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Hard sphere fluids at surfaces of porous media

Matthias Schmidt
Institut fir Theoretische Physik 1l, Heinrich-Heine-Univergitausseldorf, Universitsstrale 1, D-40225 Bseldorf, Germany
(Received 12 December 2002; published 18 August 2003

An adsorbate fluid of hard spheres is brought into contact with a semi-infinite porous matrix modeled by
immobilized configurations of freely overlapping spheres with a sharp kink one-body density distribution.
Comparison of results from a recent density-functional approach to those of our computer simulations yields
good agreement for the adsorbate density profile across the matrix surface. We show how the matrix can be
replaced by a fictitious external potential that only depends on the distance from the interface, and that leads to
the same adsorbate density profile. This potential is found to be a smooth function of distance, due to the
geometry of the matrix particles. For high matrix densities, the porous medium becomes practically impen-
etrable, and its surface behaves like a rough hard wall whose roughness decreases with increasing matrix
density.
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[. INTRODUCTION bates in porous medifll]. An explicit approximation for
mixtures of particles interacting with either hard core or
Fluids in porous media have considerable technical aévanishing interactions was given. The particular feature of
well as fundamental importang&]. Such systems are intrin- this QA-DFT approach is that the matrix is described on the
sically inhomogeneous through the presence of a disorderd@V€! Of its one-body density distribution and the free-energy
medium that can be regarded as a random external potentifeHnCtlonaI is directly the(over all matrix real|zat|or).sa\(er-
acting on the adsorbed fluid. The behavior of such a confine ged free energy. This offers great advantages: First, one

fluid may be drastically different from that of the same sub ains immediate access to matrices that are nonunifmm
; . “average second, matrices that are uniforfon averaggare
stance in bulk[1,2]. As a theoretical model to study such ge it ge

¢ i I h Id@scribed particularly simple, namely, bycanstantone-
systems, one often relies on so-called quenched-annealg@yy gensity distribution of quenched particles. This is in

(QA) fluid mixtures, where the immobilized particles of the contrast to(computationally more involvedapproaches that
quenched species constitute the matrix and the particles gfeat the matrix as an external potentiaP]. However, the
the annealed species represent the adsorbate. Various gfactical usefulness clearly depends on the quality of results.
proaches to such systems exist. In the original work[11], the structural correlations ifon
Within the framework of a lattice model the important averagé homogeneous matrices were considered and com-
problem of hysteresis in sorption isotherms was recentlpared to computer simulation results. For both hard sphere
considered using a mean-field density-functional approachnd freely overlapping sphere matrices, it was found that the
[3,4]. It was found that hysteresis can occur both with andpair correlation functions obtained from the theory are in
without an underlying equilibrium phase transition. Subsevery good agreement with simulation results. The differing
quently, a pronounced change in the desorption behavior wagatrix-matrix correlations in these models have an effect on
found if a surface of the matrix is explicitly taken into ac- the detailed structure of the adsorbate, and the theory was
count[5], and hence, direct contact with the gas reservoir isshown to describe either case well. Subsequently, the prob-
considered. lem of phase separation in porous media was treated using a
For continuum fluids similar inhomogeneous situationsSimple model for a colloid-polymer mixtufd 3]. Besides the
have been considered using integral equation theory aniractical importance of mesoscopic particles in porous me-
computer simulations. Dong, Kierlik, and Rosinberg deriveddia; this is a convenient model as it displays(alloid)
the inhomogeneous replica Ornstein-Zernike equations tgqumé—vaprc])r kf’haS? transition. Th? DFT .results wer(ra] ct:)om—d
treat problems such as the adsorption near a plane bounda?greh wit I't OSS rom a; mtigra -leq_uatlon app;]roac _ haﬁe
of a disordered matrix6]. Pizio and Sokolowskji7] used a on the replica Omstein-zermnike relations together with the

similar approach to investigate an annealed fluid in a intIikeOpt"ﬂmzed random phase approximatigdRPA) [13]. Al

pore filled with quenched hard spheres. They found that thmajor trends found in the ORPA could be reproduced by the

