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Hyperforce balance via thermal Noether
invariance of any observable
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Noether invariance in statistical mechanics provides fundamental connections between the
symmetries of a physical system and its conservation laws and sum rules. The latter are exact
identities that involve statistically averaged forces and force correlations and they are derived from
statistical mechanical functionals. However, the implications for more general observables and order
parameters are unclear. Here, we demonstrate that thermally averaged classical phase space
functions are associated with exact hyperforce sum rules that follow from translational Noether
invariance. Both global and locally resolved identities hold and they relate the mean gradient of a
phase-space function to its negative mean product with the total force. Similar to Hirschfelder’s
hypervirial theorem, the hyperforce sum rules apply to arbitrary observables in equilibrium. Exact
hierarchies of higher-order sum rules follow iteratively. As applications we investigate via computer
simulations the emerging one-body force fluctuation profiles in confined liquids. These local
correlators quantify spatially inhomogeneous self-organization and their measurement allows for the
development of stringent convergence tests and enhanced sampling schemes in complex systems.

The task of predicting thermal averages of phase space functions lies at the
center of attention in Statistical Mechanics. Prominent examples include
correlation functions and order parameters, but also global quantities such
as internal and external energies, entropy, andmuchmore are considered1,2.
Significant progress has been reported for problem-specific order para-
meters that are tailored to capture intricate correlation effects. Recent
examples that address the spatial ordering behavior of dense liquids include
beyond-two-body correlation functions, as advocated by Kob and
coworkers3,4 and by Janssen and her coworkers5.

In contrast to such freedom of choice, the variables within classical
density functional theory2,6,7 seem to be a priori uniquely determined by the
existence of a generating free energy functional and the associated structure
of pairs of conjugate variables, which in particular are the external one-body
potential energy Vext(r) and the density profile ρ(r). However, there are
recent extensions to density functional theory to systematically include the
local compressibility8–10, which forms a well-accessible order parameter for
local particle number fluctuations. Technically, the local compressibility
constitutes either a parametric derivative of the equilibrium density profile
with respect to the chemical potential or, analogously, the covariance of the
local density and the global particle number. A generalization from such
chemical particle number fluctuation to thermal fluctuations has been
recently performed11,12. Working in the grand ensemble, where the particle

number fluctuates, is thereby crucial to not impose artificial constraints on
the system.

Besides the standard thermodynamical thinking in terms of thermal
and chemical equilibrium, there is much recent progress from the force
point of view. Highly efficient force sampling techniques allow to obtain
reliable results within many-body simulations that outperform more
straightforward counting methods13–19. Forces are also at the core of power
functional theory20 as a systematic approach to formulate coupled many-
body dynamics on the one-body level of dynamical correlation functions.

To be specific, in the thermal equilibriumof a spatially inhomogeneous
system, the sum of all mean forces necessarily vanishes at each position r.
This is expressed by the following exact sum rule:

FintðrÞ � ρðrÞ∇VextðrÞ ¼ kBT∇ρðrÞ: ð1Þ

Here, Fint(r) is the localized force density that acts at position r due to the
interparticle interactions with all surrounding particles,∇ denotes the
derivativewith respect to r such that−∇Vext(r) is the external forcefield, kB
indicates the Boltzmann constant, and T is the absolute temperature.

The sum of the interparticle and external force densities on the left-
hand side of Eq. (1) balances the thermal diffusive contribution on its right-
hand side. This is a classical result due to Yvon, Born, and Green (YBG)1,
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where for particles that mutually interact only via a pair potential, the
interparticle force density Fint(r) is expressed as an integral over the two-
body density multiplied by the pair force1. Higher-order versions of Eq. (1)
formahierarchy.That thefirstYBGequation (1)has practical consequences
for carrying out sampling tasks in simulations is only a quite recent insight.
Loosely speaking, force sampling13–15 amounts to obtaining simulation data
for the left-hand side of Eq. (1) and then in a post-processing step dividing
by kBT and building the inverse operation of the spatial derivative on the
right-hand side via suitable integration in position. This method yields
results for the density profile ρ(r) which feature a significant reduction of
statistical noise13–19.

Exploiting Noether’s Theorem21,22 in statistical mechanics has been
performed in a variety of ways23–30. Considering the invariance of statistical
mechanical functionals leads very naturally to the notion of statistically
averaged forces when spatial displacement is imposed on the system; mean
torques emerge when invariance against rotations is addressed31,32. In pre-
vious work, we have shown that the statistical Noether concept also applies
quantum mechanically33 and that it gives access to global force
fluctutations34. Generalizing to local invariance33,35 that is resolved in spatial
position facilitated fresh insights into the correlation structure of the liquid
state36. Considering the first order in the displacement field yields the
thermal equilibrium force balance relationship according to the YBG
equation (1)33,35. At second-order hitherto unknown two-body force-gra-
dient and force-force correlators emerge and these, together with the
standard pair correlation function, are constrained by exact Noether
identities36.

This situation of theory development leaves open the question of
whethermore general observables that serve as important order parameters
and quantifiers of spatial structure will also be affected by the statistical
Noether invariance, as one could glean from the generality of the thermal
invariance concept. Here we demonstrate that any statistical observable Â is
intrinsically associated with a corresponding hierarchy of exact identities
that emerges from its statistical shifting invariance properties. We validate
the corresponding exact local and global sum rules for a range of relevant
observables via many-body simulations of a confined Lennard-Jones fluid.
The results clarify a very intimate link of global and locally resolved cor-
relators and they suggest a very general statistical mechanical structure.

Our framework can be viewed as a generalization of the YBG equation
(1) to systematically include the dependence on a further given observable
Â. The equilibrium force balance (1) itself is recovered for the trivial case
Â ¼ 1. Such generalization is not uncommon in Statistical Mechanics. The
relationship of our theory and the YBG force balance equation is akin
Hirschfelder’s hypervirial theorem37 as a generalizationof the standard virial
theorem1 to also invoke an additional dependence on a given phase space
function Â. Our theory can hence be viewed as a hyperforce balance rela-
tionship, andwederive global and local variants below, seeEqs. (4) and (10).
We further show that the local version simplifies further to Eq. (11) and
more explicitly to Eq. (12) in case of Â being independent ofmomenta. As a
specific example, our methodology not only allows to sample density gra-
dients, as is possible in force sampling schemes13–19, but also to sample force
density gradients. The general method complements existing counting and
force-sampling techniques and it gives much inspiration for rigorous sta-
tistical mechanical theories based on exact identities. As we lay out, the
degree of numerical accuracy to which the Noether sum rules are satisfied
can serve as an estimator for sufficient equilibration of slowly converging
systems.

