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Density functional theory for colloidal rod-sphere mixtures
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We present a density functional theory for a model colloidal mixture of hard spheres and infinitely thin hard
rods. For these freely rotating particles, we use a fundamental measures approach to obtain a functional that
features the correct dimensional crossover and the exact low density limit. For isotropic bulk fluid mixtures, the
free energy, and hence the demixing phase diagram, are identical to that obtained from free volume theory.
Results for the partial pair correlation functions of the bulk mixture are in good agreement with those of our
simulations.
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Colloidal mixtures of differently shaped or sized particl
serve as well-defined model systems for the study of a w
range of phenomena in condensed matter. These inc
structural correlations, demixing phase transitions, and fre
ing. Such systems can be prepared so that they posses
marily hard body pair interactions; hence, entropy plays
dominant role. Creating binary mixtures by adding a seco
component to monodisperse colloidal hard spheres~HS! pro-
vides the work horse in the field. Among the various diffe
ent second components are smaller-sized spherical parti
leading to binary hard sphere mixtures@1#, globular nonad-
sorbing polymers@2#, and rodlike colloids@3,4# or polymers.
In these situations, the additive is often regarded as an a
that mediates an effective interaction between the sphere
means of the depletion mechanism. For rods consider
recent work was done to reveal the nature of the deple
@5,6#. The benefit of this approach is the analogy to sim
substances possessing an attractive pair potential. How
the depletant’s degrees of freedom are no longer access
and, in general, effective many-body interactions betw
the spheres occur, which are difficult to treat. Both dra
backs can be circumvented by treating the full binary m
ture, without any explicit integrating-out procedure.

A simple rod-sphere model was introduced by Bolh
and Frenkel~BF! @7#. It consists of a mixture of hard sphere
and hard, infinitely thin rods~needles!. The needle volume
and hence the interaction between needles, vanishes in
limit. Clearly, this is a gross simplification. However, ro
aspect ratios can be as high as 25 in experiments with s
coated boehmite rods@4# mixed with silica spheres, and th
rod densities are typically well below the Onsager nema
isotropic transition@4#. BF’s model can be thought of as th
simplest in the present context, playing a role similar to
Asakura-Oosawa~AO! model @2# for the case of spherica
colloids and added polymer. BF’s computer simulatio
showed that the model undergoes a demixing transition
sphere-rich~rod-poor! and sphere-poor~rod-rich! phases.
They also extended Lekkerkerker’s free volume theory@8#
for the AO model to their case. Comparing with simulati
results for the binodals, they found that ‘‘ . . . the accuracy
of the theoretical curves is surprising’’@7#. Subsequently,
finite rod thickness could also be treated@3#. Little attention,
however, has been payed to the model’s bulk structural
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relations, to its behavior in inhomogeneous situations, as,
example, induced by walls, or to the free interface betwe
demixed phases.

In this work, we present a density-functional theo
~DFT! @9# for the binary needle-sphere mixture that allows
to study correlations in bulk as well as in arbitrary inhom
geneous situations. It is based on Rosenfeld’s fundame
measures theory@10,11# and Tarazona’s latest extension
this @12#, ensuring that local packing effects are correc
included. The free energy of the homogeneous fluid, a
hence, the demixing curve, are the same as in BF’s
volume theory. Our DFT features the correct virial expa
sion. In the literature it has been stated by several auth
@11,13,14#, that an impossibility of deconvolution of th
Mayer function forarbitrary convex bodies prohibits this
sort of geometrically based DFT. Here we give an expli
counterexample; albeit dealing with a model where inter
tions between rods are absent, we present the first s
theory for freely rotating anisotropic particles. Our fun
tional has the correct dimensional crossover to situations
reduced spatial dimensionality, an important property t
only recently was achieved for one-component hard sph
@12#. As an application, we reconsider the phase diagram
then focus on the bulk pair correlations in the sphere-nee
mixture where we find good agreement between the D
results and our computer simulations.

