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We present a fundamental classification of forces relevant in nonequilibrium structure formation under
collective flow in Brownian many-body systems. The internal one-body force field is systematically split
into contributions relevant for the spatial structure and for the coupled motion. We demonstrate that both
contributions can be obtained straightforwardly in computer simulations and present a power functional
theory that describes all types of forces quantitatively. Our conclusions and methods are relevant for flow in
inertial systems, such as molecular liquids and granular media.
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Nonequilibrium phenomenology in colloidal systems is
both diverse and poorly understood. Examples include lane
[1] and band [2] formation in oppositely driven colloids, the
motility induced phase separation in active systems [3,4],
the migration of colloidal particles induced by shear fields
[5,6], and magnetically controlled dynamical self-assembly
[7]. Even the universal processes of vitrification [8] and
crystallization [9] are still not well understood.
Our inability to properly describe nonequilibrium phe-

nomena can be traced back to our lack of understanding of
the internal force field, that is, the one-body field that
originates from a position- and time-resolved average of the
interparticle interactions. In equilibrium, the internal force
field depends only on the density distribution and it is
well described by the widely used framework of density
functional theory (DFT) [10]. In contrast, in nonequili-
brium, the internal force field depends on both the density
and the flow [11,12]. We show here that the nonequilibrium
internal force field naturally splits into four fundamentally
different contributions and we provide a method to measure
each of them using computer simulations. The classifica-
tion of the internal forces is based on the direction of the
force and, crucially, on whether the force acts on the
particle flow or on the structure of the fluid. We show how
flow and spatial structure, which are often treated sepa-
rately, naturally interplay in generating the internal force
field and, therefore, provide a unifying framework to treat
both aspects on equal footing. Finally, we present a
microscopic theory, based on the power functional [11],
that predicts quantitatively all occurring types of contribu-
tions to the internal force field across a range of funda-
mentally different nonequilibrium situations.
Consider a nonequilibrium overdamped Brownian sys-

tem with no hydrodynamic interactions. The time evolution
is given by the exact one-body equation of motion

γvðr; tÞ ¼ ftotðr; tÞ ð1Þ

and the continuity equation

∂
∂t ρðr; tÞ ¼ −∇ · Jðr; tÞ; ð2Þ

where γ is the single-particle friction constant against the
(implicit) solvent, vðr; tÞ is the velocity field at position r
and time t, ftotðr; tÞ is the total force field, ρðr; tÞ is the
density distribution, and J ¼ ρv is the current profile. The
total force comprises three contributions,

ftot ¼ fext þ fint þ fid; ð3Þ

with the imposed external force field fext, the internal force
field fint, and the ideal-gas diffusion fid ¼ −kBT∇ ln ρ; here
kB is the Boltzmann constant and T is absolute temperature.
All one-body fields above are well defined as statistical
averages of microscopic operators (see, e.g., [12]). The
underlying many-body dynamics are given, equivalently,
by a Fokker-Planck (Smoluchowski) equation for the
probability distribution or in the Langevin picture of
stochastic trajectories.
The internal force consists of adiabatic and superadia-

batic contributions fint ¼ fad þ fsup [11,13]. The equili-
briumlike adiabatic part fad is the only internal force that
enters in the widespread dynamical density functional
theory [14] and it describes the internal forces in a
hypothetical equilibrium system (vanishing current) with
the same density distribution as the actual nonequilibrium
system. In contrast, the superadiabatic force field fsup is of
purely out-of-equilibrium origin. Both fad and fsup can be
written as functional derivatives using DFT [10] and power
functional theory (PFT) [11], respectively.
Although the continuity equation (2) links the flow v and

the density profile ρ, there is much freedom in choosing
both fields separately. PFT assures that a mapping from ρ
and v to the external force exists [11,12]. Hence, ρ and v
constitute genuine variables rather than being the result of a
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prescribed driving mechanism. It is possible to find, e.g.,
two systems that share the same density profile, but have
different velocity profiles. A simple situation consists
of a family of flows differing only in magnitude of the
velocity [12]. However, much more complex cases exist,
since the continuity equation (2) does not impose any
restriction on the curl of the current. Hence, the addition of
any divergence-free vector field to the current keeps the
continuity equation satisfied with identical density profile.
There exist also systems that share the same flow but
possess different density profiles. It is therefore natural to
split the equation of motion (1) into two interrelated
equations, one for the flow and one for the structure,
given, respectively, by