Methods
Statistical mechanics
We consider general thermal many-body systems of particles with identical
massm, coordinates r1,…, rN≡ rN, and momenta p1,…, pN≡ pN, whereN
denotes the number of particles. The Hamiltonian is of the standard form
H ¼ P

ip
2
i =ð2mÞ þ uðrN Þ þP

iVextðriÞ, where the sums i = 1,…,N run
over all particles,u(rN) is the interparticle interactionpotential, andVext(r) is
an external potential that depends on position r. Thermal equilibrium is

characterized by a statistical equilibrium ensemble with grand canonical
probability distribution Ψeq =Ξ−1e−β(H−μN), where β = 1/(kBT) and μ indi-
cates the chemical potential. The normalization factor ofΨeq is the partition
sum Ξ ¼ Tr e�βðH�μNÞ, where the classical trace is defined as
Tr � ¼ P1

N¼0 ðN!h3N Þ�1 R
drN

R
dpN �, with h indicating Planck’s con-

stant. The thermal equilibrium averageA of a given phase space function Â
is then obtained as A ¼ hÂi � TrΨeqÂ, where we have suppressed the
dependence of Â on the phase space variables rN and pN in the notation, i.e.,
in full notation we have ÂðrN ; pN Þ as well as potentially further parametric
dependence such as on a generic position variable r.

Global shifting invariance
To develop the Noether invariance theory, we first consider a global coor-
dinate displacement ri ! ri þ ϵ0 � ~ri, where the shifting vector ϵ0 = const
is independent of position and acts on all particles in the same way31. The
tilde indicates the new coordinates. Expressing H as well as the corre-
sponding distribution function Ψeq in the new coordinates makes averages
become formally dependent on the shifting parameter, i.e.,A(ϵ0). However,
the coordinate change can also be viewed as a mere re-parameterization of
the phase space integral which induces no change to its value such that
A(ϵ0) =A, with the right-hand side denoting hÂi in the original repre-
sentation. Partially differentiating both sides of the equation yields:

∂Aðϵ0Þ
∂ϵ0

¼ ∂

∂ϵ0
TrΨeqðϵ0ÞÂðϵ0Þ ¼ 0; ð2Þ

where the second equality arises trivially from ∂A/∂ϵ0 = 0, as there is no
dependence on ϵ0.

Carrying out the derivative is straightforward upon using the Boltz-
mann form of the equilibrium distribution function and noting that the
partition sum is independent of ϵ0. Explicitly we have ∂Ψeq(ϵ0)/
∂ϵ0 =− βΨeq(ϵ0)∂H(ϵ0)/∂ϵ0. Using the product rule of differentiation and
evaluating at vanishing displacement ϵ0 = 0 then leads from Eq. (2) to

�β
∂Hðϵ0Þ
∂ϵ0

����
ϵ0¼0

Â

* +
þ ∂Âðϵ0Þ

∂ϵ0

����
ϵ0¼0

* +
¼ 0: ð3Þ

Observing that here ∂=∂ϵ0jϵ0¼0 �
P

i∇i allows to make the derivatives
more explicit with ∇i indicating the partial derivative with respect to ri.
In the first term in Eq. (3) we have �∂Hðϵ0Þ=∂ϵ0jϵ0¼0 ¼
�P

i∇iVextðriÞ � F̂
0
ext, which defines the global external force operator

F̂
0
ext. Here the global interparticle force due to the mutual interactions

between all particles in the system vanishes, F̂
0
int ¼ �P

i∇iuðrN Þ � 0, as is
due to Newton’s third law or, analogously, to the translational invariance of
u(rN) against global displacement31.

Re-ordering the two terms in Eq. (3) gives the following global
hyperforce identity that holds for any given observable ÂðrN ; pN Þ:

β F̂
0
extÂ

D E
¼ �

X
i

∇iÂ

* +
: ð4Þ

Here Â ¼ ÂðrN ; pN Þ can feature additional parametric dependence, such as
on a generic position argument r. The sum rule (4) relates the correlation of
Â with the external force operator (left-hand side) to the mean negative
global coordinate derivative of Â (right-hand side); here we use the term
correlation to imply the average of the product of two observables. As
announced in the introduction, Eq. (4) is similar to Hirschfelder’s hyper-
virial theorem37 in the inclusion of the phase space function ÂðrN ; pN Þ and
our hyperforce terminology parallels his use of the term hypervirial.

While Noether invariance enabled us to obtain the global hyperforce
identity Eq. (4) constructively, one can verify its validity a posteriori by
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integrationbyparts inphase space on the right-hand side. Thederivatives∇i

then act on the probability distribution and exploiting again the Boltzmann
form leads to Â

P
i∇iΨeq ¼ �βΨeqÂ

P
i∇iH ¼ ΨeqβF̂

0
extÂ, which gives

the left-hand side of Eq. (4) upon building the trace. Alternatively one can
start with the Yvon theorem1, βhÂ∇iHi ¼ h∇iÂi, which itself also follows
from partial phase space integration1. Summing the Yvon theorem over all
particles i and noting that∑i∇iu(r

N)≡ 0 gives Eq. (4). A similar derivation
can also be based on the hypervirial theorem37.

Local shifting invariance
Before presenting explicit applications of Eq. (4) to specific forms of Â, we
first generalize to the fully position-resolved case. In a generalization of the
uniform coordinate displacement used for global shifting in the previous
subsection, we consider the following local transformation on phase space,
as parameterized by a three-dimensional vector field ϵ(r)33,35:

ri ! ri þ ϵðriÞ; ð5Þ

pi ! ½1þ∇iϵðriÞ��1 � pi: ð6Þ

The gradient ∇i ϵ(ri) is a 3 × 3 matrix, 1 denotes the 3 × 3 identity matrix,
and the superscript−1 indicates matrix inversion. Figure 1a depicts an
illustration of the spatial transformation (5). The momentum transforma-
tion (6) has the following Taylor expansion to the lowest order in the
displacement field: pi ! ½1� ∇iϵðriÞ� � pi.

The joint transformation (5) and (6) is canonical33,35,38 and it hence
preserves the phase space volume element, dridpi ¼ d~rid~pi, where the tilde
indicates the transformed variables [right-hand sides of Eqs. (5) and (6)].
TheHamiltonian also remains unchanged (up to expressing the original via
the new variables). Hence the partition sumΞ is an invariant under the joint
transformation (5) and (6)33,35,36. Together with the invariance of the inte-
gration measure, the setup implies that any average A ¼ hÂi ¼ TrΨeqÂ is
an invariant. This property holds despite the explicit occurrence of the
shifting field ϵ(r) in the integrand, and hence A[ϵ] =A, where the left-hand
side carries the apparent dependenceon the shiftingfield and the right-hand
side is the average expressed in the original variables where ϵ(r) is absent.
We use the standard notation to express dependence on a function (so-
called functional dependence) by bracketed arguments.

