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Abstract
We consider a model mixture of hard colloidal spheres and nonadsorbing
polymer chains in a theta solvent. The polymer component is modelled as a
polydisperse mixture of effective spheres,mutually noninteracting but excluded
from the colloids, with radii that are free to adjust to allow for colloid-induced
compression. We investigate the bulk fluid demixing behaviour of this model
system using a geometry-based density functional theory that includes the
polymer size polydispersity and configurational free energy, obtained from the
exact radius-of-gyration distribution for an ideal (random-walk) chain. Free
energies are computed by minimizing the free energy functional with respect
to the polymer size distribution. With increasing colloid concentration and
polymer-to-colloid size ratio, colloidal confinement is found to increasingly
compress the polymers. Correspondingly, the demixing fluid binodal shifts,
compared to the incompressible-polymer binodal, to higher polymer densities
on the colloid-rich branch, stabilizing the mixed phase.

1. Introduction

The physical properties of soft-matter systems are often influenced by size polydispersity
on mesoscopic length scales [1, 2]. In colloidal suspensions, for example, variations in
particle size can profoundly affect fluid–solid transitions [3]. In polymer solutions, chain
length (degree of polymerization) often has a broad distribution. In practice, distributions in
colloidal particle radius and polymer chain length often can be narrowed by physical selection
or special synthesis methods. However, even monodisperse polymer chains have a radius of
gyration that fluctuates in response to the surrounding environment. In this sense, polymers
in solution are fundamentally polydisperse.

Polydispersity is especially relevant in mixtures of colloids and nonadsorbing (free)
polymers, in which the polymer size sets the range of effective depletion-induced interactions
between colloidal particles. A popular basis for modelling colloid–polymer (CP) mixtures
is the Asakura–Oosawa (AO) model [4]. The AO model neglects fluctuations in chain
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conformations by approximating the polymers as effective spheres of fixed radius that are
excluded from the hard-sphere (HS) colloids. The model further ignores polymer–polymer
interactions by treating the polymer spheres as freely interpenetrating, an approximation best
justified in a theta solvent.

Despite its simplicity, the AO model qualitatively captures thermodynamic phase
behaviour observed in real CP mixtures—in particular, bulk fluid demixing into colloid-
rich and colloid-poor phases [5–8]. To address quantitative discrepancies with experiment,
several recent studies have gone further to include polymer–polymer interactions—in both
good solvents [9–11] and poor [12]—and polydispersity in polymer chain length [13–15]. In
all of these studies, however, the polymers are modelled as effective spheres of fixed size (or
fixed size distribution).

An issue that has not yet been widely explored is the influence of colloidal confinement on
polymer conformations and implications for phase behaviour of CP mixtures. Polymers near
surfaces and polymer-mediated interactions between surfaces have been examined by a variety
of theoretical approaches, including scaling theory [16–18], integral equation theory [19, 20],
classical density functional (DF) theory [21], and field-theoretic methods [22]. A far more
challenging problem is the influence on polymers of confinement to a fluctuating random
porous medium created by colloidal particles in suspension.

Numerical studies of colloids mixed with segmented polymer chains give some insight
into polymer conformations in CP mixtures. Meijer and Frenkel [23] performed Monte Carlo
simulations of hard spheres mixed with ideal (noninteracting) lattice-polymers. Dickman and
Yethiraj [24] simulated mixtures of hard spheres and off-lattice polymer chains, modelled as
freely jointed ‘pearl necklaces’ of hard spheres. Simulations such as these have revealed the
potential importance of fluctuations in polymer size and shape in CP mixtures.

Here we consider an intermediate model in which the polymers maintain spherical shape
but can adjust their radius-of-gyration distribution to the bulk colloid concentration. The
constraint of fixed polymer size is thus relaxed by endowing the effective polymer spheres
with an internal degree of freedom that can respond to colloidal confinement. We study the
phase behaviour of a model mixture of HS colloids and compressible polymers by means of a
geometry-based DF theory. Confinement-induced adjustments in polymer size are permitted
by including in the free energy functional the free energy of ideal polymers, derived from the
exact radius-of-gyration distribution of a random-walk chain.

