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Phase diagram of hard spheres confined between two parallel plates

Matthias Schmidt and Hartmut Lo¨wen*

Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstrasse 1, D-40225 Du¨sseldorf, Germany
~Received 24 January 1997!

A hard sphere system confined between two parallel hard plates is investigated theoretically. Using extensive
Monte Carlo computer simulations, the phase diagram is calculated for the whole range of densities and plate
separations ranging from one to two particle diameters. There occurs a strong first-order fluid freezing transi-
tion and both very weak and strong discontinuous phase transitions between different crystal structures,
namely, layered, buckled, and rhombic crystals. The results are compared with predictions from free volume
theory, and a semiquantitative agreement is found. All predicted transitions should be experimentally observ-
able in confined suspensions of sterically stabilized or highly salted charged colloidal particles.
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PACS number~s!: 82.70.Dd, 64.70.2p
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I. INTRODUCTION

Freezing and melting are phenomena well known fr
everyday life. Much theoretical as well as experimental wo
has been devoted to the understanding of the phase trans
from a disordered liquid to an ordered, regular solid. T
freezing transition can be observed in quite different phys
systems, including atomic and molecular systems like iron
water, but also in colloidal suspensions. Usually, colloid
particles appear in a disordered phase constituting a fluid
a mesoscopic length scale. Under appropriate conditions
ordering of the colloidal particles is also possible, as do
mented in 1909 by Perrin@1#.

Many theoretical studies on freezing focus on bulk pro
erties, neglecting any surface effects. But real systems
generically limited in space. Therefore the effect of confin
ment on phase transitions is an important issue to addres
fact, this represents an active area of current research
particular, there exist studies dealing with all phase tran
tions conceivable for a confined simple liquid. First, t
liquid-gas transition in confining geometry which is al
called capillary condensation, was investigated; see, e
@2,3#. There have been recent studies on a critical fluid c
fined in between plates focusing on boundary critical p
nomena and the Casimir effect@4#. The location of the freez-
ing transition in a capillary@5,6# and in porous materials@7#
was studied. Finally, the shift of the dynamical glass tran
tion in confining geometry with respect to the bulk gla
transition was also recently measured@8# and calculated
@9,10#. We finally mention some peculiar recent results
confined nearly two-dimensional~2D! liquids: First, their dy-
namics was shown to be close to hydrodynamics with app
priate boundary conditions@11#. Second, stratification
induced transitions were found by computer simulatio
@12#, and the instability of a 2D crystal with respect to buc
ling waves was demonstrated@13,14#.

The present work deals with freezing in confined geo
etry, with a focus on colloidal suspensions confined betw

*Also at Institut für Festkörperforschung, Forschungszentrum J¨-
lich, D-52425 Ju¨lich, Germany.
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parallel glass plates@15–20#, for which our model is particu-
larly designed. The glass plates can be regarded as b
smooth on the mesoscopic scale of the colloids. There
pears a competition of different length scales, namely,
typical particle extensions and the dimensions of the confi
ment, which may be commensurate or incommensurate.
leads to multilayered crystals of triangular or square symm
try. Increasing the plate separation distance, the follow
sequence of crystalline structures was observed experim
tally @16–18#:

fluid→1n→2h→2n→3h→•••. ~1!

The symbolnn denotesn crystal layers with triangular~also
called hexagonal! symmetry, equivalent to the structure o
~111! planes in a fcc crystaln. Layers with fourfold rota-
tional symmetry, equivalent to~110! planes, are denoted by
nh symbol. The experiments have mainly been carried
in a wedge geometry. An advantage of the wedge geom
is the continuous range of plate separation distances.
drawback, on the other hand, is the introduction of an ad
tional degree of freedom, namely, the wedge angle. Only
the case of small wedge angles can the plates be regard
locally parallel.

Quite early, there were also ‘‘mazelike’’ patterns o
served@21# that do not fit into the simple sequence~1!. One
main result of the present work is thatmore phases are ther
modynamically stable, and that their succession is more com
plicated, depending sensitively on the density and plate se
ration distance.

Let us briefly mention further setups where nearly tw
dimensional fluids are realized: First, thin films of colloid
suspension can also be produced by spreading the suspe
over a solid substrate. For different experimental investi
tions of ordered colloidal structures on solid substrates,
@22–24#. Second, at an air-water interface, colloidal partic
can be trapped@25#. The emerging soft repulsive interactio
of aligned dipoles leads to formation of a two-dimension
~2D! crystal @26,27#. Last, freezing in few layers of a dust
plasma has been studied@28–30# and considerable attentio
has been devoted also to the behavior of confined 2D e
trons; see, e.g., Refs.@31–36#.
7228 © 1997 The American Physical Society
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55 7229PHASE DIAGRAM OF HARD SPHERES CONFINED . . .
The aim of our paper is to study theoretically the pha
diagram of the simple model of hard spheres confined b
tween hard plates. Despite its simplicity, the resulting pha
diagram is rich, allowing for the stability of fluid as well as
different crystalline phases. The actual crystalline phases
be more complicated than a simple sequence ofnn or nh
layers. In particular we find stablebuckledandrhombiccrys-
tals. Our results are based upon Monte Carlo simulations a
a simple free volume theory. Parts of the results have alrea
been published elsewhere@37#.

The paper is organized as follows: In Sec. II, we introdu
the model and discuss its limiting cases. In Sec. III, we d
scribe the Monte Carlo simulation technique. The results a
presented in Sec. IV. Furthermore, in Sec. V, we discuss
free volume theory. Finally, Sec. VI is devoted to concludin
remarks.

II. MODEL: HARD SPHERES BETWEEN HARD PLATES

A. Model and notation

Our model system consists ofN hard spheres of diameter
s confined between parallel hard plates with areaA and gap
thicknessH5(h11)s, such thath50 corresponds to the
2D limit of hard disks; see Fig. 1. The pair interaction po
tential between particles with position vectorsr and r 8 de-
pends on the magnituder5ur2r 8u, and is given by

V~r !5H 0 if r>s

` if r,s.
~2!

The confining hard walls are modeled by an external pote
tial

Vext~r !5H 0 if 2hs/2<z<1hs/2

` otherwise,
~3!

wherez is the component of the vectorr perpendicular to the
plates. The total potential energy is

Vpot~r1 , . . . ,rN!5(
i51

N

(
j5 i11

N

V~ ur i2r j u!1(
i51

N

Vext~r i !.

~4!

