crystal Chemistry of Tetrahedral Structures (Gordon

and Breach, PA, 1964).
[50] M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. E 59, 5744

(1999).
[51] N. A. Mahynski, A. Z. Panagiotopoulos, D. Meng, and S. K.

Kumar, Nat. Commun. 5, 4472 (2014).
[52] N. A. Mahynski, S. K. Kumar, and A. Z. Panagiotopoulos, Soft

Matter 11, 5146 (2015).
[53] N. A. Mahynski, S. K. Kumar, and A. Z. Panagiotopoulos, Soft

Matter 11, 280 (2015).
[54] N. A. Mahynski, L. Rovigatti, C. N. Likos, and A. Z.

Panagiotopoulos, ACS Nano 10, 5459 (2016).
[55] F. Romano and F. Sciortino, Nat. Commun. 3, 975 (2012).
[56] M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941

(2000).
[57] G. Foffi and F. Sciortino, J. Phys. Chem. B 111, 9702 (2007).
[58] V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301,

483 (2003).
[59] Y. S. Cho, G. R. Yi, Y. S. Chung, S. B. Park, and S. M. Yang,

Langmuir 23, 12079 (2007).
[60] C. Wagner, B. Fischer, M. May, and A. Wittemann, Colloid.

Polym. Sci. 288, 487 (2010).
[61] R. Evans, Adv. Phys. 28, 143 (1979).
[62] R. Evans, M. Oettel, R. Roth, and G. Kahl, J. Phys. Condens.

Matter 28, 240401 (2016).
[63] R. Roth, J. Phys. Condens. Matter 22, 063102 (2010).
[64] P. Tarazona, J. Cuesta, and Y. Martínez-Ratón, Density Func-

tional Theories of Hard Particle Systems (Springer, Berlin,
2008), pp. 247–341.

[65] M. Schmidt, Phys. Rev. E 62, 3799 (2000).
[66] M. Schmidt, J. Phys. Condens. Matter 16, L351 (2004).
[67] D. de las Heras, J. M. Tavares, and M. M. T. da Gama, J. Chem.

Phys. 134, 104904 (2011).