The theory, when applied to bulk fluid phases, predicts both the demixing binodal and the
polymer size distribution as a function of colloid and polymer concentrations. For sufficiently
large polymer-to-colloid size ratio, the model displays bulk fluid demixing into colloid-rich and
colloid-poor phases, qualitatively similar to the behaviour of the AO model. Upon demixing,
however, the relatively unconfined polymers in the colloid-poor (vapour) phase coexist with
compressed polymers in the colloid-rich (liquid) phase. We find that the polymer radius of
gyration can be significantly reduced, by up to 20% or more, in the colloidal liquid phase. Cor-
respondingly, the fluid demixing binodal shifts relative to the incompressible-polymer binodal.

Next, in section 2, we explicitly define the model system. In section 3, we construct an
appropriate classical DF theory that incorporates the conformational free energy of the polymer
chains. Results for demixing phase diagrams and polymer size distributions are presented in
section 4. Finally, we conclude in section 5.

2. Model

The model we consider is a generalization of the AO model to the case of compressible
polymers. Explicitly, we consider a mixture of hard colloidal spheres (species C), of
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monodisperse radius RC , and nonadsorbing, linear polymer chains (species P), monodisperse
in length, but polydisperse in radius of gyration, RP , in a volume V at a temperature T near the
theta temperature. The restriction to a theta solvent allows the polymer chains to be reasonably
approximated as noninteracting random walks. The colloids interact via a HS pair potential:
vCC (r) = ∞, if r < 2RC , zero otherwise, where r is the centre–centre interparticle distance.
When interacting with colloids, each polymer is assumed to behave as an effective hard sphere
of radius equal to its radius of gyration: vC P (r) = ∞, if r < RC + RP , zero otherwise. Finally,
interactions between polymers vanish for all distances: vP P(r) = 0.

To fix the polymer chemical potential, it is convenient to imagine a reservoir of pure
polymer solution with which the system can freely exchange polymer (but not colloid) through
a semi-permeable membrane. The reservoir also serves as a colloid-free reference state
in which the polymer assumes an ideal radius-of-gyration distribution. Bulk fluid states
are specified by the mean colloid and polymer (reservoir) number densities, ρC and ρP

(ρr
P ), respectively. As bulk thermodynamic parameters, we use the colloid packing fraction,

ηC = (4π/3)ρC R3
C , and effective polymer packing fractions, ηP = (4π/3)ρP(Rr

g)
3 and

ηr
P = (4π/3)ρr

P(Rr
g)

3, where Rr
g denotes the root mean square (rms) radius of gyration in the

reservoir, a quantity that is directly accessible in experiments. The reservoir polymer-to-colloid
size ratio, Rr

g/RC , provides a useful control parameter for tuning interparticle interactions, and
thus thermodynamics.

3. Theory

3.1. Density functional theory

To investigate thermodynamic properties of the model system, we focus on the Helmholtz free
energy as a functional of the inhomogeneous density profiles: the colloid density, ρC(r), and
a continuum of polymer densities, {ρP (r; RP)}, indexed by RP and normalized to the mean
polymer density via V −1

∫
d3r

∫ ∞
0 dRP ρP (r; RP) = ρP . It is convenient to separate the total

free energy functional into three terms:

