
PHYSICAL REVIEW E 109, L022601 (2024)
Letter

Active crystallization from power functional theory

Sophie Hermann * and Matthias Schmidt †

Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany

(Received 21 August 2023; accepted 6 February 2024; published 23 February 2024)

We address the gas, liquid, and crystal phase behaviors of active Brownian particles in three dimensions.
The nonequilibrium force balance at coexistence leads to equality of state functions for which we use power
functional approximations. Motility-induced phase separation starts at a critical point and quickly becomes
metastable against active freezing for Péclet numbers above a nonequilibrium triple point. The mean swim speed
acts as a state variable, similar to the density of depletion agents in colloidal demixing. We obtain agreement
with recent simulation results and correctly predict the strength of particle number fluctuations in active fluids.
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The occurrence of freezing in a many-body system is often
due to the presence of strong, short-ranged repulsion between
the constituent particles [1,2]. Conditions of high enough
density are required for crystallization as a global ordering
phenomenon to occur and these can be induced by external
constraints, such as confinement by walls or via interparticle
attraction [3,4]. In colloidal systems, attraction between the
particles can be generated by adding depletion agents, such as
polymers, colloidal rods, or smaller-sized colloidal spheres.
The depletants create an effective attraction between the pri-
mary particles and the resulting effective interaction potential
is accessible via formally integrating out (averaging over) the
depletant degrees of freedom [5–11] and via recent machine
learning [12,13]. In general, the resulting interaction potential
has a strong many-body character, although notable excep-
tions exist, such as the Asakura-Oosawa model [7,8,10,11],
where for sufficiently small polymer-to-colloid size ratio a
description based on an effective pair potential is exact [7].

In a striking analogy, Turci and Wilding [14] recently
related the phase behavior of three-dimensional active Brow-
nian particles (ABPs) [14,15] to such depletion-driven binary
mixtures. ABPs form a central model system for active
matter and their phase behavior has received much prior
attention [16–22], including the two-dimensional version of
the model [16,21,22]. The particles undergo overdamped
Brownian motion and they self-propel (swim) along a built-
in direction, which diffuses freely. The system displays
motility-induced phase separation (MIPS) into dense and
dilute coexisting nonequilibrium steady states, despite the
absence of explicit interparticle attraction. The phenomenon
was addressed on the basis of a wide variety of theoretical
techniques [19–23], including recent work by Omar et al. [24]
based on forces. However, none of these approaches has yet
been applied to active freezing.

Despite the significant number of theoretical ef-
forts [19–25], no consensus has been reached on a common
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framework which would act as an uncontested platform for
the description of active systems, such as the theory of simple
liquids for spatially inhomogeneous and phase-separated
systems in equilibrium [1,26–28]. It is a rather common
point of view that “the link between experiment and theory
in active matter is often rather qualitative” [29]. Having a
predictive theory is highly valuable though, given that much
relevant experimental work is being carried out, e.g., based
on light-controlled systems [30], as also used in studies
of active polarization [31,32], cluster formation [33], the
self-propulsion mechanism of Quincke rollers [29], the
experimental study of active sedimentation [34], capillary
rise [35], and polycrystallinity [36]. Equally so, simulation
studies of wetting [37], vortex crystal formation [38], inertial
effects in nematic turbulence [39], interfacial properties [40],
and dynamical features [41] of active particles could benefit
from having a predictive theory.

In this Letter, we use power functional theory [42], which
is a general framework for the description of the dynamics of
many-body systems, including ABPs [42–47]. We base our
treatment of freezing on the active force balance, as used
in studies of active drag forces [43,44], MIPS [45,46], and
the interfacial tension between phase-separated states [47]
in two-dimensional ABPs. The theory satisfies exact sum
rules which result from Noether’s theorem for correlation
functions [48,49] as well as from the continuity equation for
the global polarization [50]. We demonstrate that the frame-
work gives a physically sound and quantitatively reasonable
account of the full phase behavior of ABPs in three dimen-
sions. In their analogy, Turci and Wilding [14] suggested that
the Péclet number, which measures the strength of the self-
propulsion in the active system relative to diffusive motion, is
akin to the depletants’ fugacity (or polymer reservoir density)
in an equilibrium mixture. We confirm and extend this point
of view, as in our theoretical approach, the mean swim speed
plays a role akin to the actual polymer density in the colloid-
polymer mixture.

