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Amphiphilic hard body mixtures

Matthias Schmidt and Christian von Ferber
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 16 June 2001; published 29 October 2001!

In order to study ternary amphiphilic mixtures, we introduce a simplistic model of hard spheres correspond-
ing to water and hard needles corresponding to oil and amphiphilic particles, where the hydrophilic head is
modeled as a hard sphere and the hydrophobic tail as an infinitely thin needle attached radially to the sphere.
For this system, we construct a geometry-based density functional and perform Monte Carlo computer simu-
lations. The equation of state derived from the theory is found to be in remarkable agreement with our
simulation results. We investigate the theoretical demixing phase diagram, and find that the predicted trends
strongly support the amphiphilic character of the model.
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I. INTRODUCTION

Adding amphiphiles to a system of oil and water cons
erably enhances the miscibility of these substances. A
phiphilic molecules consist of a hydrophilic head group a
a hydrophobic tail, which prefer being dissolved in water a
oil, respectively. The physics of amphiphilic systems is i
portant in many areas, including industrial and domestic
plications like washing, cleaning, emulsification, and ma
more. Due to the different preferences of their constitue
amphiphiles adsorb at oil-water interfaces and facilitate
creation of such interfaces. Depending on the thermodyna
cal variables, these interfaces arrange in a rich variety
structures@1–4#, and much theoretical work has been d
voted to understanding the underlying basic mechanis
Microscopic approaches have often used a lattice fluid mo
@5–8#, while coarse grained continuum descriptions are p
vided by Ginzburg-Landau@9# or integral geometrical@10#
models.

Density functional theory~DFT! @11# is a powerful ap-
proach to inhomogeneous statistical systems, and has
applied to study amphiphilic behavior on different leve
from microscopic to macroscopic. A model for membran
vesicles, and micelles@12# based on a description for effec
tive amphiphile interactions arising from the presence of s
vent molecules has been studied. The phase behavior
symmetrical ternary mixture was found to exhibit thre
~isotropic!-liquid-phase coexistence@13#. This approach was
generalized to asymmetric interactions between amphiph
and water and oil, and lamellar and micellar phases w
found@14#. The structure of droplet microemulsions was a
treated@15#. The problem of separation of length scales in
those of the microscopic domain~relevant for building up
interfaces! and those of the mesoscopic regime~to capture
the degrees of freedom of supramolecular aggregates! was
addressed within a one-dimensional model of molecular
gregation @16#, and later on generalized to the thre
dimensional case@17#. The phase behavior@18# and gas-
liquid nucleation @19# of amphiphilic binary mixtures
consisting of Lennard-Jones monomers and bonded dim
has been investigated. Furthermore, a DFT approach
been applied to nucleation in micellar solutions@20#.

In this work we propose a simple atomistic model in ord
1063-651X/2001/64~5!/051115~10!/$20.00 64 0511
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to investigate amphiphilic mixtures. The particles poss
continuous~off-lattice! positions and orientations, and w
prescribe the microscopic interparticle interactions. In o
model, only hard core pair interactions are present; hence
behavior is solely driven by entropy. Using hard core s
tems has proved to be fruitful for important phenomena l
freezing@21# and liquid crystalline ordering, and we believ
that this could also be the case for amphiphiles. To study
model, we construct a geometry-based DFT. This appro
originates from Rosenfeld’s fundamental measure theory
hard sphere mixtures@22–25#, which was also formulated fo
convex bodies@26# and parallel hard cubes@27,28#. Re-
cently, within geometry-based DFT, a range of models
been treated successfully, including the Asakura-Oosa
colloid–ideal-polymer mixture@29#, the Widom-Rowlinson
model @30#, and a model due to Bolhuis and Frenkel@31#,
where hard spheres are mixed with infinitely thin need
@32#. This needle-sphere mixture displays a demixing ph
transition crudely reminiscent of that of water and oil. He
we use this as a starting point, and supplement it with a th
species of particle that consists of a sphere to which a ne
is attached rigidly. The spherical part is a caricature of
hydrophilic head and the needle models the hydrophobic
of an amphiphilic molecule. Hence we arrive at a simplis
model for a nonionic amphiphile ternary mixture, featurin
explicit water-oil asymmetry. Hybrid shapes of spheres a
~thin! rods are also realized in the colloidal domain by m
crotubules inside vesicles@33,34#, and by rodlike fd bacte-
riophage viruses bound to silica beads@35#.

As will be seen below, our hard body amphiphiles a
nonconvex particles. In order to deal with nonconvexity,
carry over the recipes developed for convex particles@32#, at
the expense of a certain violation of the overlap condit
within the theory. As we will show in detail, the violation i
quantitatively small and does not hinder the developmen
a powerful theory.

