
 

Universality in Driven and Equilibrium Hard Sphere Liquid Dynamics

Lucas L. Treffenstädt and Matthias Schmidt *

Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany

(Received 10 October 2020; revised 4 December 2020; accepted 5 January 2021; published 4 February 2021)

We demonstrate that the time evolution of the van Hove dynamical pair correlation function is governed
by adiabatic forces that arise from the free energy and by superadiabatic forces that are induced by the flow
of the van Hove function. The superadiabatic forces consist of drag, viscous, and structural contributions, as
occur in active Brownian particles, in liquids under shear and in lane forming mixtures. For hard sphere
liquids, we present a power functional theory that predicts these universal force fields in quantitative
agreement with our Brownian dynamics simulation results.
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The van Hove function is arguably one of the most
fundamental correlators that characterize the dynamical pair
structure of a liquid on the microscopic scale [1,2]. It
measures the probability of finding two particles at a distance
r, where the particles are randomly chosen, but with a time
lapse of duration t between the two position measurements.
Both the motion of the same particle and spatiotemporal
correlations of two distinct particles are captured. Significant
physical insights into the dynamics of simple and complex
systems could be gained from studying their van Hove
function. Examples thereof include cage formation in
nematic and smectic liquid crystals [3], de Gennes narrowing
of liquid iron [4], self-motion of water [5], and the dynamics
of colloidal hard spheres [6–8] and of colloid-polymer
mixtures [9]. Experimentally, highly accurate results for
the van Hove function are accessible based on the micros-
copy of colloidal systems [6], as well as by scattering
methods. The latter yield the Fourier transform [2,5].
Much of our knowledge and understanding of the

properties of the van Hove function are based on computer
simulation work. Formulating a theoretical description for
the complex spatial and temporal two-body dynamics
remains a formidable challenge. Much insightful work
has been carried out by Medina-Noyola and his coworkers
on the basis of generalized Langevin equations [10–19].
Mode-coupling theory was used at high densities [20].
Furthermore, the closely related problem of identifying
and studying memory kernels has received much recent
attention in the context of molecular dynamics [21–25].
The dynamical test particle limit [26–28] constitutes a

formally exact reformulation of the time evolution of the
van Hove function in a one-body picture. Instead of
working explicitly with two-body correlations, an equiv-
alent dynamical situation is constructed in which one-body
profiles evolve in time. This approach results in a signifi-
cant conceptual simplification. Fixing a particle at the
initial time at the origin establishes the equivalence with the
original problem. The concept is formally exact, but it

requires a prescription for the one-body dynamics to be
useful in practice.
When choosing the dynamical density functional theory

(DDFT) [29–31] to perform the one-body dynamics of the
van Hove function [6–8,26,27] one finds too rapid temporal
decay of the interparticle correlations [32] compared to
benchmark data from Brownian dynamics (BD) computer
simulations. This trend persists even when choosing
Rosenfeld’s fundamental measure theory [33–36] as an
excellent approximation for the (hard sphere) free energy
functional. Accounting for the observed reduction of
particle mobility at increased density requires empirical
adjustments to the DDFT framework [6–8,27].
Power functional theory (PFT) [37] provides formally

exact test particle dynamics [28], albeit very little explicit
knowledge of the crucial superadiabatic force contributions
[37,38], i.e., those beyond DDFT, had originally been
available [28]. In BD simulation work, it was shown that
the superadiabatic forces that govern the van Hove function
are both significant in magnitude and nontrivial in their
spatial and temporal structure [39]. In a variety of non-
equilibrium systems, different superadiabatic force types
were identified as providing the key mechanisms for
prominent physical effects, such as the emergence of
viscous and structural forces in BD flow [40–42], motility-
induced phase separation in active Brownian particles
[43,44], spontaneous lane formation in counterdriven
mixtures [45], and memory-induced motion reversal [46].
Here we show that the identical types of superadiabatic