012608-11

https://doi.org/10.1038/39834
https://doi.org/10.1038/39834
https://doi.org/10.1038/39834
https://doi.org/10.1038/39834
https://doi.org/10.1021/ja991321h
https://doi.org/10.1021/ja991321h
https://doi.org/10.1021/ja991321h
https://doi.org/10.1021/ja991321h
https://doi.org/10.1038/386143a0
https://doi.org/10.1038/386143a0
https://doi.org/10.1038/386143a0
https://doi.org/10.1038/386143a0
https://doi.org/10.1038/35104529
https://doi.org/10.1038/35104529
https://doi.org/10.1038/35104529
https://doi.org/10.1038/35104529
https://doi.org/10.1103/PhysRevLett.65.3152
https://doi.org/10.1103/PhysRevLett.65.3152
https://doi.org/10.1103/PhysRevLett.65.3152
https://doi.org/10.1103/PhysRevLett.65.3152
https://doi.org/10.1038/nmat1201
https://doi.org/10.1038/nmat1201
https://doi.org/10.1038/nmat1201
https://doi.org/10.1038/nmat1201
https://doi.org/10.1038/nature11564
https://doi.org/10.1038/nature11564
https://doi.org/10.1038/nature11564
https://doi.org/10.1038/nature11564
https://doi.org/10.1088/0953-8984/25/19/193101
https://doi.org/10.1088/0953-8984/25/19/193101
https://doi.org/10.1088/0953-8984/25/19/193101
https://doi.org/10.1088/0953-8984/25/19/193101
https://doi.org/10.1039/c0cp02296a
https://doi.org/10.1039/c0cp02296a
https://doi.org/10.1039/c0cp02296a
https://doi.org/10.1039/c0cp02296a
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nature09713
https://doi.org/10.1038/nmat3496
https://doi.org/10.1038/nmat3496
https://doi.org/10.1038/nmat3496
https://doi.org/10.1038/nmat3496
https://doi.org/10.1002/marc.201090000
https://doi.org/10.1002/marc.201090000
https://doi.org/10.1002/marc.201090000
https://doi.org/10.1002/marc.201090000
https://doi.org/10.1039/b910593j
https://doi.org/10.1039/b910593j
https://doi.org/10.1039/b910593j
https://doi.org/10.1039/b910593j
https://doi.org/10.1103/PhysRevLett.89.148303
https://doi.org/10.1103/PhysRevLett.89.148303
https://doi.org/10.1103/PhysRevLett.89.148303
https://doi.org/10.1103/PhysRevLett.89.148303
https://doi.org/10.1021/la0513611
https://doi.org/10.1021/la0513611
https://doi.org/10.1021/la0513611
https://doi.org/10.1021/la0513611
https://doi.org/10.1063/1.2888997
https://doi.org/10.1063/1.2888997
https://doi.org/10.1063/1.2888997
https://doi.org/10.1063/1.2888997
https://doi.org/10.1021/jp9081905
https://doi.org/10.1021/jp9081905
https://doi.org/10.1021/jp9081905
https://doi.org/10.1021/jp9081905
https://doi.org/10.1063/1.3393777
https://doi.org/10.1063/1.3393777
https://doi.org/10.1063/1.3393777
https://doi.org/10.1063/1.3393777
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.3578182
https://doi.org/10.1063/1.4722477
https://doi.org/10.1063/1.4722477
https://doi.org/10.1063/1.4722477
https://doi.org/10.1063/1.4722477
https://doi.org/10.1088/0953-8984/24/28/284124
https://doi.org/10.1088/0953-8984/24/28/284124
https://doi.org/10.1088/0953-8984/24/28/284124
https://doi.org/10.1088/0953-8984/24/28/284124
https://doi.org/10.1038/nphys2693
https://doi.org/10.1038/nphys2693
https://doi.org/10.1038/nphys2693
https://doi.org/10.1038/nphys2693
https://doi.org/10.1039/b614955c
https://doi.org/10.1039/b614955c
https://doi.org/10.1039/b614955c
https://doi.org/10.1039/b614955c
https://doi.org/10.1038/nmat1841
https://doi.org/10.1038/nmat1841
https://doi.org/10.1038/nmat1841
https://doi.org/10.1038/nmat1841
https://doi.org/10.1039/c0sm01493a
https://doi.org/10.1039/c0sm01493a
https://doi.org/10.1039/c0sm01493a
https://doi.org/10.1039/c0sm01493a
https://doi.org/10.1063/1.4960808
https://doi.org/10.1063/1.4960808
https://doi.org/10.1063/1.4960808
https://doi.org/10.1063/1.4960808
https://doi.org/10.1103/PhysRevA.42.7312
https://doi.org/10.1103/PhysRevA.42.7312
https://doi.org/10.1103/PhysRevA.42.7312
https://doi.org/10.1103/PhysRevA.42.7312
https://doi.org/10.1080/01418618008239380
https://doi.org/10.1080/01418618008239380
https://doi.org/10.1080/01418618008239380
https://doi.org/10.1080/01418618008239380
https://doi.org/10.1038/283188a0
https://doi.org/10.1038/283188a0
https://doi.org/10.1038/283188a0
https://doi.org/10.1038/283188a0
https://doi.org/10.2320/matertrans1960.25.65
https://doi.org/10.2320/matertrans1960.25.65
https://doi.org/10.2320/matertrans1960.25.65
https://doi.org/10.2320/matertrans1960.25.65
https://doi.org/10.1103/PhysRevE.79.046714
https://doi.org/10.1103/PhysRevE.79.046714
https://doi.org/10.1103/PhysRevE.79.046714
https://doi.org/10.1103/PhysRevE.79.046714
https://doi.org/10.1103/PhysRevLett.107.125501