F[ρC(r), {ρP(r; RP)}] = Fid[ρC(r), {ρP (r; RP)}] + Fex[ρC(r), {ρP (r; RP)}]
+

∫
d3r

∫ ∞

0
dRP ρP (r; RP) fchain(r; RP; [ρC(r)]), (1)

where Fid is the ideal free energy, Fex is the excess free energy in the AO model generalized to
polydisperse (but incompressible) polymer, and fchain(r; RP; [ρC(r)]) is the local free energy
of a compressible polymer chain. The third term in equation (1) stems from the internaldegrees
of freedom of the chains and is formally equivalent to the contribution of an external potential
acting on the polymers. The ideal free energy, associated with (centre-of-mass) translational
and mixing entropy of the colloids and polymers, is given exactly by

β Fid =
∫

d3r ρC(r)[ln(ρC(r)�3
C) − 1]

+
∫

d3r
∫ ∞

0
dRP ρP (r; RP)[ln(ρP (r; RP)�3

P ) − 1], (2)

where β ≡ 1/kBT , kB is Boltzmann’s constant, and �C and �P are the respective colloid and
polymer thermal wavelengths.

The excess free energy, arising from interactions, must be approximated. For this purpose,
we adopt a geometry-based DF approach, which is immediately applicable to multi-component
systems. As a basis, we start from a recently proposed DF theory [27] for a binary CP mixture
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in the AO model, the homogeneous limit of which is equivalent to the free volume theory
of Lekkerkerker et al [7]. Here we generalize this theory [27] to mixtures of monodisperse
colloids and polydisperse polymers. Following previous work [25, 27–29], the excess free
energy is expressed in the form

β Fex =
∫

d3x �({nC
ν (x)}, {nP

ν (x)}), (3)

where the excess free energy density, �, is a function of a set of weighted densities for
colloid and polymer species. The weighted densities are defined as convolutions, with respect
to geometric weight functions of the actual density profiles, and, in the case of polymers,
integration over radius of gyration:

nC
ν (x) =

∫
d3r ρC(r)wν(x − r; RC), (4)

nP
ν (x) =

∫
d3r

∫ ∞

0
dRP ρP (r; RP)wν(x − r; RP). (5)

We use standard fundamental-measure weight functions [25, 26], wν(r; R), ν = 0, 1, 2, 3, v1,
v2, m2, for spheres of radius R, given by

w2(r; R) = δ(R − r), w3(r; R) = 	(R − r), (6)

wv2(r; R) = δ(R − r)
r

r
, ŵm2(r; R) = δ(R − r)

(
rr

r2
− 1̂

3

)
, (7)

where r = |r|, δ(r) is the Dirac distribution, 	(r) is the step function, and 1̂ is the identity
matrix. Further, linearly dependent weight functions are w1(r; R) = w2(r; R)/(4π R),
w0(r; R) = w1(r; R)/R, and wv1(r; R) = wv2(r; R)/(4π R). The weight functions have
dimensions (length)ν−3 and differ in tensorial rank: w0, w1, w2, and w3 are scalars; wv1 and
wv2 are vectors; and ŵm2 is a (traceless) matrix.

The excess free energy density in equation (3) separates naturally into three parts:

� = �1 + �2 + �3, (8)

which are defined as

�1 =
∑

i=C,P

ni
0ϕi(n

C
3 , nP

3 ), (9)

�2 =
∑

i, j=C,P

(ni
1n j

2 − ni
v1 · n

j
v2)ϕi j(n

C
3 , nP

3 ), (10)

�3 = 1

8π

∑
i, j,k=C,P

(
1

3
ni

2n j
2nk

2 − ni
2n

j
v2 · nk

v2

+
3

2
[ni

v2n̂
j
m2n

k
v2 − tr(n̂i

m2n̂
j
m2n̂

k
m2)]

)
ϕi jk(n

C
3 , nP

3 ). (11)

Here tr denotes the trace operation and

ϕi ...k(ηC , ηP ) = ∂m

∂ηi · · · ∂ηk
β F0d(ηC , ηP ) (12)

are derivatives of the zero-dimensional (0d) excess free energy, with

β F0d(ηC , ηP ) = (1 − ηC − ηP ) ln(1 − ηC) + ηC . (13)

