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Abstract
We describe recent progress in the statistical mechanical description of many-body systems via
machine learning combined with concepts from density functional theory and many-body
simulations. We argue that the neural functional theory by Sammüller et al (2023 Proc. Natl
Acad. Sci. 120 e2312484120) gives a functional representation of direct correlations and of
thermodynamics that allows for thorough quality control and consistency checking of the
involved methods of artificial intelligence. Addressing a prototypical system we here present a
pedagogical application to hard core particle in one spatial dimension, where Percus’ exact
solution for the free energy functional provides an unambiguous reference. A corresponding
standalone numerical tutorial that demonstrates the neural functional concepts together with the
underlying fundamentals of Monte Carlo simulations, classical density functional theory,
machine learning, and differential programming is available online at https://github.com/sfalmo/
NeuralDFT-Tutorial.

Keywords: density functional theory, statistical mechanics, machine learning,
inhomogeneous fluids, fundamental measure theory, neural functional theory,
differential programming

1. Introduction

The discovery of the molecular structure of matter was still in
its infancy when van der Waals predicted in 1893 on theoret-
ical grounds that the gas–liquid interface has finite thickness.
The theory is based on a square-gradient treatment of the dens-
ity inhomogeneity between the coexisting phases [1, 2] and it
is consistent with van der Waals’ earlier treatment of the gas–
liquid phase separation in bulk. Both the bulk and the inter-
facial treatments are viewed as simple yet physically correct
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descriptions of fundamental phase coexistence phenomena by
modern standards of statistical mechanics.

What was unknown then is that an underlying formally
exact variational principle exists. This mathematical struc-
ture was recognized only much later, first quantum mechan-
ically by Hohenberg and Kohn [3] for the groundstate of a
many-body system, subsequently byMermin [4] for finite tem-
peratures, and then classically by Evans [5]. The variational
principle forms the core of density functional theory and the
intervening history between the quantum [4] and classical
milestones [5] is described by Evans et al [6]; much back-
ground of the theory is given in [7–9]. Kohn and Sham [10, 11]
re-introduced orbitals via an effective single-particle descrip-
tion, which facilitates the efficient treatment of the many-
electron quantum problem.

Practical applications of density functional theory require
one to make concrete approximations for the central
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functional. (We recall that a functional maps an entire function
to a number.) Quantum mechanically one needs to approx-
imate the exchange-correlation energy functional Exc[n], as
depending on the electronic density profile n(r), and classic-
ally one needs to get to grips with the excess (over ideal gas)
intrinsic Helmholtz free energy Fexc[ρ], as a functional of the
local particle density ρ(r).

A broad range of relevant problems and intriguing col-
lective and self-organization effects in soft matter [12] have
been investigated on the basis of classical density functional
theory [5–9]. Exemplary topical studies include investigations
of hydrophobicity [13–16], the orientation-resolved molecu-
lar structure of liquids [16], the three-dimensionally resolved
atomic structure of electrolytes [17, 18], and the asymptotic
decay of ionic structural correlations [19].

Owing to its rigorous formal foundation, density functional
theory provides a microscopic, first-principles treatment of the
many-body problem. The numerical efficiency of (in prac-
tice often approximate) implementations allows for exhaustive
model parameter sweeps, for systematic investigation of bulk
and interfacial phase transitions, and for the discovery and tra-
cing of scaling laws. Exact statistical mechanical sum rules
[20–23] integrate themselves very naturally into the scheme
and they provide consistency checks and can form the basis for
refined approximations. Nevertheless, at the core of such stud-
ies lies usually an approximate functional and hence resorting
to explicit many-body simulations is common in a quest for
validation of the predicted density functional results.

Inline with topical developments in other branches of
science, the use of machine learning is becoming increas-
ingly popular in soft matter research. Recent applications
of machine learning range from the characterization of soft
matter [24], reverse-engineering of colloidal self-assembly
[25], local structure detection in colloidal systems [26], to
the investigation of many-body potentials for isotropic [27]
and for anisotropic [28] colloids. Brief overviews of machine
learning in physics [29] and in particular in liquid state theory
[30] were given recently.

Density functional theory lends itself towards machine
learning due the necessity of finding an approximation for the
central functional. Corresponding research was carried out in
the classical [31–42] and quantum realms [43–51]. The clas-
sical work addressed liquid crystals in complex confinement
[31], the functional construction of a convolutional network
[32] and of an equation-learning network [33], the improve-
ment of the standard mean-field approximation for the three-
dimensional Lennard–Jones system [34] with the aim of
addressing gas solubility in nanopores [35], the use physics-
informed Bayesian inference [36, 37], active learning with
error control [38], and the physics of patchy particles [39].

The quantum mechanical problem was addressed on the
basis of machine learning the exchange-correlation potential
[43–45], testing its out-of-training transferability [43], using
a three-dimensional convolutional neural network construct
[45], considering hidden messages from molecules [46], and
using the Kohn–Sham equations already during training via a
regularizer method [47]. The Hamiltonian itself was targeted
via deep learning with the aim of efficient electronic-structure

Figure 1. Illustration of hard rods in one spatial dimension that are
exposed to a position-dependent external potential Vext(x). In
response to the external influence a spatially inhomogeneous density
profile ρ(x) emerges in equilibrium at temperature T and chemical
potential µ. The particles with position coordinates xi and particle
index i = 1, . . . ,N have radius R and diameter σ = 2R. A
configuration is forbidden (bottom row) if any two particles overlap,
i.e. if their mutual distance is smaller than the particle diameter σ.

calculation [48]. A recent perspective on these and more
developments was given by Burke and co-workers [50]. Huang
et al [51] argue prominently that quantum density functional
theory plays a special role in the wider context of the use of
artificial intelligenece methods in chemistry and in materials
science.

While the central problem of quantum density functional
theory is to deal with the exchange and correlation effects
between electrons that are exposed to the external field gener-
ated by the nuclei, classical statistical mechanics of soft mat-
ter relies on a much more varied range of underlying model
Hamiltonians. The effective interparticle interactions in soft
matter systems cover a wide gamut of different types of repuls-
ive and attractive, short- and long-ranged, hard-, soft-, and
penetrable-core behaviours.

In particular the hard core model plays a special role. For
hard core particles the pair potential between two particles
is infinite if the particle pair overlaps and it vanishes other-
wise. Hard core particles are relatively simple as temperat-
ure becomes an irrelevant variable while the essence of short-
ranged repulsion and the resulting molecular packing remain
captured correctly [52, 53]. The statistical mechanics of the
bulk of one-dimensional hard core particles was solved early
by Tonks [54]. The free energy functional is known exactly due
to Percus [55–59] and his solution provides the general struc-
ture and thermodynamics of the system when exposed to an
external potential, see figure 1 for an illustration. The math-
ematical form of Percus’ free energy functional was one of
the sources of inspiration [60] for Rosenfeld’s powerful funda-
mental measure density functional for three-dimensional hard
spheres [61–68]. One-dimensional hard rods are also central
for nonequilibrium physics [69–73] and the Percus functional
forms a highly useful reference for developing and testing
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machine learning techniques in classical density functional
theory [32, 33, 36–38].

In recent work, de las Heras et al [40] and Sammüller et al
[41] have put forward machine learning strategies that oper-
ate on the one-body level of correlation functions. Here we
address in detail the neural functional theory [41] for inhomo-
geneous fluids in equilibrium. We argue that this approach
constitutes a neural network-based theory, where multiple dif-
ferent and mutually intimately related neural functionals form
a genuine theoretical structure that permits investigation, test-
ing, and to ultimately gain profound insight into the nature of
the coupled many-body physics. Thereby the training is only
required for a single neural network, from which then all fur-
ther neural functionals are created in straightforward ways.
The method allows for multi-scale application [41] as is per-
tinent for many areas of soft matter [74–76]. It is furthermore
applicable to general interactions, as exemplified by success-
fully addressing a supercritical Lennard–Jones fluid [41], thus
complementing analytical efforts to construct density func-
tional approximations. Such work was based, e.g. on hierarch-
ical integral equations [77, 78], on functional renormalization
group methods [79–81], and on fundamental measure theory
[82–84].

Here we use the one-dimensional hard core model to illus-
trate the key concepts of the neural functional theory, as the
required sampling can be performed easily and Percus’ func-
tional provides an analytical structure that we can relate to
the neural theory. The Percus functional is one of the very
few general classical free energy density functionals that is
analytically known for a continuum model (see e.g. also [85,
86]) and this fact provides further motivation for our study. A
hands-on tutorial that demonstrates the key concepts of con-
structing a neural direct correlation functional, generating the
required data from Monte Carlo simulations, testing against a
numerical implementation of the Percus functional, and work-
ing with automatic differentiation is available online [42].

The paper is structured into individual subsections, as
described in the following; each subsection is self-contained
to a significant degree such that Readers are welcome to
select the description of those topics that match their own
interests and individual backgrounds. An overview of key con-
cepts of the one-body neural functional approach is given in
section 1.1. This hybrid method draws on classical density
functional concepts, as summarized in section 1.2. Functional
differentiation and integration methods are described in
section 1.3.

Readers who are primarily interested in the use of machine
learning may want to skip the above material and rather start
with section 2.1, where we describe how to construct and train
the neural correlation functional on the basis of many-body
simulation data. We concentrate on the specific model of one-
dimensional hard core particles and complement and contrast
the neural functional by the known exact analytical results for
this model, as described in section 2.2. Model applications for
predicting inhomogeneous systems based on neural density
functional theory are described in section 2.3.

Several methods of neural functional calculus are described
in section 3. Manipulating the neural correlation functional by

Figure 2. Illustration of the relevant functional maps of the neural
functional theory. The external potential Vext(r) generates a
one-body density profile ρ(r) that is associated with a one-body
direct correlation function c1(r). At given temperature T, chemical
potential µ, and for a specific form of the external potential Vext(r),
Monte Carlo simulations provide data for the corresponding density
profile ρ(r) and for the direct correlation function c1(r). Machine
learning is used to represent the functional map ρ→ c1 via a deep
neural network. The functional dependence of c1(r) on the density
profile is of much shorter spatial range as compared to the training
data obtained from Vext → ρ.

functional integration and automatic functional differentiation
is described in sections 3.1 and 3.2, respectively. The applic-
ation of Noether sum rules as a standalone means for qual-
ity control of the neural network is presented in section 3.3.
Functional integral sum rules are shown in section 3.4. A brief
overview of key concepts of neural functional representations
in nonequilibrium are presented in section 4. We give conclu-
sions in section 5.

1.1. Neural functional concepts

The neural functional framework [41] rests on a combination
of simulation, density functional theory, and machine learn-
ing. Data that characterizes the underlying many-body system
is generated via grand canonical Monte Carlo simulations of
well-defined, but random external conditions. Based on these
results the one-body direct correlation functional is construc-
ted as a neural network that accepts as an input the relevant
local section of the density profile. Thismethod allows for very
efficient data handling as only short-ranged correlations con-
tribute; figure 2 depicts an illustration.