From the local Noether invariance, we can conclude from functionally
differentiating the equation A[ϵ] =A with respect to the shifting field that

δA½ϵ�
δϵðrÞ ¼ 0: ð7Þ

The right-hand side of Eq. (7) vanishes trivially due to the average A being
independent of ϵ(r) in the original representation and hence δA/δϵ(r) = 0.
Carrying out the functional derivative on the left-hand side of Eq. (7)
requires to functionally differentiate the equilibrium distribution, δΨeq[ϵ]/
δϵ(r) =− βΨeq[ϵ]δH[ϵ]/δϵ(r), as follows from the chain rule. This allows to
rewriteEq. (7)uponusing theproduct rule and re-ordering the resulting two
terms as

�β
δH½ϵ�
δϵðrÞ

����
ϵ¼0

Â

� �
¼ � δÂ½ϵ�

δϵðrÞ

����
ϵ¼0

� �
; ð8Þ

where we have evaluated both sides at vanishing shifting field, ϵ(r) = 0.
Differentiating the transformed Hamiltonian with respect to the

shifting field gives �δH½ϵ�=δϵðrÞjϵ¼0 ¼ F̂ðrÞ33,35, where the position-
resolved total force operator comprises the following three terms:

F̂ðrÞ ¼ ∇ � τ̂ðrÞ þ F̂intðrÞ � ρ̂ðrÞ∇VextðrÞ: ð9Þ

The right-hand side of Eq. (9) features the one-body kinematic stress
operator τ̂ðrÞ ¼ �P

iδðr� riÞpipi=m20, the one-body interparticle force
density operator F̂intðrÞ ¼ �P

iδðr� riÞ∇iuðrN Þ20, the standard form of
the density operator ρ̂ðrÞ ¼ P

iδðr� riÞ1,2,20, and the external force
field−∇Vext(r). (The force density operator F̂ðrÞ defined in (9) also arises
as the time derivative of the one-body current operator20. In equilibrium the
kinematic term in (9) reduces to a diffusive contribution:
∇ � hτ̂ðrÞi ¼ �kBT∇ρðrÞ; we refer the Reader to Schmidt20 for details).
Equation (8) can then be written upon carrying out the functional
derivatives and using Eq. (9) (on the left-hand side) together with the chain
rule (on the right-hand side), as the followinghyperforce sumrule that holds
for a given form of Â ¼ ÂðrN ; pN Þ:

β F̂ðrÞÂ� � ¼�
X
i

δðr� riÞ∇iÂ

* +

� ∇ �
X
i

δðr� riÞ
∂Â
∂pi

pi

* +
;

ð10Þ

where Â can again feature additional parametric dependencies, such as on r.
For cases where the observable under consideration is independent of

themomenta, i.e., Â � ÂðrN Þ, the second termon the right-hand side of Eq.
(10) vanishes andwe obtain the coordinate-based local hyperforce sum rule:

β F̂ðrÞÂðrN Þ� � ¼ �
X
i

δðr� riÞ∇iÂðrN Þ
* +

: ð11Þ

Equation (11) can be viewed as a generalization of the framework
developed by Coles et al.17, where they consider observables of the specific
form Â ¼ P

iaiδðr� riÞ, where ai is a unique property of particle i only,
such as, e.g., its charge or, when taking orientational degrees of freedom into
account, its polarization17.

As a consistency check, from integrating the locally resolved sum rules
(10) and (11) over position r, i.e., applying ∫ dr to both sides of these
equations, and observing that ∫ drδ(r− ri) = 1, one retrieves the global
Noether identity (4). Here the global external force is the only remaining
nontrivial global force contribution, F̂

0 � R
drF̂ðrÞ ¼ F̂

0
ext, as the global

interparticle force vanishes due to Newton’s third law31 and there is also no
global diffusive effect due to vanishing boundary terms. Hence Eq. (4)
continues to hold upon replacing F̂

0
ext by the global total force operator F̂

0
.

Fig. 1 | Illustrations of the relevant geometries. aThe shifting field (orange arrows)
displaces the coordinates ri of all particles i by a vector ϵ(ri); the specific particle i is
highlighted in red and all particles are identical. A corresponding change in
momenta, see Eq. (6), compensates for the spatial distortion such that the differential
phase space volume element (integration measure) remains unchanged. b Planar
geometry of the confined Lennard-Jones fluid between two smooth parallel soft
attractive Lennard-Jones walls; σ is the particle size, z measures the distance across
the planar pore, and L is the distance between the two walls.
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As a further remark, by splitting off the kinetic term in Eq. (11), its left-
hand side can be re-written as βhF̂ðrÞÂðrN Þi ¼ βhF̂U ðrÞÂðrN Þi�
∇hρ̂ðrÞÂðrN Þi, with the potential force density operator being given as the
sum of interparticle and external contributions: F̂U ðrÞ ¼ F̂intðrÞ�
ρ̂ðrÞ∇VextðrÞ.

In summary, the local force decomposition into ideal, interparticle, and
external contributions in Eq. (11) allows to obtain the following more
explicit form, which holds, as we recall, provided that Â ¼ ÂðrN Þ is inde-
pendent of the momenta:

β F̂intðrÞÂ
� �� β ρ̂ðrÞÂ� �

∇VextðrÞ

¼ ∇ ρ̂ðrÞÂ� �� X
i

δðr� riÞ∇iÂ

* +
:

ð12Þ

For a given explicit form of Â, such as in the concrete examples discussed
below, the sum rule (12) connects the three irreducible correlators
hF̂intðrÞÂi, hρ̂ðrÞÂi, and hPiδðr� riÞ∇iÂi in a formally exact and non-
trivialwaywith eachother. Setting Â ¼ 1 recovers theYBGequation (which
we take to imply thermal averages being taken), as then the last term in Eq.
(12) vanishes and the remaining terms constitute Eq. (1). Paralleling the
naming convention of the hypervirial theorem, which generalizes the
standard virial theorem to include a further observable, Eq. (12) attains the
status of a hyper-YBG equation or hyperforce balance relationship.
Concrete applications thereof are shown below in the Results section.

The correlators on the left-hand sides of the sum rules (4), (10), and
(11) also constitute covariances. We recall that the covariance of two
observables Â and B̂, as defined via covðÂ; B̂Þ ¼ hÂB̂i � hÂihB̂i measures
the correlation of the fluctuations of the two observables around their
respective mean. In the present case the mean force vanishes both globally,
hF̂0exti ¼ 0, and locally, hF̂ðrÞi ¼ 0. Hence we can formally subtract the
vanishing averages and re-express hF̂0extÂi ¼ covðF̂0ext; ÂÞ as well as
hF̂ðrÞÂi ¼ covðF̂ðrÞ; ÂÞ. Besides the conceptual difference between corre-
lation and covariance, in practical sampling schemes it can be beneficial to
work with covariances rather than correlations to reduce statistical noise, as
we will demonstrate further below.

That Eq. (11) holds can again be verified a posteriori by phase space
coordinate integration by parts on the right-hand side. Due to the product
rule two contributions result, one from the Boltzmann factor:
∑iδ(r− ri)∇iΨeq =− βΨeq∑iδ(r− ri)∇iH, and one from the Dirac dis-
tribution: Ψeq

P
i∇iδðr� riÞ ¼ �Ψeq∇ρ̂ðrÞ. Together with the factor Â

their combination yields the left-hand side of Eq. (11) upon identifying F̂ðrÞ
via Eq. (9). The more general Eq. (10) follows analogously upon integrating
by parts also with respect to the momenta.