We work on the level of one-body correlation functions,
which depend on position r and on particle orientation, as
represented by a unit vector ω. The continuity equation relates
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the divergence of the translational current J(r,ω, t ) and of
the rotational current Jω(r,ω, t ) to temporal changes of the
one-body density distribution according to

∂ρ(r,ω, t )

∂t
= −∇ · J(r,ω, t ) − ∇ω · Jω(r,ω, t ). (1)

Here ∇ and ∇ω indicate the derivatives with respect to r and
ω, respectively, and the density profile ρ(r,ω, t ) is position-
and orientation-resolved. We consider steady states such that
the left-hand side of Eq. (1) vanishes and we drop the time
argument t from here on. As no explicit torques act in
the system, the orientational current stems solely from the
free rotational diffusion of the active spheres: Jω(r,ω) =
−Drot∇ωρ(r,ω), where Drot indicates the rotational diffusion
constant. For the present case of overdamped active motion,
the exact force balance is given by

γ v(r,ω) = fid(r,ω) + fint (r,ω) + γ sω. (2)

The left-hand side of Eq. (2) represents the negative friction
force with friction constant γ and the velocity field is the ratio
of current and density, v(r,ω) = J(r,ω)/ρ(r,ω). The three
driving contributions on the right-hand side of Eq. (2) are the
ideal diffusive force field fid (r,ω) = −kBT ∇ ln ρ(r,ω), the
internal force field fint (r,ω), which arises from the Weeks-
Chandler-Anderson (WCA) interparticle interactions, and the
swim force γ sω with s indicating the speed of free swimming.
The one-body interparticle interaction force field fint (r,ω) is
accessible via sampling in simulations [43–46] and via ma-
chine learning, as recently demonstrated in passive flow [51]
and in equilibrium [52,53]. When averaged over orientation
ω, there is no net flow in the stationary states considered here:∫

dωJ(r,ω) = 0.
We split the interparticle forces according to [47,54]

fint (r,ω) = fad(r) + fflow(r,ω) + fstruc(r,ω), (3)

where the right-hand side consists of the adiabatic force field
fad(r), the superadiabatic flow force field fflow(r,ω) and the
superadiabatic structural force field fstruc(r,ω). Here the adi-
abatic force field fad(r) is defined as acting in an equilibrium
system of passive WCA particles that do not swim. The WCA
particles are spheres and hence there is no nontrivial depen-
dence on ω in the adiabatic system. Its density distribution
ρ̄(r) is identical to the orientation-integrated density distri-
bution in the active system. In the adiabatic system, ρ̄(r) is
stabilized by an external potential.

If one wishes to think in terms of functional dependen-
cies, then fad(r) is an instantaneous density functional, in the
sense of functional dependencies, as they form the core of
classical density functional theory of inhomogeneous liquids
and solids [1,26–28,42]. Both the flow and the structural
force contributions in Eq. (2) are of superadiabatic nature,
i.e., they are genuine nonequilibrium force fields which arise
from the interparticle interactions [42]. The flow and struc-
tural nonequilibrium forces, fflow(r,ω) and fstruc(r,ω), have
characterizing symmetry properties under motion reversal.
Here fflow(r,ω) changes its sign under sign change of the
steady–state velocity profile, while fstruc(r,ω) remains unaf-
fected by the same transformation [42,51,54]. In equilibrium,
as well as in passive uniaxial flow, the three force contri-
butions were shown to be amenable to supervised machine

learning [51–53], which we take as confirmation of the gen-
eral force splitting concept (3), as is here applied to the active
system.