Since temperature is irrelevant for excluded-volume intera
tions, the only thermodynamic quantities are the reduced p
ticle densityrH5Ns3/(AH) and the effective reduced plate
separationh. In the limit h→0 the third dimension can be
neglected, and we end up with 2D hard disks. In the oppos
caseh→`, the effect of the confining plates vanishes, an
the 3D bulk hard sphere system is recovered.

With the Helmholtz canonical free energy denoted byF,
we define two different pressures of the systems:

FIG. 1. Hard spheres of diameters confined between parallel
hard plates with areaA and plate separation distanceH.
e
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Plat52H21
]F

]A U
H,N,T

, ~5!

Ptrans52A21
]F

]H U
A,N,T

. ~6!

The corresponding reduced pressures are

plat5s3Plat , ~7!

ptrans5s3Ptrans. ~8!

The wall theorem@38# relates the transversal pressure to t
one-particle density fieldr(r ) as follows:

r̄ ~z!5
1

AE dx dy r~r ! ~9!

bPtrans5 r̄ ~6h/2!. ~10!

Phase coexistence implies the equality of the lateral p
sures and the chemical potentials in the two coexist
phases. Note that the equality of temperature is trivial
hard bodies.

B. Bulk limits of the model: 3D and 2D

In the limit h→` at fixed densityrH , we encounter the
3D bulk hard sphere system which undergoes a stron
first-order freezing transition. The coexisting fluid and so
volume fractions areh f50.494 andhs50.545. The crystal-
line structure of the solid phase is close packed, although
unknown which close-packed structure is the thermodyna
cally stable one.

As a different limiting case forh→`, one can keep the
position of one plate fixed, and remove the other plate
infinity. Then the hard sphere system at a single wall is
tained. This situation represents the basic inhomogeneity
hard spheres, as no additional parameter with respect to
bulk system is introduced. One can study density profi
@39,40# and correlation functions@41# within density-
functional theory or integral equation theory@42,43#. As con-
cerns the solid phase, density profiles and surface tens
have been calculated by density-functional theory@44#. A
precrystallization effect induced by the presence of the w
was found@44–46#, showing the wetting of a single wall by
close-packed~111! fcc planes.

The fluid phase in slab geometry was investigated in
grand-isostress ensemble@47# by computer simulation, and
correlation functions and density profiles were calcula
within density-functional theory@48#. Also the freezing tran-
sition between plates was investigated focusing on la
plate separations@49#. Dynamical aspects were studied
Refs.@50,51#.

The 2D case of hard disks is obtained by lettingh→0 at
fixed densityrH . While it is established that the 2D har
disk system undergoes a freezing transition~unlike the 1D
hard rod model!, the nature of two-dimensional melting is
current area of research~see Ref.@52# for a review!. Basi-
cally, there are two main scenarios: Similar to the 3D ca
there could occur a first-order freezing transition with a fin
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7230 55MATTHIAS SCHMIDT AND HARTMUT LÖWEN
density jump. Alternatively there is the celebrated Kosterli
Thouless-Halperin-Nelson-Young scenario, consisting
two continuous phase transitions~i.e., with vanishing density
discontinuity! from the liquid to the so-called hexatic phas
and a further phase transition from the hexatic phase to
2D crystal. Although recent studies are still controvers
@53–55#, there is now more and more compelling eviden
for the fact that the hard-disk freezing transition is first ord
@56,57#.

C. Low- and high-density limits of the model

1. Ideal gas

The statistical physics ofN noninteracting particles insid
a given volumeV is governed by the number density and t
thermal energykBT alone. We show how the results for tw
and three dimensions are recovered as special cases
particles are confined in a volume with areaA and height
hs[H2s. The free energy per particle is

f id5kBTF lnSNL3

Ahs D21G , ~11!

where L5Ah2/2pmkBT is the thermal de Broglie wave
length. The ideal pressures are

bplat5rH , ~12!

bptrans5
h11

h
rH . ~13!

The prefactor (h11)/h is due to the definition of the densit
rH . The 3D limit is obtained by lettingh→`, such that
r3D5N/(Ahs) is kept constant,

b f id
3D[ lim

h→`

b f id5 ln~r3DL3!21. ~14!

For the case of a 2D classical ideal gas, a regularizatio
needed. We leth→0, while keeping the 2D area densi
fixed, r2D5N/A, and subtract the diverging contribution
obtain

b f id
2D[ lim

h→0
Fb f id2 ln

L

hs G5 ln~r2DL2!21. ~15!

2. Virial expansion

Virial coefficients for hard disks are known analytical
and numerically@58,59#. In an inhomogeneous system, th
virial coefficients becomefunctionsof the external param
eters, in our case on the plate separation distanceh. Com-
puting the second virial coefficient yields the first correcti
to the excess free energy. Written in reduced units, the v
expansion of the excess free energy per particle for the
h,1 is explicitly given by

b f ex5
p

2
r2Ds2S 12

h2

6 D , ~16!

wherer2D5N/A. The virial corrections to the pressures d
fined in Eqs.~6! and ~5! are
-
f

,
he
l
e
r

the

is

al
se

-

bplat
rH

511
p

2
rH~11h!S 12

h2

6 D1O~rH
2 !, ~17!

h

h11

bptrans
rH

511prH~11h!
h2

6
1O~rH

2 !. ~18!

3. Close packing

As described above for the 2D and 3D bulk limits, th
hard sphere system freezes into respective close-pa
structures. Considering hard spheres confined between p
it is therefore natural to ask for the close-packed struct
which provide the high-pressure limit of our model. This w
considered by Pansu, Pieranski, and Pieranski@60#.

Stackingn layers of square or triangular symmetry giv
candidate close-packed structures at discrete values of
separation distanceh. These packings can be considered
slabs of a~close-packed! 3D fcc crystal. The slabs are para
lel to lattice planes with small indices as the~111! direction
~here called triangular layer,n) or ~110! direction ~square
layer, h). For n stacked square layers the densityrH at
discrete plate separation distancesh is given by

rH~nh !5
A2

11~A221!/n
, ~19!

h~nh !5~n21!/A2. ~20!

In the case ofn triangular layers, the values are

rH~nn !5
A2

11~A3/221!/n
, ~21!

h~nn !5A 2
3 ~n21!. ~22!

Of course, in the limit ofn→` both solutions approach
the density of a close-packed 3D fcc crystal, name
rH( fcc)5A2. For small values ofn, these structure are ex
pected to be close packed, but forn*5 distorted triangular
layers may be more dense than thenh crystal, even at plate
separationsh(nh).