The neural one-body direct correlation functional c1(r, [ρ])
forms the mother network for the subsequent functional cal-
culus. Automatically differentiating the mother network with
respect to its density input yields the two-body direct correl-
ation functional c2(r,r ′, [ρ]) as a daughter functional. Two-
body direct correlations are central in liquid state theory [8]
and they are here represented by a standalone numerical object
that is created via straightforward application of automatic
differentiation. This workflow is very different and arguably
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much simpler in practice than the standard technique of car-
rying out the functional differentiation analytically and then
implementing the resulting expression(s) via numerical code.

Differentiating the daughter network yields a granddaugh-
ter network, which represents the three-body direct correlation
functional c3(r,r ′,r ′ ′, [ρ]). Again this is an independent and
standalone numerical computing object. Very little is known
about three-body direct correlations, with e.g. Rosenfeld’s
early investigation for hard spheres [61] and the freezing stud-
ies by Likos and Ashcroft [87, 88] being notable exceptions.
The neural functional method [41] offers arguably unpreced-
ented detailed access.

Tracing the genealogy in the reverse direction requires
functional integration, which is a general and standard tech-
nique in functional calculus. In the present case again a quasi-
standalone numerical object can be built based on mere net-
work evaluation and standard numerical integration, both of
which are fast operations. In this way, functionally integrat-
ing the mother one-body direct correlation functional creates
as the grandmother the excess free energy functional Fexc[ρ].
This mathematical object is the ultimate generating functional
in classical density functional theory for all n-body direct cor-
relation functions [5, 8, 9]. We give more details about the
interrelationships within the family of functionals below in
section 1.3.

When applied to the three-dimensional hard sphere fluid
and restricted to planar geometry, such that the density distri-
bution is inhomogeneous only along a single spatial direction,
the neural functional theory outperforms the best available
hard sphere density functional (the formidableWhite BearMk.
II fundamental measure theory [65]) in generic inhomogen-
eous situations. For spatially homogeneous fluids the neural
functional even surpasses the ‘very accurate equation of state’
[8] by Carnahan and Starling [52], despite the fact that no
explicit information about any bulk fluid properties was used
during training.

Formulating reliable strategies of how to test machine-
learning predictions constitutes in general a complex yet very
important task, not least in the light of ongoing and pro-
jected increased use of artificial intelligence in science [51].
The neural functional theory offers a wealth of concrete self-
consistency checks besides the standard benchmarking tech-
niques. Commonly and following best practice in machine
learning, benchmarking is performed by dividing the refer-
ence data, as here obtained from many-body simulations, into
training, validation and test data. The simulations in the test
data set have not been used during training and hence can
serve to assess the performance of the trained network. In
our present model application, we can perform testing directly
with respect to the exact Percus theory.

Assessing extrapolation capabilities beyond the under-
lying data set requires the availability of further refer-
ence data. In [41] this is provided by comparing (favour-
ably) against a highly accurate bulk equation of state [89]
as well as comparing against free energy reference results
obtained from simulation-based thermodynamic integration of
inhomogeneous systems.

However, due to its computational efficiency the neural
approach allows to make predictions for system sizes that
outscale significantly the dimensions of the original simula-
tion box. Sammüller et al [41] describe systems of micron-
sized colloids confined between parallel walls with macro-
scopic separation distance. The density profile is resolved over
a system size of 1 mm with nanometric precision on a numer-
ical grid with 10 nm spacing. Such ‘simulation beyond the
box’ is both powerful in terms of multiscale description of soft
matter [74–76], but is also serves as template for the more gen-
eral situation of using artificial intelligence methods far out-
side their original training realm.

In order to provide quality control, the neural functional
theory hence allows to carry out a second type of test. This
is less generic than the above benchmarking but it can nev-
ertheless provide inspiration for machine learning in wider
contexts. In the present case, the specific statistical mech-
anical nature of the underlying equilibrium many-body sys-
tem implies far-reaching mathematical structure, as it lies at
the very heart of Statistical Mechanics. Specifically, it is the
significant body of equilibrium sum rules that provide form-
ally exact interrelations between different types of correlation
functions. These sum rules hold universally, i.e. independent
of the specific inhomogeneous situation that is under consid-
eration and they hence constitute formally exact relationships
between functionals.

As the neural functional theory expresses direct correlation
functions using neural networkmethods, the sum rules directly
translate to identities that connect the different neural func-
tionals and their integrated and differentiated relatives with
each other. Crucially, these connections have both different
mathematical form, as well as different physical meaning, as
compared to the bare genealogy provided by the automatic
functional differentiation and functional integration. Without
overstretching the analogy, one could view the sum rules as
genetic testing the entire family for absence of inheritable
disease.

While the body of statistical mechanical sum rules is both
significant and diverse [20–23], here we rely on the recent
Noether invariance theory [90–98] as a systematic means to
create both known and new functional identities from the
thermal invariance of the underlying statistical mechanics [90,
91]. In particular from invariance against local shifting one
obtains sum rules that connect different generations of dir-
ect correlation functionals with each other in both locally-
resolved and global form. We present exemplary cases below
in section 3.3. Generic sum rules that emerge from the mere
inverse relationship of functional integration and functional
differentation are presented in section 3.4.

1.2. Introduction to classical density functional theory

We give a compact account of some key concepts of classical
density functional theory; for more details see [5–9]. Readers
who are primarily interested in machine learning of neural
functionals can skip this and the next subsection and directly
proceed to section 2.
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In a statistical mechanical description of a many-body sys-
tem the local density acts as a generic order parameter that
measures the probability of finding a particle at a specific loc-
ation. The formal definition of the one-body density distribu-
tion as a statistical average is:

ρ(r) =
〈∑

i

δ (r− ri)
〉
, (1)

where the sum over i runs over allN particles, ri is the position
coordinate of particle i = 1, . . . ,N, and δ(·) indicates the Dirac
distribution, here in three dimensions. The angles indicate a
thermal average over microstates, which can e.g. be efficiently
carried out in Monte Carlo simulations.

For completeness, we give a formal description of the equi-
librium average based on the grand ensemble, where it is
defined as ⟨·⟩= Tr · e−β(H−µN)/Ξ. Here the inverse temper-
ature is β = 1/(kBT), with the Boltzmann constant kB and
absolute temperature T, the Hamiltonian H, chemical poten-
tial µ and grand partition sum Ξ. The classical trace is defined
as Tr ·=

∑∞
N=0(h

dNN!)−1
´
drN
´
dpN·, where h denotes the

Planck constant and
´
drN
´
dpN is a shorthand for the high-

dimensional phase space integral over all particle positions and
momenta in d spatial dimensions. Pedagogical introductions
can be found in standard textbooks [8] and an introductory
compact account together with a description of the force point
of view is provided in [91].

The Hamiltonian has the following standard form:

H=
∑
i

p2
i

2m
+ u

(
rN

)
+
∑
i

Vext (ri) , (2)

where pi is the momentum of particle i, the interparticle inter-
action potential u(rN) depends on all position coordinates
rN = r1, . . . ,rN, and Vext(r) is an external potential energy
function that depends on position r. Hence the sum in
equation (2) comprises kinetic, interparticle, and external
energy contributions. For the common case of particles inter-
acting via a pair potential ϕ(r) that only depends on the inter-
particle distance r, the interparticle energy reduces to u(rN) =∑

ij( ̸=)ϕ(|ri− rj|)/2 where the double sum runs only over dis-
tinct particle pairs ij with i ̸= j and the factor 1/2 corrects for
double counting.

For the ideal gas the interparticle interactions vanish,
u(rN)≡ 0, and the density profile is given by the generalized
barometric law [8]:

ρid (r) = e−β(Vext(r)−µ)/Λd, (3)

where Λ denotes the thermal de Broglie wavelength, which in
the present classical case can be set to Λ = σ, with σ denoting
the particle size; for simplicity of notation here we use Λ = 1.

Taking the logarithm of equation (3) and collecting all
terms on the left hand side gives the following ideal gas chem-
ical potential balance:

lnρid (r)+βVext (r)−βµ= 0. (4)

For a mutually interacting system, where u(rN) ̸= 0,
equation (4) will not be true when replacing the ideal dens-
ity profile ρid(r) by the true density profile ρ(r) as formally
given by equation (1). Rather the sum of the three terms on
the left hand side of equation (4) will not vanish, but yield a
nontrivial contribution:

lnρ(r)+βVext (r)−βµ= c1 (r) , (5)

where the one-body direct correlation function c1(r) is in gen-
eral nonzero and arises due to the presence of interparticle
interactions in the system. (For hard core systems c1(r) typ-
ically features negative values.)

The machine learning strategy described below in
section 2.1 is based on this pragmatic access to data for
c1(r), as obtained by direct simulation of ρ(r) on the basis
of explicitly carrying out the average in equation (1) for given
form of Vext(r) and prescribed values of the thermodynamic
parameters µ and T. As the one-body direct correlation func-
tion is central in the neural functional theory, we combine
equations (4) and (5), which yields the following equivalent
form for the one-body direct correlation function,

c1 (r) = ln

(
ρ(r)
ρid (r)

)
, (6)

where ρid(r) is given by equation (3) with Λ = 1. Equation (6)
has the direct interpretation of c1(r) as the logarithm of the
ratio of the actual density profile and the density profile of the
ideal gas under identical conditions, as given by the external
potential and thermodynamic statepoint.

In alternative terminology [8] one defines the intrinsic
chemical potential as µint(r) = µ−Vext(r). The intrinsic
chemical potential and the one-body direct correlation
function are related trivially to each other via µint(r) =
kBT[lnρ(r)− c1(r)] as is obtained straightforwardly by re-
arranging equation (5).

The practical, computational, and conceptual advantage of
density functional theory lies in avoiding the explicit occur-
rence of the high-dimensional phase space integral that under-
lies thermal averages; we recall the definition of the dens-
ity profile (1) as such an expectation value. Instead, and
without any principal loss of information, one works with
functional dependencies. Rather thanmere point-wise depend-
encies, such as between the functions ρ(r), Vext(r), and c1(r)
that hold at each point r, see equation (5), a functional depend-
ence is on the entirety of a function and it has in general a
nonlocal and nonlinear structure.

Density functional theory is specifically based on the fact
[3–5] that for a given type of fluid, as characterized by its
interparticle interaction potential u(rN), and known thermo-
dynamic parameters µ and T, the form of density profile ρ(r)
is sufficient to determine the entirety of the external potential
Vext(r). Hence a unique functional map exists [3–5]:

ρ→ Vext. (7)

Here we omit the position arguments on both sides to reflect
in the notation that the functional map relates the entirety of
the density profile to the entirety of the external potential.
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Applying equation (7) to the external potential, as it occurs
in equation (5), implies that the left hand side is determ-
ined from knowledge of the density profile alone, in principle
without any need for a priori knowledge of the form of Vext(r).
Via the identity (5) we can conclude the existence of the map:

ρ→ c1, (8)

where the entirety of the density profile determines the entirety
of the direct correlation function. As a consequence the one-
body direct correlation function actually is a density func-
tional, c1(r, [ρ]), where the brackets indicate the functional
dependence, i.e. on the entirety of the argument function,
here ρ(r). We will discuss below more explicitly that the
dependence is effectively short-ranged for the case of short-
ranged interparticle interaction potentials and that this can be
exploited to great effect in the neural network methodology.