The flow force fflow(r,ω), as is part of Eq. (3), is defined
to compensate the friction and the active force in the force
balance relationship (2) such that equality is achieved:

γ v(r,ω) = fflow(r,ω) + γ sω. (4)

The flow equation (4) is invariant under motion rever-
sal [42,51,54] and it affects the spatial structure formation as
represented by the density profile only indirectly, as we detail
below. As an approximation, we resort to the superadiabatic
drag force of Ref. [43], which in bulk has the simple form
fflow(ω) = −γ vbωρb/(ρ j − ρb), where vb = v · ω is the mean
forward swim speed [20–23], which is reduced due to particle
collisions, when compared to the free swim speed s. The
assumption yields the common linear relationship of the mean
swim velocity and the average density, vb/s = 1 − ρb/ρ j , in-
dependent of position and orientation. The parameter ρ j =
const, which we adjust empirically, determines the slope of
the decay of vb with bulk density and we adjust its value to
ρ j = 1.436σ−3, where σ is the length scale of the WCA pair
potential, to approximate the observed behavior [55].

The superadiabatic structural force field fsup(r,ω) balances
the remaining adiabatic and ideal terms in Eq. (2), which
implies the following force cancellation:

0 = fid(r) + fad(r) + fstruc(r). (5)

As a consistency check, the sum of Eqs. (4) and (5) recov-
ers the full force balance relationship (2). The ideal term
is generally numerically small, and we hence approximate
the exact ideal force −kBT ∇ ln ρ(r,ω) ≈ −kBT ∇ ln ρ̄(r) ≡
fid(r), where as before ρ̄(r) is the position-dependent and
orientation-averaged one-body density profile. Equation (5)
balances the repulsion that acts in the adiabatic system with
the nonequilibrium force contributions. We recall that the
adiabatic system consists of steeply repulsive spheres with-
out orientations. Hence the structural nonequilibrium forces
necessarily need also be independent of orientation, fstruc(r),
to satisfy Eq. (5).

As all force fields in Eq. (5) are of gradient nature [the non-
gradient forces are contained in Eq. (4)], we can integrate in
position and obtain the following chemical potential balance:

μid (r) + μad(r) + μstruc(r) = μ. (6)

Here μ = const arises from the spatial integration. All terms
on the left-hand side of Eq. (6) are solely defined by
generating via spatial differentiation the (negative) force
contributions that occur in the structural force balance (5). Ex-
plicitly, we have fid(r) = −∇μid (r), with the standard ideal
gas chemical potential expression: μid (r) = −kBT ln ρ̄(r);
the adiabatic force field: fad(r) = −∇μad(r); and the supera-
diabatic structural force field: fstruc(r) = −∇μstruc(r).

Up to having neglected the orientation dependence of the
ideal gas contribution and the assumption of the specific sim-
ple form of fflow(ω), the framework thus far developed is
exact and we have to resort to approximations to make further
progress. We first turn to the adiabatic contribution. The adia-
batic state is simply the equilibrium WCA model, which per
se has no gas-liquid coexistence due to its lack of interparticle
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attraction. Treating fluid states of repulsive spheres is straight-
forward. We approximate the system by hard spheres and use
a modified Carnahan-Starling equation of state [56], which
correctly accounts for the behavior at very high densities, as
is relevant for ABPs in the parameter regime considered here.
The corresponding bulk excess free energy Aad is given by

Aad

NkBT
= 3η

1 − η
+ η

{
(1 − η)

×
[

(1 − η

(
1 + 1 − η j

η j
eb(η−η j )

)]}−1

, (7)

where η = πσ 3ρb/6 is the packing fraction, η j = 0.655 is the
densest possible packing fraction in this approximation, and
setting b = 50 is an empirical choice [56].