γv ¼ fflow þ fext;f ; ð4Þ

0 ¼ fid þ fad þ fstr þ fext;s: ð5Þ

The diffusive term fid and the adiabatic force fad
depend only on the density profile and therefore act on
the structure (5). The external force can act on both
structure and flow, and therefore, it splits into a contribution
that acts on the flow fext;f and one that acts on the structure
fext;s, such that fext ¼ fext;f þ fext;s. The total superadiabatic
force field fsup also acts on both flow and structure and
hence can be split according to

fsup ¼ fflow þ fstr: ð6Þ

Equations (4) and (5) are coupled since fflow and fstr are
functionals of both ρ and v. However, both equations
describe different phenomena; the velocity field is deter-
mined by the flow [Eq. (4)], whereas the density profile is
given by the structural force balance (5). As we demon-
strate below, both superadiabatic forces behave differently
under motion reversal.
To gain insight into the physical properties of (6), we

address first the force balance of the well-known phenome-
non of shear migration [6,15]. A broad range of further
types of drivings are analyzed below. For simplicity, we
consider steady states, where all one-body quantities are
time independent and hence ∇ · J ¼ 0, cf. (2).
Consider a colloidal system undergoing a Kolmogorov-

like flow [16] (see Fig. 1). The particles are driven by a
sinusoidal external field fext ∝ sinðyÞx̂ (red), which creates
a steady state with a flow v parallel to the driving (violet) in
x direction. In the direction perpendicular to the flow, a
density modulation ρðrÞ ¼ ρðyÞ (orange) appears since
the particles migrate toward the region of low shear rate.
The superadiabatic forces here are easy to interpret [17].

A dissipative viscouslike force fjjflow (blue) opposes the
flow. The force is antiparallel to the flow and it clearly
changes direction if the external driving is reversed. The
density modulation in the direction perpendicular to the

flow is sustained by a nondissipative structural super-
adiabatic force f⊥str (green) that remains unchanged under
flow reversal and that cancels both the diffusive and the
adiabatic forces (yellow). In this geometry, the flow forces
are of viscous nature and parallel to the flow, whereas the
structural forces are perpendicular to it. As both super-
adiabatic components are orthogonal to each other, meas-
uring them separately in computer simulations is simple.
However, in general, we expect also structural forces to

occur parallel to the flow fjjstr and flow forces to occur
perpendicular to the flow f⊥flow. To split the superadiabatic
forces into all these constituents, we consider what we call
the “reverse” or “backward” state, which possess the same
density profile as the original “forward” state but it has the
opposite flow. Hence, indicating quantities in the reverse
state by a prime, we have

ρ0ðrÞ ¼ ρðrÞ; v0ðrÞ ¼ −vðrÞ: ð7Þ
As a direct consequence of the structure of (4) and (5), the
flow component of the superadiabatic force reverses its sign
in the reverse state (f0flow ¼ −fflow), whereas the structural
component remains unchanged (f0str ¼ fstr), i.e.,

f0sup ¼ f0flow þ f0str ¼ −fflow þ fstr: ð8Þ

Once flow and structural components have been iden-
tified, we project the vector fields onto the directions
parallel ðjjÞ and perpendicular ð⊥Þ to the velocity field.
The final and complete splitting of superadiabatic forces is

fsup ¼ fjjflow þ f⊥flow þ fjjstr þ f⊥str: ð9Þ
The ideal diffusion and the adiabatic forces do not

change in the reverse state since they only depend on

FIG. 1. Force balance in Kolmogorov flow. A colloidal system
is driven with a sinusoidal external force fext (red). The force
creates a flow γv (violet) that generates a superadiabatic flow
force fjjflow (blue) of viscous nature and a density modulation ρ
(orange), which is the result of the force balance between the
superadiabatic structural f⊥str (green) and the sum of adiabatic fad
and diffusive fid (yellow) forces. The arrows indicate the
directions of the forces. An illustrative microstate is shown with
particles depicted as orange circles.
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the density profile, i.e., f0id ¼ fid and f0ad ¼ fad. Therefore,
using (1) and (8), we arrive at the following equations
of motion in the forward and in the reverse states,
respectively:

γv ¼ fid þ fad þ fflow þ fstr þ fext; ð10Þ

− γv ¼ fid þ fad − fflow þ fstr þ f0ext: ð11Þ

Subtracting and adding (10) and (11) yields

fflow ¼ γv − ðfext − f0extÞ=2; ð12Þ

fstr ¼ −fid − fad − ðfext þ f0extÞ=2: ð13Þ

Alternatively, from (6) and (8), it follows that

fflow ¼ ðfsup − f0supÞ=2; ð14Þ

fstr ¼ ðfsup þ f0supÞ=2: ð15Þ

The final steps to apply either Eqs. (12) and (13) or (14)
and (15) are (i) to find the external force f0ext that reverses
the flow and (ii) to split the internal force field fint into
adiabatic and superadiabatic contributions. In general,
f0ext ≠ −fext due to nonvanishing structural (flow) forces
(parallel) perpendicular to the flow, see Eqs. (10) and (11).
The four components of the superadiabatic forces (9) are