Equations (3)–(13) completely specify the excess free energy in equation (1).
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3.2. Application to bulk fluids

For bulk fluid states, the density profiles are spatially constant. In the homogeneous limit
(ρC(r) → ρC and ρP (r; RP) → ρP (RP)), equation (1) yields the bulk fluid free energy
density:

β F

V
= ρC [ln(ρC�3

C) − 1] +
∫ ∞

0
dRP ρP(RP )[ln(ρP (RP )�3

P ) − 1]

+ φhs(ηC) −
∫ ∞

0
dRP ρP (RP )[ln α(RP ; ηC) − fchain(RP ; ηC)], (14)

which is still a functional of the polymer density distribution, ρP (RP). Here φhs(ηC) is the
excess free energy density of the pure HS system, given by

φhs(ηC) = 3ηC[3ηC(2 − ηC) − 2(1 − ηC)2 ln(1 − ηC)]

8π R3
C(1 − ηC)2

, (15)

the same result as in the scaled-particle and Percus–Yevick compressibility approxima-
tions [30], and α(RP ; ηC) is the free volume fraction, i.e., the fraction of the total volume
not excluded to the polymer by the HS colloids, given implicitly by

ln α(RP ; ηC) = ln(1 − ηC) −
3∑

m=1

Cmγ m, (16)

where γ = ηC/(1 − ηC) and the coefficients are polynomials in the polymer-to-colloid size
ratio, q = RP/RC : C1 = 3q + 3q2 + q3, C2 = 9q2/2 + 3q3, and C3 = 3q3.

It is worth noting that the free volume fraction is related to the polymer one-particle direct
correlation function,

c(1)
P (r; RP; [ρC(r)]) = −β

δFex

δρP(r; RP)
, (17)

which has its physical origin in CP correlations. Substituting our DF approximation for Fex

into equation (17) and taking the homogeneous limit, we obtain

c(1)

P (RP ; ηC) = −
∑

ν

∂�

∂nP
ν

∗ wν(RP ) = ln α(RP ; ηC), (18)

where ∗ denotes a convolution. Because our approximate excess free energy functional is
linear in the polymer density, c(1)

P (RP ; ηC) is independent of ρP(RP ), depending only on the
colloid density.

In equilibrium, the polymer density distribution in equation (14) is fixed by the Euler–
Lagrange equation for the polymers:

δ(F/V )

δρP (RP)
= µP (RP), (19)

where µP (RP) is the chemical potential of polymers with radius of gyration RP . Substituting
equation (14) into (19), we have

ln(ρP (RP ; ηC)�3
P ) − ln α(RP ; ηC) + β fchain(RP) = βµP(RP ), (20)

where ρP (RP; ηC) is the equilibrium polymer density distribution at bulk colloid volume
fraction ηC . Here we make the simplifying assumption that the chain free energy of a polymer
with given RP in the system is the same as that of an equal-sized polymer in the reservoir,
and thus independent of colloid concentration. Because the system and reservoir must be in
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equilibrium with respect to polymer exchange, the right side of equation (20) can be equated
with the chemical potential of the corresponding polymer species in the reservoir:

µP (RP ) = µr
P (RP ) = β−1 ln(ρr

P (RP )�3
P) + fchain(RP ), (21)

where ρr
P(RP ) denotes the polymer density distribution in the reservoir. Further progress is

facilitated by factoring the reservoir polymer density distribution, according to

ρr
P (RP ) = ρr

P Pr (RP), (22)

where ρr
P and Pr (RP) are the mean density and radius-of-gyration probability distribution,

respectively, of polymers in the reservoir. The advantage of equation (22) is that the probability
distribution is simply related to the chain free energy via [31, 32]

β fchain(RP ) = − ln Pr (RP) + constant independent of RP , (23)

the arbitrary additive constant being chosen to normalize the distribution:
∫ ∞

0 dRP Pr (RP ) = 1.
Combining equations (20) and (21), and using (22) and (23), we obtain