forces that rule the behavior of these driven systems
determine, qualitatively and quantitatively, the van Hove
function and hence the intrinsic equilibrium dynamics. That
the same form of superadiabatic forces applies across such
a wide range of different physical situations indicates that
the microscopic liquid dynamics are governed by universal
mechanisms. Besides the conceptual importance of this
finding, it allows concrete crossfertilization between results
obtained for apparently very different systems.
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Within the dynamical test particle limit, the van Hove
function is expressed as a time-dependent one-body
density profile ρðr; tÞ; here r indicates position and t time.
Often one splits into self and distinct parts: ρðr; tÞ ¼
ρselfðr; tÞ þ ρdistðr; tÞ. At the initial time, the test (“self”)
particle is taken to be at the origin, and the distinct particles
are distributed according to the (static) pair correlation
function gðrÞ of the bulk liquid (as prescribed by Percus’
static test particle limit [47]). Hence, the initial conditions
at t ¼ 0 are ρselfðr; 0Þ ¼ δðrÞ and ρdistðr; 0Þ ¼ ρbgðrÞ,
where δð·Þ indicates the Dirac delta function, ρb is the

bulk fluid number density, and r ¼ jrj. Figure 1(a) and (b)
depicts an illustration. The dynamics of the van Hove
function are associated with time-dependent one-body self
and distinct currents, Jselfðr; tÞ and Jdistðr; tÞ, respectively.
The total van Hove current is the sum J ¼ Jself þ Jdist.
A continuity equation holds for each species:
∂ρα=∂t ¼ −∇ · Jα, where α ¼ self, dist labels the two
different species, and ∇ indicates the derivative with
respect to r. The partial one-body currents Jαðr; tÞ arise
from free diffusion and from internal interactions. Hence,
the one-body force density balance relation is

FIG. 1. Two-body dynamics of the hard sphere fluid. (a) Illustration of the van Hove dynamical two-body correlation function in a
bulk liquid of hard spheres of diameter σ at time t ¼ 0 and at t > 0 (b). (c)–(g) Results for the dynamical decay of the two-body structure
of a bulk liquid of hard spheres at packing fraction 0.35 at times t ¼ 0.1τ (left column), 0.3τ (middle column), and 0.6τ (right column)
and as a function of the scaled distance r=σ. (c) Total (ρ), self (ρself ), distinct (ρdist), and differential (ρΔ) parts of the van Hove function,
as indicated. The results from BD simulation (symbols) of the time evolution and from MC simulation (lines) of the corresponding
adiabatic state coincide on the scale of the plot. (d) Self part of the superadiabatic force density Fself

sup as obtained from BD (symbols) and
from PFT (solid line); also shown is the adiabatic self force density Fself

ad from MC simulation (blue symbols) and DFT (blue line). The
ideal self force density −kBT∇ρself is shown as a reference. (e) Distinct part of the superadiabatic force density Fdist

sup as obtained from BD
and from PFT. (f) Differential superadiabatic (drag) force density Gsup as obtained from BD (symbols) and from PFT (black line), and
differential adiabatic force density Gad as arising from the adiabatic self correction. (g) Species-independent superadiabatic force field
fsup as obtained from BD and from PFT, along with the theoretical viscous (fvisc ¼ −ρ−1δPvisc

t =δv) and structural contributions
(fstruc ¼ −ρ−1δPstruc

t =δv), where fsup ¼ fvisc þ fstruc. For the sake of clarity, the results in (d)–(g) at t ¼ 0.3τ and 0.6τ are multiplied by
factors of 2, 4, 8, or 16 as indicated.
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γJα ¼ −kBT∇ρα þ Fα
int; ð1Þ

where γ is the friction constant against the static back-
ground, kB is the Boltzmann constant, T indicates absolute
temperature, and Fα

intðr; tÞ is the internal force density
distribution that acts on species α. No external forces
act in the bulk system, and the time-dependent (non-
equilibrium) situation is solely introduced by the initial
conditions ραðr; 0Þ.
The internal force density consists of adiabatic (Fα

ad) and
superadiabatic (Fα

sup) contributions [37,38], according to
the sum Fα

int ¼ Fα
ad þ Fα

sup. Here Fα
adðr; tÞ is the force

density distribution in an equilibrium (“adiabatic”) system
that is defined to possess one-body density profiles ραadðrÞ
that are identical to those in the dynamical system at time t:
ραadðrÞ≡ ραðr; tÞ. This adiabatic construction is performed
at each point in time, and hence ραadðrÞ depends para-
metrically on t. The interparticle interaction potential in the
adiabatic system is identical to that in the original dynami-
cal system. The density distributions ραadðrÞ in the adiabatic
system are stabilized by species-dependent external poten-
tials Vα

adðrÞ, which are guaranteed to exist in the adiabatic
system due to the Mermin-Evans map of classical density
functional theory (DFT) [2,29].
The adiabatic force density can be obtained by direct

sampling in the adiabatic system [48] or, as we do here,
from the force balance in the adiabatic system:

Fα
ad ¼ kBT∇ρα þ ρα∇Vα

ad; ð2Þ

where all quantities on the right-hand side are known. In
practice, we use a variant of the custom flow iterative
method [48], where we sample the density profile at each
iteration step using Monte Carlo (MC) simulation and
adjust the external potentials Vα

adðrÞ accordingly [38] until
the sampled density profiles in the adiabatic system match
the dynamical (“target”) density profiles ραðr; tÞ.
Within classical density functional theory, the adiabatic

internal force density acting on species α is given by
Fα
adðr; tÞ ¼ −ραðr; tÞ∇δFexc=δραðr; tÞ, where Fexc is the

excess (over ideal gas) intrinsic Helmholtz free energy
functional. For the case of hard spheres, Rosenfeld’s
fundamental measure theory [33–36] constitutes an excel-
lent approximation for Fexc. We furthermore use the
“quenched” approach by Stopper et al. [8], where a self-
correction is applied in order to account for the fact that the
self density profile represents a single particle sharply
(rather than a grand ensemble average). This approach
avoids having to use canonical decomposition [49,50] in
order to generate results that are specific to fixed particle
number.
Within PFT, the superadiabatic force density is obtained

from a functional derivative of the superadiabatic excess
free power functional Pexc

t according to

Fα
supðr; tÞ ¼ −

δPexc
t

δvαðr; tÞ
; ð3Þ

where the derivative is taken at fixed density profiles,
and the species-resolved one-body velocity profile is
vαðr; tÞ ¼ Jαðr; tÞ=ραðr; tÞ. As an approximation, we use
a functional that consists of drag [43–45], viscous
[40–42,45,46], and structural [41,42,44] contributions,
Pexc
t ¼ Pdrag

t þ Pvisc
t þ Pstruc

t , according to

Pexc
t ¼ Cdrag

2

Z
drρselfρdistðvself − vdistÞ2

þ
Z

drdr0
Z

t

0

dt0n3n30ð∇ · vÞð∇0 · v0ÞKvisc

−
Z

drdr0
Z

t

0

dt0ðn30v0Þ2ð∇ · JÞKstruc; ð4Þ

whereCdrag is a constant and the kernelsKeðΔr;ΔtÞ, where
e ¼ visc; struc, depend on the relative spatial and temporal
distances Δr ¼ r − r0 and Δt ¼ t − t0; the local packing
fraction n3ðr; tÞ is obtained by convolution with ρðr; tÞ
[33–36]; ∇0 indicates the derivative with respect to r0, and
we use the shorthand n03 ≡ n3ðr0; t0Þ and v0 ≡ vðr0; t0Þ. Here
the total microscopic velocity profile is v ¼ J=ρ. We use
the diffusing memory form [46] for KeðΔr;ΔtÞ, which
consists of a product of a constant Ce that controls the
overall strength, an exponential decay with decay time
constant τe, and a diffusing Gaussian with diffusion
constant De. Explicitly the form is

KeðΔr;ΔtÞ ¼
Ce exp½−Δr2=ð4DeΔtÞ − Δt=τe�

ð4πDeΔtÞ3=2τe
: ð5Þ

The derivative Eq. (3), when applied to Eq. (4), yields
an explicit expression for Fα