Results
Global shifting applications
We turn to applications and hence consider concrete examples for the
general phase space function Â, whichhas remained so far unspecified in the
above generic hyperforce framework.We start with investigating the global
invariance (4), which as we demonstrate constitutes a powerful device both
if Â is a global object or if it is locally resolved via dependence on a position.
We first consider the seemingly trivial case Â ¼ 1, for which of course
〈1〉 = 1 due to the correct normalization of Ψeq. The right-hand side of Eq.
(4) vanishes andwe obtain F0ext � hF̂0exti ¼ 0, i.e., the vanishing of themean
external force in equilibrium31. This is intuitively expected, as can be seen by
contradiction as follows. If the mean external force did not vanish, then the
system would start to move on average32 and hence it would not be in
equilibrium.

Adressing the global external force and hence setting Â ¼ F̂
0
ext in

Eq. (4) leads upon simplifying the right-hand side via hPi∇iF̂
0
exti ¼

�hPi∇i∇iVextðriÞi to the recently formulated global force-variance rela-

tionship βhF̂0extF̂
0
exti ¼

R
drρðrÞ∇∇VextðrÞ34. Here the auto-correlation of

the global external force (left-hand side) equals up to a factor β the mean
external potential energy curvature (right-hand side).

By iteratively replacing Â with the composite F̂
0
extÂ in Eq. (4), one can

systematically generate higher-order sum rules, starting with
βhF̂0extF̂

0
extÂi ¼ �hF̂0ext

P
i∇iÂi � hÂPi∇iF̂

0
exti, where thefirst termon the

right-hand side allows repeated application of Eq. (4) and the second term
canbewritten via the external potential curvature. The result is the following
global second-order hyperforce sum rule:

β2hF̂0extF̂
0
extÂi ¼

X
ij

∇i∇jÂ

* +
þ Â

X
i

∇i∇iβVextðriÞ
* +

; ð13Þ

where Â ¼ ÂðrN ; pN Þ. The second term on the right hand of Eq. (13) side
can alternatively be written as an integral over a correlation function as
follows: β

R
drhÂρ̂ðrÞi∇∇VextðrÞ, where hÂρ̂ðrÞi is the correlation of Â and

the local density operator. Alternatively to the present route via Eq. (4), the
sum rule (13) can equivalently be derived from second-order invariance of
hÂi against global shifting and hence calculating ∂2A(ϵ0)/∂ϵ0∂ϵ0 = 0.

Addressing locally resolved correlation functions on the basis of Eq. (4)
allows to access a higher degree of spatial resolution. We first consider the
case Â ¼ ρ̂ðrÞ, which leads upon re-writing the right-hand side of Eq. (4) via
�P

i∇iρ̂ðrÞ ¼ �P
i∇iδðr� riÞ ¼

P
i∇δðr� riÞ ¼ ∇ρ̂ðrÞ to the follow-

ing identity:

β F̂
0
extρ̂ðrÞ

D E
¼ ∇ρðrÞ; ð14Þ

where we recall that on the right-hand side ρðrÞ ¼ hρ̂ðrÞi is the averaged
density profile. Hence building the correlation of the density operator with
the global external force acts to spatially differentiate the density profile.We
recall that the density gradient∇ρ(r), as it occurs on the right-hand side of
Eq. (14), follows alternatively from the YBG equation (1), which upon
multiplication by β attains the form∇ρ(r) = βFint(r)+ βFext(r), where the
external force density is simply given as Fext(r) =− ρ(r)∇Vext(r).

It is interesting tonote thatEq. (14),whenwritten in covariance formas
βcovðF̂0ext; ρ̂ðrÞÞ ¼ ∇ρðrÞ, mirrors closely the structure of the thermo-
dynamic identity βcovðN; ρ̂ðrÞÞ ¼ ∂ρðrÞ=∂μ � χμðrÞ with the local com-
pressibility χμ(r)

8–10. Here rather than the spatial gradient, the
thermodynamic parametric derivative with respect to chemical potential
occurs. Equation (14) can also be viewed as the so-called inverse Lovett-
Mou-Buff-Wertheim (LMBW) relation β

R
dr0H2ðr; r0Þ∇0Vextðr0Þ ¼

∇ρðrÞ39,40, as is obtainable from global translational invariance31. Having
explicit results for the density covariance H2ðr; r0Þ ¼ covðρ̂ðrÞ; ρ̂ðr0ÞÞ is
however not required in the much more straightforward form (14). Fur-
thermore, by summing only over particle pairs with unequal indices we
obtain the distinct identity hF̂0extρ̂ðrÞidist ¼ FintðrÞ, which again relates see-
mingly very different physical objects identically to each other. The deri-
vation is straightforward by starting from Eq. (14), subtracting the self
contribution which is the YBG equation (1) in the
form− βρ(r)∇Vext(r) =− βFint(r)+∇ρ(r), and dividing the result by β.

To validate the Noether invariance theory and to investigate its
implications for the use of force sampling methods, we turn to many-body
simulations and consider the Lennrd-Jones (LJ) fluid as a representative
microscopic model. The LJ pair potential ϕ(r) between two particles sepa-
ratedby a distance rhas the familiar formϕ(r) = 4ϵ[(σ/r)12− (σ/r)6]with the
energy scale ϵ and particle size σ both being constants.

As our above statistical mechanical derivations continue to hold
canonically, we sample both via adaptive Brownian dynamics (BD)41 with a
fixed number of particles, but also using Monte Carlo simulations in the
grand canonical ensemble. Spatial inhomogeneity is induced by confining
the systembetween two planar, parallel LJ walls. Each wall is represented by
an external potential contribution Vwall(z) that we choose to be identical to
the LJ interparticle potential ϕ(r), but instead of the radial distance r
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evaluated as a function of the distance z perpendicular to the wall,
Vwall(z) = 4ϵ[(σ/z)12− (σ/z)6]. The joint potential of both walls is then
Vext(z) =Vwall(z)+Vwall(L− z), with L indicating the separation distance
between the twowalls. The specific choice of 12-6-wall potential is made for
convenience only and it differs from the physicallymotivated 9-3-form (see
e.g., Evans et al.9).

The system is periodic in the two directions perpendicular to the z-
direction across the slit; a sketch is shown in Fig. 1b. The wall separation
distance is chosen as L = 10σ, with σ denoting the LJ particle size, and the
lateral box length is also set to 10σ. The LJ potential is cut and shifted with a
cutoff distance of 2.5σ. The reduced temperature is kBT/ϵ = 2 with ϵ
denoting the LJ energy scale. We use N = 200 particles. Sampling is started
after 108 time steps that are used for equilibration. The subsequent sampling
runlength is 3 × 108 time steps which corresponds to ~ 2000τB, where
τB = γσ2/ϵdenotes theBrownian timescalewith γbeing the friction constant.
All results that we show for correlators are obtained from evaluation as
covariances. Subtracting the residual contribution from the product of the
twomean values helps to remove artifacts that occur due to finite sampling.