https://doi.org/10.1103/PhysRevLett.107.125501
https://doi.org/10.1103/PhysRevLett.107.125501
https://doi.org/10.1103/PhysRevLett.107.125501
https://doi.org/10.1103/PhysRevE.85.021130
https://doi.org/10.1103/PhysRevE.85.021130
https://doi.org/10.1103/PhysRevE.85.021130
https://doi.org/10.1103/PhysRevE.85.021130
https://doi.org/10.1063/1.469209
https://doi.org/10.1063/1.469209
https://doi.org/10.1063/1.469209
https://doi.org/10.1063/1.469209
https://doi.org/10.1038/nmat979
https://doi.org/10.1038/nmat979
https://doi.org/10.1038/nmat979
https://doi.org/10.1038/nmat979
https://doi.org/10.1103/PhysRevE.85.040401
https://doi.org/10.1103/PhysRevE.85.040401
https://doi.org/10.1103/PhysRevE.85.040401
https://doi.org/10.1103/PhysRevE.85.040401
https://doi.org/10.1103/PhysRevE.61.5445
https://doi.org/10.1103/PhysRevE.61.5445
https://doi.org/10.1103/PhysRevE.61.5445
https://doi.org/10.1103/PhysRevE.61.5445
https://doi.org/10.1063/1.3672106
https://doi.org/10.1063/1.3672106
https://doi.org/10.1063/1.3672106
https://doi.org/10.1063/1.3672106
https://doi.org/10.1103/PhysRevE.93.052609
https://doi.org/10.1103/PhysRevE.93.052609
https://doi.org/10.1103/PhysRevE.93.052609
https://doi.org/10.1103/PhysRevE.93.052609
https://doi.org/10.3390/ma10040361
https://doi.org/10.3390/ma10040361
https://doi.org/10.3390/ma10040361
https://doi.org/10.3390/ma10040361
https://doi.org/10.1103/PhysRevLett.45.569
https://doi.org/10.1103/PhysRevLett.45.569
https://doi.org/10.1103/PhysRevLett.45.569
https://doi.org/10.1103/PhysRevLett.45.569
https://doi.org/10.1063/1.3454907
https://doi.org/10.1063/1.3454907
https://doi.org/10.1063/1.3454907
https://doi.org/10.1063/1.3454907
https://doi.org/10.1103/PhysRevLett.92.035504
https://doi.org/10.1103/PhysRevLett.92.035504
https://doi.org/10.1103/PhysRevLett.92.035504
https://doi.org/10.1103/PhysRevLett.92.035504
https://doi.org/10.1063/1.2790421
https://doi.org/10.1063/1.2790421
https://doi.org/10.1063/1.2790421
https://doi.org/10.1063/1.2790421
https://doi.org/10.1063/1.2977970
https://doi.org/10.1063/1.2977970
https://doi.org/10.1063/1.2977970
https://doi.org/10.1063/1.2977970
https://doi.org/10.1524/zkri.1961.115.1-2.52
https://doi.org/10.1524/zkri.1961.115.1-2.52
https://doi.org/10.1524/zkri.1961.115.1-2.52
https://doi.org/10.1524/zkri.1961.115.1-2.52
https://doi.org/10.1103/PhysRevE.59.5744
https://doi.org/10.1103/PhysRevE.59.5744
https://doi.org/10.1103/PhysRevE.59.5744
https://doi.org/10.1103/PhysRevE.59.5744
https://doi.org/10.1038/ncomms5472
https://doi.org/10.1038/ncomms5472
https://doi.org/10.1038/ncomms5472
https://doi.org/10.1038/ncomms5472
https://doi.org/10.1039/C5SM00631G
https://doi.org/10.1039/C5SM00631G
https://doi.org/10.1039/C5SM00631G
https://doi.org/10.1039/C5SM00631G
https://doi.org/10.1039/C4SM02191F
https://doi.org/10.1039/C4SM02191F
https://doi.org/10.1039/C4SM02191F
https://doi.org/10.1039/C4SM02191F
https://doi.org/10.1021/acsnano.6b01854
https://doi.org/10.1021/acsnano.6b01854
https://doi.org/10.1021/acsnano.6b01854
https://doi.org/10.1021/acsnano.6b01854
https://doi.org/10.1038/ncomms1968
https://doi.org/10.1038/ncomms1968
https://doi.org/10.1038/ncomms1968
https://doi.org/10.1038/ncomms1968
https://doi.org/10.1063/1.1288684
https://doi.org/10.1063/1.1288684
https://doi.org/10.1063/1.1288684
https://doi.org/10.1063/1.1288684
https://doi.org/10.1021/jp074253r
https://doi.org/10.1021/jp074253r
https://doi.org/10.1021/jp074253r
https://doi.org/10.1021/jp074253r
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1126/science.1086189
https://doi.org/10.1021/la7018346
https://doi.org/10.1021/la7018346
https://doi.org/10.1021/la7018346
https://doi.org/10.1021/la7018346
https://doi.org/10.1007/s00396-009-2169-y
https://doi.org/10.1007/s00396-009-2169-y
https://doi.org/10.1007/s00396-009-2169-y
https://doi.org/10.1007/s00396-009-2169-y
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1088/0953-8984/28/24/240401
https://doi.org/10.1088/0953-8984/28/24/240401
https://doi.org/10.1088/0953-8984/28/24/240401
https://doi.org/10.1088/0953-8984/28/24/240401
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1103/PhysRevE.62.3799
https://doi.org/10.1103/PhysRevE.62.3799
https://doi.org/10.1103/PhysRevE.62.3799
https://doi.org/10.1103/PhysRevE.62.3799
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1088/0953-8984/16/30/L01
https://doi.org/10.1063/1.3561396
https://doi.org/10.1063/1.3561396
https://doi.org/10.1063/1.3561396
https://doi.org/10.1063/1.3561396