ρP (RP ; ηC) = ρr
Pα(RP ; ηC)Pr (RP ) = α(RP ; ηC)ρr

P (RP ). (24)

The mean polymer densities in the system and reservoir are now seen to be related via

ρP (ηC) =
∫ ∞

0
dRP ρP (RP; ηC) = ρr

Pαeff (ηC), (25)

where

αeff (ηC) =
∫ ∞

0
dRP α(RP ; ηC)Pr (RP ) (26)

is an effective free volume fraction. Equation (25) is a generalization of the incompressible-
polymer relation, ρP (ηC) = ρr

Pα(ηC ), from free volume theory [7, 27]. Factoring ρP (RP; ηC)

according to

ρP (RP ; ηC) = ρP (ηC)P(RP ; ηC), (27)

serves to define

P(RP ; ηC) = α(RP ; ηC)

αeff (ηC)
Pr (RP ) (28)

as the normalized radius-of-gyration probability distribution of polymers in the system.
Equation (28) makes manifest that the radius-of-gyration distribution in the system depends
on colloid concentration and differs from the distribution in the reservoir.

Finally, substituting equations (23) and (24) into (14) and rearranging, we obtain the
equilibrium bulk fluid free energy density,

β F

V
= ρC [ln(ρC�3

C) − 1] + ρr
Pαeff (ηC)[ln(ρr

P�3
P) − 1] + φhs(ηC). (29)

Equations (28) and (29) are the main theoretical results of the paper and our basis for calculating
polymer size distributions and phase behaviour in section 4. Practical implementation,
however, first requires specification of Pr (RP).

3.3. Radius-of-gyration probability distribution

To approximate the radius-of-gyration probability distribution, we appeal to the statistical
mechanics of a freely jointed chain. The configuration of a chain of N links, each link of
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length a, can be specified by a set of position vectors, {Ri} = (R0 . . .RN ), of the joints. For
a given configuration, the radius of gyration, RP , is defined by [31]

R2
P =

N∑
i=1

(Ri − Rcm)2, (30)

where Rcm = N−1 ∑N
i=1 Ri is the centre-of-mass position of the chain. Averaged over

configurations, the radius of gyration follows the probability distribution, Pr (RP ). Moments
of the distribution are defined as

〈Rn
P 〉 =

∫ ∞

0
dRP Rn

P Pr (RP ), (31)

the second (n = 2) moment being related to the rms radius of gyration of polymers in the

reservoir [31, 32], Rr
g =

√
〈R2

P 〉 = a
√

N/6. For polymers in the system, the rms radius of
gyration is defined as

Rg(ηC) =
(∫ ∞

0
dRP R2

P P(RP ; ηC)

)1/2

=
(

1

αeff(ηC)

∫ ∞

0
dRP R2

Pα(RP ; ηC)Pr (RP)

)1/2

,

(32)

which clearly varies with bulk colloid concentration. Note that Rg(ηC = 0) = Rr
g.

In general, the radius of gyration is a more appropriate measure of polymer size than
the end-to-end displacement, which is not well defined for branched polymers. However,
in contrast to the simple Gaussian distribution of the end-to-end displacement, the radius-
of-gyration distribution is nontrivial, even for ideal chains. Flory and Fisk [33, 34] first
proposed an empirical approximation for Pr (RP) based on the exact even moments calculated
by Fixman [35]. Subsequently, Fujita and Norisuye [32, 36] calculated the distribution exactly,
obtaining the analytical result

Pr (RP ) = 1√
2π Rr

gt3

∞∑
k=0

(2k + 1)!