Our final aim is to elucidate the phase behavior of t
system. To have benchmark results to test the theory aga
we have carried out Monte Carlo~MC! computer simula-
tions, and have obtained results for the equation of state
typical compositions of species and over a broad range
densities in regions where the system remains in a fluid st
Comparing with the theoretical results, we find nice agr
©2001 The American Physical Society15-1
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ment, and hence are confident in trusting the theoretica
sults for the phase diagram, without further checking aga
simulations. We find that amphiphiles mix better with eith
spheres or needles than do spheres with needles. The ra
tail length to head radius acts as a control parameter gov
ing the relative affinity of amphiphiles for either spheres
needles.

The paper is organized as follows. In Sec. II we define
ternary hard body mixture of amphiphiles, spheres, a
needles, as well as a multicomponent generalization ther
In Sec. III we develop the DFT first for this general syste
and then specialize to the actual ternary mixture as well a
a pure system of amphiphiles. We also discuss the prob
arising from the nonconvexity of the particles. Our compu
simulation technique is presented in Sec. IV. In Sec. V
investigate demixing phase behavior for homogeneous fl
states. Discussion and an outlook are given in the conclud
Sec. VI.

II. THE MODEL

Let us introduce amphiphilic hard core particles, whi
consist of a hard sphere of radiusR and an infinitely thin
needle of lengthL. The needle~tail! is attached radially to
the sphere~head!; see Fig. 1~a! for a sketch of the resulting
geometrical shape. The direction of the needle is denote
V. A single-component system of amphiphiles@see Fig. 1~b!
for an illustration# is ruled by the number densityrA . We
refer to this system in the following aspure amphiphiles; see
Fig. 2~a! for a snapshot from a computer simulation~de-

FIG. 1. Sketch of the model amphiphilic mixture.~a! Am-
phiphilic molecules consisting of a hard, infinitely thin needle
length L, which is attached radially to a hard sphere of radiusR.
The orientation of the particle is described by the unit vectorV. ~b!
Pure amphiphile system.~c! Ternary system consisting of am
phiphiles, hard spheres~water!, and hard, infinitely thin needle
~oil!.
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scribed below! of this model.
We also consider a three-component mixture of~i! par-

ticles with amphiphilic character,~ii ! particles corresponding
to water, and~iii ! particles corresponding to oil molecule
For our amphiphiles~speciesA!, adding two further species
for which their shape possesses an amphiphilic characte
straightforward. We use hard spheres~speciesS! with radius
R as a caricature of water. The role of oil is played by ha
infinitely thin needles~speciesN! of length L. Hence we
arrive at a model that we refer to as theternary mixture; see
Fig. 1~c! for a sketch. The number densities are denoted
r i ,i 5A,N,S, the sphere diameter bys52R, and the size
ratio by q5L/R. The packing fraction of spheres ishS
54pR3rS/3, and that of amphiphilic heads ishA
54pR3rA/3. We show a typical particle configuration i
Fig. 2~b! as an illustration.

Additionally, we generalize to a multicomponent mixtu
where the species are labeled byi ~adopting a discrete picture
of mixtures!; the spherical head groups of speciesi possess
radii Ri and the needle tails have lengthsLi . This multicom-
ponent mixturewill be used below to formulate the DFT
Clearly, it includes the case of monodisperse amphiphiles
only a single speciesA is present. Also the ternary mixture i
obtained as a special case. Fori 5A,N,S, we simply setLA
5LN , LS50, RA5RS , andRN50.

FIG. 2. Snapshots from computer simulation.~a! Pure am-
phiphile system; the particles possess different gray levels.~b! Ter-
nary mixture of spheres~black!, needles~gray!, and amphiphiles
~white!.
5-2
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III. THEORY

A. Density functional

The DFT we propose is a weighted density approxim
tion. By convolutions of the position- and orientatio
dependent density profilesr i(r ,V), weighted densities are
obtained. These weighted densities are converted by a sim
function into an excess free energy density. This is a lo
quantity, depending on space point and orientation. The
bal excess free energy is obtained by integration over sp
and rotator degree of freedom. The weight functions w
which ther i(r ,V) are convoluted are obtained by geomet
considerations and describe the geometrical shapes o
particles. We first formulate the theory for the general m
ticomponent mixture, and then specialize to pure a
phiphiles as well as to the ternary mixture.

1. Multicomponent amphiphiles

We start by giving the weight functions. Those that a
characteristic functions of the needle part of the particles
defined as

w̄q
~ i !~r ,V!5

1

4 ER4

Ri1Li
dld~r1 l V!, ~1!

w̄0
~ i !~r ,V!5

1

2
@d„r1~Ri1Li !V…2d~r1RiV!#. ~2!