1.3. Density functional derivatives and integrals

While we have emphasized above the role of the one-body
direct correlation functional c1(r, [ρ]), primarily due to c1(r)
being directlymeasurable via equation (6), one typically rather
starts with a parent functional, the excess free energy func-
tional Fexc[ρ], in standard accounts of classical density func-
tional theory. The relationship of Fexc[ρ] and c1(r, [ρ]) is
established via functional calculus. Functional differentiation,
see [9] for a practitioner’s account, yields additional posi-
tion dependence and we use the notation δ/δρ(r) to denote
the functional derivative with respect to the function ρ(r).
Functional integration is the inverse operation. We give a brief
description of the functional relationships in the following.
An overview is illustrated in figure 3 and we will return for
a broader account below in section 3.

The method of automatic differentiation [99] is an integ-
ral part of the new computing paradigm of differentiable
programming [100]. Automatic differentiation is based on a
powerful set of techniques and it differs from both symbolic
differentiation, as facilitated by computer algebra systems, and
from numerical differentiation via finite difference, as is com-
putational bread and butter. As shown in the tutorial [42] only
high-level code is required to invoke automatic differentiation,
and both neural and analytical functionals can be differenti-
ated with little effort. As the derivative (of the functional) is
with respect to its entire input data, the method constitutes a
representation of a genuine functional derivative.

We give an overview. In the present context the functional
calculus that relates the one-body direct correlations to the par-
ent excess free energy functional is given by the following
functional integration and functional differentiation relations:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ 1

0
dac1 (r, [ρa]) , (9)

c1 (r, [ρ]) =−δβFexc [ρ]

δρ(r)
. (10)

In equation (9) we have parameterized the general formal
integral

´
D[ρ] by using ρa(r) as a scaled version of the density

Figure 3. Illustration of four different generations of density
functionals. Shown are the excess free energy functional Fexc[ρ] and
the one-, two-, and three-body direct correlation functionals.
Upward arrows indicate the relationship via functional integration´
drρ(r)

´ 1
0 da with the integrand being evaluated at the scaled

density aρ(r). Downward arrows indicate functional differentiation
δ/δρ(r). The neural functional theory is based on training c1(r, [ρ])
as the generating mother functional. Implementing the arrowed
operations only requires high-level code. The resulting neural
networks, as well as functionals derived from analytical
expressions, are highly performant.

profile, with a simple linear relationship ρa(r) = aρ(r). Hence
the parameter value a= 0 corresponds to vanishing density
and a= 1 reproduces the target density profile, as it occurs in
the argument of βFexc[ρ] on the left hand side of equation (9).
We emphasize that the integral over a in equation (9) is a
simple one-dimensional integral over the coupling parameter
a. The consistency between equations (9) and (10) is demon-
strated below in section 3.4.

The perhaps seemingly very formal functional calculus
acquires new and pressing relevance in light of the neural func-
tional concepts of [41], which allow to work explicitly with
both functional derivatives and functional integrals, which
can be evaluated efficiently via the corresponding standalone
neural functionals.

In light of these benefits it is fortunate that the func-
tional differentiation-integration structure extends recursively
to higher orders of correlation functions. The next level beyond
equations (9) and (10) involves the two-body direct correlation
functional c2(r,r ′, [ρ]) and the integration and differentiation
structure is as follows:

c1 (r, [ρ]) =
ˆ
dr ′ρ(r ′)

ˆ 1

0
dac2 (r,r ′, [ρa]) , (11)

c2 (r,r ′, [ρ]) =
δc1 (r, [ρ])
δρ(r ′)

, (12)

and we refer to [8, 9, 101, 102] for background.
We can chain the functional derivatives together by insert-

ing c1(r, [ρ]) as given by equation (10) into the definition (12)
of c2(r,r ′, [ρ]). In parallel, we can also chain the functional
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integrals in equations (9) and (11). These procedures yield the
following second order functional integration and differenti-
ation relationships:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ
dr ′ρ(r ′)

×
ˆ 1

0
da
ˆ a

0
da ′c2 (r,r ′, [ρa ′ ]) , (13)

c2 (r,r ′, [ρ]) =− δ2βFexc [ρ]

δρ(r)δρ(r ′)
, (14)

where the scaled density profile in equation (13) is ρa ′(r) =
a ′ρ(r). The double parameter integral in equation (13) can be
further simplified [7], as described at the end of section 3.4.
The generalization of equation (14) to the n-th functional
derivative defines the n-body direct correlation functional,
which remains functionally dependent on the density pro-
file and which possesses spatial dependence on n position
arguments. Although increasing n yields objects that become
very rapidly out of any practical reach, the neural functional
concept provides much fuel for making progress. While we do
not cover c3(r,r ′,r ′ ′, [ρ]) here, Sammüller et al have demon-
strated its general accessiblity and physical validity for bulk
fluids in [41].

We have so far focused on the properties of the intrinsic
excess free energy functional Fexc[ρ] and its density functional
derivatives. This is natural as classically Fexc[ρ] is the central
object that contains the effects of the interparticle interactions
and thus depends in a nontrivial way on its input density pro-
file. The functional Fexc[ρ] is intrinsic in the sense that it is
independent of external influence. We recall that we here work
in the grand ensemble (see e.g. [103–106] for studies address-
ing the canonical ensemble of fixed particle number). Hence
the appropriate thermodynamic potential is the grand canon-
ical free energy or grand potential. This is required in order to
determine ρ(r).

When expressed as a density functional the grand potential
consists of the following sum of ideal, excess, external, and
chemical potential contributions:

Ω[ρ] = Fid [ρ] +Fexc [ρ] +

ˆ
drρ(r) [Vext (r)−µ] . (15)

The form of the ideal gas free energy functional is explicitly
known as Fid[ρ] = kBT

´
drρ(r)[lnρ(r)− 1] and the third term

in equation (15) contains the effects of the external potential
Vext(r) and of the particle bath at chemical potential µ.

The variational principle of classical density functional
theory [4, 5, 105] ascertains that

δΩ[ρ]

δρ(r)

∣∣∣
ρ=ρ0

= 0 (min), (16)

Ω[ρ0] = Ω0. (17)

Equations (16) and (17) imply that the grand potential
becomes minimal at ρ0(r), which is the real, physically real-
ized density profile and Ω0 is the equilibrium value of the
grand potential. Recall that based on the many-body picture

we have Ω0 =−kBT lnΞ with the grand ensemble partition
sumΞ = Tre−β(H−µN).We have used the subscript 0 to denote
equilibrium but we drop this elsewhere in our presentation to
simplify notation.

Inserting equation (15) into equation (16) and using the
explicit form of the ideal free energy functional together with
the definition (10) of c1(r, [ρ]) leads to equation (5) with the
one-body direct correlations expressed as a density functional,
as anticipated in section 1.2. Exponentiating and regrouping
the terms then yields the following popular form of the Euler–
Lagrange equation:

ρ(r) = exp(−βVext (r)+βµ+ c1 (r, [ρ])) . (18)

Equation (18) is a self-consistency relation that can be solved
efficiently for the equilibrium density profile ρ(r) via iterat-
ive methods, as detailed below in section 2.3. A prerequis-
ite is that c1(r, [ρ]) is known, usually as an approximation
that is obtained from an approximate excess free energy
functional Fexc[ρ] via functionally differentiating according
to equation (10). Having obtained a numerical solution of
equation (18) for the density profile, this can then be inserted
into the grand potential functional (15) to obtain full thermo-
dynamic information via equation (17), which by construction
is consistent with the density profile.

We demonstrate in the following how this classical func-
tional background can be put to formidable use via hybridiz-
ation with simulation-based machine learning. As our aim is
pedagogical, we choose the one-dimensional hard core system
as a concrete example to demonstrate the general methodology
[41]. We complement the neural functional structure with a
description of Percus’ analytical solution, which then allows
for mirroring of the neural theory.

2. Neural functional theory

Jerry Percus famously wrote in the abstract of his 1976 stat-
istical mechanics landmark paper [55]: ‘The external field
required to produce a given density pattern is obtained expli-
citly for a classical fluid of hard rods. All direct correlation
functions are shown to be of finite range in all pairs of vari-
ables.’ Here we relate his achievement to the neural functional
theory, which allows to reproduce numerically a variety of
properties of the exact solution. We emphasize that the neural
functional theory remains generic in its applicability to fur-
ther model fluids; see the supplementary information of [41]
for the successful treatment of the supercritical Lennard–Jones
fluid in three dimensions. We refer the Reader to the provided
online resources [42] for a programming tutorial on the con-
crete application of the following concepts. Figure 4 shows a
schematic of the workflow that is inherent in the neural func-
tional concept, as described in the following.

2.1. Training the neural correlation functional

The classical fluid of hard rods that Percus considers has one-
dimensional position coordinates xi, with particle index i =
1, . . . ,N and a pairwise interparticle interaction potential ϕ(x)
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Figure 4. Schematic of the workflow of the neural functional
theory. Many-body simulations under randomized conditions are
used to sample statistically averaged and spatially resolved data that
characterize the inhomogeneous response of the considered system.
A neural network is then trained to represent the direct correlation
functional, which is subsequently applied numerically and via
neural functional methods to investigate the physics of the system in
the desired target situations.

which is infinite if the distance x between the two particles is
smaller than their diameter, x< σ, and it vanishes otherwise.
The system is exposed to an external potential Vext(x), which
is a function of position x across the system, and this in general
creates an inhomogeneous ‘density pattern’ ρ(x).

We adjust the definition (1) of the density distribution to the
present one-dimensional case:

ρ(x) =
〈∑

i

δ (x− xi)
〉
, (19)

where δ(·) here indicates the Dirac distribution in one dimen-
sion and the brackets indicate a grand canonical thermal aver-
age. Due to the hard core nature of the model, the statistical
weight of each ‘allowed’ microstate is particularly simple and
given by exp[−β

∑
i Vext(xi)+βµN]/Ξ, where Ξ is a normal-

izing factor. Allowed microstates are those for which all dis-
tinct particle pairs ij are spaced far enough apart, |xi− xj|⩾ σ.
If already a single overlap occurs, then the microstate is ‘for-
bidden’ as the interparticle potential becomes formally infin-
ite, which then creates vanishing statistical weight; we recall
the illustration in figure 1.

Despite the apparent simplicity of the many-body prob-
ability distribution, the Statistical Mechanics of the hard rod
model is nontrivial. The particles interact nonlocally over
the lengthscale σ and the external potential has no restric-
tions on its shape or on the lengthscale(s) of variation. Hence
features such as jumps and positive infinities that represent
hard walls are allowed. In bulk, Vext(x) = 0, and the solu-
tion is straightforward [8, 54]. The general case is however
highly nontrivial, which makes Percus’ above quoted opening
a very remarkable one. We present more details of his work

further below, after first laying out the general machine learn-
ing strategy of [41]. This neural functional method is neither
restricted to hard cores nor to one-dimensional systems, but
addressing this case here is useful to highlight the salient fea-
tures of the approach.