Let us first describe the needle-sphere model. We c
sider a mixture of hard spheres~speciesS) with radii R, and
infinitely thin needles~speciesN) with lengthL, and number
densitiesrS and rN , respectively. The pair interaction be
tween spheres isVSS5` if the separation between sphe
centers is less than 2R, and zero otherwise; the pair intera
tion between a sphere and a needle isVSN5`, if both over-
lap, and zero else; the interaction between needles vani
for all separations,VNN50. We denote the sphere diamet
by s52R, and the sphere packing fraction byh
54pR3rS/3. In Fig. 1 a snapshot from computer simulatio
~described below! is shown to illustrate the model.

In order to construct the DFT, we start with a geometric
representation of the particles in terms of weight functio
wm

i , wherei labels the species, andm53,2,1, and 0 corre-
sponds to the particles’ volume, surface, integral mean c
vature, and Euler characteristic, respectively@11#. The
weight functions are determined to give the Mayer bon
©2001 The American Physical Society01-1
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f i j 5exp(Vij)21 by a linear combination of term
wg

i (r 8)sw32g
j (r 9), where g(r 8)sh(r 9)5*d3x g(x)h(r

2x). For needles, we follow Ref.@11# to obtain

w1
N~r ,V!5 1

4 E
2L/2

L/2

dl d~r1Vl !, ~1!

w0
N~r ,V!5

1

2
@d~r1VL/2!1d~r2VL/2!#, ~2!

whered(r ) is the Dirac distribution,V is a unit vector point-
ing along the needle axis, andr is the spatial coordinate. Th
function w1

N describes the linear extent of a needle@15#,
whereasw0

N is characteristic of its endpoints. For infinite
thin needles, both surface and volume vanish, and so sh
the corresponding weights,w2

N5w3
N50. Indeed, as will be

seena posteriori, such terms are not needed to construct
DFT. For spheres, the usual weight functions@10,12# are

w3
S~r !5u~R2r !, w2

S~r !5d~R2r !, ~3!

wv2
S ~r !5w2

S~r !r /r , ŵm2
S ~r !5w2

S~r !@rr /r 221̂/3#, ~4!

wherer 5ur u, u(r ) is the step function, and1̂ is the identity
matrix. Further, linearly dependent, weights arew1

S(r )
5w2

S(r )/(4pR),wv1
S (r )5wv2

S (r )/(4pR),w0
S(r )5w1

S(r )/R.
The weight functions for spheres have different tenso
rank: w0

S , w1
S , w2

S , and w3
S are scalars;wv1

S and wv2
S are

vectors; andŵm2
S is a~traceless! matrix. These functions give

the Mayer bond between pairs of spheres@10# through
2 f SS/25w3

S+w0
S1w2

SZ+w1
S2wv2

S +wv1
S . However, they are

not sufficient to recover the sphere-needle Mayer bond@11#.
This is achieved through

w2
SN~r ,V!52uwv2

S ~r !•Vu, ~5!

which contains information aboutbothspecies: it is nonvan
ishing on the surface of a sphere with radiusR, but this
surface is ‘‘decorated’’ with anV-dependence. Loosel

FIG. 1. Snapshot from simulation of the rod-sphere mixture
L5s, h50.3, rN58rS ~statepoint II in Fig. 2!. The rods are ren-
dered with a finite diameter of 0.02s.
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speaking, w2
SN describes how a sphere looks from th

viewpoint of a rod. Technically, it generates th
Mayer bond through 2 f SN(r ,V)5w3

S(r 8)sw0
N(r 9,V)

1w2
SN(r 8,V)sw1

N(r 9,V), wherer is the difference vector
between sphere and needle position. The weight functi
are used to smooth the possibly highly inhomogeneous d
sity profiles by convolutions,

nn
N~r ,V!5rN~r 8,V!swn

N~r 9,V!, ~6!

nn
S~r !5rS~r 8!swn

S~r 9!, ~7!

n2
SN~r ,V!5rS~r 8!sw2

SN~r 9,V!, ~8!

whererS(r 8), andrN(r 8,V) are the one-body density distr
butions of spheres and needles, respectively. Note thann

N

and nn
S are ‘‘pure’’ weighted densities, involving only vari

ables of either species@10,11#. In contrast, ourn2
SN is a con-

volution of the sphere density with an orientation-depend
weight function; hence, it combines characteristics of b
species.