accessible in many-body Brownian dynamics (BD) simu-
lations. In Ref. [12], we developed an iterative method to
construct the external force field that generates a given
(prescribed) time evolution of a Brownian system; a brief
description is provided in the Supplemental Material [18].
Using this “custom flow” method, it is straightforward to
calculate in BD simulations f0ext since ρ0 and v0 are known
[see Eq. (7)]. Splitting the internal force field into adiabatic
and superadiabatic contributions is also simple [12,13]: we
first find the adiabatic external force fadext, i.e., the
conservative external force field that generates the desired
density profile in equilibrium (v ¼ 0). To this end, we use
the method of Ref. [12]. The adiabatic force fad is then the
internal force in the presence of fadext. The superadiabatic
force is the difference between the total internal and the
adiabatic fields, fsup ¼ fint − fad.
Knowledge of the superadiabatic forces in the forward

and in the reverse states gives direct access to the flow
and the structural components via (14) and (15). Using fadext,
the structural force, (13) can be also expressed using
only external forces fstr ¼ fadext − ðfext þ f0extÞ=2 since in
the adiabatic (equilibrium) system fadext þ fid þ fad ¼ 0.
Once the flow and the structural components are
known, we project them onto the local flow direction,
given by êvðrÞ ¼ vðrÞ=jvðrÞj, to obtain the parallel and
perpendicular components,

fjjα ¼ ðfα · êvÞêv; f⊥α ¼ fα − fjjα; α ¼ fflow; strg: ð16Þ

We study the fundamental splitting (9) of the super-
adiabatic forces in a simple two-dimensional system of
purely repulsive particles (Weeks-Chandler-Andersen
potential [19] with σ and ϵ as length and energy parameters,
respectively). The particles are inside a square box of length
h (centered at the origin) with periodic boundary conditions
[see Fig. 2(a)].
To illustrate the classification of the superadiabatic

forces, we analyze eight different steady states. We use
custom flow [12,18] to impose v and ρ and then find the
corresponding external fields both in the forward and in
the reverse states. The steady states cover fundamentally
different cases such as divergence-free flow, curl-free flow,
and families of flows with the same velocity profiles but
different density profiles. The description of the flows,
along with plots of all forces and simulation details, are
given in the Supplemental Material [18]. Here, we just
illustrate the complexity and richness of the superadiabatic
forces for a representative example (flow number 1 in
Supplemental Material [18]). The imposed steady state is a
generalized Kolmogorov flow, in which each component of
the velocity is a pure sinusoidal wave,

vðrÞ ¼
�
v0 sinð2πy=hÞ
v0 sinð2πx=hÞ

�
; ρðrÞ ¼ ρ0; ð17Þ

with v0τ=σ ¼ 1.0, constant density ρ0 ¼ 0.2σ−2, and where
τ ¼ σ2γ=ϵ is the time unit. The two Cartesian velocity
components sampled in BD simulations are shown in
Figs. 2(b) and 2(c). Illustrative particle trajectories are
shown in Fig. 2(d): the particles wind around specific
points, which constitute defects in the velocity field, i.e.,
points at which the direction of the velocity is ill defined. To
better highlight the motion graphically, the shown trajec-
tories were calculated in absence of Brownian motion. The
imposed density profile is uniform, and therefore the ideal
diffusive and the adiabatic force fields, both gradient fields,
vanish identically. The internal force field is hence purely
superadiabatic. In Fig. 2(e), we show the x component of
the superadiabatic force field. Because of the symmetry of
the flow, the y component (shown in Supplemental Material
[18]) is simply the x component after a 90° anticlockwise
rotation about the origin followed by a reflection through
the y axis. The splitting into flow and structural forces (6) is
shown in Figs. 2(f) and 2(g), respectively. Both force fields
are of the same order of magnitude, but they play different
roles. The flow force is mostly of viscous nature opposing
the direction of motion. The structural force is dominated
by a migrationlike term. It is quite complex, as it tends to
move the particles toward the defects with cyclonic
vorticity (those located at the middle of the sides of
the box), away from the hyperbolic defects (center and
corners of the box). The density is, however, constant by
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construction and therefore the structural force does not
create any density modulation. Instead, the structural force
is balanced by the structural component of the external field
fext;s, cf. (5). The external force field performs two different
tasks: (i) it creates the flow and (ii) it compensates the
structural forces that are generated as a result of the flow.
The full splitting into the four types of nonequilibrium