Here and in the following, the overbar indicates needle~tail!
quantities. The weight functions that describe the sphere
of the particles are equal to those for pure hard sphe
~HS’s! @22,25# and are defined as

w3
~ i !~r !5u~Ri2r !, w2

~ i !~r !5d~Ri2r !, ~3!

wv2
~ i !~r !5w2

~ i !~r !•r /r , ŵm2
~ i !
•~r !5w2

~ i !~r !@rr /r 221̂/3#,
~4!

w̄2
~ i !~r ,V!52uwv2

~ i !~r !•Vu, ~5!

wherer 5ur u, u(r ) is the step function, and1̂ is the identity
matrix. Further, linearly dependent, weights arew1

( i )(r )
5w2

( i )(r )/(4pRi), wv1
( i )(r )5wv2

( i )(r )/(4pRi), and w0
( i )(r )

5w1
( i )(r )/Ri . The weight functions possess different tens

rial rank:w0
( i ) , w1

( i ) , w2
( i ) , andw3

( i ) are scalars;wv1
( i ) andwv2

( i )

are vectors;ŵm2
( i ) is a ~traceless! matrix. The weighted densi

ties are

nn~r !5(
i
E d2V8

4p
r i~r 8,V8!* wn

~ i !~r 9!, ~6!

n̄n~r ,V!5(
i

r i~r 8,V!* w̄n
~ i !~r 9,V!, n50,1, ~7!

n̄2~r ,V!5(
i
E d2V8

4p
r i~r 8,V8!* w̄2

~ i !~r 9,V!, ~8!
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where the star denotes convolution,g(r 8)* h(r 9)
5*d3xg(x)h(r2x). The Helmholtz free energy isF5F id

1Fexc, whereFexc arises from interactions and the ideal g
contribution is

F id@r i~r ,V!#5(
i
E d3xE d2V

4p
r i~r ,V!

3$ ln@r i~r ,V!L i
3#21%, ~9!

whereL i is the thermal wavelength of speciesi. @Note that
the normalization is such thatr(r ,V)5r(r ) for isotropic
orientation distributions.# The excess free energy is

Fexc@$r i~r ,V!%#5kBTE d3r E d2V

4p
F~$ng%,$n̄g%!,

~10!

wherekB is Boltzmann’s constant andT the temperature, and
the ~local! free energy densityF is a simple function~not a
functional! of the weighted densitiesng . Considering multi-
cavity distributions@25#, we obtainF5FHS1F̄ with

FHS52n0 ln~12n3!1~n1n22nv1•nv2!/~12n3!

1@~n2!3/32n2~nv2!213~nv2•n̂m2•nv2

23 detn̂m2!/2#/@8p~12n3!2#, ~11!

which is equal to the pure HS case@22,25#. The contribution
due to the presence of the needles is

F52n̄0 ln~12n3!1
n̄1n̄2

12n3
. ~12!

This completes the prescription for the functional for mul
component amphiphiles.

2. Pure amphiphiles

For a one-component system of amphiphile particles w
radiusR and needle lengthL, the general functional can eas
ily be reduced. The summations over speciesi in Eqs. ~6!–
~8! vanish, and a density functional of a single density fie
rA(r ,V) is obtained.

3. Ternary mixture

We consider a mixture of spheres~speciesS! with radii R,
needles~speciesN! with lengthL, and amphiphiles~species
A! with thesamedimensions, namely, radiusR and lengthL.
The weight functions for spheres (LS50) simplify, such that
w̄0

(S)5w̄1
(S)50, and w̄2

(S) is identical to the correspondin
weight function in the case of the needle-sphere functio
@32#. All wv

(S) are identical to those of the pure hard sphe
case@22,25#. For needles, all densities withv.1 vanish,
wv

(N)50. This is expected from dimensional arguments,
cause an infinitely thin needle does not possess surface
(v52), nor volume (v53). The remaining weight function
w1

(N) is identical to that in the case of the needle-sphere fu
tional. The weight function forv50 is also identical to that
5-3
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in this case, and is obtained as the sumw0
(N)1w̄0

(N) . Note
that in the present description the position coordinate of
needle is one of its end points, whereas using the ne
midpoint might be more intuitive~see Ref.@32#!. Both de-
scriptions are of course equivalent, and are related b
simple coordinate transformation.

B. Mayer bonds

The Mayerf i j bond between speciesi andj is f i j 521, if
the two particles overlap, and zero otherwise. With
geometry-based DFT, thef i j are represented as the~nega-
tive! Euler characteristics of the overlap region of the tw
bodiesi and j. For convex bodies, the overlap region is al
convex, and hence carries Euler characteristic of unity.
nonconvex bodies the situation is more complicated. T
overlap region may consist of several disconnected portio
and its Euler characteristic equals the number of th
portions.

For our model, the two-particle Mayer bonds are corr
within the DFT, if no amphiphile is involved, i.e.,f SS and
f SN. Furthermore,f AN is also correct. Problems arise b
tween two amphiphiles,f AA , as well as between an am
phiphile and a sphere,f AS. In Figs. 3~a–c! we display the
cases where the Mayer bond is correct, and Figs. 3~d,e! show
the cases where the Mayer bond is incorrect, namely,f i j 5
22. It might be physically expected that the statistic
weight of such problem configurations is only small, beca
for a given position and orientation of the first particle t
second particle’s positionand orientation are restricted.