We aim for explicitly sampling the microstates of the sys-
tem according to their probability distribution via particle-
based simulations. This can be implemented efficiently, and
for the present introductory purposes in also an intuitively
accessible way, via grand canonical Monte Carlo (GCMC)
sampling. Excellent accounts of this method are given in [8,
107–109]. Briefly, a Markov chain of microstates is con-
structed, where based on a given configuration, a trial step
is proposed, which is accepted with a probability given by
a Metropolis function involving the energy difference ∆E
between the original and the trial state.

Three trial moves are used in the simplest yet powerful
scheme: (i) Selecting one particle i randomly and displacing it
uniformly within a given maximal cutoff distance. If the dis-
placement creates overlap, then the trial move is discarded.
If otherwise there is no overlap in the new configuration, the
energy difference is due to only the external potential, ∆E=
Vext(x ′i )−Vext(xi), where the prime denotes the trial position
of particle i. (ii) A new particle j is inserted at a random posi-
tion xj with energy change that accounts for both the external
potential and the chemical equilibrium with the particle bath
and hence ∆E= Vext(x ′j )−µ. (iii) Correspondingly, a ran-
domly selected particle i is removed from the system. The
acceptance of the removal happens again with a probabil-
ity given by the Metropolis function with energy difference
∆E=−Vext(xi)+µ.

Despite its conceptual simplicity GCMC is a very power-
ful method for the investigation of complex effects [107–109]
and significant extensions exist both in the form of histogram
techniques [108, 109] and the tailoring of more complex and
collective trial moves. Investigating a typical physical prob-
lem, as specified by the interparticle interactions u(rN) and the
type of considered external influence, such as walls as repres-
ented by a model form of Vext(r), requires e.g. scanning of the
thermodynamic parameters and acquiring good enough stat-
istics at each statepoint. Our ultimate goal (section 2.3) is to
perform this tasks with significant gain in efficiency via the
neural theory; we re-iterate the availability via [42] of hands-
on code examples for the present hard rod model.

We base the training on the following rewriting and adapta-
tion of the chemical potential balance equation (5) to the one-
dimensional system:

c1 (x) = lnρ(x)+βVext (x)−βµ. (20)

All quantities on the right hand side are either prescribed a pri-
ori or are accessible via the GCMC simulations: Specifically,
the density profile ρ(x) is obtained by filling a position-
resolved histogram according to the encountered microstates
as specified by its particle coordinates xi. We recall the formal
definition (19) of ρ(x) via theDirac distribution, which in prac-
tice is discretized such that sufficient finite spatial resolution,
say 0.01σ, is obtained. This ‘counting’ method is arguably the
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Figure 5. Illustration of the neural one-body direct correlation
functional c1(x, [ρ]) represented by a fully connected neural network
with three hidden layers. The topology maps a small finite window
of the density profile ρ(x) to the local value of the direct correlation
function c1(x).

most intuitive one to obtain data for the density profile. As
an aside, there is a number of force-sampling techniques that
can improve the statistical variance significantly [97, 110–112]
and that also can serve to gauge the quality of sampling of the
equilibrium ensemble [97].

While the issues of Monte Carlo sampling efficiency and
quality assessment of thermal averages can be pertinent in
higher dimensions and in physically more complex situations,
the simplicity of the present one-dimensional hard core model
makes counting according to equation (19) an appropriate
choice to obtain data for ρ(x). Then adding up the three con-
tributions on the right hand side of equation (20) yields results
for c1(x). We proceed at this data-generation stage somewhat
heretically and ignore at first the central role that c1(x) plays
for the physics of inhomogeneous systems.

In contrast to the typical deterministic setup for investig-
ating a specific physical situation described above, training
the neural network proceeds on the basis of randomized situ-
ations rather than with the ultimate application in mind; we
recall the illustration of the neural functional workflow shown
in figure 4. The motivation for using this strategy comes from
the goal of capturing via the machine learning the intrinsic dir-
ect correlations of the many-body system that then transcend
the specific inhomogeneous situations that were under consid-
eration during training. Figure 5 depicts an illustration of the
neural network topology of the trained central neural network
c1(x, [ρ]) and its relation to the physical input and output quant-
ities, i.e. to ρ(x) and c1(x).

We hence perform a sequence of simulation runs, where
each run has an input value βµ(k) and an input functional shape
βV(k)

ext (x), both of which are generated randomly. Specifically,
we combine sinusoidal functions with periodicities that are
commensurate with the box length L, linear discontinuous
segments, and hard walls in the creation of V(k)

ext (x); see [41,
42] for further details. The superscript k enumerates the

different GCMC simulation runs and in practice we per-
form 512 of these. The result is a set of corresponding dens-
ity profiles ρ(k)(x). We then use equation (20) to obtain for
each run the one-body direct correlation profiles from simply
adding up: c(k)1 (x) = lnρ(k)(x)+βV(k)

ext (x)−βµ(k). As a result
of the simulation protocol we have generated a bare data set
{βµ(k),βV(k)

ext (x), ρ
(k)(x), c(k)1 (x)} for all positions x and for all

different runs k. As a practical detail, this requires to exclude
regions where ρ(x) = 0 and Vext(x) =∞.

In order to address our declared goal to learn a functional
dependence of c1(x), we have to carve out a nontrivial depend-
ence relationship and hence restrict the data input. Motivated
by the physics, one might see the scaled chemical potential
βµ(k) and the scaled external potential βV(k)

ext (x) to be the true
mechanical origin of the shape of the direct correlation func-
tion c(k)1 (x). However, the insights provided by density func-
tional theory hint at the fact that this is not the best possible
choice of functional relationship to consider.

We recapitulate that the GCMC simulations yield data
according to:{

V(k)
ext (x

′)−µ(k)
}L

0
−→

{
ρ(k) (x)

}L

0
, (21)

where the curly brackets indicate all function values inside
of the system box, with ranges 0⩽ x ′ ⩽ L and 0⩽ x⩽ L;
the arrow indicates an input-output relationship. Applying
equation (20) to the entire data set also allows to have the direct
correlation function as an output according to:{

V(k)
ext (x

′)−µ(k)
}L

0
−→

{
c(k)1 (x)

}L

0
. (22)

If one were to mimic the simulations directly by the neural net-
work one would be tempted to base the training directly upon
equation (22). In less clearcutmachine-learning situations than
considered here, it can be a standard strategy to attempt to
represent the causal relationship, which governs the complex
mathematical or real-world system under consideration, by a
surrogate artificial intelligence model. The present functional
formulation of Statistical Mechanics hints at potential caveats,
such as the necessity of dealing with the full input and output
data sets (parameter ranges of x and x′) across the entire sys-
tem. Furthermore the specific physics of the mutually interact-
ing rods appears to play no role.

The density functional-inspired training (section 1.2) pro-
ceeds very differently. We here take a pragmatic stance and
attempt to create via training a neural representation of the
dependence of c1(x) on ρ(x) alone. This leads to a surrogate
model c1(x, [ρ]) based on the following mapping{

ρ(k) (x ′)
}x+xc

x−xc
−→ c(k)1 (x) , (23)

where the input on the left hand side consists of function val-
ues ρ(k)(x ′) that lie inside the density window centered at x,
i.e. only the values x′ that lie within a narrow interval x− xc ⩽
x ′ ⩽ x+ xc. Here xc is a cutoff parameter that for short-ranged
interparticle potentials is of the order of the particle size. For
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the present one-dimensional hard core system we set xc = σ.
Instead of having to output an entire function, as would be the
case when attempting to learn via equation (22), here the out-
put is merely the single value of the direct correlation function
at the center of the density window. We recall that this target
value is obtained from the simulation data via equation (20)
such that c(k)1 (x) = lnρ(k)(x)+βV(k)

ext (x)−βµ(k) for each run
k. A simple GCMC code is provided online [42], along with
a pre-generated simulation data set and a pre-trained neural
functional.

We choose the loss function to be the mean squared error
of the neural network output compared to the simulation ref-
erence value for c1(x), as obtained via equation (20). As a fur-
ther metric to gauge the training progress, we make use of the
mean absolute error of reference and output. Both choices are
standard [100]. The quadratic loss is convenient as it is analyt-
ical and hence the machine-learning gradient-based methods
directly apply. The mean absolute error is nonanalytical due
to the modulus involved, but it is a useful supporting quantity
that has a very direct interpretation.

After training the mean absolute error was of the order
of ∼0.013, which implies that the neural network prediction
deviates on average by this value from the simulation data.
Although the simulation data carries some statistical noise,
its effect is comparatively smaller, when taking the numerical
solution of the Percus theory (detailed below) as the reference.

Our training data consists of 512 simulation runs using a
simulation box size of L= 10σ. Each of the simulation runs
requires only about three minutes runtime on a single CPU
core of a standard desktop machine.

We use a standard fully-connected artificial neural network
with three hidden layers that respectively possess 128, 64
and 32 nodes. We use 201 input nodes to represent the dens-
ity profile in a finite window of size 1σ and spatial bin size
0.01σ, where we recall that σ is the particle size. To accom-
modate the local functional mapping, we reshape the train-
ing data into input density windows and corresponding output
values of c1(x), where we also apply twofold data augment-
ation by exploiting mirror symmetry of the simulation res-
ults. Excluding regions where Vext(x) =∞ and hence where
equation (20) is not defined, this results in ∼106 input-output
pairs.

From the above description and without considering the
background in density functional theory it is not evident that
the training will be successful and minimize the loss satisfact-
orily to yield a trained network c1(x, [ρ]). From amathematical
point of view, this raises the questions whether a correspond-
ing object c1(x, [ρ]) indeed exist and whether it is unique. And
if so, is its structure simple enough that it can be written down
explicitly?

2.2. Percus’ exact direct correlation functional

Due to Percus singular achievement [55] the one-body dir-
ect correlation functional c1(x, [ρ]) for interacting hard rods
in one spatial dimension is known analytically and this has
triggered much subsequent progress, see e.g. [56–58, 60–65].
The functional dependence on the density profile is nonlocal,

as one would expect from the fact that the rods interact over
the finite distance σ, and it is also nonlinear, as is consist-
ent with the behaviour of a nontrivially interacting many-body
system. The spatial dependence is characterized by convolu-
tion operations which, despite performing the task of coarse-
graining, retain the full character of the microscopic interac-
tions. The Percus functional provided motivation for develop-
ing so-called weighted-density approximations [8], where the
density profile is convolved with one or several weight func-
tions that are then further processed to give the ultimate value
of the density functional.

We here give the Percus direct correlation functional in
Rosenfeld’s geometry-based fundamental measure represent-
ation, see [59] for a historical perspective. Instead of work-
ing with the particle diameter σ as the fundamental length-
scale, Rosenfeld rather bases his description on the particle
radius R= σ/2, which allows to find deep geometric mean-
ing in Percus’ expressions and to also generalize to higher
dimensions [60, 61, 65].

The exact form [60] of the one-body direct correlation func-
tional is analytically given as the following sum:

c1 (x, [ρ]) =−Φ0 (x−R)+Φ0 (x+R)
2

−
ˆ x+R

x−R
dx ′Φ1 (x

′) .