- h ¢ Ui | hemi I?)FT. In particular, it was found that by tuning the matrix-
matrix lowers the amount of adsorbed fluid at low chemicalyygorhate interactions either capillary condensation or

potentials and that layering occurs for high chemical potengyanoration is induced. Although these results seem promis-
tials. Subsequently, Kovalenlet al.[8] extended upon this jng "so far the theory has not yet been tested in inhomoge-
work and compared results from different integral equatiomeous situations. This is the aim of the present work.
closure relations to those from their computer simulations e use freely overlapping spheres to represent a porous
finding good agreement. medium and prescribe their density distribution to be a step
For such inhomogeneous situations density-functionafunction as a simple model for the surface of a porous me-
theory (DFT) [9] seems to be a natural tool of investigation. dium. A hard sphere fluid is brought into contact with this
Recently, a DFT, based on Rosenfeld’s fundamental-measuraodel solid, and we obtain its density profile both from the
theory[10], was proposed that is specially tailored for adsor-DFT and, as a benchmark, from Monte Carlo computer
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d o o, z>0
Vi (z2)= . 4
<>© 32 0 otherwise, @
O wherez is the space coordinate perpendicular to the matrix

surface. As the matrix alone is(guenchedlideal gas[Eq.
O (1)], its density distribution under the influence of E4) is
simply a step function

Po(2)=pgO(—2), (5)
FIG. 1. Model of an adsorbate hard sphere fluid of diameter '

(dark circleg inside a matrix of freely overlapping spheres of diam- wherepbn is the mean density “inside” the matrix and we

eter o (white circles. There is hard core interaction between ad- denote one-body density distribution of species0,1 by

sorbate and matrix particles. The matrix particles are homogep, (r), wherer is the spatial coordinate.

neously distributed in the half spae<0 generating a planar Packing fractionsy; , i=0,1 are used as thermodynamic
surface of the porous medium perpendicular to Ztwrection and variables: For the matrixy,= wpg’USIG Wherepi(;’ is the
located az=0 (dashed ling number density inside the matrjsee Eq.(5)]. For the ad-

simulations. As expected from the above mentioned bulk re§orba3’te, we —use the overall packing fractiom,

sults, the plateau density inside the matrix is reproduced well 771N1/(6V), where N, ‘is the number of adsorbate
by the theory. Moreover, the interfacial structure is also de_sphere§ ant is the system volume. In general,.the size ratio
scribed very satisfactorily, both on the outside and on the’1/70 i a further control parameter. We will, however,
inside of the matrix surface. As a further investigation, weP'€Sent results below only for the case of equal sizes,
replace the matrix by a fictitious external potential that gen-— 71~ -
erates the same adsorbate density profile. This can be natu-
rally done in the DFT framework by requiring the corre- IIl. THEORY
sponding density profiles to be equal and solving the Euler- . o )
Lagrange equation for the fictitious external potential. We Let us start with a description of the matrix alone. For
find that although the matrix density distribution is a stepgeneral matrix-matrix interactions, the grand potential of the
function, the fictitious external potential is a smoothly vary- matrix as a functional of its one-body distribution is given as
ing, slightly oscillating function.

The paper is organized as follows. In Sec. II, we define 3 ox
the model of hard spheres in a matrix of freely overlapping BQo[Po]zj dr po[ In{po(r) Agt— 11+ BFG 1 pol
spheres more explicitly. In Sec. lll, a brief overview of the

theory is given. Section IV is devoted to the simulation exty
method. Results are presented in Sec. V and we conclude in +ﬁf drpo(r[Vo (1)~ pol, ©)
Sec. VI.

where 8=1/(kgT), kg is the Boltzmann constant, is the
ll. THE MODEL absolute temperaturd,; is the thermal wavelength, and is
the chemical potential of species The first term on the
. o : . . right-hand side of Eq(6) is the free energy of an ideal gas;
cies 1) with diameterr, immersed in a matrix of quenched the second term is the excess Helmholtz free enEfgythat

ideal sphereqspecies 0) of diametes,. The interaction . . ) . .
N ; ) . . is due to interparticle interactions. In the present case of
between matrix particles and adsorbate particles is againthat .~ ~. . . . .
vanishing interactions between matrix particlésg. (1)],

of hard spheres. Explicitly, there are three pair interactions aE8X°=0. OnceVe(r) is prescribed, the corresponding den-

a function of the center-to-center distancebetween two it files is obtained f inimizati f1h dqf
particles given by sity profiles is obtained from minimization of the grand func-

We consider an annealed adsorbate of hard splispes

tional
Voo(r)=0, (1)
Qo[ pol
[ i r<(ogto)f2 W=0- (7)
Vour)= [ 0 otherwise, @ °

. In the present casiEq. (4)], this is trivial and leads to the
© if r<oy )  above step function for the matrix profile, EG).
0 otherwise, 3) Following Ref.[11] also, the(over all matrix realizations
averaged grand potential of the QA system is expressed as a
see Fig. 1 for an illustration of the model. In order to achievefunctional, dependent on both the density distribution of the
an (on averagginhomogeneous matrix, we consider an ex-annealed component and that of the quenched component.
ternal potential acting on the matrix particles given by Explicitly,