Thedensity profile of the confinedLJfluid, resolved as a function of the
scaledposition z/σ across the planar slit, is shown in Fig. 2a. The shape of the
spatial density variation features structured packing effects that appear
adjacent to each wall and that become damped towards the middle of the
pore. Turning to the density gradient, we present simulation results for both
sides of Eq. (14) in Fig. 2b. Equation (14) in the specific planar geometry
reduces to βhF̂0;z

ext
P

i δðz � ziÞ=L2i ¼ ∂ρðzÞ=∂z, where δ(z− zi) is a one-
dimensional Dirac distribution, zi is the component of the vector ri across
the pore, L2 is the lateral systemarea, and the global external force has only a
nonvanishing z-component given by F̂0;z

ext ¼ �P
i∂VextðziÞ=∂zi. The den-

sity profile is sampled as ρ(z) = 〈∑i δ(z− zi)/L
2〉. The comparison of the a

priori very different data sets shown inFig. 2b indicates excellent agreement.
That the correlation of the density operator with the global external force
operator indeed gives the gradient of the density profile, cf. Eq. (14), is surely
not only at first glance very counter-intuitive.

We next consider the one-body interparticle force density operator
Â ¼ F̂intðrÞ, for which Eq. (4) yields

β F̂
0
extF̂intðrÞ

D E
¼ ∇FintðrÞ: ð15Þ

Equation (15) gives access to the gradient of the internal forcedensity (right-
hand side) via sampling the correlation of the local internal force density
with the global external force (left-hand side). This relationship could be
used in a force sampling scheme13–19, where one obtains data for the force
correlations and via spatial integration obtains the interparticle force den-
sity, which we demonstrate below. We first present simulation results to
illustrate the validity of Eq. (15) in Fig. 2c. The results for βhF̂0extF̂intðrÞi carry
much less statistical noise, as the need for building the numerical
derivative∇Fint(r) is avoided. However, this is no panacea, as accurately
sampling the correlation of the interparticle force density with the global
external force also poses challenges to the overall equilibration of the system.

Addressing the total force density operator Â ¼ F̂ðrÞ requires to
complement the above-considered interparticle force density F̂intðrÞ with
the ideal and external contributions. These two latter terms constitute
mere variants of the density operator identity (14). First there is the external
force density operator Â ¼ F̂extðrÞ ¼ �ρ̂ðrÞ∇VextðrÞ which yields
βhF̂0extF̂extðrÞi ¼ �½∇VextðrÞ�∇ρðrÞ, as∇Vext(r) can be taken out of the
phase space average on the left-hand side of Eq. (14). Secondly, the diffusive
force density, Â ¼ �kBT∇ρ̂ðrÞ, leads trivially to the gradient of Eq. (14).

Collecting all three terms (ideal, interparticle, and external) allows us to
obtain for the choice Â ¼ F̂ðrÞ a mixed global-local Noether identity:

β F̂
0
extF̂ðrÞ

D E
¼ ρðrÞ∇∇VextðrÞ: ð16Þ

We present simulation results that validate the sum rule (16) in Fig. 2d.We
have checked that via spatial integration these results also validate the global

variance identity βhF̂0extF̂
0
exti ¼

R
drρðrÞ∇∇VextðrÞ34, which follows from

Eq. (13) with operator Â ¼ 1. For the presently considered system, the
global force-force correlation on the left-hand side is onlymarginally (0.4%)
smaller than the global mean potential curvature on the right-hand side.

Fig. 2 | Illustration of the sum rules (14), (15), and (16). The simulation results
were obtained from adaptive BD sampling of the LJ fluid confined between two
parallel planar LJ walls. The profiles are shown as a function of scaled distance z/σ
across the planar slit. a The density profile ρ(r) of the confined system is shown as a
reference. bComparison of the correlator βhF̂0extρ̂ðrÞi and the density gradient∇ρ(r),
see Eq. (14); the zoomed inset demonstrates the respective noise levels and it also
shows the scaled force density sum βFU(r) = βFint(r)+ βFext(r) which equals∇ρ(r)
due to the local force balance. c Comparison of β2hF̂0extF̂intðrÞi and β∇Fint(r), see
Eq. (15). The former route carries less statisical noise and hence can serve as a
starting point for a force sampling scheme. d Comparison of β2hF̂0extF̂ðrÞi and the
local external potential curvature density βρ(r)∇∇Vext(r), see Eq. (16).
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Local shifting applications
We turn to the application of the locally resolved hyperforce sum rules (10)
and (11).We recall from theMethods section that the seemingly trivial case
Â ¼ 1 reduces the local hyperforce identity (11) to the locally resolved force
balance relationship FðrÞ ¼ hF̂ðrÞi ¼ 0. The definition of the total force
operator (9) and carrying out the average gives the more explicit
form− kBT∇ρ(r)+ Fint(r)− ρ(r)∇Vext(r) = 0, i.e., the first member (1) of
the Yvon-Born-Green hierarchy1. Typically this identity is derived from
multiplying the equilibrium probability distribution function Ψeq by the
gradient of the interaction potential and integrating over the degrees of
freedom of N− 1 particles. We emphasize that arguably the simplest pos-
sible application of Eq. (11) yields such a central result of liquid state theory
with very little effort. From the Noetherian point of view the result was also
obtained fromapplying the locally resolved transformation (5) and (6) to the

free energy33,35. At the heart of these Noetherian derivations lies the invar-
iance of theHamiltonian, of the phase space integrationmeasure, andhence
of the partition sum.

We next consider setting Â ¼ F̂
0
ext in Eq. (10). This constitutes a

valuable consistency check with the above global shifting of F̂ðrÞ that led to
Eq. (16) and which we can identically reproduce here. Arguably even more
fundamentally the sum rule (16) can be obtained by considering mixed
local-global shifting invariance at second order, i.e., building the mixed
derivative∂(δΩ/δϵ(r))/∂ϵ0 = 0,where the grandpotentialΩ ¼ �kBT lnΞ is
subject to the combined displacement ri→ ri+ ϵ0+ ϵ(ri). Furthermore
increasing the spatial resolution and hence selecting Â ¼ F̂ðrÞ in Eq. (10)
yields the recent Noether-constrained two-body force-correlation theory,
which is discussed in detail by Sammüller et al.36. The theory that is pre-
sented therein can hence be viewed as the special case of pure force-
dependence within the hyperforce framework.