sup, which we evaluate
below, using BD data for ρα and vα as input. We choose
the following set of parameters. The drag strength
is Cdrag ¼ 2.2γσ3. The values for viscous memory
kernel are identical to those used in Ref. [46]:
Cvisc¼5.8kBT=ðσ3τÞ, Dvisc ¼ 5.6σ2=τ, and τvisc ¼ 0.02τ.
The structural memory kernel has Cstruc ¼ 0.42kBTτ2=σ2,
Dstruc ¼ 0.25σ2=τ, and τstruc ¼ 0.8τ. Here the natural
(Brownian) timescale is τ ¼ γσ2=ðkBTÞ, where σ is the
hard sphere diameter. For standard colloids with diameter
σ¼ 1 μm dispersed in water at T ¼ 20°C, using
the Stokes-Einstein form for γ ¼ 3πησ [2] gives
γ ¼ 9.44 × 10−13 kg s−1, which yields τ ¼ 2.33 s. The
corresponding memory times are τvisc ¼ 0.046 s and
τstruc ¼ 1.87 s, i.e., values that are well inside of an
experimentally accessible range. Using larger colloids
[6,51] scales up the values for the memory times
accordingly; the particles used, e.g., for the (two-
dimensional) system of Ref. [6] are of size
σ ¼ 4.04 μm, which correspondingly upscales the values
for both memory times by a factor of 4.
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In order to gain further insight into the nature of the
relevant forces, we follow Ref. [45] and rewrite the internal
forces that act in a binary mixture as consisting of a
nonselective (“differential”) force field (fint) and a selective
(“total”) force density (Gint) such that the self and distinct
internal force density distributions, respectively, can be
expressed as

Fself
int ¼ ρselffint þGint; Fdist

int ¼ ρdistfint −Gint: ð6Þ

Using the new fields fint and Gint in the partial force density
balance Eq. (1) leads to equations of motion for the total
and for the “differential” motion,

γv ¼ −kBT∇ ln ρþ fint; ð7Þ

γJΔ ¼ −kBT∇ρΔ þ ρΔfint þ 2Gint; ð8Þ

where the differential van Hove current is JΔ ¼ Jself − Jdist,
and the differential van Hove function is ρΔ ¼ ρself − ρdist.
Solving the linear set of Eq. (6) yields

fint ¼ Fint=ρ; Gint ¼ ðρdistFself
int − ρselfFdist

int Þ=ρ; ð9Þ

which allows one to obtain results for fintðr; tÞ andGintðr; tÞ
[from the correlators on the right-hand sides of Eq. (9)].
Due to the linearity of the transformations Eq. (9), splitting
into adiabatic and superadiabatic contributions applies
according to fint ¼ fad þ fsup and Gint ¼ Gad þGsup.
Figure 1(c) presents results for the van Hove function of

hard spheres. Shown are the self and the distinct parts,
ρselfðr; tÞ and ρdistðr; tÞ, at three different representative
times: t=τ ¼ 0.1, 0.3, 0.6. The results are obtained using
event-driven BD computer simulations [52]. We use N ¼
1090 particles in a three-dimensional simulation box of size
15 × 10 × 10 σ3. The sampling is based on 106 time steps
of size 10−3τ, and hence an overall simulation time of 103τ.
Appropriate filling of histograms of particle pair distances
yields results for the van Hove function.
At the early time t ¼ 0.1τ (first column of Fig. 1), the

van Hove function has moderately decayed compared to its
initial condition. Over the course of time, cf. the results for
0.3τ (middle column) and 0.6τ (right column), the self
part broadens and its height correspondingly decreases.
The initial correlation hole in the distinct van Hove
function is gradually being filled. Besides these transport
processes, the initially pronounced oscillations at distances
r≳ σ decay.
We demonstrate the agreement of adiabatic and dynami-

cal density profiles in Fig. 1(c) by showing the MC
simulation results obtained from equilibrium sampling of
the adiabatic state, i.e., of the system in which the external
potential Vself

ad ðrÞ acts on the (single) self particle and
Vdist
ad ðrÞ acts on the remaining N − 1 particles. (As N is

large enough, we do not expect that finite size effects are

relevant.) Apart from very small numerical artifacts, clearly
the agreement of the dynamical and adiabatic density
profiles is excellent. Hence, we trust the results for the
adiabatic force densities (presented below) obtained
via Eq. (2).
Besides the self and distinct parts, we also show results