Quite surprisingly, there are several crystalline structu
known to exist that interpolatecontinuouslybetween square
and triangular layers. One complete sequence of clo
packed structures connecting 1n via 2h to 2n is depicted
in Fig. 2. The crystal interpolating between 1n and 2h is
called the buckling structure, that between 2h and 2n the
rhombic phase. The densities of these sphere packings
calculated in Ref.@60#. For the buckling structure (b) inter-
polating between 1n and 2h for 0<h<1/A2'0.707, the
density is given by

rCP~h!5
2

~h11!A324h2
. ~23!

The rhombic crystal (r ), which is close packed for
0.707'A1/2<h<A2/3'0.816 interpolating between 2h
and 2n layers, has a density
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55 7231PHASE DIAGRAM OF HARD SPHERES CONFINED . . .
rCP~h!5
4~12h!

A324h2
. ~24!

Here we note that buckling structures appear not only a
perturbation of a 2D crystal@13,14#, but are present in quite
different physical systems, as amphiphilic membranes@61–
63# or Langmuir films@64#. Both the buckling and the rhom
bic structure are highly degenerate. Each of them may ap
in three forms: The strictly periodic linear and zig-zag stru
tures are depicted in Fig. 2, but a random alternation of b
is also conceivable and does not cost packing volume.
situation is quite similar to that in three dimensions, whe
we have the degeneracy of close packing with respect to
stacking sequence.

As regards larger plate separations withn>3 layers, the
problem of the densest sphere-packing becomes increas
complicated as many other candidate packings have to
taken into account. First, there are the two prism structu
@65,20# interpolating betweenn andn11 square layers, and
interpolating betweennn and (n11)n. The latter case re
duces forn51 to the buckling structure. Second, there is t
n-layered rhombic structure, that interpolates betweennh

and nn layers. Third, there is a structure interpolating b
tweennn and 3nn via division of eachn layer into three
triangular sublattices~see Fig. 11a of Ref.@60#!. This struc-
ture is not close packed for the 1n-3n transition.

III. MONTE CARLO SIMULATION TECHNIQUES

We performed a standard canonicalNVT ensemble simu-
lation @66#. The number of particlesN ranges typically from
N5192 to 4608 to check systematically for finite-size e
fects. Particle coordinates are analyzed to obtain the lat
pressure as a function of density, and hence the equatio
state, from which phase coexistence is determined by M
well’s construction equating lateral pressures and chem
potentials. Compression and expansion runs have been

FIG. 2. The various close-packed structures. Left column: 1n,
linear buckling, zigzag buckling. Right column: 2h, linear rhom-
bic, zigzag rhombic, 2n ~from top to bottom!. Spheres from the
lower layer are dark shaded, while spheres from the upper laye
transparent.
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pared in order to check for sufficient equilibration. As a con
sistency check, we also used the single occupancy c
method@67,68# ~see also@69#! for h50.85, finding the same
phase boundaries.

Periodic boundary conditions in lateral direction ar
implemented using a parallelogram-shaped box that varies
shape during the simulation. This is necessary to make
possible for any crystal structure to fit in the simulation box

The ground area of the simulation box in the lateralxy
plane is a parallelogram with anglea, aspect ratio
q5Ly /Lx , and areaA5LxLy , see Fig. 3~a!. Perpendicular
to the parallelogram the box has the heighth. A 3D view of
the simulation box is plotted in Fig. 3~b!. The box aspect
ratio q5Ly /Lx and anglea vary in the course of the simu-
lation to allow for a structural rearrangement of the system
After each system update~one attempted move per particle!
one box Monte Carlo move is done. This collective mov
consists of the following steps: First, one generates random
new trial valuesq8 anda8. Then the box and particle coor-
dinates are updated to fit into the new box shape. Finally, t
nonoverlap criterion is checked and, depending upon the
sult, the new configuration is accepted or rejected. There i
‘‘squeezing’’ move, that changesq at constanta and there is
a ‘‘shearing’’ move, that changes the anglea at constant box
aspect ratioq.

While the transversal pressure is obtained via the wa
theorem, the lateral pressure is efficiently calculated by usi
the probability density of a successful infinitesimal rescalin
of all lateral coordinates with unchangedz coordinates. See
Appendix A for more technical details.

IV. MONTE CARLO RESULTS

A. Phase diagram

In Fig. 4 the Monte Carlo data for the phase diagram
shown as a function of densityrH and plate separation dis-
tanceh @37#. The different system sizes are denoted by di
ferent symbols, indicating that the dependence on syste
size is only weak. Altogether there are six thermodynam
cally stable phases: fluid phase (f ), one triangular crystal
layer (1n); buckling phase~b!, two square crystal layers
(2h); rhombic phase (r ), two triangular crystal layers
(2n). At the left ~low-density! side, the phase diagram is
enclosed by the fluid phase; at the right~high-density! side it
is limited by the close-packed states residing on the dash
line given by Eqs.~23! and ~24!. Between the fluid and the
forbidden region there are five crystal phases, whose relat
stabilities are determined by the density and the plate se
ration distance.

In Fig. ~5! the phase diagram is shown using the later
pressure instead of the density as free thermodynamic va

re

FIG. 3. Shape of the simulation box:~a! parallelogram in the
lateral plane;~b! 3D view of the box;~c! periodic boundary condi-
tions, and identification of boundary points.
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7232 55MATTHIAS SCHMIDT AND HARTMUT LÖWEN
able. The close-packed states are shifted to infinite lat
pressures. Coexistence density intervals collapse onto l
The freezing transition is observed to appear arou
plat57–9. Detailed numerical data for all transitions a
given in Ref.@70#. Let us discuss some features of the tra
sitions in more detail.

~i! Fluid-1n, 0,h,0.57. For h50 we recover the
first-order freezing transition of the hard disk fluid into o
triangular crystal layer. The same phase transition also
curs for finite values ofh up toh50.55. Thef -1n transition
vanishes ath50.57 with a triple point (f ,1n,b).

~ii ! 1n-buckling, 0,h,0.57. In the sameh interval as
the f -1n transition, we find that upon increasing the dens
a structural phase transition occurs from one triangular la
(1n) to the buckling phase (b), which is stable up to close
packing. For values ofh close to zero the phase transition
shifted to high densities and disappears forh50.