C. Second virial coefficients

In order to measure quantitatively the degree of violat
of the overlap condition, we evaluate the second virial co
ficient for amphiphiles from the DFT and compare it to t
exact result, which we can obtain analytically. Note that t
is precisely a test of the accuracy of the present approac
the low-density limit. For simplicity, we perform the calcu
lation for pure amphiphiles. The second virial coefficient
defined as

B2,i j 52
1

2V E d3rd2Vd3r 8d2V8 f i j ~r ,V;r 8,V8!,

~13!

FIG. 3. Configurations of overlapping amphiphiles. Cases wh
the Mayer function is correct within the DFT,f 521: ~a! sphere-
sphere;~b! sphere-needle;~c! sphere overlapping simultaneous
with the needle and the sphere of a second particle. Problem c
where f 522 within the DFT: ~d! simultaneous sphere-need
overlap; ~e! sphere overlapping with the needle and the sphere
the second particle, so that the inner needle end point is outsid
first sphere.
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whereV is the system volume. We find the exact result f
pure amphiphiles as

B2,AA
exact5

16p3

15~L1R!2 $22L5210L4R15L3R215~2516) !

3L2R315~41112) !LR41~91130) !R5

12@R21~L1R!2#5/2%, ~14!

which holds for the caseL.()21)R. For L@R, the ex-
pansion is

B2,AA
exact516p3F2LR21S 20

3
12) DR31OS R4

L D G , ~15!

where 20/312)510.1308. The result from DFT is

B2,AA
DFT 516p3S 2LR21

32

3
R3D , ~16!

which is free of terms of orderR4/L and higher. Note that
the term of orderLR2 is the dominant contribution from
sphere-needle overlap. This is exact in the DFT. The term
order R3 stems from the hard core between spheres, an
overestimated by about 5% in the DFT. All higher-order co
rections are not reproduced in the DFT result. We conclu
that forL@R the DFT result is an excellent approximation
B2,AA

exact. Even for L/R510, the relative deviation is only
B2,AA

DFT /B2,AA
exact51.017. For shorter needles,L5R, the deviation

grows somewhat toB2,AA
DFT /B2,AA

exact51.036.

IV. COMPUTER SIMULATION

We use the canonical ensemble to carry out Monte Ca
simulations. Our method of obtaining the pressure is ba
on the probability density of a successful small change
system volume. In order to perform such a compression,
enlarge the dimensions of each particle by a factor 11a,
wherea50.001 2520.005, and test for overlap. The stati
tics of this test yields the pressurep.

We have carried out simulations at 48 state points w
different densities and compositions of species. At each s
point 104 Monte Carlo cycles were done. Particle numbe
range from 1000 to 2500 particles; see Table I for details.

e

es,

f
he

TABLE I. Overview of simulated systems. Particle numbers~#!
for needles~N!, amphiphiles~A!, and spheres~S! are given.h tot

denotes the total packing fraction ofsphericalentities.

Species #N #A #S h tot

Pure A 1000 hA

S 1000 hS

Binary AN 1000 1000 hA

SN 1000 1000 hS

AS 500 500 hA1hS

Ternary ASN 1000 500 500 hA1hS

1000 500 1000
1000 1000 500
5-4
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AMPHIPHILIC HARD BODY MIXTURES PHYSICAL REVIEW E 64 051115
a compromise between considerable needle length and m
ageable simulation box size, we pick the size ratioq5L/R
510 for all runs. The simulation box is chosen to be larg
than twice the particle length in order to avoid problems w
multiple overlap of periodic images. In terms of the to
packing fractionh tot5hA1hS, we simulate in the rangeh
50.05– 0.3 by varying the simulation box size.

V. FLUID PHASES

We proceed from simple to complex, and hence start w
a discussion of one-component fluid phases, in particular
the pure amphiphile system. We then turn to the~three! bi-
nary systems that are obtained by selecting pairs out of
three species. Formally, these are obtained from the ter
sphere-amphiphile-needle system by setting the densit
one of the species to zero. Finally, we investigate the
ternary mixture.

In the following we restrict ourselves to homogeneo
isotropic fluid states, which are characterized by spatia
and rotationally invariant density distributions,r i(r ,V)
5const. Any mesophases, like lamellar or micellar ones
well as liquid crystalline ordering, are explicitly exclude
from our investigation. However, such density distributio
allow for phase separation into macroscopically demix
phases. The strategy is to apply the DFT to the homogene
densities and hence to derive the bulk free energy and
equation of state. This task can be performed analytic
within the present theory. We then check the numerical
curacy of the equation of state obtained via differentiation
the free energy against computer simulation results. Fina
we calculate the theoretical demixing phase diagrams inc
ing binodal, spinodal, and critical point for the binary mi
tures. In the final case of the ternary mixture, we rest
ourselves to the spinodal.