VAN, FORTINI, AND SCHMIDT PHYSICAL REVIEW E 101, 012608 (2020)

[68] N. Gnan, D. de las Heras, J. M. Tavares, M. M. T.
da Gama, and F. Sciortino, J. Chem. Phys. 137, 084704
(2012).

[69] D. de las Heras, J. M. Tavares, and M. M. Telo da Gama, Soft
Matter 8, 1785 (2012).

[70] L. Rovigatti, D. de las Heras, J. M. Tavares, M. M. T. da Gama,
and F. Sciortino, J. Chem. Phys. 138, 164904 (2013).

[71] A. Fortini, M. Schmidt, and M. Dijkstra, Phys. Rev. E 73,
051502 (2006).

[72] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B
28, 784 (1983).

[73] A. Messiah, Quantum Mechanics (North-Holland, Amsterdam,
1965).

[74] J. S. van Duijneveldt and D. Frenkel, J. Chem. Phys. 96, 4655
(1992).

[75] S. Winczewski, J. Dziedzic, and J. Rybicki, Comput. Phys.
Commun. 198, 128 (2016).

[76] J. P. Mithen and R. P. Sear, Cryst. Growth Des. 16, 3049 (2016).

012608-12

https://doi.org/10.1063/1.4746428
https://doi.org/10.1063/1.4746428
https://doi.org/10.1063/1.4746428
https://doi.org/10.1063/1.4746428
https://doi.org/10.1039/c1sm06948a
https://doi.org/10.1039/c1sm06948a
https://doi.org/10.1039/c1sm06948a
https://doi.org/10.1039/c1sm06948a
https://doi.org/10.1063/1.4802026
https://doi.org/10.1063/1.4802026
https://doi.org/10.1063/1.4802026
https://doi.org/10.1063/1.4802026
https://doi.org/10.1103/PhysRevE.73.051502
https://doi.org/10.1103/PhysRevE.73.051502
https://doi.org/10.1103/PhysRevE.73.051502
https://doi.org/10.1103/PhysRevE.73.051502
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1063/1.462802
https://doi.org/10.1063/1.462802
https://doi.org/10.1063/1.462802
https://doi.org/10.1063/1.462802
https://doi.org/10.1016/j.cpc.2015.09.009
https://doi.org/10.1016/j.cpc.2015.09.009
https://doi.org/10.1016/j.cpc.2015.09.009
https://doi.org/10.1016/j.cpc.2015.09.009
https://doi.org/10.1021/acs.cgd.6b00209
https://doi.org/10.1021/acs.cgd.6b00209
https://doi.org/10.1021/acs.cgd.6b00209
https://doi.org/10.1021/acs.cgd.6b00209