~iii ! Fluid-2h, 0.57,h,0.86. In the interval
0.57,h,0.86 the fluid freezes into two square crystal laye
(2h). Again the boundaries of theh interval are gained by

FIG. 4. Monte Carlo result for the phase diagram of ha
spheres of densityrH confined between parallel plates with sepa
tion distanceh: N5192 ~1!; 384,512~L!; 576 (n); and 1024,
1156 (h). Solid lines are guides to the eye. Thin horizontal lin
represent two-phase coexistence. See also Fig. 16.

FIG. 5. Same as Fig. 4, but using the lateral pressure instea
the density as the free thermodynamic variable. The reduced p
sure is given in units ofkBT.
al
s.
d

-

c-

er

s

extrapolation. The density discontinuity is larger than f
freezing into the triangular layer.

~iv! 2h-b, 0.57,h,0.71. By accident the triple poin
( f ,2h,b) lies within statistical uncertainty at the same val
of h50.57 as the triple point (f ,1n,b). Therefore we can-
not resolve whether the former occurs at a higher plate se
ration, implying a fluid-buckling transition, or at a lowe
separation, implying a 1n-2h transition. The upper bound
of the intervalh5A1/2'0.71 is again obtained by plausibl
extrapolation to the lines of close packing. It should be e
phasized that the buckling crystal is only stable at values
h where it also constitutes the close-packed structure. A
turns out, the order of the 2h-b transition is an interesting
and very subtle question. For its investigation, we will co
sider the finite-size dependence of the order-parameter
tuations in Sec. IV B.

~v! 2h-r , 0.71,h,0.8. The data for phase transition
to the rhombic phase are gained by considering the beha
of the order parameters; see Sec. IV B. No anomalies in
equation of state could be detected. The Monte Carlo r
were performed at constantrH and varying plate separatio
h. By analogy we conclude that the order of the 2h-r tran-
sition should be equal to the order of the 2h-b transition.

~vi! 2h-2n, 0.8,h,0.86. A pronounced density
jump separates the 2h from the 2n phase.

~vii ! 2n-r , 0.8,h,0.81. An almost horizontal 2n-r
coexistence region is observed.

~viii ! Fluid-2n, 0.86,h,1. For the largest plate sepa
ration distances considered in this study, we find a stro
discontinuous freezing transition to two crystalline layers

B. Order parameters Cmn

In order to identify the emerging crystalline phases,
introduce a set of double-indexed order parametersCmn de-
fined via

Cmn[KN21(
a51

N

uCn~a!uexp@ im argCn~a!#L , ~25!

Cn~a![Na
21(

b
exp~ inQab!. ~26!

Here ^ & denotes a canonical average, and the sum is o
Na neighbors of particlea possessing lateral distance
smaller than 1.2s and having opposite signs in theirz coor-
dinates,Qab is the angle between the bond of particlesa
andb and an arbitrary axis.

The fluctuations of the order parameters are measure
means of an order parameter susceptibility

xmn~N!5N~^uCmnu2&2^uCmnu&2! ~27!

depending on the particle numberN. It will be used to in-
vestigate the order of weak phase transitions@56,57# ~see
also @71#!.

Apart from free energy calculations, phase boundar
also can be calculated from a knowledge of the depende
of the order parametersCmn on the variablesrh andh. An
abrupt change in the order parameter signals a phase tr
tion. This procedure proves useful in cases where there i

-

of
s-
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55 7233PHASE DIAGRAM OF HARD SPHERES CONFINED . . .
significant anomaly in the equation of state observed, he
for very weak first-order and second-order phase transitio
We relied on that technique for the calculations of t
2n-r , 2h-r , and 2h-b phase boundaries~see Fig. 6!. Once
the phase boundaries are determined, from knowledge o
order parameter susceptibilityxmn the order of the phase
transition can be concluded. The following two cases
conceivable:~i! If a phase transition werecontinuousin the
thermodynamic limitN→`, diverging fluctuations would be
observed at the critical point, andxmn(rH→rH

crit)→`. Of
course, diverging fluctuations are encountered only in
thermodynamic limit, which is not directly accessible
computer simulations. Hence we study the dependenc
xmn on the system sizeN, and look for an emerging singu
larity as the system becomes larger.~ii ! In thediscontinuous
case, where the correlation length remains finite, entering
coexistence region would simply mix the susceptibilities
the coexisting phases according to the relative weight of b
phasesxmn(rH)5lxmn(rH

(1))1(12l)xmn(rH
(2)), where the

superscripts 1 and 2 stand for the low- and high-density
existing phases, andl5(rH

(1)/rH
(2)) (rH

(2)2rH)/(rH
(2)2rH

(1))
is the ratio of the number of particles in phase 1 to the to
number of particles in both phases. The functional dep

FIG. 7. Behavior of the order parameterC21 across 2h—the
buckling phase boundary ath50.62.

FIG. 6. Behavior of the order parametersC14, C21, andC23 in
three different phases (2h, r , and 2n) vs h for rH51.134.
ce
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he

e

e
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e
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l
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dence ofxmn on rH is linear, no divergence is encountere
See Appendix B for a discussion of different ensembles.

Let us now examine the 2h-b transition in detail, using
finite-size scaling of the order parameter susceptibility. F
the investigation of the 2h-b transition the quantityC21
(m52,n51) is useful, as it is larger than zero for ‘‘kite’’-
shaped particle arrangements~present in the zigzag or ran
dom buckling phase! and vanishes for the square configur
tions ~exhibited typically in stackednh phases!.

The order parameterC21 is shown in Fig. 7 for fixed plate
separation distanceh50.62 as a function of densityrH . The
functionC21(rH) increases in a relative small density inte
val rH50.8720.9 from a value close to zero to a finite valu
of about 0.04. We find that the fluctuations on the lo
density side vanish with a 1/AN size dependence in the the
modynamic limit N→`. We thus conclude, that the 2h
phase is thermodynamically stable for low densities. In c
trast, on the high-density side, no decrease ofC21 as a func-
tion of particle numberN is observed; from the date fo
finite-size systems we can conclude that a value significa
greater than zero is reached asN→`. The buckling structure
with only twofold rotational symmetry is present. Hence
phase transition occurs between 2h and b, signaled by a
rapid increase of the order parameterC21 as a function of
densityrH . As a function ofN, the increase is more rapi
~with a larger slope! and is shifted toward higher densities

In Fig. 8 the susceptibilityx21 as a function of density
rH is shown for the plate separation distanceh50.62. The
susceptibility has small values in the low-density 2h phase
and in the high-density buckling phase. Between the p

FIG. 8. Order parameter susceptibilityx21 as a function of den-
sity rH at plate separation distanceh50.62. No divergence of the
maximal value as a function of particle numberN is observed.