forces (9) is shown in Fig. 2(h). Clearly all types of forces,
including the flow forces perpendicular to the flow and the
structural forces parallel to the flow exist, and no contri-

bution is negligible. The parallel flow force fjjflow can be
understood as arising from viscosity. However, although

the flow is made of pure sinusoidal waves, fjjflow exhibits a
complex spatial structure and it is not a simple sine wave
opposing the flow, as one would naively expect according
to a Navier-Stokes description of the viscous force.
Moreover, the perpendicular component of the flow force
is highly nontrivial and cannot be interpreted as a viscous
response.
Although this example is restricted to a case of homo-

geneous density, we show in the Supplemental Material
[18] a variety of steady states with inhomogeneous density
profiles. The versatility of the custom flow method allows
us to, e.g., analyze a steady state (flow number 2) with the

same velocity profile as in (17), but with an inhomogeneous
density profile. Comparing systems with the same v but
different ρ is useful to gain insight into the structure of the
power functional that generates the superadiabatic forces.
The superadiabatic forces are functional derivatives of

the functional Pexc
t with respect to the current [11,18]. The

splitting into flow and structural forces can be analyzed via
a power series of the velocity field [17,20]. Terms odd
(even) in powers of v lead to structural (flow) forces that
must be even (odd) in powers of v. Note that (i) the
functional differentiation reduces by one the power of
the velocity field, and (ii) flow (structural) forces change
(do not change) sign upon flow reversal. The simplest
approximation for Pexc

t is, in essence, a space integral of a
quadratic form in the local velocity gradient [20]. The
resulting superadiabatic force is a flow force (no structural
terms) that represent the viscous and shear responses in the
Navier-Stokes equations. Higher-order terms, third order in
powers of the velocity field, are required to generate all the
structural forces. These terms are based on spatial integrals
of rotational invariants of the type Lijklð∇ivjÞðvkÞðvlÞ and
Qijklmnð∇ivjÞð∇kvlÞð∇mvjÞ with L and Q isotropic tensors
of fourth and sixth rank, respectively. We find it necessary
to include fourth-order terms to correctly describe the flow
forces in some of the steady states analyzed. The theory

(a) (b)

(h)

(f)

(g)

(i)

(c) (d) (e)

FIG. 2. Superadiabatic forces. (a) Schematic of the simulation box. Sampled (b) x and (c) y components of the imposed steady-state
velocity profile. (d) Characteristic trajectories followed by the particles in absence of Brownian noise. (e) x component of the total
superadiabatic force measured in BD. (f) Flow and (g) structural components of the superadiabatic force according to BD. (h) Splitting
of flow and structural forces into their parallel and perpendicular components, as indicated. Data obtained with BD simulations. (i) Same
as (h) but using power functional theory. All forces are in units of ϵ=σ. The flow is in units of τ=σ. The scale factor s (see color bar) is
indicated in each plot. The y components are depicted in the Supplemental Material [18].
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reproduces from first principles the complex shape of the
superadiabatic forces computed in BD simulations (only
the magnitude of the forces needs to be adjusted). Compare,
e.g., Figs. 2(h) (simulation) and 2(i) (PFT). Further
comparisons and details about Pexc

t are provided in the
Supplemental Material [18].
Although we used custom flow [12] to prescribe the

flow, the splitting of superadiabatic forces is general and
applies to the standard situation where fext is prescribed
instead of the flow itself. Custom flow is then required only
to obtain the reverse state. The custom flow method also
works in time-dependent nonequilibrium situations [12].
Hence the splitting of the superadiabatic forces can be done
in any situation. Our analysis is devoted to overdamped
Brownian systems without hydrodynamic interactions.
Therefore, the superadiabatic forces are solely generated
by the interparticle interactions in nonequilibrium. Using
an inert solvent has allowed us to isolate the superadiabatic
effects from those due to hydrodynamics. Inclusion of
hydrodynamic effects can be effectively done via transport
coefficients [18] in a modified form. For example, it has
been shown recently that complex hydrodynamic effects,
such as diffusion in complex liquids, can be correctly
accounted for with wave-vector-dependent viscosities [21].
We expect the same type of superadiabatic forces to be

present in other dynamical systems, including granular
systems and inertial Newtonian dynamics such as, e.g.,
molecular liquids. Within the Navier-Stokes equations, one
assumes (i) the viscous term to be proportional to the
velocity gradient and (ii) omits the structural terms. Our
results indicate both assumptions might not be acceptable
even in very simple flows. We anticipate, e.g., that the
structural forces play a crucial role in most nonequilibrium
situations, including, e.g., turbulent flows [22], crystalli-
zation [8,9], and the hysteresis of the liquid-solid transition
in granular systems [23].
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