Reverting back to developing the general theory, here we generalize to
higher orders by iteratively replacing ÂðrN ; pN Þ by F̂ðr0ÞÂðrN ; pN Þ in Eq.
(8). This leads to the following second-order hyperforce sum rule:

β2hF̂ðrÞF̂ðr0ÞÂi ¼ β Â
δ2H½ϵ�

δϵðrÞδϵðr0Þ

� �
þ δ2Â½ϵ�

δϵðrÞδϵðr0Þ

� �
; ð17Þ

where evaluation of the right-hand side at ϵ(r) = 0 is suppressed in the
notation and δ2H½ϵ�=δϵðrÞδϵðr0Þ is discussed by Sammüller et al.36. In case
of nodependence of Â onmomenta, i.e., Â ¼ ÂðrN Þ, the second termon the
right-hand side of Eq. (17) can be made more explicit as

δ2Âð½ϵ�; rN Þ
δϵðrÞδϵðr0Þ

� �
¼

X
ij

δðr� riÞδðr0 � rjÞ∇i∇jÂðrN Þ
* +

: ð18Þ

We proceed beyond forces by turning to energies with the aim of
exploiting their thermal Noether invariance against shifting. We consider
both the global external potential energy Â ¼ P

iVextðriÞ as well as the
global interparticle energy Â ¼ uðrN Þ. Applying Eq. (11) yields in these two
cases respectively the following sum rules:

β F̂ðrÞ
X

i
VextðriÞ

D E
¼ �ρðrÞ∇VextðrÞ; ð19Þ

β F̂ðrÞuðrN Þ� � ¼ FintðrÞ: ð20Þ

Simulation results that demonstrate the validity of Eqs. (19) and (20) are
shown in Fig. 3a, b, respectively. Here we have increased the overall density
by reducing the lateral box size to 5σ and we sample N = 128 particles over
time periods of 2000τ (data shown in Fig. 3a, b) and of 8000τ (data shown
in Fig. 3c).

The potential energy identities (19) and (20) can be supplemented by
considering the kinetic energy, Â ¼ P

ip
2
i =ð2mÞ, which leads upon using

Eq. (10) to the identity βhF̂ðrÞPip
2
i =ð2mÞi ¼ �kBT∇ρðrÞ. Treating then

the entire Hamiltonian, Â ¼ H, follows from adding up all three energy
contributions. The result is the compact identity: βhF̂ðrÞHi ¼ FðrÞ ¼ 0.
This possibly unexpected behavior also holds for the global entropy. We
choose the entropy operator Â ¼ Ŝ � �kB lnΨeq and obtain from Eq. (10)
k�1
B hF̂ðrÞŜi ¼ FðrÞ ¼ 0, i.e., the correlation (as well as the covariance) of the
entropy operator with the local force density vanishes. This behavior is very
different from the nontrivial fluctuation profile that is obtained from the
covariance of the density operator with the global entropy11,12.

As a final case, we consider the center of mass ∑iri/N as a purely
mechanical entity. Wemultiply byN, such that Â ¼ P

iri and obtain from
Eq. (11) upon multiplication by− 1 the result

�β F̂ðrÞ
X
i

ri

* +
¼ ρðrÞ1: ð21Þ

Fig. 3 | Demonstration of Noether sum rules (19), (20), and (21). These identities
are respectively based on the global external and interparticle energies and on the
center of mass. Shown are results from adaptive BD simulations for the LJ fluid
between parallel LJ walls as a function of the scaled distance z/σ. a Comparison of
β2hF̂ðrÞPiVextðriÞi and βFext(r) =− βρ(r)∇Vext(r), see Eq. (19). b Comparison of
β2hF̂ðrÞuðrN Þi and βFint(r), see Eq. (20). cComparison of�βhF̂ðrÞPirii and ρ(r), see
Eq. (21).

https://doi.org/10.1038/s42005-024-01568-y Article

Communications Physics |           (2024) 7:103 6



Integrating Eq. (21) over position yields a simple relationship between
the correlator of the global external force and the center of mass:
hF̂0ext

P
irii=�N ¼ �kBT1, where the mean number of particles is

�N ¼ R
drρðrÞ � hNi. Except for an additional sum over all particles, this

global relationship is akin to the equipartition theorem. We present simu-
lation results for both sides of the locally resolved Eq. (21) in Fig. 3c. The
accurate agreement of the respective profiles confirms that the identity (21)
indeed offers a rather unusual route to gain access to the density profile.

Hyperforce sampling and equilibration testing
Besides the unexpected insights into the general correlation structure of
equilibrium many-body systems that the thermal Noether invariance deli-
vers, our results are useful for the careful assessment and construction of
computer sampling schemes. Force sampling13–19 in perhaps its most intuitive
form15 rests on spatial integration of the YBG equation (1) such that the
density profile is obtained via ρ(r) = ρ0+ β∇−1 ⋅ [Fint(r)− ρ(r)∇Vext(r)],
where ρ0 = const is an integration constant and∇−1 is an inverse∇ operator.
The data input on the right-hand side is obtained via sampling FintðrÞ ¼
hF̂intðrÞi and either ρðrÞ ¼ hρ̂ðrÞi or Fext(r) =− 〈∑i δ(r− ri)∇iVext(ri)〉. The
averages denote those that are being carried out in the simulation. In the
present planar geometry ∇−1 reduces to carrying out a simple position
integral, which we make explicit below.

Summarizing, we can compare the results from four different routes: i)
counting of particle occurrences in a position-resolved histogram, which
constitutes the standardmethod, ii) force sampling15 according toEq. (1), iii)
hyperforce sampling according to the global external force correlation inEq.
(14) with spatial integration post-processing, and iv) center-of-mass-based
hyperforce sampling according to Eq. (21). These routes are respectively
given by the following explicit expressions:

ρðzÞ ¼ hρ̂ðzÞi; ð22Þ

ρðzÞ ¼ ρ0 þ β

Z z

0
dz0 F̂U ðz0Þ

� �
; ð23Þ

ρðzÞ ¼ ρ0 þ β

Z z

0
dz0 F̂

0
extρ̂ðz0Þ

D E
; ð24Þ

ρðzÞ ¼ �β F̂ðzÞ
X
i

zi

* +
: ð25Þ

Herewe choose the integration constant as ρ0 = ρ(0) = 0due to thedivergent
wall potential at z = 0.The averageson the above right-hand sides denote the
actual simulation data, all vectors have been projected onto the z-direction
across the pore, and zidenotes the z-component of the particle position ri. In
more detail, the operators on the right-hand sides of Eqs. (22) and (23) are
explicitly given as ρ̂ðzÞ ¼ P

iδðz � ziÞ=L2 and F̂U ðzÞ ¼
P

if
int
i;zδðz �

ziÞ=L2� ρ̂ðzÞ∂VextðzÞ=∂z, where we recall that L2 is the lateral system size
and the z-component of the interparticle force on particle i is
f inti;z ¼ �∂uðrN Þ=∂zi. Furthermore the operators on the right-hand sides
of Eqs. (24) and (25) are F̂

0
ext ¼ �P

i∂VextðziÞ=∂zi, and βF̂ðzÞ ¼
βF̂U ðzÞ� ∂ρ̂ðzÞ=∂z.