FIG. 9. Fluid phase (f ); h50.9 andN51056.
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7234 55MATTHIAS SCHMIDT AND HARTMUT LÖWEN
phases a pronounced maximum occurs that can be in
preted in terms of fluctuations driving the system from o
phase to the other. In contrast to the finite-size dependenc
the order parameter itself, its susceptibility shows only
weak dependence on system size. Although statistical er
are present, there is no indication up toN54608 of a diver-
gence in the thermodynamic limit. We thus conclude that
phase transition between the 2h and the buckling structure
is of first order. The density jump is smaller than the reso
tion of the simulationDrH50.001.

C. Typical configurations of six phases

In the following we present snapshots of typical partic
configurations generated by Monte Carlo simulation. T
particles are depicted in two different shades to empha
their position in thez direction: Particles from the uppe
half-space~with positive z coordinates! are light shaded,
while particles from the lower half-space~with negativez
coordinates! are dark shaded.

In the sequence of plots~9!–~14! each configuration is
shown four times: The main picture in the top left corner i
view perpendicular to the walls illustrating the lateral ord
Below it there is a side view which demonstrates the thi
ness of the confined system. On the right side of each fig
two perspective views are shown, which are seen along
white arrows in the main picture~top left!. The upper per-
spective view corresponds to the left arrow, the bottom o
to the right arrow. Both views are seen under an azimu
angle of215°. For the buckling (b) and the rhombic (r )
phases~Figs. 11 and 13! the two projections do differ quali
tatively, while they are similar for the more symmetr
phases~f , 1n, 2h, and 2n!. In all casesdefect-freeconfigu-
rations are chosen. Also, for plotting convenience, confi
rations with box aspect ratios away from unity~equilateral!
were chosen. We now briefly discuss the typical features
each configuration.

FIG. 10. One triangular crystal layer (1n); h50.2 and
N5576.

FIG. 11. Buckling phase (b) at h50.4 andN5576.
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~i! Fluid phase (f ), Fig. 9. Neither translational nor ori
entational ordering is observed. The particles are loca
preferentially near one of the walls.

~ii ! One triangular crystal layer (1n phase!, Fig. 10. At
higher density the system freezes into a lateral ordered
tice. The up-down symmetry is unbroken, the particles be
randomly distributed inz coordinates.

~iii ! Buckling phase (b), Fig. 11. Ordering in thez direc-
tion sets in: There are meandering lines of upper and lo
particles. The lateral structure is a distorted 1n lattice, and
the perspective views are no longer equivalent. Symme
breaking occurs, the system now having only twofold ro
tional symmetry.

~iv! Two square crystal layers (2h phase!, Fig. 12. A
fourfold rotational symmetry is recovered.

~v! Rhombic phase (r ), Fig. 13. The structure is not only
a distorted 2h lattice, but constitutes an individual phas
Symmetry breaking has occurred, so that the two crystal
rections are no longer equivalent.

~vi! Two triangle crystal layers (2n phase!, Fig. 14. A
sixfold ~threefold! rotational symmetry is present. This stru
ture can be obtained by diffusive rearrangement of partic
from the (r ) phase.

V. FREE-VOLUME THEORY

In this section we propose a simple theory for the co
fined hard sphere system, consisting of a cell model
proach to the crystalline phases and an effective-disk di
eter approach based on the Born-Green-Yvon hierarch
the confined fluid phase. Both approaches are subsumed
der the term free-volume theory, as they are characterize
stringent approximations to the interparticle correlations a
focus on the free volume accessible to a single particle.

A. Cell model for crystalline phases

The cell model@72–75# exploits the physical picture of a
solid, with particles localized around given lattice sites.

FIG. 12. Two square crystal layers (2h); h50.85 and
N51056.

FIG. 13. Rhombic phase (r ).
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enables one to determine the thermodynamically stable c
talline structure and its equation of state approximately. F
thermore, it provides an exact upper bound on the free
ergy. The cell model has been applied in various conte
including glasses@76# and systems displaying rotational d
grees of freedom@77,78#. Despite the relative simplicity o
the model, for the 3D hard sphere crystal the predicted eq
tion of state yields remarkable agreement with simulati
especially at high densities~see also@79# for comparison
with density-functional theory, and@80# for a discussion of
high-density properties, as well as@81# for a similar ap-
proach!. Also in the context of confined hard spheres, so
solid-to-solid transitions have been calculated@72# within the
cell model approach.

Applying the cell model to our system, we first impose
candidate lattice structure, given by a set of lattice s
$Ri%, compatible with the overall densityrH and plate sepa
ration H. In general, this structure will depend on a set
free geometric parameters,Ri($aj%), theaj being angles, ra-
tios of lattice constants, etc. Second, the integration reg
of each particle in the configurational integral is restrict
from the total volumeV to a smaller region in space aroun
each lattice siteRi , called the free-volume cellVi . With
v f being the spatial volume of one cell, the express
2kBT ln(vf /L

3) provides an upper bound on the exa
~Helmholtz! free energy per particle. To optimize this boun
we minimize it with respect to the set of free paramet
$aj%.

The calculation of the free-volume cell involves tedio
elementary geometrical considerations. The volume of
cell has to be calculated for any given crystalline structu
Via elementary geometrical calculus we obtain ananalytical
expression for the free volumev f for the 1n, b, and 2h
phases. It is given by

v f /s
35

h11

96vHd
F(
i50

3

Q~x1,i !x1,i
3 2(

i50

3

Q~x2,i !x2,i
3 G ,

~28!

f52kBTln~v f /L
3!, ~29!

vH5rH
215a1a2~11h!/2, ~30!

whereQ denotes the Heaviside step function, and

x6,i5P6,i2Ab121b2
21d2. ~31!

We have defined scaled lattice constantsb15a1/2 and
b25a2/2, andd is the scaled distance between the two lay
(d,h), see Fig. 15. The coefficientsP6,i are given by

FIG. 14. Two triangular crystal layers~2n!; h50.85 and
N5576.
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P1,051hd1b1
21b2

2 , ~32!

P1,152hd1b1
22b2

21b2 , ~33!

P1,252hd2b1
21b11b2

2 , ~34!