In detail, our calculations are as follows. For homog
neous, isotropic states, the weighted densities become
portional to the bulk densitynn5S ijn

( i )r i . The proportion-
ality constants are given as fundamental measuresjn

( i )

5*d3rwn
( i )(r ). For the ternary case, the fundamental m

sures are for spheresj3
S54pR3, j2

S54pR2, j1
S5R, j0

S51,
for amphiphiles j3

A54pR3, j2
A54pR2, j1

A5R1L/4, j0
A

51, and for needlesj̄15L/4, j̄051. Note that, although an
amphiphile consist of a sphere and a needle,jn

A5jn
S1jn

N

does not hold for alln. This is becausej0
( i )51 for all species,

because each particle consists of a single body and h
possesses Euler characteristic unity. Hence the weighted
sities in isotropic bulk fluids becomen354pR3(rS
1rA)/3(5h tot), n254pR2(rS1rA)(53h tot /R), n15R(rS
1rA)@53h tot /(4pR2)#, n05rS1rA@53h tot /(4pR3)#, and
n̄15(rN1rA)L/4, n̄05rN .

We obtain the spinodal for demixing from the bulk fre
energy by solution of det]2(F/V)/]ri]rj50, which indicates
the boundary of stability. This was carried out previously
the case of the binary needle-sphere mixture (rA50) @32#,
and auniversal ~q-independent! spinodal was found. Here
we follow the same recipe for the remaining two binary m
tures, namely,~i! adding needles to pure amphiphiles and~ii !
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adding spheres to pure amphiphiles. For the full ternary m
ture, we can also, somewhat surprisingly, find an analyt
expression for the spinodal depending on all three densi

In the case of one-component hard spheres our the
reduces to the Rosenfeld functional@22# in Tarazona’s latest
tensorial version@25#. The excess free energy density p
volume for pure hard spheres with packing fractionh and
radiusR derived from the DFT is identical to the result of th
Percus-Yevick compressibility~scaled-particle! approxima-
tion, and is given asbFexc(hS)/V5FHS, whereb51/kBT
and

FHS~h!5
3h@3h~22h!22~12h!2 ln~12h!#

8pR3~12h!2 . ~17!

The pure system of needles constitutes an ideal gas of~non-
interacting! rotators. Hence the excess free energy vanis
exactly, and indeed we recover this~trivial! result, F50.
This is merely a check of the above method~Sec III A! for
generating DFTs from the zero-dimensional limit, and de
onstrates that this does not lead to artificial interactions.

A. Pure amphiphiles

The system of one-component amphiphiles provide
first nontrivial test case. For the homogeneous, isotropic b
phaserA(r ,V)5const, we obtain the excess Helmholtz fr
energy per volumebFexc/V5FA , with

FA5FHS~hA!1
9qhA

2

16pR3~12hA!
. ~18!

In this additive expression,FHS is the residual contribution
for q50, stemming only from the presence of the spheri
heads. The contribution due to the presence of the ne
tails scaleslinearly with size ratioq. The dependence onhA
is a rational expression typical of geometry-based DFT, w
a ~formal! divergencehA→1. Clearly, for largeq this second
term dominates overFHS.

In order to check the quality of this result, we compare t
compressibility factorZ5bp/r, where the pressure isp5
2]F/]V and the total densityr in this caser5rA , against
simulation results forq510 in Fig. 4~a!. Also shown are
results for the pure hard sphere case. The compressib
factor is considerably larger for amphiphiles than f
spheres. This is to be expected, as we compare states
equal packing fractions of spheres, but with~amphiphiles!
and without~spheres! tails. The interactions of the tails with
the sphere lead to the observed increase by more than a
tor of 2. The shapes of both curves, however, are simi
The theoretical results are slightly smaller than the MC da
but the general agreement is remarkable. Finally, we n
that Z is a quite sensitive quantity. Recall that our appro
mation is on the level ofFexc, andZ is obtained by differen-
tiation and division by density, operations which in gene
will enhance any deviations. We also plot the low-dens
behavior governed by the second virial coefficient both fro
DFT and from the exact calculation. They essentially co
cide on the resolution of the plot.
5-5
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B. Binary mixtures

Once a system possess two distinguishable componen
may undergo a demixing phase transition into two mac
scopically distinct phases with different compositions of p
ticles. In our case, binary mixtures are obtained by set
the density of one of the species of the ternary mixture
zero. For these systems, we shall investigate how the
ratio q plays the role of a control parameter for demixin
behavior, and especially enlighten the limitsq→0,̀ . Then
we focus on the interesting question of how amphiphiles m
with either needles or spheres, compared to the mixing
havior of needles and spheres.

1. Needles and spheres

According to computer simulation results by Bolhuis a
Frenkel@31#, a mixture of spheres and infinitely thin needl
displays a demixing phase transition into a sphere-r

FIG. 4. Compressibility factorZ as a function of total packing
fraction h tot . Simulation results~symbols! are compared agains
theoretical predictions~lines!. Straight lines indicate the low
density limit governed by the second virial coefficient.~a! Pure
systems;~b! binary mixtures;~c! ternary mixtures.
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~needle-poor! phase and a sphere-poor~needle-rich! phase.
The mechanism for this phase separation is, crudely sp
ing, the gain in configurational entropy in both demixe
phases. In the needle-rich phase, interactions are cons
ably reduced, because the needles do not interact am
themselves, and the presence of spheres is only a pertur
‘‘impurity’’ effect to essentially an ideal gas of needles. Th
sphere-rich phase, however, is only weakly disturbed by
presence of the needles@32#. Bolhuis and Frenkel develope
a first order perturbation theory that is similar to Lekkerke
er’s free volume approach for the Asakura-Oosawa collo
ideal-polymer mixture. The present DFT approach recov
their result@32#; the excess free energy per volume is

bFexc

V
5FHS~hS!1rNF 3qhS

4~12hS!
2 ln~12hS!G . ~19!