(24)

Here the two functions Φ0(x) and Φ1(x) each depend on two
weighted densities n0(x) and n1(x) in the following form:

Φ0 (x) =− ln [1− n1 (x)] , (25)

Φ1 (x) =
n0 (x)

1− n1 (x)
. (26)

The weighted densities n0(x) and n1(x) are obtained from the
bare density profile via spatial averaging:

n0 (x) =
ρ(x−R)+ ρ(x+R)

2
, (27)

n1 (x) =
ˆ x+R

x−R
dx ′ρ(x ′) . (28)

The discrete spatial averaging at positions x±R in the
weighted density (27) parallels that in the first term of
equation (24). Similarly the position integral over the inter-
val [x−R,x+R] in equation (28) appears analogously in the
second term of equation (24). These similarities are not by
coincidence. The structure is rather inherited from the grand-
mother (excess free energy) functional, as is described in
section 3.1.

Having the analytical solution (24)–(28) for c1(x, [ρ])
allows for carrying out numerical evaluation and comparing
against results from the neural functional c1(x, [ρ]). The range
of nonlocality, i.e. the distance across which information of
the density profile enters the determination of c1(x, [ρ]) via
equations (24)–(28) is strictly finite, as announced in Percus’
abstract [55]. As two averaging operations, each with range
±R, are chained together, the composite procedure has a range
of±2R=±σ, inline with our truncation of the density profiles
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Figure 6. Representative density profiles that the inhomogeneous hard rod system exhibits under the influence of an external potential. The
results are obtained from numerically solving equation (29) upon using either the neural direct correlation functional c1(x, [ρ]) or Percus
exact solution thereof. The three cases comprise (a) two hard walls with separation distance 9σ and chemical potential βµ= 2, (b) two hard
walls with much smaller separation distance 2σ and identical chemical potential βµ= 2, and (c) sedimentation-diffusion equilibrium under
gravity with a locally varying chemical potential, βµloc(x) = βµ−βVext(x) = 2− 0.05x/σ; here the linearly varying contribution accounts
for the influence of gravity on the system and confinement is provided by two widely spaced hard walls at x= 0.5σ and x= 99.5σ. Note the
crossover in panel (c) from the strongly oscillatory behaviour near the lower wall to a very smooth density decay, effectively following a
local density approximation [8], upon increasing the scaled height x/σ.

in the training data sets according to equation (23). A numer-
ical implementation of Percus direct correlation functional is
available online [42].

2.3. Application inside and beyond the box

Actually making the predictions for the hard rod model is
now straightforward as we can resort to density functional the-
ory and its standard use in application to physical problems.
The arguably most common method for solving the Euler–
Lagrange equation self-consistently is based on equation (18),
which we re-express for the one-dimensional case considered:

ρ(x) = exp(−βVext (x)+βµ+ c1 (x, [ρ])) . (29)

We recall that the range of nonlocality of c1(x, [ρ]) is lim-
ited to only the particle size σ and that we were able to extract
the functional dependence from simulation data obtained by
sampling in boxes of size L. Although the value of L could
in principle be imprinted in subtle finite size effects that
c1(x, [ρ]) has acquired, the size L of the original simulation
box has vanished and the application of the neural functional
in equation (29) is fit for use to predict properties of much lar-
ger systems. As an example, [41] demonstrates the scaling up
by a factor of 100 from the original simulation box to the pre-
dicted system of three-dimensional hard spheres under gravity.

The numerical solution of equation (29) can be efficiently
performed on the basis of Picard iteration where an initial
guess of the density profile is inserted on the right hand side
and the resulting left hand side is used to nudge the initial

guess in the correct direction toward the self-consistent solu-
tion. This is numerically fast and straightforward to imple-
ment, see the tutorial [42]. A common choice is to mix five
percent of the new solution to the prior estimate.

As laid out above, we choose the one-dimensional hard core
model due to both the availability of Percus’ functional and
the computational ease of both numerical evaluation of the
analytical expressions and of carrying out many-body sim-
ulations. On the downside, the model does not form a very
credible platform for assessing the numerical efficiency gain
of the neural theory, as in general one will be interested in
more complex systems and more complex physical situations
than addressed here. Nevertheless, to give a rough idea about
the required computational workload, minimizing the neural
density functional takes of the order of seconds on a GPU,
while the GCMC simulation runtime is of the order of sev-
eral minutes. Minimizing the analytical Percus functional is
faster than using the neural network, due to the simple struc-
ture of equations (24)–(28), which facilitates using very high-
performance fast Fourier transforms.

We show three representative examples of density profiles
for narrow to wide confinement between impenetrable walls in
figure 6. In all cases the results from using the neural functional
are numerically identical to those from the Percus functional
on the scale of the plot. The profiles in narrow (figure 6(a)) and
in moderately wide (figure 6(b)) pores show very dinstinct fea-
tures with the strongly confined system in (a) having a strik-
ing V-shape, which arises from having at most two particles in
the system, to the more generic damped oscillatory behaviour
in the moderately wide pore (b). The main panel figure 6(c)
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shows the influence of a weak gravitational field, which cre-
ates a continuously varying density inhomogeneity across the
entire system. The decay in local density occurs with a much
larger length scale as compared to the particle packing effects
that are localized near the lower wall.

The behaviour shown in figure 6(c) away from the walls
is well-represented by a local density approximation [8] (see
e.g. [113] for recent mathematical work). The local dens-
ity approximation can be a useful tool when investigating
e.g. macroscopic ordering under gravity, where the occurring
stacking sequences of different thermodynamic phases can be
traced back to the phase diagram [114, 115]. In particular the
effects on mixtures were rationalized by a range of techniques,
from generalization of Archimedes’ principle [116, 117] to
analyzing stacking sequences [114, 115]. We stress that the
present model applications constitute very significant extra-
polations from the training data that we recall was obtained
in a fixed box size L= 10σ and under the influence of ran-
domized external and chemical potentials. This is relevant in
particular for both the very confined system (figure 6(b)) and
the large system (figure 6(c)).

As a further potential application of the neural functional
theory, the dynamical density functional theory [5, 69, 118]
is similarly easy to implement numerically as equation (29)
and it is a currently popular choice to study time-dependent
problems [119, 120]. We comment on the status of the
approach [40] and howmachine learning can help to overcome
its limitations in section 4 below.

3. Neural functional calculus

We have seen in section 2 how a neural one-body direct correl-
ation functional can be efficiently trained on the basis of a pool
of pre-generatedMonte Carlo simulation data that are obtained
under randomized conditions. The specific way of organizing
the simulation data into training sets mirrors the functional
relationships given by classical density functional theory. We
have then shown that the neural functional can efficiently be
used to address physical problems, taking the one-dimensional
hard rod system as a simple example of a mutually interacting
many-body system.

We here proceed by exemplifying the depth of physical
insight that can be explored by acknowledging the functional
character of the trained neural correlation functional. Hence
we lay out functional integration (section 3.1) and functional
differentiation (section 3.2). We show sum rule construction
via Noether invariance (section 3.3), via exchange symmetry
(also section 3.3), and via functional integration (section 3.4).
The presentation in each subsection is self-contained to a con-
siderable degree and we illustrate the generality of the meth-
ods both by application to the neural functional as well as by
revisiting the analytic Percus theory.

3.1. Functional integration of direct correlations

Having captured the essence of molecular packing effects, as
they arise from the short-ranged hard core repulsion between

the particles, via the neural functional c1(x, [ρ]), begs for
speculation whether additional and as yet hidden physical
structure can be revealed. We give two plausibility arguments
why one should expect to be able to postprocess c1(x, [ρ]) in a
meaningful way to retrieve global information.

First, thermodynamics is based on the existence of very
few and well-defined unique and global quantities, such as the
entropy, the internal energy, and the free energy. Carrying out
parametric derivatives, with powerful interrelations given by
theMaxwell relations, enables one to obtain equations of state,
susceptibilities and further measurable global quantities. Our
neural direct correlation functional in contrast is a local object
with finite range of nonlocality. So how does this relate to the
global information?

The second argument is more formal. Suppose we prescribe
the form of the density profile and then evaluate the neural
functional c1(x, [ρ]) at each position x. This procedure yields a
numerical representation of the corresponding direct correla-
tion function c1(x). In the practical numerical implementation
we have a set of discrete grid points that represent the func-
tion values at these spatial locations x. Hence the entire data
set forms a numerical array or numerical vector, indexed by x.
One can then ask whether this vector could potentially be the
gradient of an overarching parent object?

The physical and the formal question can both be answered
affirmatively due to the existence of the excess free energy
density functional Fexc[ρ]. Its practical route of access, based
on functional integration along a continuous sequence of
states (a ‘line’) in the space of density functions, is strik-
ingly straightforward within the neural method. The core of
the method is to evaluate c1(x, [ρa]) as described above, but
for a range of scaled versions of the prescribed density profile
ρa(x) and then integrating in position to obtain the excess free
energy as a global value, see the functional integral given in
equation (9).

Specifically, we define a scaled version of the density pro-
file as ρa(x) = aρ(x), such that a= 0 generates the empty
state that has vanishing density profile, ρa=0(x) = 0. On the
other end a= 1 yields the actual density profile of interest,
ρa=1(c) = ρ(x). The excess free energy functional is then
obtained easily via functional integration according to

βFexc [ρ] =−
ˆ
dxρ(x)

ˆ 1

0
dac1 (x, [ρa]) . (30)

The numerical evaluation requires evaluating c1(x, [ρa]) at all
positions x in the system and for a range of intermediate val-
ues 0⩽ a⩽ 1 such that the parametric integral over a can be
accurately discretized.

Analytically carrying out the functional integral (30) on the
basis of the analytical direct correlation functional c1(x, [ρ])
as given by equations (24)–(28) is feasible. The result [56],
again expressed in the more illustrative Rosenfeld funda-
mental measure form, is given by:

βFexc [ρ] =

ˆ
dxΦ(n0 (x) ,n1 (x)) , (31)

Φ(n1 (x) ,n2 (x)) =−n0 (x) ln [1− n1 (x)] . (32)
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Here the integrand Φ(n0(x),n1(x)) plays the role of a local-
ized excess free energy density which depends on theweighted
densities n0(x) and n1(x) as given via the spatial averaging
procedures in equations (27) and (28), respectively. Inserting
equation (32) into equation (31) yields the hard rod excess free
energy functional in the following more explicit form:

βFexc [ρ] =−
ˆ
dxn0 (x) ln [1− n1 (x)] . (33)

Equation (33) is strikingly compact, given that it describes the
essence of a system of mutually interacting hard cores exposed
to an arbitrary external potential.

Although the result of the functional integral (30) has lost
all position dependence, the specific form of the density pro-
file ρ(x) is deeply baked into the resulting output value of
the functional via both the prefactor ρ(x) in the integrand in
equation (30) and the evaluation of the direct correlation func-
tional at the specifically scaled form ρa(x). In parallel with this
mathematical structure, the explicit form (33) of the Percus
functional clearly demonstrates that the resulting value will
depend nontrivially on the shape of the input density profile.

Having demonstrated that Fexc[ρ] as a global quantity can
be obtained from appropriate functional integration of a loc-
ally resolved correlation functional c1(x, [ρ]) naturally leads
to the question whether a reverse path exists that would mir-
ror the inverse structure provided by integration and differen-
tiation known from ordinary calculus.