P1,351hd2b1
21b12b2

21b2 , ~35!

P2,052hd2b1
21b12b2

21b2 , ~36!

P2,151hd2b1
21b11b2

2 , ~37!

P2,251hd1b1
22b2

21b2 , ~38!

P2,352hd1b1
21b2

2 . ~39!

As special cases, the result for two square layers (2h) is
obtained by requiring equality of both lateral lattice co
stants,b15b2. For one triangular layer (1n), the vertical
layer spacing is set to zero (d50), and the ratio of the latera
lattice constants is that of an equilateral triangle, hen
b15b2A3/2.

A modification is done for the description of the 1n phase
@72#, where we inserted a different effective diamet
s1n
* 5sA12h2/6 into the expression for the 1n free vol-

ume in order to enlarge the free volume for two touchi
spheres with differentz coordinates. This is further justified
at the end of Sec. V B. For the rhombic and 2n phases, we
rely on a numerical strategy, details of which are given
Ref. @70#.

Both the analytical and numerical solutions for the fr
energy still depend on a set of free parameters. The buck
structure depends on the ratio of lattice constantsa1 /a2 and
on the layer spacingd. The rhombic structure depends als
ond and on the angle of the rhombus. To optimize the up
bound on the free energy, we numerically maximize the f
volume v f with respect to the free lattice parameters. A
interesting point concerns the stability of the linear buckli
with respect to the zigzag buckling phase. Remember
the former is built up from rectangles, while the latter
composed of kites. A kite contains one additional degree
freedom, namely, the position of the center on the symme
axis. It turns out that the maximal free volume for the kite
attained if it equals the free volume of the rectangle. Th
within the cell model both phases are equally stable, e
away from close packing.

B. Effective-diameter liquid theory

We now focus on the fluid state. For large plate sepa
tions a theory was established using the Percus shiel
approximation @82#, which can be solved analytically

FIG. 15. Lattice constants of the buckling structure.
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7236 55MATTHIAS SCHMIDT AND HARTMUT LÖWEN
@83,84#. Here we present a theory that predicts the equa
of state and the density profile of the confined hard sph
fluid in the complementary regime of small plate separatio

The idea is to map the confined system onto well-kno
strictly two-dimensional hard disks with an effective partic
diameters* . To determine the effective diameter, our sta
ing point is the Born-Green-Yvon~BGY! hierarchy@85#, ap-
plied to an inhomogeneous situation with nonvanishing
ternal potential@86#. In order to close the BGY hierarchy, w
approximate the inhomogeneous pair correlation function
contact by a constant, which is taken self-consistently fr
the 2D hard disk equation of state, given within scale
particle theory@87,88#. We present an analytical solution fo
H,2s as well as explicit expressions for the density profi
and the equation of state.

In a liquid exposed to a nonvanishing external poten
V ext(r ), the BGY hierarchy relates the single-particle dens
r(r ) to the pair distribution functiong(r ,r 8) as follows@86#:

2kBT¹ lnr~r !5¹Vext~r !1E dr 8r~r 8!g~r ,r 8!¹V~r ,r 8!.

~40!

HereV(r ,r 8) is the pair interaction potential and¹[]/]r . In
the case of hard spheres confined in a hard external pote
~which only takes on the values zero or infinity!, Eq.~40! can
be written as

¹ lnr~r !5s21E dr 8r~r 8!g~r ,r 8!

3d~ ur2r 8u2s!~r2r 8! if Vext~r !50,

~41!

r~r !50 if Vext~r !5`. ~42!

A simplification arises from the presence of thed function
on the right-hand side of Eq.~41!, so that only the pair cor-
relationsg(r ,r 8) at contact, i.e., ur2r 8u5s enter in the de-
termination of the one-particle density distribution.

In the case of parallel planar walls, due to symmetry,
fluid density profile depends only on the coordinatez per-
pendicular to the walls,r(r )5r(z) while the pair distribu-
tion depends on bothz coordinates and on the magnitud
r5ur2r 8u, henceg(r ,r 8)5g(z,z8,r ). In order to reduce the
notational effort, we define h85hs,r05N/(Ah8)
5h/(h11)rHs23, and pressuresP lat52(h8)21]F/]A,
andP trans52A21]F/]h8.

Transforming Eq.~41! to cylindrical coordinates, we ob
tain the following exact nonlinear integrodifferential equ
tion for the density profile:

d

dz
lnr~z!52pE

z2s

z1s

dz8 r~z8!g~z,z8,s!~z2z8!. ~43!

Alternatively, Eq.~43! can be written in pure integral form

r~z!5rW22pE
z2s

z

dz1 r~z1!

3E
z

z11s

dz2 r~z2!~z22z1!g~z1 ,z2 ,s!, ~44!
n
re
s.
n

-

-

at

-

l
y

tial

e

where the wall contact density is defined as

rW :5r~1h8/2!5r~2h8/2!. ~45!

Once the density profile is known, the lateral and transve
pressures can be computed~see Appendix A! via

bP lat5r01
p

2h8
E

2h8/2

1h8/2
dz1 r~z1!E

z12s

z11s

dz2 r~z2!

3@s22~z22z1!
2#g~z1 ,z2 ,s!, ~46!

bP trans5r01
p

h8
E

2h8/2

1h8/2
dz1 r~z1!

3E
z12s

z11s

dz2 r~z2!~z22z1!
2g~z1 ,z2 ,s!.

~47!

The ideal-gas contribution is

r0 :5
1

h8
E

2h8/2

1h8/2
dz r~z!, ~48!

Of course, the set of equations~43!, ~46!, and~47! is not
a closed one, as the inhomogeneous contact pair distribu
g(z,z8,s) is in general unknown. A closure approximation
estabished by aneffective-diameter approximation. First, we
neglect the spatial dependence of the pair distribution fu
tion

g~r0 ;z1 ,z2 ,s!'g* ~r0!, ~49!

and second, we propose a self-consistent scheme for the
termination ofg* as a function of the thermodynamic var
abler0 as follows:

We restrict ourselves to a narrow gap withh8,s. In this
regime, due to the vanishing density outside the gap@Eq.
~42!# the integration limits in thez8 integral in Eq.~43! and
in the z2 integrals in Eqs.~46! and ~47! are significantly
simplified to @2h8/2,h8/2#.

The density profile can be calculated analytically via E
~43!, which reads under the approximation~49!

d

dz
lnr~z!52pE

2h8/2

1h8/2
dz8 r~z8!g~z,z8,s!~z2z8! ~50!