It is interesting to compare this result with that of the abo
case of pure amphiphiles, Eq.~18!. To do so, we naively se
rS5rN , and compare withFA for a single component. The
results are not identical~which should not be expected!, but
differ by a logarithmic expression. Its origin can be trac
back to the fact that the needles in the binary mixture
individual particles with an Euler characteristic of unity.
the case of amphiphiles, the needle tails alone have van
ing Euler characteristic, and the corresponding term in
free energy functional vanishes~in bulk!. Note also that this
term is independent ofq ~as is the Euler characteristic!. In
summary, we stress thatFA cannot be obtained by the trivia
restriction of equal densities in the free energy of the bin
sphere-needle mixture. The naive calculation yields an a
tional term in the compressibility, which isq independent
and given byhA /(12hA). This is a small contribution for
largeq, but destroys the hard sphere limit forq→0, which is
correct in the proper DFT result.

As was already found in Ref.@31#, a comparison with the
simulation results demonstrates the excellent quality of
equation of state obtained from the theory. We repeat
comparison in Fig. 4~b!, using the compressibility facto
from both simulation and theory. Indeed, both results are
good agreement.

In the case of the needle-sphere binary mixture the a
lytic expression for the spinodal was found to be@32#

rNpq2R35
4~112hS!2

3hS
. ~20!

This is universal~q independent! in the ‘‘natural’’ variables
hS andrNq2R3. Note thatrNq2 is exactly the proper scaling
in the Onsager limit. The critical point in the limitq→` is
qrNR35p@11(44/3)q211O(q22)# and qhS5(4/3)@1
2(28/3)q211O(q22)#. We display the demixing phas
diagram in Fig. 5 forq510,20,50, as well as the metastab
~with respect to freezing! @31# caseq50. For small densities
the system is in a mixed state; increasing density lead
demixing. The critical point moves toward smallerhS as q
grows.
5-6
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2. Amphiphiles and needles

Adding needles to a fluid phase of amphiphiles should
easier than adding needles to a hard sphere fluid of the s
density: The amphiphile tails are expected to create free
ume for the needles, an effect that is absent in the cas
hard spheres as a host fluid. The excess free energy fo
amphiphile-needle mixture is

bFexc

V
5FA~hA!1rNF 3qhA

4~12hA!
2 ln~12hA!G . ~21!

This result is the same as in the case of the sphere-ne
mixture, but withFHS replaced byFA . Hence the contribu-
tion due to the presence of the free needles is the sam
both cases. In other words, the free needles interact only
the heads of the amphiphiles. Clearly, this is true for
interaction potentials. On the level of the free energy, it r
resents an approximation and will not hold in general for
exact free energy. See Fig. 4~b! for comparison with the
simulation results.

The demixing spinodal of the amphiphile-needle bina
mixture is

rNpL2R5
4~112hA!2

3hA
12q~12hA!. ~22!

We next investigate the limit of short needles,q→0. At fixed
scaled densityrNpL2R, the model reduces to the spher
needle mixture. This is physically reasonable, because
amphiphile shape reduces essentially to a sphere to w
only a very short needle is attached. The latter should
matter. The free needles still play a role, because their d
sity rN grows large asrNpL2R is kept constant. See Fig.
for the demixing phase diagram as a function ofhA and
q2rN for q50,10,20. Asq increases, the spinodals shift
higher densities, and the critical point moves to smallerhA .
In the case of long rods,q→`, the location of the critical
point is qrNR35(4/p)@112q211O(q22)# and qhA
5(2/3)@122q211O(q22)#.

FIG. 5. Phase diagram for the sphere-needle mixture foq
510,20,50 as a function of sphere packing fractionhS and scaled
needle densityrq2R3. The binodals~thick lines!, q-independent
spinodal~thin line!, and critical points~dots! are shown.
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3. Amphiphiles and spheres

The excess free energy is

bFexc

V
5FHS~h tot!1

9qhAh tot

16pR3~12h tot!
, ~23!

where h tot5hS1hA . Here both densities are intimatel
coupled, throughFHS as a function of the total packing frac
tion. The additional contribution is again linear inq, and has
a similar but not identical dependency on the densities a
the other cases. See Fig. 4~b! for comparison with the simu-
lation results:

The spinodal for the amphiphile-sphere binary mixture
obtained as

rA8p~q821!R3/3

511q82hS~q821!~q812!