(2kk!)2
(4k + 3)7/2 exp(−tk)

×
[(

1 − 5

8tk

)
K1/4(tk) +

(
1 − 3

8tk

)
K3/4(tk)

]
, (33)

where t = (RP/Rr
g)

2, Kn are the modified Bessel functions of the second kind, and
tk = (4k + 3)2/(8t). To confirm equation (33), we have carried out Monte Carlo simulations
of an ideal chain for N = 100 and 1000. Histograms of RP , generated from 106 independent
configurations, are in essentially perfect agreement with the analytical expression [37].

Equation (33) specifies the radius-of-gyration probability distribution and thus, together
with equation (23), the chain free energy. We emphasize that in modelling the chains as
freely jointed, and so applying the ideal-chain distribution (equation (33)) to polymers mixed
with colloids, we implicitly neglect any effect of colloidal confinement on the basic shape of
the distribution. In particular, confinement-induced nonspherical distributions are neglected,
although variation in the polymer size is allowed.

4. Results: demixing phase behaviour and polymer size distribution

The general conditions for phase coexistence are equality of the total pressure,

ptot = − F

V
+

∑
i=C,P

ρi
∂(F/V )

∂ρi
, (34)
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Figure 1. A fluid–fluid demixing phase diagram for rms reservoir polymer-to-colloid size ratio
Rr

g/RC = 0.5. Solid curve: the binodal from the present theory, taking into account polymer com-
pressibility; dashed curve: the binodal from free volume theory for the AO model with incompress-
ible polymer. Thin straight lines indicate tie lines between coexisting phases; dots indicate critical
points. (a) The reservoir representation: polymer reservoir packing fraction ηr

P versus colloid
packing fraction ηC ; (b) the system representation: system polymer packing fraction ηP versus ηC .

and of the chemical potentials for each species,

µi = ∂(F/V )

∂ρi
, i = C, P, (35)

between the coexisting phases. Equilibrium between phases I and II requires pI
tot = pII

tot and
µI

C = µII
C , equality of the polymer chemical potentials being enforced by equation (19).

In practice, bulk fluid phase diagrams can be computed as follows. The effective free
volume fraction, αeff(ηC), is first determined by substituting equations (16) and (33) into (26).
Then, for a given reservoir polymer density, ρr

P , equations (29), (34), and (35) (i = C)
are solved numerically for the coexisting colloid packing fractions, ηI

C and ηII
C . Finally,

equation (25) converts from reservoir to system representation, giving the corresponding
system polymer packing fractions, ηI

P and ηII
P .

Figures 1 and 2 present bulk fluid phase diagrams for rms reservoir polymer-to-colloid size
ratios Rr

g/RC = 0.5 and 1, in both the system and reservoir representations. For comparison,
we include demixing binodals both from the present theory, which takes into account polymer
compressibility, and from the free volume theory of the AO model with incompressible polymer.
For sufficiently high colloid and polymer packing fractions, the system demixes into colloid-
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Figure 2. As figure 1, but for Rr
g/RC = 1. Note the change in scale compared with figure 1.

rich (liquid) and colloid-poor (vapour) phases. We disregard here the liquid–solid branch of
the phase diagram, since our size ratios are sufficiently high that fluid–fluid demixing can
be assumed stable. The effect of polymer compressibility evidently is to shift the colloidal
liquid branch of the binodal toward higher polymer density, stabilizing the system against
demixing. Interpreted in terms of effective depletion-induced attraction between pairs of
colloids, polymer compression shortens the range of attraction, tending to favour mixing. In
passing, it may be anticipated that additional degrees of freedom allowing for nonspherical
polymer conformations would tend to further stabilize the mixture if, as an alternative to bulk
demixing, the polymer may simply distort its shape.