V11(|’):{
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_ 3 _ pendent orr. To relatevflia(z) to the QA system, we impose
BQl[pO'Pl]:f drpa(Nlin{pa(r)AL} =11+ BFexd poip1]  that the corresponding adsorbate density profilez), are
the same. In the case of the QA system, this is the average
ex density profile caused by the random medium. In the ficti-
+’8J' drpy(NIVI) = pual. ® tious gotpential descriptiori/, the density profile is the response
_ _ - o _ of the system tov®(z). ObtainingVi®(z) from p(z) is
Again there is a minimization principle, but, in contrast to straightforward in the DFT, as within this framework the
the case of a fully annealed binary mixture, this applies onlysne.to-one correspondence between the external potential

to the adsorbate component and the one-body density distribution is explicit. In the com-
) mon case, the external potential is known and one solves for
M =0 (9) the one-body density. Here, the situation is reversed. The
opa(r) o) ' one-body density distribution is knowas an output of treat-

ing the matrix on the level of its density field, E)], and

The matrix density fieldpo(r) is treated as a fixed input One seeks to obtain the correspondifigtitious) external
quantity in Eq.(9). Once the external potential acting on the potential. Explicitly, the grand potential and minimization
adsorbatey/$(r) in Eq. (8), is prescribed, solving Eq(9) condition for this situation are giye(mlpon replacing species
yields the adsorbate one-body densityr). This holds for index 0 by 1, and settinyg‘=V;%) through Eqs(6) and
the general case, in the present surface investigation we dd@). respectively. Solving for the external potential yieldp
not consider such an influence, and hence, restrict ourselvé@ an irrelevant additive constant

to V§(r)=0.

In general, unknown part in the grand potential, 8, is
the Helmholtz excess free energy functiofgl“. Here, we
rely on the geometrical DFT proposed in REEL]. This is
based on both the exact zero-dimensional limit of the QAyhere the second term on the right-hand side is the one-body

model under consideration and on Rosenfeld's fundamentglirect correlation functional, for which we take Rosenfeld’s
measure theory10]. For technical details, we refer the approximation[10].

reader directly to Ref.11]. To obtain numerical solutions of
Eqg. (9), we employ a standard iteration proced{itd]. For
the special case of constant density fields of both matrix and IV. COMPUTER SIMULATIONS
adsorbate the excess free energy per volume as obtained by, grder to assess the accuracy of the theoretical results
applying the density functional to constant density fields iSye nave carried out canonical Monte CafMC) computer
given by simulations. The matrix was realized by placiNg matrix
E 1) spheres randomly in one-half of theubic and periodic
M simulation box. Hence, we consider a periodic system such
\Y that Egs.(4) and (5) describing the matrix distribution are
3 valid within the simulation box-L/2<z<L/2, whereL is
__8 [ 371(70+S) the box length. This introduce@s usugl a second matrix
Tmlslez”f)(e* m0— p,) 28 surface located ar=L/2 (and identified withz=—L/2).
Strictly speaking, the simulated system is a periodic succes-
3n1mo(mo+S)(—2+2n9+S) sion of slit pores and layers of porous material.
B The initial configuration for the adsorbafspecies 1) is
such that all particles are in the emgf matrix particle$
70(2+3(— 2+ 1) 70) (170 + In(e™ 10— 7,)) half space. We allow equilibration for half a million MC
- steps per adsorbate particle and then perform the same num-

5ﬁFeXC
opa(r)’

BV (r)=—In[py(r)A3]- (11)

e70(e” 70— y)s’

3
eos ber of steps for data production. For each state point consid-
ered, we used 30 matrix realizations to perform the average
—p[3+2In(e" -]}, (100  over the disorder. Particle numbers are fixedNg=N,

=512 and then the system volurive=L? is adjusted to ob-
tain the prescribed packing fractions. As an illustration, we
wheres=op/0; . display a snapshot of a configuration in Fig. 2.