'2pg* ~r0!E
2h8/2

1h8/2
dz8 r~z8!~z2z8!

~51!

52pg* ~r0!r0h8z. ~52!

The solution is

r~z!5
r0h8

N exp@a~r0!z
2#, ~53!

N5Ap/a~r0! erfiSAa~r0!h8

2 D , ~54!

a~r0!5pr0h8g* ~r0!, ~55!
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the imaginary error function is given b
erfi(z)5p21/2 *2z

z dz8 expz82. The lateral compressibility is
obtained through Eq.~46!,

bP lat

r0
511

p

2
r0h8g* ~r0!@s* ~r0!#

2, ~56!

@s* ~r0!#
2[s22E

2h8/2

h8/2
dz1

r~z1!

r0h8

3E
2h8/2

h8/2
dz2

r~z2!

r0h8
~z12z2!

2, ~57!

where we have defined an effective diameters* . It can be
calculated explicitly by inserting the density profile given
Eqs.~53!–~55! into Eq. ~57!. The result is

@s* ~r0!#
25s2 1

1

a~r0!
2

h8 exp@a~r0! h82/4#

Ap a~r0! erfi@Aa~r0! h8/2#
.

~58!

Having solved for the density profile, we are left with th
problem of approximate determination of the functi
g* (r0). As a functional form forg* we use the expressio
from 2D scaled-particle theory@87#, which is in sufficiently
reasonable agreement with Monte Carlo data@89#

g* ~r0!5
12 1

2h* ~r0!

@12h* ~r0!#
2 . ~59!

The problem is thereby carried over to the determination
an effective 2D packing fractionh* of the slab system de
pendent on the average densityr0. Comparing the latera
compressibility, Eq.~56!, with the 2D virial theorem, we
make the plausible assumption to build up a 2D pack
fraction with the effective diameters* ,

h* ~r0!5
p

4
r0h8@s* ~r0!#

2. ~60!

Inserting Eq.~60! into Eq. ~59! yields, together with Eqs
~55! and~58!, the desired relation betweeng* andr0; it is an
implicit equation for the determination of the functio
g* (r0). The solution can be used to compute the excess
energy via integration of the scaled-particle 2D compressi
ity

b f ex~r0!5E
0

r0 dr08

r08
@ZSPT~r08!21#, ~61!

ZSPT~r0!5
1

@12h* ~r0!#
2 . ~62!

Let us finally justify the insertion of an effective diamet
into the expression for the cell model result for the 1n
phase. An effective 2D disk diameter is obtained through
~57! once the density profile is known. As the 1n free-
f

g

ee
l-

.

volume cell is a hexagonal prism the density profile is co
stant with respect to the transversez coordinate. Hence Eq
~57! becomes

@s* ~r0!#
25s22E

2hs/2

hs/2

dz1E
2hs/2

hs/2

dz2~z12z2!
2 ~63!

5s22
s2h2

6
. ~64!

Via this modification, the effect that two spheres with diffe
ent z coordinates can come laterally closer than their h
sphere diameter is taken into account.

C. Phase diagram and discussion

In Fig. 16 the theoretical phase diagram of confined h
spheres is presented. It is calculated using the cell mo
description of the solid phases and the effective-diameter
proximation for the liquid phase. The theoretical predictio
are to be compared with the simulated phase diagram sh
in Fig. 4.

The agreement forh50 ~hard disks! is enforced by add-
ing the suitably chosen constantC51.8 to all solid entropies.
As all solid free energies are shifted by the same amo
solid-solid coexistence is unaffected by the introduction
the fitting constantC.

The shapes and the positions of thef -1n and 1n-b co-
existence regions are in pretty good agreement with
simulations. Also the disappearance of the 1n-b region to-
ward the high-density limit ash→0 is captured correctly.
However, for values 0.6,h,0.72, a strongly first-order
fluid-buckling freezing transition appears, which does n
match the simulation. Also, the slope of theb-2h coexist-
ence line is negative in cell theory, but is positive in sim
lation. ~This implies ahigh-densitybuckling phase in coex-
istence with a low-density square phase in reality.! The

FIG. 16. Cell theory result for the phase diagram of hard sphe
of densityrH confined between parallel plates with separation d
tanceh. Six phases occur~fluid, 1n, b, 2h, r , and 2n.) The
closed-packed density is marked by a dashed line. Thin horizo
lines represent two-phase coexistence, and dotted lines repr
situations with three coexisting phases. To be compared with
MC simulation result shown in Fig. 4.
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7238 55MATTHIAS SCHMIDT AND HARTMUT LÖWEN
density gap between the 2h and the buckling phase is minis
cule, e.g.,DrH50.000 47 ath50.72, compatible with the
simulation. The agreement of the fluid-solid coexisten
grows worse ash increases further up to unity, as we map
multilayer fluid onto a single-layer fluid. The 2h-r density
jump is overestimated, but the weakness of the 2n-r transi-
tion is predicted correctly. As in the case of theb-2h tran-
sition the slopes of the 2n-r lines have the wrong sign~see
also the detailed plot in Fig. 17!. The relative extent of sta
bility of both close-packed phases,b and r , is in agreement
with MC data. In conclusion, while the topology of the pha
diagram is reproduced correctly, the overall agreemen
only semiquantitative, since some details are not predic
correctly.

A final remark concerns three-phase coexistence: In
2D and 3D bulk limits, the Gibbs phase rule permits tw
coexisting phases, as there is only one free thermodyna
variable, namely, the density. The existence of surfa
changes this result, due to the additional freedom introdu
by the transversal pressure. In the ensemble of prescr
wall separation distance the pure phases will in general e
different pressures on the plates. Hence a state with t
coexisting phases can be uniquely decomposed into the
phases if the average density and and transversal pressu
known.

VI. CONCLUSION

In conclusion, we investigated the freezing transition
confining geometry focusing on the hard sphere model c
fined between parallel plates. We demonstrated that free
is drastically affected by confinement. Because of the in
mogeneity, the uniqueness of the~close-packed! crystalline
state is lost and a cascade of different solids compete for
thermodynamically stable state. The close-packed config
tions are also thermodynamically stable at lower densi
away from close packing, and nontrivial phase transform
tions are encountered between phases where the particle
be very efficiently packed in space, and phases that exh
less efficient packing, but possess higher symmetries.