for the total van Hove function ρ ¼ ρself þ ρdist and
the differential van Hove function ρΔ ¼ ρself − ρdist in
Fig. 1(c). Clearly the spatial structuring of ρ is much
reduced upon disregarding the self-distinct labeling.
Nevertheless, as all particles in the system are ultimately
identical, and the self-distinct labeling was introduced for
mere bookkeeping purposes, one might wonder whether
the physically most relevant phenomena are revealed or are
rather hidden by the labeling.
In Fig. 1(d), we show results for the different contribu-

tions to the self force density. As a reference, we plot the
ideal contribution −kBT∇ρself , which tends to spread the
self peak in time. Here positive (negative) values of force
fields and force densities indicate the outward (inward)
direction. The adiabatic force density counteracts the ideal
part and hence tends to stabilize the self density peak. The
DFT results agree very satisfactorily with the MC data at all
times considered. The superadiabatic self force density
supports the effect of Fself

ad , but it has longer range and larger
magnitude at later times. Except for a slight overestimation
at time 0.1τ, the PFT reproduces this effect very well and
hence provides a mechanism for the slowing down of the
dynamics.
The contributions to the distinct force density, shown in

Fig. 1(e), show more complex, oscillatory behavior at both
earlier times. The ideal force density is again directly
related, via the spatial derivative, to the distinct density,
shown in Fig. 1(c). The oscillations of the distinct density
profiles are hence imprinted into the ideal force density and
their effect is to homogenize the density. As is the case for
the self part, the adiabatic force density counteracts this
effect and hence tends to stabilize the density oscillations.
The DFT results for Fself

ad are very satisfactory, with some
underestimation inside the core r≲ σ. The superadiabatic
distinct force density has complex spatial features. It tends
to slow down the decay of the spatial structure. At early
times, the magnitude is smaller than that of Fdist

ad , but this
relationship changes at later times where Fdist

sup becomes
dominant. Again, up to some deviations inside of the core,
the PFT describes Fdist

sup in very good agreement with the
BD data.
In Fig. 1(f), we show results for the contributions to the

differential force density Gint [as defined in Eq. (9)], which
is relevant for the differential equation of motion, Eq. (8).
Within the PFT, we can clearly identify that Gsup is solely
due to the drag effect, i.e., the friction generated by the
interflow of the self and distinct components. This result is
relevant for the hard sphere dynamics at long times. Taking
only the drag force as the dominant internal effect and
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balancing it with ideal diffusion, the long time self
diffusion coefficient follows as DL ¼ kBT=ðγ þ ρbCdragÞ.
Within this approximation, we obtain DL ¼ 0.38σ2=τ
(¼ 0.16 μm2=s for σ¼ 1 μm and τ ¼ 2.33 s as above),
which is in very reasonable agreement with our bare
simulation result of DL ¼ 0.32σ2=τ (¼ 0.14 μm2=s). In
contrast, the motion of the total van Hove function, for
which we show the relevant force fields in Fig. 1(g), is due
to both compressional viscosity and structural forces, with
both complex spatial and temporal behavior, which are well
captured by the PFT. Crucially, while the details of the
superadiabatic force fields vary depending on the type of
dynamical situation considered, regarding these as arising
from a kinematic functional Eq. (4) reveals their universal
characteristics.
In conclusion, we have traced the mechanisms that

govern the time evolution of the van Hove function for
hard spheres by identifying three different and universal
types of nonequilibrium force contributions, all of which
have been shown previously to be relevant across a broad
spectrum of nonequilibrium and driven systems. The forces
are due to (i) drag of the tagged (“self”) particle against the
surrounding fluid of distinct particles, (ii) volume (or
“bulk”) viscosity due to the correlation shells undergoing
compressional-expansional flow, and (iii) structural non-
equilibrium effects that stabilize the spatial liquid structure
against decay. The power functional approximation gen-
erates all three types of nonequilibrium force fields in
quantitative agreement with Brownian dynamics computer
simulation results. Our results hence demonstrate intimate
interrelationships between equilibrium and nonequilibrium
hard sphere properties.
It would be interesting to investigate in future work the

relationship of our findings to Rosenfeld’s excess entropy
scaling [53,54], as advanced by Truskett and his coworkers
[55,56], to the nonequilibrium Ornstein-Zernike framework
[57,58], and to the findings of Dyre and coworkers on
universality across systems with different interparticle
interaction potentials [59,60].
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