1A3q8~11q8/3!@11hS~q821!~q8hS22!#, ~24!

whereq853q/8.
We next discuss the limiting cases. Clearly, for need

with vanishing lengthq50, the amphiphiles reduce t
spheres, and the system reduces to pure hard spheres. A
ticularly interesting case is the crossover between short
long needle tails. For amphiphiles with largeq, the system
demixes. For smallq the phase transition is clearly absent,
both species become identical. The interesting questio
how the crossover between the two cases happens. We
that demixing is absent forq,q* 58/3. If q* is approached
from above, the spinodal shifts to large amphiphile densit
and diverges formally. However, this scenario is likely to
preempted by freezing. For long needlesq→`, the effect of
the attached head groups vanishes, and the amphiphile
have like effective needles. Hence the model reduces to
needle-sphere mixture. As regards the spinodal, the lim
attained at quite large size ratiosq.

In Fig. 7~a! we display the demixing phase diagram as
function of both packing fractionshS and hA . In order to
have packing fractions inside the assumed fluid region,
use the rough criterionhS1hA,0.5, which is about the
value at freezing of pure hard spheres. Rather long ne
tails with q.20 are needed to access this region. The lim

FIG. 6. Phase diagram for amphiphile-needle mixture forq
50,10,20. The dots mark the critical points. The caseq50 is equal
to the sphere-needle binary mixture.
5-7
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q→` can be traced by using the scaled densityrAq2R3 in-
stead of the packing fraction; see Fig. 7~b!. In this represen-
tation, a well-defined limiting curve is obtained, which aga
coincides with the universal needle-sphere spinodal.

Let us discuss the disappearance of the demixing tra
tion in both binary systems that contain amphiphiles. T
crucially depends on the size ratioq. In the case of the
amphiphile-needle mixture, increasingq leads to a suppres
sion of demixing, i.e., to a shift toward higher densities.
contrast, for amphiphile-sphere mixtures,decreasing qis
necessary to suppress demixing. In conclusion,q tunes the
character of the amphiphiles, whether spherophile~small q!
or needle loving~largeq!.

4. Comparison of binary mixtures

The sphere-needle mixture will constitute our referen
system, with which we compare both other binary su
systems possessing amphiphiles. The amphiphile-needle
tem can be regarded as a derivative of the needle-sp
system that is obtained by replacing each sphere particl
the needle-sphere system with an amphiphile particle. I
interesting to investigate the differences of these two sim
systems, namely, to monitor the effect of the attach
needles. In Fig. 8~a! we show the demixing phase behavi
as a function of packing fraction and scaled needle dens
In order to compare with the needle-sphere mixture, we
hA andhS as variables for the respective systems. Hence
compare states with the same packing fraction of sphe
whether these are part of amphiphiles~in the amphiphile-
needle case! or free~in the sphere-needle case!. We observe
that the amphiphile-needle system demixes for consider

FIG. 7. Phase diagram for the amphiphile-sphere mixture
q520,50,̀ : ~a! as a function ofhS andhA ; ~b! as a function ofhS

andrAq2. The caseq5` is equal to the~universal! result for the
sphere-needle binary mixture.
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higher densities than the sphere-needle system, i.e., it
remains in a mixed state after the sphere-needle system
already undergone the demixing transition. Note that t
happens even though the amount of particle ‘‘material’’
larger in the amphiphile-needle case due to the additio
presence of the amphiphile tails. However, this is precis
what is expected for amphiphilic behavior: The amphiphi
mix better with the needle phase than do pure spheres.

Next we seek to investigate how the behavior of t
amphiphile-sphere system changes, if we replace the
phiphiles with needles. In Fig. 8~b! we compare both phas
diagrams forq550 as a function of sphere packing fractio
hS and the respective densitiesrA andrN , which we scale
with the volume of a sphere 4pR3/3. The amphiphile-needle
demixing curve is shifted toward larger densities compa
to the sphere-needle case. This means that amphiphiles
better with spheres than pure needles do. Again, this be
ior is precisely the expected one for particles with a
phiphilic character.

r

FIG. 8. Comparison of phase diagrams for different binary m
tures atq550. Thick lines are binodals, thin lines spinodals, a
the dots mark the critical points.~a! Sphere-needle and amphiphile
needle;~b! sphere-needle and amphiphile-sphere;~c! amphiphile-
needle and amphiphile-sphere.
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AMPHIPHILIC HARD BODY MIXTURES PHYSICAL REVIEW E 64 051115
The final comparison aims at the question of which s
cies, needles or spheres, mixes better with amphiphiles
Fig. 8~c! the amphiphile-needle phase diagram is compa
with the amphiphile-sphere phase diagram. As variables,
use the packing fraction of spheres and the number dens
of either spheres or needles~again scaled by the volume of
sphere!. The amphiphile-sphere spinodal is at slightly high
densities. The difference decreases upon increasingq. So the
tendencies of spheres and needles to mix with amphiph
are roughly equal~and become identical forq→`.!

In summary, we observe a strong shift of the coexiste
lines toward higher densities in those systems where
ticles are replaced by amphiphiles. Note that all our comp
sons are done at equal densities. This also means that i
case with amphipiles space is more density filled with p
ticles, because amphiphiles are larger than either sphere
needles. In spite of this, the system favors the mixed st
All these findings strongly support the initial assumptio
that our model particles indeed possess amphiphilic cha
ter.