Results for the density profile from the four routes (22)–(25) are shown
in Fig. 4. The simulation parameters are identical as before [Fig. 2]. We
display the four different statistical estimators for the density profile, as
obtained after increasing runlength of (a) 105, (b) 106, (c) 107, and (d) 3 × 108

simulation steps. We recall that as demonstrated above both in the
numerical examples as well as in the formal statistical mechanical deriva-
tions, the results from all routes are formally identical. In practice, pro-
nounced differences can be observed and these are due to the simulation
averages being mere approximations for the true statistical mechanical
equilibrium.

For example the routes (23) and (24) yield less statistical noise due to
the spatial integration, but they however can instead accumulate systematic

deviations. The expected differences between the four methods are also
consistently demonstrated by the fact that the results from the different
routes mutually agree better for increasing runlengths. Nevertheless, in
particular, the routes (24) and (25) that involve global quantities are very
sensitive to the choice of runlength and they can hence serve as indicators of
the overall quality of the sampling routine, evenwhen quantities beyond the
density profile are the very aim of the simulation. Having such tools for
quality control can be particularly useful when investigating capillary and
wetting phenomena42–46 where surface phase transitions pose significant
challenges for reliable prediction.

The Noetherian hyperforce framework allows us to easily go beyond
the density profile andwewish to address the interparticle force density as a
target, rather than the mere source that it played in contributing to Eq. (23)
above for the force sampling. As a demonstration we use and contrast
different estimators for the interparticle force density profile Fint(r). The
traditional counting method of filling a position-resolved histogram forms
the baseline and Eq. (15) provides an alternative. These methods are
respectively given by

F intðzÞ ¼ hF̂intðzÞi; ð26Þ

F intðzÞ ¼ β

Z z

0
dz0 F̂ext

0
F̂ intðz0Þ

D E
: ð27Þ

Figure 5presents both canonical averages obtained via adaptiveBD41 as
well as grand canonicalMonte Carlo data. The chemical potential is chosen
asμ/ϵ = 1 and the resulting average number of particles is 〈N〉 = 136.5. In the
corresponding adaptive BD simulation runs we have set N = 136, which
remains sharply fixed in the course of time. The agreement between both
sets of results confirms the expectation of independence of the sum rule
validity on the choice of ensemble. This is based on the fact that the theo-
retical derivations continue to hold with fixed N, as we have also explicitly
verified. Hence the mechanical effects that the Noether invariance against
spatial displacement captures are oblivious to the presence of global particle
number fluctuations. We recall that the latter are precisely captured and
quantified by the local compressibility8–10.

The comparisonof lower andhigher quality statistical data, as obtained
from sampling every step (see Fig. 5a, b) or only every 1000th step (see
Fig. 5c, d) demonstrates that the force correlation method is a sensitive
measure of the degree of sampling quality.

Conclusions
In conclusion, we have developed a statistical mechanical hyperforce fra-
mework in generalization of theYBGequilibrium force balance relationship
(1). Our theory is based on previously developed global31,32,34 and local33,35

shifting transformations on phase space. These variable transformations
leave the thermal physics invariant despite an apparent dependence on the
transformation parameter. The parameter is a three-dimensional globally
constant vector in case of global symmetry, which applies to the entirety of
the system, and a position-dependent three-dimensional vector field for the
locally resolved case. Treating the corresponding phase space transforma-
tions according to Noether’s invariant variational calculus21 allows us to
systematically generate exact identities.

Here we have generalized this Noetherian concept to the equilibrium
average of an arbitrary given phase space function Â. The resulting Noether
identities couple in a specific manner the forces, which the underlying
Hamiltonian generates, to the observable Â and its gradient with respect to
the phase space variables. In the position-resolved case, we obtain localized
correlation functions, with the Dirac distribution generating micro-
scopically sharp, but statistically coarse-grained and hence well-accessible
correlators. In detail, we have presented the global hyperforce sum rule (4)
that applies to any given phase space function Â. The local versions com-
prise Eqs. (10) and Eq. (11), where the latter version applies tomomentum-
independent observables. Decomposing the total force operator into its
ideal, interparticle, and external contributions leads to Eq. (12), which
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generalizes the equilibrium force density balance (1). An overview of these
general identities is shown in Fig. 6a.

For a variety of relevant concrete choices of the form of Â, we have
demonstrated explicitly their validity via carrying out many-body simula-
tions. This includes forces, energies, and entirelymechanical quantities such
as the center of mass; see Fig. 6b for a summary of specific examples. We
have shown that the sampling quality and equilibration properties depend
significantly on the type of underlying sum rule.We argue that this behavior
forms a valuable asset for the systematic assessment of simulation quality.

Our hyperforce identities complement the virial1, hypervirial37,
equipartition1 and Yvon1 theorems. Despite certain formal similarities, we
emphasize that the underlying phase space invariance is more fundamental
than derivations based on ad hoc partial integration. Furthermore, the
considered invariance operations naturally lead to correlations with either
global or locally resolved forces, which are both simple to interpret and
straightforward to acquire in simulations.

Wehave shownhow the global hyperforce identity (4) can alternatively
be obtained from theYvon theorem1.Hence, as anticipated in the discussion
by Rotenberg13, the Yvon theorem can indeed be a relevant tool for force
sampling. However, the general localized Noether sum rule (10) reaches
beyond the Yvon theorem in terms of the momentum effects that are
included. We have shown that the derivation of the momentum-
independent sum rule (11) based on the Yvon theorem requires to apply

the adhoc localized choice Âδðr� riÞ and summingover i. As a second step,
treating the ideal contribution explicitly allows to identify the sequence of
emerging terms as the one-body force operator F̂ðrÞ at any position. Con-
versely, the Yvon theorem can be derived as a limit case from Noether
invariance upon shifting only one given particle i according to ri→ ri+ ϵ0,
and keeping unchanged all other particles coordinates rj with j ≠ i.

Besides the theoretical connections that the Noether hyperforce sum
rules establish, they can serve to carry out tests in theoretical and simulation
approaches, with possible fruitful connections to the mapped-averaging
force sampling framework16. The hyperforce sum rules can also provide a
starting point, together with the existing body of equilibrium sum rules42–46,
for the construction of new inhomogeneous liquid state approximations.
We have exemplified the use of sum rules in providing gauges for the
equilibration quality of simulation data and we are confident in their future
beneficial use in machine-learning approaches such as the recent neural
functional theory47,48.

In the context of the use of machine-learning in Statistical
Mechanics47–54 sum rules were shown to provide tests for the successful
construction of neural functionals both in47,48 and out of equilibrium49.
These sumrules amount to specific forceproperties, such as the vanishingof
the global interparticle force49 and the interrelation of different orders of
direct correlation functions47,48. The present muchmore general hyperforce
framework can formmuch inspiration for such approaches aswell as for the

Fig. 4 | Comparison of standard counting against force sampling.Weshow results
from four different routes towards the density profile ρ(r) as obtained after a 105,
b 106, c 107, d 3 × 108 simulation steps. Shown is data from the standard counting
method according to Eq. (22) (orange lines), from force sampling FU(r) according to
Eq. (23) (green dash-dotted lines), from global external force correlation sampling of

hF̂0extρ̂ðrÞi according to Eq. (24) (blue solid lines), and from center-of-mass corre-
lation sampling of hF̂ðrÞPirii according to Eq. (25) (red symbols). Results from the
latter route are only displayed from the longest run [panel d] and they still display
considerable scatter, whereas the results from the remaining three methods already
agree very satisfactorily.
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recent force-based density functional theory35,55, which was compared55 to
standard fundamental measure theory56.