Due to the more complex three-dimensional system, we
here choose an advanced approximation for the adiabatic fluid
equation of state, as compared to previous work in two dimen-
sions [45–47], where the simple scaled-particle theory was
sufficient. An analytical expression for the bulk chemical po-
tential in the adiabatic system then follows from the standard
identity μb

ad(ρb) = [Aad + η∂Aad/∂η]/N . We use a local den-
sity approximation where we evaluate the bulk expression at
the value of the local density profile, i.e., μad(r) = μb

ad(ρ̄(r)).
To approximate the equation of state of the adia-

batic crystal, we resort to the cell theory [57–60]. This
yields the chemical potential of the fcc crystal as βμcell =
ln(

√
2) + 3 ln(
/σ ) − 3 ln(ξ − 1) + ξ/(ξ − 1), where ξ =

[π
√

2/(6η)]1/3 and 
 is the thermal de Broglie wavelength
which we set to 
 = σ . We only take account of the mean
crystal density, and set μad + μid = μcell for the treatment of
the crystalline phase.

The remaining task is to approximate the superadiabatic
structural chemical potential contribution, μstruc(r). Here we
resort to the quiet life approximation, which was success-
fully used to describe active gas-liquid phase separation in
two dimensions, along with the force balance across the free
interface between the active bulk states [45,46]. This approx-
imation takes into account, in arguably the simplest correct
way, the dependence on both the local density and the local
velocity. As the force is structural, it is necessarily even in
powers of the velocity. A simple choice which is linear in
density and quadratic in velocity [45,46] reads

μstruc(r) = e1γ

6Drot
v2(r)

ρ̄(r)

ρ j
, (8)

where e1 = 0.285 is a constant that determines the overall
strength. This parameter plays the role of a fundamental trans-
port coefficient of the ABP system. Here we fix its value
empirically and leave a first-principles derivation to future
work. As we also only address bulk states, we set the (squared)
local swim velocity to its mean bulk value, v2(r) = v2

b . Cru-
cially, we use the same approximation (8) for μstruc in all three
phases and, in particular, the same value of the constant e1.

Nonequilibrium phase coexistence is obtained via the me-
chanical balance of the total force, which in our framework
implies equality of the values of the chemical potential, see
Eq. (6), in the coexisting phases, as well as the equality of
the pressure. The pressure is obtained from integrating the
standard relation ρb∂μ(ρb)/∂ρb = ∂P(ρb)/∂ρb. The resulting

(a)

(b)

(c)

FIG. 1. Phase diagram for three-dimensional ABPs. (a) Theoret-
ical result as a function of the scaled bulk density ρbσ

3 and the scaled
average swim speed vbγ σ/ε. Shown are stable (solid lines) and
metastable (dashed lines) binodals; slanted tielines connect coexist-
ing nonequilibrium states. The orange dotted line indicates the line of
maximal compressibility χmax. Note the similarity to a phase diagram
of a colloid-polymer mixture (inset, adapted from Ref. [8]) as a
function of the colloid (polymer) packing fraction ηC (ηP ). (b) Same
as (a) but shown as a function of ρbσ

3 and the Péclet number Pe.
The tie lines are horizontal in this representation. (c) Same as (b) but
obtained from computer simulations in Ref. [14]. Shown are active
gas-active fluid (circles) and active gas-crystal (triangles) coexistence
densities, as well as χmax (diamonds). The inset is a schematic phase
diagram for a polymer-colloid mixture with size ratio q = 0.6, taken
from Ref. [7].

phase diagram is shown in Fig. 1 as a function of the bulk
density ρb and either the mean swim speed vb (a) or the free
swim speed s (b), as expressed in scaled form by the Péclet
number Pe = sσγ /(kBT ). The topology of the phase diagram
matches that obtained in simulation work [14,15] and the
reasonable agreement with the simulation results by Turci and
Wilding [14] is very satisfactory; their results for the phase
diagram are displayed in Fig 1(c). Our theory reproduces the
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marginal stability [15] of active gas-liquid coexistence with
respect to freezing into a dense fcc crystal. The coexisting gas
has relatively high density, in stark contrast to the strong di-
lution of the coexisting gas that occurs quickly in equilibrium
phase separation when moving away from the triple point.