C. Ternary mixture

For the three-component system of spheres, needles
amphiphiles, the Helmholtz excess free energy per volu
for homegeneous, isotropic states is

bFexc

V
5FHS~h tot!1rNF 3qh tot

4~12h tot!
2 ln~12h tot!G

1
9qhAh tot

16pR3~12h tot!
~25!

52@rN13h tot /~4pR3!# ln~12h tot!

1
3h tot

16pR3~12h tot!
2 @6h tot~22h tot!13q~12h tot!

3~h tot2hS!14pqR3rN~12h tot!#. ~26!

From the excess pressurepexc52]Fexc/]V52F
1S ir i]F/]r i , we obtain the~excess! compressibility factor
as

bpexc

r
5

h tot

4~12h tot!
3 H ~12h tot!@3q14~12h tot!#

19
4h tot2qhS~12h tot!

3h tot14pR3rN
J , ~27!

wherer5rA1rN1rS is the total density. We compare th
expression with results from computer simulations in F
4~c! for two different compositions of species, and find go
agreement over the entire density range considered.

The densityrN
r in a reservoir of needles that is in equilib

rium with the system is related to the system density
rN5rN

r exp(2bmN), where the~reduced! excess chemica
potential for the needles isbmN5]F/]rN . Here the result is
05111
-
In
d
e

ies

r

es

e
r-
i-
the
-
or

e.
,
c-

nd
e

.

a

rN5rN
r ~12h tot!expS 2

3qh tot

4~12h tot!
D , ~28!

which has the same structure as in the sphere-needle b
case, except that thetotal number of spheres contribute
throughh tot , not only the free ones throughhS . It is the total
packing fraction of spheres, whether pure or the heads
amphiphiles, that interacts with the needles.

A complete investigation of the demixing phase diagra
of the ternary mixture is beyond the scope of the pres
work, and we restrict ourselves to a study of the spinod
The spinodal for the full three-component system can
obtained as

rNpR3q25
1

h tot
@ 4

3 ~2h tot11!212qhA~12h tot!

2 3
4 q2hA~h tot2hA!#, ~29!

where h tot5hA1hS. This is an explicit expression for th
needle densityrN as a function of the densities of spher
and amphiphiles. It can easily be converted into reserv
representation using Eq.~28!. Given the complexity of the
model containing three species, two of them possessing
isotropic shapes, we find it quite remarkable that a sim
expression can be obtained for an~approximate! spinodal.
Note that for fixed size ratioq the ternary mixture has thre
thermodynamic variables, namely, the densities of the th
species. The spinodal is a two-dimensional manifold, wh
is embedded in the three-dimensional phase space.

VI. CONCLUSIONS AND OUTLOOK

We have proposed a hard body model for a ternary a
phiphilic mixture. Water molecules are represented by h
spheres, oil molecules by infinitely thin hard needles, a
amphiphiles are a hybrid of both. Clearly, this can at b
mimic the complex molecular interactions in a real syste
Nevertheless, our model featurescontinuousdegrees of free-
dom, in contrast to widely used lattice models. Our aim w
to demonstrate that this model carries various characteris
of real amphiphilic mixtures. Using a specifically design
density functional theory, we have investigated the bulk flu
demixing phase diagram, and have discussed its rich be
ior, demonstrating that phase boundaries are qualitativel
accordance with physical expectation. We expect that
theory accounts also for inhomogeneities on small len
scales similar to the particle dimensions. As its hard sph
counterpart~Rosenfeld’s functional! yields excellent results
when compared to simulations, we expect a similar qua
of results for our system. Such applications to inhomo
neous situations have been left out of the current work. T
next step is to show whether the model exhibits lamellar a
micellar phases. Their existence is crucial to the ability of
hard body amphiphile mixture to describe real systems.

As possible further directions of research, we mention
question of how freezing of hard spheres is affected by
presence of amphiphiles, as well as the nature of the s
phases built by the amphiphiles, which poses a challeng
5-9
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packing problem. Furthermore, the study of the interfa
between demixed phases will be especially intriguing due
the number and nature of the different phases in the b
phase diagram. This touches on the very relevant questio
how the amphiphiles are arranged at the oil-water interfa

Concerning the general status of the theory, we are fa
with an important example where geometry-based D
yields previously unknown bulk thermodynamics. This is
contrast to the cases of hard spheres, the Asakury-Oos
model, and Bolhuis-Frenkel’s needle-sphere mixture, wh
expressions from scaled-particle or free volume theory w
previously known, and where these results were rederive
la
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m
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DFT. Geometry-based DFT is a systematic way to treat s
hard core systems, whereas the scaled-particle or free
ume approaches require considerable physical insight to
formulated. This is an advantage in terms of comprehens
ity; however, it becomes increasingly difficult to apply the
approaches to more complex systems like the one consid
in this work.
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