The availability of a corresponding derivative structure for
functionals is quite significant, as this by construction gener-
ates spatial dependence, as indicated by δ/δρ(x); see e.g. [9]
for details. We can hence retrieve, or generate, the direct cor-
relation functional as the functional density derivative of the
intrinsic excess free energy functional:

c1 (x, [ρ]) =−δβFexc [ρ]

δρ(x)
. (34)

While we turn to more general functional differentiation
below, we here address again the analytical case, which is use-
ful as it reveals the origin of the double appearance of the two
spatial weighting processes in equations (24)–(28). Rosenfeld
[61] introduced two weight functions w0(x) and w1(x), which
respectively describe the end points of a particle and its interior
one-dimensional ‘volume’:

w0 (x) =
δ (x−R)+ δ (x+R)

2
, (35)

w1 (x) = Θ(R− |x|) , (36)

where Θ(x) indicates the Heaviside unit step function, i.e.
Θ(x⩾ 0) = 1 and 0 otherwise. The weighted densities n0(x)
and n1(c), as given respectively by equations (27) and (28), can
then be represented via convolution of the respective weight
function of type α= 0,1 with the density profile according to

nα (x) =
ˆ
dx ′wα (x− x ′)ρ(x ′) . (37)

In more compact notation we can express equation (37) as
nα(x) = (wα ∗ ρ)(x), where the asterisk denotes the spatial
convolution. Then the direct correlation functional is given by

c1 (x, [ρ]) =−
∑
α=0,1

(wα ∗Φα)(x) , (38)

which is an exact rewriting of the form given in equation (24).
The functions Φα are obtained as partial derivatives of the
scaled free energy density (32) viaΦα = ∂Φ/∂nα. This deriv-
ative structure reveals the mechanism for the generation of
the explicit forms Φ0(x) and Φ1(x), as respectively given by
equations (25) and (26).

3.2. Functional differentiation of direct correlations

While the above described use of functional differentiation in
an analytical setting might appear to be very formal and per-
haps limited in its applicability, we emphasize that the concept
is indeed very general. Given a prescribed functional of a func-
tion ρ(x), the functional derivative δ/δρ(x) simply gives the
gradient of the functional with respect to a change in the input
function at a specific location x.

By applying the functional derivative in the present one-
dimensional context to a given functional form of c1(x, [ρ]),
one obtains the two-body direct correlation functional and we
recall the generic expression (12):

c2 (x,x
′, [ρ]) =

δc1 (x, [ρ])
δρ(x ′)

. (39)

Using the Percus version (38) of the one-body direct cor-
relation functional and carrying out the functional derivative
on the right hand side of equation (39) gives via an analytical
calculation the following nonlocal result:

c2 (x,x
′, [ρ]) =−

∑
αα ′

(wα ∗Φαα ′ ∗wα ′)(x,x ′) . (40)

We make the double asterisk convolution structure more
explicit below. The coefficient functions in equation (40)
are obtained as second partial derivatives via Φαα ′ =
∂2Φ/∂nα∂nα ′ . Explicitly, we have Φ00(x) = 0 and the sym-
metry Φ01(x) = Φ10(x). The remaining terms are given by

Φ01 (x) =
1

1− n1 (x)
, (41)

Φ11 (x) =
n0 (x)

[1− n1 (x)]
2 . (42)

Inserting these results into equation (40) and making the
convolutions explicit yields the following expression:

c2 (x,x
′, [ρ]) =−2

ˆ
dx ′ ′

w0 (x− x ′ ′)w1 (x ′ − x ′ ′)
1− n1 (x ′ ′)

−
ˆ
dx ′ ′

w1 (x− x ′ ′)n0 (x ′ ′)w1 (x ′ − x ′ ′)

[1− n1 (x ′ ′)]
2 .

(43)
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We recall the definitions (35) and (36) of the weight func-
tions w0(x) and w1(x). The convolution structure couples two
weight functions together and each of them has a range of
R. Hence indeed the two-body direct correlations are of finite
range 2R= σ in the position difference x− x ′ [55].

While the above results for the Percus theory have been
derived by pen-and-paper symbolic calculations, the neural
functional is not amenable to such conventional techniques.
Fortunately, the framework of automatic differentiation [99]
provides a powerful alternative to both symbolic and numer-
ical differentiation methods, and it is a natural choice to
consider in the context of machine learning [100]. Via the
implementation of either modified algebra or of computational
graphs, automatic differentiation facilitates to obtain derivat-
ives directly in the form of executable code, and crucially there
is no need of any manual intervention. Automatic differenti-
ation thereby is free of the numerical artifacts that are typical
of finite difference schemes. Themethod is applicable in broad
contexts, which we illustrate in the online tutorial [42] by com-
puting the Percus result for c2(x,x ′, [ρ]) via automatic differen-
tiation of equation (38) rather than by manual implementation
of equation (43).

For completeness, we can recover the one-body direct cor-
relation functional by functional integration. We reproduce
equation (11) for the present one-dimensional geometry:

c1 (x, [ρ]) =
ˆ
dx ′ρ(x ′)

ˆ 1

0
dac2 (x,x

′, [ρa]) . (44)

On the basis of the neural representations of the direct correla-
tion functionals, this identity can be used to check for consist-
ency and for correctness of the automatic differentiation.

3.3. Noether invariance and exchange symmetry

In its standard applications Noether’s theorem is used to
relate symmetries of a dynamical physical system with asso-
ciated conservation laws. Obtaining linear momentum conser-
vation from a symmetry of the underlying action integral is a
primary example, see e.g. [91] for an introductory presenta-
tion. Besides such deterministic applications, the Noether the-
orem is currently seeing an increased use in a variety of stat-
istical mechanical settings [121–128].

The recent statistical Noether invariance theory [90–98] is
based on specific spatial displacement (‘shifting’) and rota-
tion operations. These transformations are carried out in three-
dimensional physical space and their effect is traced back to
underlying invariances on the high-dimensional phase space
and its associated thermal and nonequilibrium ensembles.

The central statistical Noether invariance concept [90, 91]
was demonstrated in a range of studies, addressing the strength
of force fluctuations via their variance [92], the formula-
tion of force-based classical density functional theory [93,
94], and the force balance in quantum many-body systems
[95]. The invariance theory has led to the discovery of
force-force and force-gradient two-body correlation functions.
These correlators were shown to deliver profound insight into

the microscopic spatial liquid structure beyond the pair cor-
relation function for a broad range of model fluids [96, 98].
Noether invariance is relevant for any thermal observable, as
associated sum rules couple the given observable to forces via
very recently identified hyperforce correlations [97].

The statistical Noether sum rules are exact identities that
can serve a variety of different purposes, ranging from theory
building via combination with approximate closure relations,
testing for sufficient sampling in simulation [97], carrying out
force sampling to improve statistical data quality and, last but
not least, testing neural functionals [40, 41]. Having the latter
purpose in mind, here we describe a selection of these Noether
identities.

As a fundamental property, the interparticle interaction
potential only depends on the relative particle positions and
not on the absolute particle coordinate values. Specifically,
whether two particles overlap in the one-dimensional system
is unaffected by displacing the entire microstate uniformly.
This invariance against global translation leads to associated
sum rules for direct correlation functions; we recall that the
direct correlations arise solely from the interparticle interac-
tions and hence they are not directly dependent on the external
potential. We quote two members of an infinite hierarchy of
identities, which is originally due to Lovett, Mou, Buff, and
Wertheim [129, 130], see equations (45) and (46) below. We
group these together with a recent curvature sum rule (47) [92].
Ultimately the identities (45) and (46) express the vanishing of
the global interparticle force, as obtained by summing over the
interparticle forces on all particles. The three sum rules read
as follows:

ˆ
dxρ(x)∇c1 (x, [ρ]) = 0, (45)

ˆ
dxρ(x)

ˆ
dx ′ρ(x ′)∇c2 (x,x ′, [ρ]) = 0, (46)

ˆ
dx [∇ρ(x)]

ˆ
dx ′ [∇ ′ρ(x ′)]c2 (x,x

′, [ρ])

=−
ˆ
dxρ(x)∇∇c1 (x) , (47)

where in the one-dimensional system the gradient is a simple
scalar position derivative, ∇= d/dx. Briefly, equation (45) is
obtained by noting that Fexc[ρ] = Fexc[ρϵ], where the displaced
density profile is given by ρϵ(r) = ρ(r+ ϵ)with displacement
vector ϵ (in three dimensional systems). Building the gradient
with respect to ϵ yields the result 0= ∂βFexc[ρϵ]/∂ϵ|ϵ=0 =´
dr(δβFexc[ρ]/δρ(r))∇ρ(r), which gives equation (45) upon

integration by parts, resorting to the one-dimensional geo-
metry, and identifying the one-body direct correlation func-
tional via equation (34); for more details of the derivation we
refer the Reader to [90, 91]. Equation (46) is then obtained
as the density functional derivative of equation (45) and re-
using equation (45) to simplify the result. Equation (47) is a
curvature sum rule that follows from spatial Noether invari-
ance at second order in the global shifting parameter ϵ [90].

Using a locally resolved shifting operation, where the dis-
placement ϵ(r) is local and depends on the spatial position r

14



J. Phys.: Condens. Matter 36 (2024) 243002 Topical Review

and hence constitutes a vector field (in the case of a three-
dimensional system), yields in one dimension the following
position-resolved identity:

∇c1 (x, [ρ]) =
ˆ
dx ′c2 (x,x

′, [ρ])∇ ′ρ(x ′) . (48)

The left hand side has the direct interpretation of the mean
interparticle force field, expressed in units of the thermal
energy kBT. This force both acts in equilibrium and it drives
the adiabatic part of the time evolution in nonequilibrium [9];
we describe some details of the nonequilibrium theory for time
evolution in section 4.

When inserting the relationship (34) of c1(x, [ρ]) to the
free energy functional Fexc[ρ] into the definition (39) of
c2(x,x ′, [ρ]) we obtain

c2 (x,x
′, [ρ]) =− δ2βFexc [ρ]

δρ(x)δρ(x ′)
, (49)

which is the one-dimensional version of the general relation-
ship (14). As the order of the two functional derivatives is irrel-
evant we obtain the following exact symmetry with respect to
the exchange of the two position arguments:

c2 (x,x
′, [ρ]) = c2 (x

′,x, [ρ]) . (50)

When applied to the neural functional, the exchange symmetry
relationship (50) is highly nontrivial, as the density windows
that enter the functionals on the left and on the right hand sides
differ markedly from each other, as do the corresponding eval-
uation positions. That both displacement effects cancel each
other and lead to the identity (50) is nontrivial and can serve
both for testing the quality of the neural direct correlation func-
tional and for demonstrating the existence of an overarching
grandmother functional Fexc[ρ].

In order to illustrate the theoretical structure, we display
numerical results in figure 7. We select a representative oscil-
latory density profile, as shown in figure 7(a), and take this as
an input to evaluate the one-body direct correlation functional
c1(x, [ρ]). This procedure yields a specific form of the dir-
ect correlation function c1(x), displayed in figure 7(b), which
belongs to the prescribed density profile ρ(x). The spatial vari-
ations of ρ(x) and c1(x) are roughly out-of-phase with each
other. The nonlinear and nonlocal nature of the functional
relationship ρ→ c1 is however very apparent in the plot. The
results from choosing the neural functional or Percus’ ana-
lytical one-body direct correlation functional agree with each
other to excellent accuracy. The agreement is demonstrated in
figure 7(b), where the two resulting direct correlation profiles
are identical on the scale of the plot.