On the basis of the similarity of their simulation results
for the active system to depletion-induced phase behavior in
equilibrium [comparing the main plot and inset of Fig. 1(c)],
Turci and Wilding [14] draw conclusions about the presence
and relevance of effective many-body interactions that govern
the active system. While it is well-established that in active
systems the Péclet number plays a role similar to that of
temperature in equilibrium, the proposal by Turci and Wilding
leaves open whether one should think of the activity as only
generating many-body effects that are akin to those of deple-
tants or whether the active system contains actual degrees of
freedom that have not been properly appreciated.

Based on the success of our theory, we argue that the latter
is the case and that, besides the density, the velocity field is
an intrinsic degree of freedom that the nonequilibrium system
can regulate freely and self-consistently. To demonstrate the
validity of this concept, we use the actual mean velocity vb

instead of Pe as a state variable in Fig. 1(a). The swim speed
vb is high in the coexisting gas, low in the coexisting liquid,
and even lower in the coexisting crystal. The latter property is
consistent with Caprini et al. reporting very low swim speeds
in solid clusters of the two-dimensional ABP system, see the
Supplemental Material of Ref. [61]. This behavior is analo-
gous to what is found in depletion-driven phase separation,
when going from the reservoir density of the depletant to the
actual depletant density in the system [7,8]. The observed sim-
ilarity in the form of the phase diagram is striking, compare
the main plot and the inset of Fig. 1(a).

We next investigate whether our proposed theory is predic-
tive beyond the phase diagram. In their simulation work [14],
Turci and Wilding have investigated the statistics of particle
number fluctuations, as they occur in small virtual subboxes of
the global system. The strength of fluctuations χ (ρb) is taken
to be a proxy for the compressibility, as can, in equilibrium,
be obtained from the thermodynamical derivative ∂ρb(μ)/∂μ,
carried out in the grand ensemble where global particle num-
ber fluctuations occur. These fluctuations are absent in the
present system, as the particle number is conserved in time
[we recall the validity of even the locally resolved continuity
equation (1)].

Within our nonequilibrium framework, the partial deriva-
tive χ (μb) = ∂ρb(μ)/∂μ is well-defined. Here μ is the total
chemical potential and we recall its splitting (6) into adia-
batic and superadiabatic contributions. We invert via χ (μb) =
[∂μ(ρb)/∂ρb]−1 with the derivative taken at T, Pe = const.
We normalize with respect to the low density behavior,
χ (ρb)/χ (0), as has also been done in the simulations [14].
To create further common ground, we scale the density axis
by the respective value of the critical density ρc. From the
setup of the theory, we expect χ (ρb)/χ (0) to be a measure
of particle fluctuations and we show numerical results in
Fig. 2(a) as a function of ρb/ρc for a range of different values
of Pe/Pec < 1, where Pec indicates the critical value of the
Peclet number. We find that the theory produces the same
bell-shaped variation upon increasing density at fixed Pe, as is

FIG. 2. Scaled compressibility χ (ρb)/χ (0) as a function of the
scaled bulk density ρb/ρc, where ρc is the density at the MIPS
critical point and χ (0) is the low-density limit of the compressibil-
ity. The theoretical results in (a) are obtained from differentiating
χ (ρb) = ∂ρ(μ)/∂μ|T,Pe, where μ is the (total) nonequilibrium chem-
ical potential. Results are shown for a sequence of Péclet numbers (as
indicated), scaled by the value at the critical point. (b) Corresponding
simulation results of Ref. [14]; for the purpose of this comparison,
we take Pec = 36, ρc = 0.94 in simulation [14] and Pec = 37.6,
ρc = 0.71 for the theory. The lines in (b) connect the data points to
guide the eye.