Furthermore, investigating hyperforce correlations in ionic systems,
recent work57–59 addresses both concentration and charge fluctuation
behavior, as are also relevant in confined systems60, appears to be very
promising. This also holds true for further interfacial physics42–46 and
potentially for the higher-order correlation functions3–5.

In our theoretical derivations we have relied on the grand canonical
ensemble, with fixed chemical potential μ and fluctuating number of par-
ticles N. Carrying out formal manipulations in this way is often more
straightforward than working with fixedN, as is appropriate for a canonical
treatment. (Temperature is constant in both ensembles.) A prominent
example is to obtain the density profile as a functional derivative ρ(r) = δΩ/
δVext(r) where crucially μ is kept fixed, rather than N, upon building the
functional derivative. This prototypical example demonstrates the elegance
of working grand canonically, and one could expect that a similar situation
applies to the thermal Noether invariance. This, however, is not the case.
Rather thephase space shifting transformation,whether global by a constant
ϵ0 or locally resolved in position via a three-dimensional vector field ϵ(r), is
an entirely mechanical operation that applies equally well canonically. The
shifting invariance gives a powerful new route to correlation functions and
their sum rules, an alternative to the traditional method of integrating over
degrees of freedom, as pioneered by Yvon61 and Born and Green62.

A detailed account of global shifting in the canonical ensemble is
provided by Hermann and Schmidt32. The resulting Noether force
identities are analogous in form to the results from a grand canonical
treatment31, with the sole (and trivial) difference of the definition of the
respective ensemble averages. Here we find that the analogous situation
holds for the hyperforce identities. As they originate from phase space
transformations only, they are insensitive to the ensemble differences
between the canonical and the grand ensemble. This theoretical fact is
corroborated by our computer simulation results, where we have
explicitly compared grand canonical Monte Carlo data and canonical
results, with the latter obtained via sampling under adaptive BD time
evolution41.

We have used overdamped Brownian time evolution as a means to
sample in thermal equilibrium. We find the adaptive Brownian dynamics
time stepping algorithm41 to be a convenient choice for our present pur-
poses. The principle validity of the hyperforce sum rules is nevertheless
independent thereof and we expect careful use of either the simpler Euler-
Maruyama method41,63 or indeed Molecular Dynamics63 to yield identical
results. In our BD simulations, we have sampled all correlation functions at
equal time as is the appropriate limit in equilibrium time evolution to
recover static thermal ensemble averages. We refer to Hermann and
Schmidt31 for the exploitation of the Noether invariance in nonequilibrium
dynamics.

Fig. 5 | Comparison of different statistical estimators for the interparticle one-
body force density profile according to Eq. (15). The results are obtained from the
standard counting histogram method, FintðrÞ ¼ hF̂intðrÞi (orange lines), and from
hyperforce sampling and spatial integration of∇FintðrÞ ¼ βhF̂0extF̂intðrÞi (blue lines)
with data for the right-hand side forming the basis. These methods are explicitly
spelled out in Eqs. (26) and (27). The results stem from sampling 105 strongly
correlated microstates at every simulation step (a, b) compared to better-

decorrelated configurations obtained from also 105 configurations, with the samples
being taken only every 1000th simulation step (c, d). Results are shown from grand
canonical Monte Carlo simulations (a, c) and from adaptive BD simulations (b, d).
The results from sampling are symmetrizedwith respect tomirroring at the center of
the pore, i.e., via building the arithmetic mean [Fint(z)− Fint(L− z)]/2, as is com-
mon practice in force sampling schemes.
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As a final note, we return to classical density functional theory and its
prowess in the description and incorporation of the fundamental force
correlators that emerge from the hyperforce concept.We recall that classical
density functional theory is based on a formally exact variational principle
which amounts to solving the following Euler-Lagrange equation:

kBTc1ðr; ½ρ�Þ � VextðrÞ ¼ kBT ln ρðrÞ � μ: ð28Þ

Here c1(r, [ρ]) is theone-bodydirect correlation functionof inhomogeneous
liquid state theory. This is expressed as a density functional via
c1(r, [ρ]) =− βδFexc[ρ]/δρ(r), whereFexc[ρ] is the intrinsic excessHelmholtz
free energy functional, which contains the interparticle interactions, and
δ/δρ(r) denotes the functional derivative with respect to the density profile.
Solving Eq. (28) for given T, μ, andVext(r) yields results for the equilibrium
density profile ρ(r), which is hence the central variable of density functional
theory.

Amultitude of connections with the current invariance theory emerge
naturally. From the density profile, using the hyperforce identities one can

obtain results for hF̂ðrÞPirii via Eq. (21), for hF̂
0
extF̂ðrÞi via Eq. (16), for

hF̂ðrÞPiVextðriÞi via Eq. (19), and upon building the gradient of the density
profile for hF̂0extρ̂ðrÞi via Eq. (14).

We canmake further progress by noting that within density functional
theory the interparticle force density is given by Fint(r) = kBTρ(r)∇c1(r),
where we have suppressed the functional dependence on the density profile
in the notation. That this relationship holds can be seen from building the
gradient of Eq. (28) whereby−∇μ vanishes as the chemical potential is
constant, multiplying by ρ(r), and comparing term-wise with the force
density balance relationship (1).

Having obtained Fint(r) in this (density functional) way gives
access to hF̂ðrÞuðrN Þi via Eq. (20). Building the gradient of the
interparticle force density via the product rule yields∇Fint(r) =
kBT[∇ρ(r)]∇c1(r)+ kBTρ(r)∇∇c1(r). Again in principle, the right-
hand side is straightforward to evaluate in a typical numerical density
functional study as data for both ρ(r) and c1(r) is accessible. As a
result, the correlator hF̂0extF̂intðrÞi is available via the hyperforce sum
rule (15).

Hence standard results that are obtained within the density functional
framework allow to access awealthof nontrivial force correlation structures.

This additional information is not redundant.We compare with Evans and
his coworkers’ local compressibility χμ(r) = ∂ρ(r)/∂μ, where similar to the
present force setup, one obtains χμ(r) from processing the density profile. In
practice then analyzing χμ(r) can shed significantlymore light on the physics
than what is apparent from the density profile alone, as has been demon-
strated in a range of insightful studies on drying at substrates and the
important phenomenon of hydrophobicity8–10.

Data availability
The data is available from the authors upon reasonable request.

Code availability
The simulation code to generate the data in this study is available online at
the following URL: https://gitlab.uni-bayreuth.de/bt306964/mbd/-/tree/
hyperforce.
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