Finally, the~Helmholtz! excess free energy is obtained b
integrating over a free energy density,

Fexc@rS ,rN#5kBTE d3xE d2V

4p
F~$ng

i %!, ~9!

wherekB is Boltzmann’s constant,T is temperature, and the
~local! reduced free energy densityF is a simple function
~not a functional! of the weighted densitiesng

i . The variable
x runs over space, as usual@10,11#. Here we allowF to
depend on orientation, and hence integrateV over the unit
sphere. The functional form ofF is obtained by consider
ation of the exact zero-dimensional (0D) excess free energy
For the present model this is identical to the AO case@17#,
namely, the statistics ofh hard andh8 ideal particles, and is
given by F0D /kBT5(12h2h8)ln(12h)1h @17#. Consid-
ering multicavity distributions @12#, we obtain F5FS
1FSN with

FS52n0
S ln~12n3

S!1~n1
Sn2

S2nv1
S
•nv2

S !/~12n3
S!

1@~n2
S!3/32n2

S~nv2
S !213~nv2

S n̂m2
S nv2

S

23 detn̂m2
S !/2#/@8p~12n3

S!2#, ~10!

which is equal to the pure HS case@10,12#. The contribution
due to the presence of the needles is

FSN52n0
N ln~12n3

S!1
n1

Nn2
SN

12n3
S

, ~11!

where the arguments are suppressed in the notation; see
~6!–~8!. This completes the prescription for the functiona

We investigate some of the properties of the homo
neous, isotropic bulk mixture. In this case the weighted d
sities become proportional to the respective bulk densit
nn

i 5jn
i r i , where the proportionality constants are fundame

tal measures given byjn
i 5*d3x wn

i . For spheresj3
S

t
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54pR3/3,j2
S54pR2,j1

S5R,j0
S51, whereas for needlesj1

N

5L/4,j0
N51, and, there is also a combined fundamen

measurej2
SN54pR2(5j2

S). Then the excess Helmholtz fre
energy per volumeV is given byFexc(rS ,rN)/V5 f HS(rS)
2rNkBT ln a(rS), where f HS(rS) is the excess free energ
density of pure hard spheres in the scaled-particle@Percus-
Yevick ~PY! compressibility# approximation anda5(1
2h)exp@2(3/2)(L/s)h/(12h)#, which is identical to that
of Ref. @7#, leading to~sphere! gas-liquid phase separatio
@7,18#. As an explanatory case, we chooseL/s51, and dis-
play the gas-liquid portion of the phase diagram as a func
of h andrNL2s in Fig. 2. We find that in this representatio
the spinodals for all size ratioss5L/s collapse onto each
other and are given analytically byrN

spinL2s58(1
12h)2/(3ph). The critical point moves along this curve a
a function ofs ~see Fig. 2 fors50,1,2,4, and 8! and is given
by @7# hcrit5(1013s23A4112s1s2)/(16212s). The
Fisher-Widom line@19# divides the phase diagram into re
gions of different asymptotic decay of the free bulk pair c
relations. Here the decay is damped oscillatory for sm
needle densities, where the packing of spheres dominate
becomes monotonic upon increasing needle density; the
ality between needles washes out the oscillations. In the i
of Fig. 2 the dependence on the actual needle density in
system is replaced by that in a needle reservoir, in chem
equilibrium with the system, which is given here byrN

r

5arN . The reservoir density plays a role similar to that
inverse temperature in simple systems, and the topolog
the phase diagram resembles that of a simple substance
mixing is preempted by freezing fors&0.3, as shown by BF
However, if we trace the critical point inside the metasta