As laid out above, the exchange symmetry (50) constitutes
a rigorous test for the two-body direct correlation functional
c2(x,x ′, [ρ]). Both the neural and the analytical functional pass
with flying colours, see figures 7(c) and (d) respectively, where
the symmetry of the respective ‘heatmap’ graph against mir-
roring at the diagonal is strikingly visible.

Figure 7. Numerical results for functional calculus and Noether
invariance. The results are shown for an exemplary oscillatory
density profile displayed in panel (a). Results for the neural
prediction for c1(x) are compared to numerically evaluating Percus’
analytical direct correlation functional (24) in panel (b). The
two-body direct correlation function c2(x,x ′) as a function of x/σ
and x ′/σ, as obtained from automatic differentiation of the neural
functional is shown in panel (c) and compared to the result from
using Percus’ analytical expression (43) in panel (d). Using the
neural functionals, the agreement of the left and right hand side of
the Noether force sum rule (48) is shown in panel (e). In all cases
the neural functional and Percus theories give numerically identical
results on the scale of the respective plot.

As a representative case for the use of a Noether sum rule
as a quantitative test for the accuracy of the neural functional
methods, we show in figure 7(e) the numerical results of eval-
uating both sides of equation (48) for the same given density
profile (shown in figure 7(a)). We find that both sides of the
equation agree with high numerical precision with each other.
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3.4. Functional integral sum rules

We next address general identities that emerge from exploit-
ing the inverse nature of functional differentiation and integ-
ration. For this, we recall the functional integral form (9) of
Fexc[ρ] and the functional derivative form (10) of c1(r, [ρ]),
which both are central for the following derivations. That
equation (9) is the inverse of equation (10) can be seen expli-
citly by functionally differentiating equation (9) as follows:

δβFexc [ρ]

δρ(r)
=−
ˆ
dr ′
ˆ 1

0
da

δ

δρ(r)
ρ(r ′)c1 (r ′, [ρa]) . (51)

We have interchanged the order of integration and functional
differentiation on the right hand side of equation (51) as these
operations are independent of each other. The functional dens-
ity derivative now acts on the product ρ(r ′)c1(r ′, [ρa]) and
we need to differentiate both factors according to the product
rule. Differentiating the first factor gives the Dirac distri-
bution, δρ(r ′)/δρ(r) = δ(r− r ′). Differentiating the second
factor generates the two-body direct correlation functional
according to equation (39) and hence δc1(r ′, [ρa])/δρ(r) =
ac2(r,r ′, [ρa]), where multiplication by the scaling factor a
arises from the identity δ/δρ(r) = aδ/δ(aρ(r)) = aδ/δρa(r).

We can hence reformulate equation (51) by rewriting the
left hand side via equation (10) and expressing the right hand
side by the two separate terms. Upon multiplication by−1 the
result is the following functional integral identity:

c1 (r, [ρ]) =
ˆ 1

0
dac1 (r, [ρa])

+

ˆ
dr ′ρ(r ′)

ˆ 1

0
daac2 (r,r ′, [ρa]) . (52)

In the first term on the right hand side of equation (52) the
position integral has cancelled out due to the presence of the
Dirac function, which leaves over the position dependence on
r, as occurring in all other terms.

In order to prove equation (52) and hence to estab-
lish that indeed equations (9) and (10) are inverse of each
other, we integrate by parts in a addressing the first integ-
ral on the right hand side of equation (52). This yields
a sum of boundary terms and an integral: c1(r, [ρ])− 0−´ 1
0 daa∂c1(r, [ρa])/∂a. The derivative with respect to the para-

meter a generates the second term in equation (52) up to the
minus sign upon carrying out the parametric derivative via
∂/∂a=

´
dr ′ρ(r ′)δ/δρa(r ′) and identifying c2(r,r ′, [ρa]) =

δc1(r, [ρa])/δρa(r ′). Hence the two integrals cancel each
other. Only the upper boundary term c1(r, [ρ]) remains, which
is the left hand side of equation (52), and hence completes the
proof.

Despite this explicit derivation via functional calculus, as
both c1(r, [ρ]) and c2(r,r

′, [ρ]) are directly available as neural
functionals, the functional integral sum rule (52) provides yet
again fresh possibility for carrying our consistency and accur-
acy checks.

Going through the analogous chain of arguments one gen-
eration younger leads to the following functional integral

relationship between the two- and three-body direct correla-
tion functionals:

c2 (r,r ′, [ρ]) =
ˆ 1

0
dac2 (r,r ′, [ρa])

+

ˆ
dr ′ ′ρ(r ′ ′)

ˆ 1

0
daac3 (r,r ′,r ′ ′, [ρa]) .

(53)

The neural functional calculus allows to obtain
c3(r,r

′,r ′ ′, [ρ]) via automatic generation of the Hessian of
c1(r, [ρ]) [41], which elevates equation (53) beyond mere
formal interest.

The structure of equations (52) and (53) expresses a general
functional relationship.When applied to the excess free energy
functional itself the result is:

βFexc [ρ] =

ˆ 1

0
daβFexc [ρa]

−
ˆ
drρ(r)

ˆ 1

0
daac1 (r, [ρa]) . (54)

We furthermore demonstrate explicitly the relationship
from daughter to grandmother via functional integration of
the two-body correlation functional to obtain the excess free
energy functional:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ
dr ′ρ(r ′)

×
ˆ 1

0
da
ˆ a

0
da ′c2 (r,r ′, [ρa ′ ]) , (55)

where again the scaled density profile is ρa ′(r) = a ′ρ(r). That
equation (55) holds can be seen by chaining together the two
levels of functional integrals (9) and (44) and then simplify-
ing the two nested parameter integrals. The double paramet-
ric integral in equation (55) can alternatively be written with
fixed parametric boundaries as

´ 1
0 daa

´ 1
0 da

′c2(r,r ′, [ρaa ′ ]),
where the twice scaled density profile is defined as ρaa ′(r) =
aa ′ρ(r).

Evans [7] goes further than equation (55) by using the iden-
tity
´ 1
0 da
´ a
0 da

′f(a ′) =
´ 1
0 da(1− a)f(a), which is valid for

any function f (a), as can either by shown geometrically by
considering the triangle-shaped integration domain in the two-
dimensional (a,a ′)-plane or, more formally, by integration by
parts. The identity allows to express equation (55) in a form
that requires to carry out only a single parametric integral:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ
dr ′ρ(r ′)

×
ˆ 1

0
da(1− a)c2 (r,r ′, [ρa]) . (56)

Evans [7] also considers more general cases where the para-
meter a linearly interpolates between a nontrivial initial dens-
ity profile ρi(r) ̸= 0 and the target profile ρ(r) via ρa(r) =
ρi(r)+ a[ρ(r)− ρi(r)]. In our present description we have

16



J. Phys.: Condens. Matter 36 (2024) 243002 Topical Review

restricted ourselves to empty initial states, ρi(r) = 0, but the
functional integration methodology is more general, see [7].

Throughout we have notated the functional integrals via an
outer position integral over r and an inner parametric integral
over a. This structure allows to take the common factor ρ(r)
out of the inner integral. Standard presentations often reverse
the order of integration. Taking the functional integral over the
one-body direct correlation functional as an example, both ver-
sions are identical:
ˆ
drρ(r)

ˆ 1

0
dac1 (r, [ρa]) =

ˆ 1

0
da
ˆ
drρ(r)c1 (r, [ρa]) .

(57)

Our (mild) preference for the order on the left hand side of
equation (57) has two reasons. (i) In a numerical scheme,
where one discretizes on a grid of positions r and of values
of a, the multiplication by ρ(r) is only required to be carried
out once at each gridpoint r, when using the left hand side, not
also for every value of a as on the right hand side. (ii) Although
the result of the inner integral,

´ 1
0 dac1(r, [ρa]), depends on the

specific chosen parameterization ρa(r) and is hence not unique
from the viewpoint of the entire functional, it nevertheless con-
stitutes a well-defined localized function of r.

4. Nonequilibrium dynamics

We have so far demonstrated that the equilibrium properties
of correlated many-body systems can be investigated on a very
deep level by using neural networks to represent the functional
relationship that are inherent in the statistical physics. The
required computational workload is thereby only quite mod-
erate. The neural functionals that encapsulate the nontrivial
information about correlations and about thermodynamics are
lean, robust and they can be manipulated efficiently by the
neural functional calculus outlined above.

These features of the neural theory naturally lead one
to wonder about the potential applicability beyond equilib-
rium, i.e. to situations where the considered system is driven
by external forces such that flow is generated. The recent
nonequilibrium machine-learning method by de las Heras
et al [40] is based on the dynamical one-body force balance
relationship for overdamped Brownian motion. The required
dynamical functional dependencies are those given by power
functional theory [9]. The power functional approach is form-
ally exact and it goes beyond dynamical density functional
theory [5, 69, 118, 131–133] in that it also captures nonequi-
librium interparticle force contributions that exceed those
generated by the free energy functional; see [9, 119, 120,
134] for recent reviews. Such genuine nonequilibrium effects
include viscous and structural nonequilibrium force fields [9,
135–137], which for uniaxial compressional flow of a three-
dimensional Lennard–Jones fluid were shown to be well-
represented by a trained neural network [40].

The neural nonequilibrium force fields were successfully
compared against analytical power functional approximations,
where simple and physically motivated semi-local depend-
ence on both the local density and local velocity gradients

was shown to capture correctly the essence of the forces that
occur in the nonequilibrium situation. Together with the exact
force balance equation, this allows to predict and to design
nonequilibrium steady states [40]. The approach offers a sys-
tematic way to go beyond dynamical density functional theory
and to address genuine nonequilibrium beyond a free energy
description. We recall studies based on dynamical density
functional theory that addressed non-equilibrium sedimenta-
tion of colloids [138], the self-diffusion of particles in com-
plex fluids [139], and the behaviour of the van Hove two-body
dynamics of colloidal Brownian hard disks [140] and of hard
spheres [141, 142].

Several current statistical mechanical research threads are
dedicated to the force point of view. This includes novel
force-sampling techniques that significantly reduce the seem-
ingly inherent statistical noise in many-body simulation res-
ults for key quantities such as the density profile [110–112,
143]. The statistical Noether invariance theory [90–98] gen-
erates formal expressions for force correlation functions very
naturally. Corresponding exact sum rules interrelate correl-
ations that involve forces, force gradients, and more gen-
eral observables in a hyperforce framework [97]. Force-based
density functional approaches were put forward both quantum
mechanically [144–148] and classically [93, 94].