apparent in the simulation results reproduced in Fig. 2(b). The
maximum becomes much more pronounced upon increasing
Pe/Pec and the theoretical prediction consistently diverges at
the nonequilibrium critical point. The position of the maxi-
mum of χ (ρb)/χ (0) traces a line in the phase diagram. The
result is shown in Fig. 1, which again agrees very well with
the simulation data [compare the orange line in Fig. 1(b) with
the orange symbols in panel in Fig. 1(c)].

We take this satisfactory agreement of the simulation
results [14] for particle number fluctuations against an anal-
ogous parametric derivative of our nonequilibrium state
function as a test of the intrinsic consistency of our treat-
ment. The theory, in particular, reproduces the strong increase
in measured particle number fluctuations near the nonequi-
librium critical point. As we derive nonequilibrium phase
coexistence from the same state function, we conclude that
our approach indeed captures much of the essence of the
nonequilibrium statistical physics under consideration. We
recall that we obtain the bulk pressure P(ρb) via integrating
the identity ρb∂μ(ρb)/∂ρb = ∂P(ρb)/∂ρb, which implies me-
chanical stability in our formulation of the nonequilibrium
physics [45–47]. The investigation of the particle number
fluctuations, as measured via χ (ρb), provides a test for the
validity of the source material on the left-hand side of the
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equation, as ρb∂μ(ρb)/∂ρb = ρb/χ (μb). To shed further light
on the particle number fluctuation problem, given the promi-
nent role that the Ornstein-Zernike theory plays in describing
fluctuations inequilibrium [1], we can imagine that concepts
of the nonequilibrium Ornstein-Zernike framework [62,63]
could pave a way forward.

In summary, we have investigated the nonequilibrium
phase behavior of ABPs in three dimensions based on
power functional concepts. The central assumption is that
the formally exact nonequilibrium force balance relationship
contains a nonequilibrium structural force contribution, as
obtained by the negative spatial gradient of a corresponding
superadiabatic chemical potential, Eq. (8). We have shown
that the theory predicts the phase diagram correctly and that
nonequilibrium particle number fluctuations are described
in agreement with the observations in simulations. We en-
visage that going beyond the simple cell theory for the
description of the crystal is possible with classical density
functional theory [64] based on fundamental measure the-
ory [2,28] as used to study the direct correlation function
in crystals [65]. Given the recent progress in measurement
of intercolloidal forces in gel states [66], it does not seem
inconceivable that experiments can shed further light on active
forces.

In our present treatment, we have characterized the steady-
state one-body velocity field v(r,ω) in each of the three
nonequilibrium phases by the value of the mean swim speed
vb. For both the active gas and the active liquid phase, due to
their rotational and translational invariances, vb = v(r,ω) · ω

indeed becomes independent of position r and of orientation
ω. Thus, the full information is retained and the velocity field
is v(r,ω) = vbω for active bulk fluids. We also describe the
crystal on the basis of the single parameter vb, which we
take to be a coarse-grained and global measure of the activity
across the spatial inhomogeneity of the lattice. It thus remains
to study and describe fully the inhomogeneous flow field
in the crystal, v(r,ω), which we deem to be an interesting
problem, not least in the light of the velocity-alignment effects
identified by Caprini et al. in two dimensions [61].

Recently, Evans and Omar [67] addressed active freezing
theoretically. Furthermore, an experimental investigation of
freezing of passive colloids in an active solvent was reported
by Massana-Cid et al. [68]. It would be interesting to relate to
these studies in future work.

We thank F. Turci for sending us the simulation data of
Ref. [14] and himself, N. Wilding, and D. de las Heras for
useful and inspiring discussions.
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