FIG. 2. Phase diagram of the rod-sphere mixture as a functio
sphere densityh and scaled needle densityrNL2s. Shown is the
universal spinodal~dashed line!. For L/s51 the binodal~thick
line!, tie lines~thin straight lines!, Fisher-Widom line~dotted line!,
and statepoints I and II~crosses! are indicated. Circles represent th
critical points forL/s50,1,2,4, and 8. The thin line is the meta
stable binodal forL/s50. Inset shows corresponding plots as
function of needle reservoir densityrN

r L2s. Note that there are now
separate spinodals~dashed lines!.
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region, we find that it smoothly approachesh51/4, rNL2s
524/p, rN

r L2s532/p for s→0. This is in contrast to free
volume theory for the AO model, where demixing is pr
empted by freezing at a similar size ratio@16#, but with the
~metastable! critical point shifting to high density, thereb
crossing hard sphere fluid-solid coexistence. Whether
difference has implications for the existence of an isostr
tural solid-solid transition in the present model constitutes
interesting aspect.

Next we investigate the bulk pair structure. The pair dire
correlation functions are obtained as ci j 5
2(kBT)21d2Fexc/dr idr j . Due to their geometric represen
tation as convolutions of single particle functions, theci j
vanish beyond the range of interaction, similar to what
found in PY. The Ornstein-Zernike~OZ! relations then yield
partial structure factors and pair correlation functions. In

FIG. 3. Pair structure for spheres as obtained from DFT
L/s51, h50.3, rN50 ~statepoint I! andrN54.58 366/L2s ~state-
point II!. ~a! Partial sphere-sphere pair correlation function co
pared to MC simulation. Results for statepoint I are shifted upwa
by one unit for clarity. The inset shows the DFT result inside t
core for statepoint II.~b! Corresponding partial structure factor
statepoints I and II, as well as at the gas-liquid critical point.
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der to test the accuracy of the theoretical results, we h
carried out canonical Monte Carlo~MC! computer simula-
tions with 256 spheres and up to 2048 needles; for the
correlations, 105 moves per particle were performed. He
we focus on the correlationsgSS(r ) between spheres. Figur
3~a! shows results forL/s51, h50.3, and two different
needle densities,rN50 ~statepoint I, depicted in the phas
diagram Fig. 2!, andrN58rS54.58 366/L2s ~statepoint II!.
In the absence of needles~statepoint I! the DFT result repro-
duces the rather accurate PY solution for hard spheres
creasing the needle density~statepoint II, where the snap
shot, Fig. 1, is taken! leads to an increase of the conta
value; the period of oscillations becomes shorter, hence
spheres tend to be at smaller separation. The DFT provid
good description of the MC results, except for an undere
mation of the contact value and nonzero values inside
core. This could be remedied by using the test-particle lim
i.e. minimizing the grand potential in the presence of
sphere fixed at the origin. The corresponding structure
tors SSS(k) are shown in Fig. 3~b!. Adding needles~state-
point II! leads to a small shift towards largerk-values, as
well as to an increase inSSS(0). In addition, we plotSSS(k)
at the critical point obtained from the free energy;SSS(k
→0) divergesconsistently.
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Let us conclude with two remarks. First, in view of th
successful treatment of the bulk, the present theory of
direct access to a wide range of interesting interfacial a
confined situations, such as wetting, layering transitions,
capillary condensation, as well as the study of the free in
face between demixed fluid phases. Especially appealin
the perspective to investigate the degree of universality
the entropic wetting scenario in the AO model@20#, found
recently by a similar DFT treatment@17#. For the current
model, interesting orientational behavior of the rods may
anticipated: For example, at the free~gas-liquid! interface
between demixed phases, the rod orientations will in gen
show a tendency to order, although the distributions are
tropic in both bulk phases. Second, the crucial extension
geometry-based DFT done in this work are the integrat
over director space@Eq. ~9!#, and the introduction of double
indexed weight functions@Eq. ~5!#. Whether these technica
tools permit the treatment of other rotating hard bodies c
stitutes an important point for future investigations.

I thank Bob Evans and Holger Harreis for valuable r
marks, and Gerrit Vliegenthart and Arjun Yodh for stimula
ing discussions.
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