We have briefly touched on the concept of forces when dis-
cussing the direct correlation sum rule (48). Locally resolved
force fields are central to power functional theory [9, 149–
151] for the description of the nonequilibrium dynamics of
underlying many-body systems. The connection to the present
framework is via the locally resolved interparticle force dens-
ity Fint(r, t). When expressed in correlator form, this vector
field is given as the following nonequilibrium average:

Fint (r, t) =−
〈∑

i

δ (r− ri)∇i u
(
rN
)〉

. (58)

The dependence on time t arises as the average on the right
hand side of equation (58), which is taken over the instant-
aneous nonequilibrium many-body probability distribution, as
given by temporal evolution of the Smoluchowski equation
for the case of overdamped dynamics. The interparticle force
density Fint(r, t) can be split into a sum of an equilibrium-like
‘adiabatic’ force density Fad(r, t) and a genuine nonequilib-
rium ‘superadiabatic’ contribution Fsup(r, t). Making the func-
tional dependencies explicit, as they arise in power functional
theory [9], gives the following sum of two contributions:

Fint (r, t, [ρ,v]) = Fad (r, t, [ρ])+Fsup (r, t, [ρ,v]) . (59)

Here the functional arguments are the density profile ρ(r, t)
and the one-body velocity field v(r, t) = J(r, t)/ρ(r, t), which
are both microscopically resolved in space and in time. The
numerator is the one-body current, which is given as an
instantaneous nonequilibrium average via J(r, t) = ⟨

∑
i δ(r−

ri)vi⟩, where vi(rN, t) is the velocity of particle i in the under-
lying many-body overdamped Brownian dynamics.

De las Heras et al [40] present a demonstration of the
validity of the functional dependence on ρ(r, t) and v(r, t) via
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successful machine-learning of Fint(r, t, [ρ,v]) for inhomogen-
eous nonequilibrium steady states. The strategy for construct-
ing the neural network is similar to that described here, but
it is based on predicting the locally resolved nonequilibrium
forces rather than the equilibrium one-body direct correlations.
One important connection between equilibrium and nonequi-
librium is given by the adiabatic construction [9] that relates
Fad(r, t, [ρ]) in the nonequilibrium system to an instantaneous
equilibrium system with identical density profile ρ(r, t). The
adiabatic force field is then given as a density functional via
the standard relationship

Fad (r, t, [ρ]) = kBTρ(r, t)∇c1 (r, [ρ]) , (60)

where the density argument of the one-body direct correlation
functional c1(r, [ρ]) is the instantaneous density distribution
ρ(r, t).

For overdamped Brownian dynamics with friction constant
γ, the one-body current J(r, t) appears in the force density bal-
ance, which is given by

γJ(r, t) =−kBT∇ρ(r, t)+Fint (r, t)+ ρ(r, t) fext (r, t) , (61)

where fext(r, t) is an external force field that acts on the
system, in general in a time- and position-dependent fash-
ion. The prescription for the current is complemented by the
microscopically resolved continuity equation, ∂ρ(r, t)/∂t=
−∇ · J(r, t). Upon neglecting the superadiabatic force dens-
ity in equation (59) and hence only taking adiabatic forces
into account, i.e. approximating Fint(r, t, [ρ,v])≈ Fad(r, t, [ρ]),
one arrives at the dynamical density functional theory [5, 69,
118]. Its inherent central approximation is hence to replace
the nonequilibrium forces by effective equilibrium forces that
are obtained from the free energy functional via the adiabatic
construction [9].

Returning to the one-dimensional geometry of the hard rod
model, this leads to the following closed approximate equation
of motion for the time-dependent density profile:

∂ρ(x, t)
∂t

=D0∇ [∇ρ(x, t)− ρ(x, t)(∇c1 (x, [ρ])+βfext (x, t))] .

(62)

The derivative is simply ∇= ∂/∂x in one dimension and the
diffusion constant D0 = kBT/γ is the ratio of thermal energy
and the friction constant. Equation (62) can be efficiently
propagated in time with a simple forward Euler algorithm
and the neural representation of c1(x, [ρ]) can be used in lieu
of an analytic approximation. However superadiabatic forces,
i.e. force contributions that go beyond the adiabatic approxim-
ation of working with a free energy functional, are neglected.
These include viscous and structural nonequilibrium contribu-
tions; we refer the Reader to [9] for background and to [40]
for a recent perspective on the description of microscopic
nonequilibrium dynamics of fluids in the light of machine
learning on the basis of power functional theory.

5. Conclusions and outlook

In conclusion we have given a detailed account of the recent
neural functional theory [41] for the structure and thermo-
dynamics of spatially inhomogeneous classical many-body
systems. The approach is based on input data obtained from
Monte Carlo simulations that provide results for averaged
density profiles. Thereby the training systems are exposed to
the influence of randomized external potentials. Based on the
functional relationships that are rigorously given by classical
density functional theory, the training data is used to construct
a neural network representation of the one-body direct correl-
ation functional, which acts as a fundamental ‘mother’ object
in the neural functional theory.

From automatic functional differentiation of the one-body
direct correlation functional follow daughter and granddaugh-
ter functionals that represent two- and three-body direct cor-
relation functionals. Conversely, functional integration yields
the neural excess free energy functional, which acts as the ulti-
mate grandmother functional in the genealogy.We have shown
that chaining together the functional differentiation and integ-
ration operations yields exact functional sum rules. Further
exact identities are given by the statistical mechanical Noether
invariance theory [90–98], by variety of fundamental liquid
state techniques [8, 20–23] and by functional calculus alone
[5, 7]. We have described a selection of these sum rules in
detail and have shown how their validity can be used to carry
out consistency and accuracy checks for the different levels of
mutually related neural density functionals.

We have here in particular focused on the one-dimensional
hard rod systems for reasons of ease of data generation via
simulations [42], the availability of Percus’ exact functional
[55], the possibility of analytical manipulations to be carried
out, and not least the fundamental character of this classical
model [54]. A beginner-friendly interactive code tutorial is
provided online [42], together with stand-alone documentation
that describes the key strategies and the essence of the meth-
ods that constitute the neural functional theory [41]. We have
discussed prototypical applications for ‘simulation beyond the
box’, where the neural functional is used for system sizes that
outscale the dimension of the original training box that was
used to generate the underlying Monte Carlo data [41]. We
have also given an overview of nonequilibrium methods and
have emphasized the important role of the occurring force
fields and their functional dependencies.

We recall that a detailed description of the setup of the
paper is given before the start of section 1.1; the modular
structure of the paper invites for selective reading. An over-
view of the relevant statistical mechanical concepts is given in
section 1. The neural functional theory is described in detail
in section 2 and we have emphasized the important concept of
local learning, as illustrated in figure 2, which facilitates very
efficient network construction and training. The neural func-
tional approach allows to explicitly carry out functional cal-
culus as presented in section 3 and it is relevant for nonequi-
librium as described in section 4. We once more highlight the
availability of the online tutorial [42], which covers all key
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aspects of our study and includes a practitioner’s account of
automatic differentiation and differentiable programming.

The neural functional theory is a genuine hybrid method
that draws with comparable weight from computer simula-
tions, machine learning, and density functional theory. The
compuational and conceptual complexities of the involved
methods from each respective field are relatively low. Yet their
combination offers a new and arguably unprecedented view of
the statistical physics of many-body systems. We lay out in the
following why the approach is interesting from the viewpoints
of each of the three constituent approaches.

From the machine-learning perspective it seems unusual to
have a large set of testable self-consistency conditions avail-
able. These conditions stem from statistical mechanical sum
rules, as they follow e.g. from the Noether invariance the-
ory, the functional integration-differentiation structure, and
exchange symmetry. Taking the latter case as an example,
that the automatic derivative of a neural network satisfies the
exchange symmetry of its two (position) arguments is very
remarkable, see the graphical demonstration of the diagonal
symmetry in figure 7(c). This is a purely structural test for
the quality of the network that does not require any independ-
ent reference data as a benchmark. All presented sum rules
are of this type and they hence provide intrinsic constraints,
either genuinely following from the underlying Statistical
Mechanics or from mere functional calculus alone, which is
the case for the functional integration-differentiation formal-
ism outlined in section 3.4. Crucially, in our methodology the
constraints are not enforced during training the network, as is
done in methods of physics-informed machine learning in the
classical density functional [37] andwider [152, 153] contexts.

From a computer simulation point of view the neural func-
tional methods offer a new way of designing simulation work.
Instead of direct simulation of the physical problem at hand,
an intervening step of constructing the direct correlation func-
tional is introduced. We have shown that the direct correlation
functional can thereby be obtained explicitly and accurately.
Rather than playing the role of a formal object, its availabil-
ity as a trained neural network facilitates making fast and pre-
cise predictions in nontrivial situations. This application stage
of the neural functional theory requires very little effort both
in terms of the required numerical algorithmic structure and
the computational workload; we recall the illustration of the
neural functional workflow shown in figure 4.

From a density functional perspective the neural approach
is arguably unprecedented in its degree of access to the excess
free energy functional. We find it highly remarkable that so
much of the seemingly very abstract functional relationships
and formal concepts can be inspected and tested in computa-
tionally straightforward and highly efficient ways. The range
of these methods includes automatic differentiation to gener-
ate direct correlation functions as well as performant func-
tional integration routines. The neural functional framework
offers the possibility towork numerically with exact functional
identities with great ease. Hence the neural network techno-
logy relieves one from the task of constructing an approximate
analytical functional and manipulating it on paper.

This leaves over the question of the status of analytical
density functionals in the light of the neural network cap-
abilities. We have here deliberately chosen the exact Percus
functional for one-dimensional hard rods to demonstrate how
much insight can be gleaned from the analytical manipula-
tions; as a representative example see the nonlinear convolu-
tional structure of equations (24)–(28) along with the excellent
numerical comparison against the neural functional as shown
in figure 7(b). As the neural functional method is not restricted
to the hard core system, one can expect that having an accurate
neural functional for a given system can be of very significant
help when attempting first-principles construction of analyt-
ical free energy functionals. After all we should make use of
the tools that van der Waals did not have at his disposal!

In summary, in light of the progress reported in [40, 41] and
the present model investigation, we anticipate that a wealth
of deep questions can be addressed from the viewpoint of the
neural functional theory, including fundamental questions of
phase coexistence [154] as well as the possible construction of
fundamental measure functionals [155, 156]. While we here
have restricted ourselves to hard core systems, the principal
applicability of the neural functional theory for soft potentials
was demonstrated in [41] for (planar) inhomogeneities of the
supercritical three-dimensional Lennard–Jones fluid. Going
beyond planar geometry and addressing spatial inhomogen-
eity in two or three dimensions could benefit from the use of
equivariant neural networks [157–163], which possess the fun-
damental symmetry properties of Euclidean space.

For complex Hamiltonians the required amount of simu-
lation work to provide training data might seem as a lim-
itation. We are however optimistic that the subsequent effi-
cient use of the direct correlation functionals in the form of
neural networks can by far outweigh the training cost. Hence
the application to complex models such as the monatomic
Molinero-Moore water model [164, 165] might not be out of
reach. Furthermore it is inspiring to think that potential pro-
gress could be made in the treatment of dielectric [166] and
long-ranged forces [167].

As a final note, we re-emphasize the successful applica-
tion of the neural method to nonequilibrium flow problems
presented in [40] and it is certainly very inspiring to speculate
whether this facilitates making progress concerning questions
of slow dynamics in soft matter [153, 168, 169] and beyond
that [170].
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