Figures 3 and 4 show the corresponding normalized polymer size distributions as a function
of radius of gyration, scaled to the rms reservoir value. For given rms reservoir size ratio,
with increasing colloid concentration, the distributions narrow and shift toward smaller radii,
reflecting compression of the polymer by the confining colloids. In the case of Rr

g/RC = 0.5,
the polymer is compressed, relative to its rms size in the reservoir, to Rg/Rr

g = 0.974, 0.938,
0.891, and 0.829 at colloid packing fractions ηC = 0.1, 0.2, 0.3, and 0.4, respectively. For
Rr

g/RC = 1, the polymer is even more strongly compressed to Rg/Rr
g = 0.915, 0.826, 0.738,

and 0.653 at the same respective values of ηC . Note that, for given ηC , P(RP ) does not depend
on ηP (nor on ηr

P ). Hence in the phase diagram, the polymer size distribution is constant along
vertical lines (in both system and reservoir representations). What changes, of course, is the
overall prefactor in ρP (RP ). This invariance is an approximate feature of the theory resulting
from the linearity of the excess free energy in polymer density. In reality, the presence of the
polymers may alter the confining structure of the colloids, in turn modifying P(RP ).
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Figure 3. The normalized probability distribution, P(RP ), of the scaled polymer radius of gyration,
RP /Rr

g for rms reservoir polymer-to-colloid size ratio Rr
g/RC = 0.5 (corresponding to figure 1).

The colloid packing fraction, ηC , increases in the direction of the arrow: ηC = 0, 0.1, 0.2, 0.3, and
0.4. Corresponding rms polymer size ratios decrease: Rg/Rr

g = 1, 0.974, 0.938, 0.891, and 0.829.
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Figure 4. As figure 3, but for Rr
g/RC = 1 (corresponding to figure 2). In the direction of the arrow,

the rms polymer size ratios are Rg/Rr
g = 1, 0.915, 0.826, 0.738, and 0.653. Note the change in

scale compared with figure 3.

5. Conclusions

We have investigated the bulk fluid demixing behaviour of a model mixture of hard colloidal
spheres and nonadsorbing polymer chains in a theta solvent. The polymer component is
modelled, on a mesoscopic level, as a polydisperse mixture of effective spheres with radii free
to adjust to allow for colloid-induced compression. The model goes beyond previous studies
by treating the polymer radius of gyration as an internal degree of freedom that is polydisperse
and varies between coexisting phases. Like all effective-sphere models, however, our approach
ignores details of the polymers on the segment level and thereby neglects any effects of polymer
shape anisotropy.

To describe the model system, we have developed a geometry-based DF theory
that incorporates polymer configurational free energy from consideration of the statistical
mechanics of an ideal (random-walk) chain. For simplicity, the polymer chain free energy
is assumed to be insensitive to colloidal confinement. Minimization of an approximate free
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energy functional with respect to the polymer size distribution yields both the equilibrium
size distribution—modified by CP interactions—and the free energy, from which we compute
bulk fluid phase diagrams. Polymer compression is found to increase with increasing colloid
concentration and polymer-to-colloid size ratio. Correspondingly, the demixing fluid binodal
shifts to higher polymer densities on the colloid-rich branch, favouring mixing.

Predictions of the theory may be tested by experiment and simulation. Although the
predicted shift of the demixing binodal due to polymer compression would appear to improve
agreement with limited experimental data near the theta point [8], more detailed measurements
are certainly desirable. Polymer size distributions could be probed using either light scattering,
by index matching the colloids (but not polymers) to the solvent, or neutron scattering by
selectively deuterating the polymer (hydrocarbon) backbones. Detailed molecular simulations
of segmented polymer chains mixed with hard spheres, along the lines of [23] and [24], could
provide the clearest tests of our approximations and predictions.

Future applications to inhomogeneous CP mixtures under the influence of external
potentials (due to walls, gravity, etc) and to liquid–solid transitions would be feasible and
worthwhile. Extensions of the theory could explore the sensitivity of the polymer chain
free energy to colloidal confinement, polydispersity in chain length, influences of anisotropic
polymer conformations, distinctions between linear and branched polymers (as in colloid–star-
polymer mixtures [38–40]), and effects of polymer nonideality in good and poor solvents.
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