With Monte Carlo computer simulation we have show
that, besides the strongly discontinuous freezing transitio
the confined fluid, there occur both very weak and stro
first-order phase transitions between different crystall

FIG. 17. Enlargement of Fig. 16. The MC data are shown
points.
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structures. In particular, the transition from two square cr
talline layers to the buckling structure was investigated
detail. Symmetry considerations cannot rule out a continu
transition, and no van der Waals loop could be resolved fr
the equation of state. However, the order parameter fluc
tions measured by means of a susceptibility remain finite
the phase transition is approached. This observation is c
sistent with a first-order transition.

The data from computer simulations were compared w
free-volume theory, consisting of a cell model for the cry
talline states and a mapping based on the BGY hierarch
the fluid phase in slab geometry on an effective 2D hard d
system. This approach is able to achieve striking similarit
for the topology of the confined hard sphere phase diagr
Even a partial quantitative agreement was found. The den
jumps are generally overestimated, but are of the correct
der. The prediction for the freezing transition grows wor
with increasing plate separation distance and the slope
some solid-to-solid coexistence lines have the wrong sign
these cases correlation effects must be considered in a m
sophisticated way. The model can be generalized in differ
directions, a detailed discussion is given in Ref.@65#.

As an outlook, it would be highly desirable to verify ou
theoretical predictions experimentally in samples of ste
cally stabilized or highly salted colloidal suspensions. Wo
along this line is in progress@20#.

Furthermore, it would be interesting to apply densit
functional theory of freezing to the confined hard sphere s
tem. In particular, Rosenfeld’s hard sphere functional@90#
should give relieable data in a situation between three
two spatial dimensions@91,92#.
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APPENDIX A: PRESSURES

In the following an efficient means of calculating the la
eral and transversal pressures by computer simulation is
sented. It is based on the relation of the pressure for h
particles to the probability density of a successful infinite
mal volume contraction of the whole system. We introdu
the concept of a system volume being scaled ind directions
by a factorj. Two different scalings of the system are co
sidered: ~i! scaling of the d52 lateral directions,
(jLx ,jLy ,hs); and ~ii ! scaling of thed51 transversal box
height, (Lx ,Ly ,jhs). The system volume isV(j)
5jdLxLyhs, whered51 and 2. We define aj-dependent
configurational integral for hard spheres as

Q~j!5
1

N! EV~j!
dr1•••E

V~j!
drN)

i, j
Q~ ur i2r j u2s!.

~A1!

s
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Note that the Boltzmann factor for hard spheres can be w
ten as a product of Heaviside functionsQ. For j51 we
recover the usual configurational integral.

Now the pressure can be expressed as a derivative
respect toj, namely,

bP[
] lnQ

]V
~A2!

5F 1Q ]Q~j!

]j S ]V~j!

]j D 21G
j51

.

~A3!

To calculate]Q/]j we rewrite Eq.~A1!,

Q~j!5
1

N!
jNdE

V~1!
dr1•••E

V~1!
drN) 8

i, j
Q~ ur i j ~j!u2s!,

~A4!

wherer i j (j)[r i(j)2r j (j), and scaled coordinates are use
~i! r i(j)5(jxi ,jyi ,zi), and~ii ! r i(j)5(xi ,yi ,jzi).

Then the derivative is

]Q

]j
5NdjNd21Q1

1

N!
E
V~1!

dr1•••E
V~1!

drN

3(
k, l

d@ ur kl~j!u2s#
]ur kl~j!u

]j
) 8
i, j

Q~ ur i j ~j!u2s!,

~A5!

the prime at the product symbol denotes omission of the
(k,l ). We further calculate

F 1Q ]Q

]j G
j51

5Nd1K (
k, l

d@ ur kl~j!u2s#
]ur kl~j!u

]j L
j51

~A6!

5Nd1K (
k, l

d~jkl2j!L
j51

, ~A7!

wherejkl is defined throughr kl(jkl)5s. Distinguishing be-
tween the lateral (d52), and the transversal case (d51) we
obtain the rescaling factors that bring the particles in con
with each other,

j lat,kl5S s22zkl
2

xkl
2 1ykl

2 D 1/2, ~A8!

j trans,kl5S s22~xkl
2 1ykl

2 !

zkl
2 D 1/2, ~A9!

and, using Eqs.~A7! and ~A3!, we obtain

bplat
rH

511
1

2K 1N (
k, l

d~j2j lat,kl!L
j51

, ~A10!
it-

ith

:

ir

ct

h

h11

bptrans
rH

511K 1N (
k, l

d~j2j trans,kl!L
j51

.

~A11!

The ideal gas contribution to the total pressure is given
the summand 1 after the equality signs. During the Mo
Carlo simulation the canonical averages are calculated
j,1 and then extrapolated,j→1. It should be noted that the
procedure is mainly important for the lateral case, as
transversal pressure can readily be calculated via the
theorem@38#.

Concerning the fluid free-volume theory, Eqs.~46! and
~47! are derived from Eq.~A5! by noting that, at contact
ur12u5s, for the lateral case

]

]j
ur12~j!uU

j51

5
s22~z12z2!

2

s
~A12!

and for transversal cases

]

]j
ur12~j!uU

j51

5
~z12z2!

2

s
, ~A13!

is obeyed.

APPENDIX B: PRESSURE ENSEMBLE

The discussion in Sec. IV B makes use of the canon
ensemble (NVT). One encounters different behavior of th
susceptibility for discontinuous and continuous phase tra
tions in the pressure ensemble (NplatT) and in the grand
canonical ensemble (mVT). Moreover, in each of the en
sembles apart from the natural variables, the susceptib
can be regarded as a function of the conjugated variable,
in (NVT) as a function of the pressureplat . We focus on the
(NplatT) case, the grand canonical case being similar.

The pressure ensemble is related to the constant vol
ensemble via the Laplace transform

xmn
~plat!~plat!5E dVxmn

~V!~V!e2b[platV2F~V!] . ~B1!

For a continuous phase transition, the common case
power-law divergence of both susceptibilities:

xmn
~plat!~plat!}uplat2pcritu2a, ~B2!

xmn
~V!~rH!}urH2rcritu2a8, ~B3!

with positive critical exponentsa and a8. For the discon-
tinuous case, the behavior of both quantities differs marke

xmn
~plat!~Plat!}~rH

~2!2rH
~1!!d~Plat2pcrit!, ~B4!

xmn
~V!~rH!5lxmn

~V!~rH
~1!!1~12l!xmn

~V!~rH
~2!!. ~B5!
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