In order to understand the inhomogeneities caused by the
random matrix better, we find it useful to consider an equi-
librium pure system under the influence of a fictitious deter-
ministic (nonrandom external potentiak/fl'Ct that possesses For simplicity, we restrict ourselves to casgs=27, and
the same symmetry as the one-body matrix density distribug,=o,. We consider a range of matrix packing fractions
tion; here, po(z) and henceVi®(z). The benefit is that 7,=27,=0.2, 0.3, 0.4. To obtain theoretical results at these
Vf1'°t(z) is a much simpler function than the external potentialstate points, we adjugt, in Eq. (8) to obtain the prescribed
corresponding to a given matrix realization that is fully de- »,. In Fig. 3, results for the adsorbate density profiles across

V. RESULTS
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perfect agreement between simulation and theoretical results.
Both plateau values, inside and outside the matrix, are repro-
duced very well. Also the smooth crossover at the interface

and the damped oscillations outside are reproduced accu-
rately.

Increasing the packing fraction tg,=2%;=0.3, both
plateau values also increase, hence, the higher density out-
side presses more adsorbate particles inside. The general
agreement is again quite good, however, there are some dif-
ferences inside the matrix, where the simulation profile is
smaller than the theoretical one and displays irregular oscil-
lations (a precursor of this behavior can be already observed
for the above case),=27%,=0.2). This behavior may be
partially due to insufficient equilibration of the simulation.
As we start from a situation where all adsorbate particles are
outside the matrix, the MC dynamics needs to migrate the
particles inside the matrix. Using simple single moves as we

FIG. 2. Snapshot from computer simulation of the hard spherdlo, this can be a slow process at high matrix densities. This
fluid (dark spheresadsorbed in a random matrix of freely overlap- effect then may lead to a slightly higher density outside the
ping sphereglight spherep of the same size. The matrix particles matrix than that in true equilibrium. Moreover, in general,
are distributed homogeneously in the left half of the simulation boxthe matrix can have cavities that are kinetically inaccessible
and possess packing fractiofp=0.3. The overall adsorbate pack- py the MC dynamics. As the DF is grand-canonical it will fill
ing fraction is 7, = 770/2=0.15. such cavities by coupling to the particle reservoir. This con-

. ] stitutes a principle difference between both approaches. For
the r_natrlx surfacg are presenlted. A_s mgntloned abo_ve, WE —27,=0.4, the discrepancy grows worse, but still the
consider a periodic system with periodicity lendthThis  agreement is reasonable. Here, pronounced oscillations de-
length is different for the three state points considered, andejop outside, and the situation is more that of a slit pore
hence, we display also parts of the periodic images in Fig. 3nan that of decoupled surfaces. Also inside the matrix some
T.hese serve also as a guide to assess the actual size of §B9ering is predicted by the theory, which can, however, only
simulated system. _ _ _ be guessed from the simulation data.

As the overall packing fraction of the adsorbate is That the theory works well outside the matrix is to be
prescribed, the partitioning between adsorbed fluid inside th@xpected, as our theory reduces in the absence of matrix
matrix and bulk fluid outside the matrix is an output both of y5ticles to the very accurate Rosenfeld hard sphere func-
the computer simulation and of the theory. For the lowestjgnal. However, in the present case the inhomogeneity is
packing fraction consideredso=27,=0.2, there is almost caysed by the matrix surface and that this is described so
accurately can be rated as a success of the current approach.

We display results for the fictitious external potential in
Fig. 4. Normalization is such thartfl'm(z)=0 outside the ma-
trix (i.e., z=30). The plateau value inside the matfixe.,
z=—30), when reinterpreted in the binary QA system, is
the chemical potential change required to move a particle
from outside to inside. In the binary model, this is solely due
to a reduction of entropy for the particle in the confining
matrix. In contrast to the sharp kink matrix density profile
Vfl'“(z) has a smooth, slowly varying shape. Considering the
interface located az=0, one observes deviations from the
plateau values inside and outside the matrix in the range of
about —o0<z<o, consistent with a geometrical picture of
0 ' ) ' ) : the surface.

As the density is increased not only the vertical scale of
7o Vfli“(z) changes, but also its shape. To demonstrate this, we

FIG. 3. Density profilep;(z) o® of hard spheres at the surface show in Fig. 4 the result for,=27,=0.2, but multiplied
of a porous medium as a function of tiigcaled coordinatez/ _by _a factor of 2'78 to get agreement of the potential strength
perpendicular to the matrix surface. The matrix density distributioninside the matrix for the casej,=27,;=0.4. It can be
po(2) o is a step functioridotted ling and the system is periodic in  clearly seen that the actud®(z) is a steeper function than
the z direction. Results from the DF{Bolid lineg and MC simula- would be expected from the simple rescaling. However,
tion (dashed lings are shown for packing fractiongj,=27%,  these differences are still small taking into account the con-
=0.2,0.3,0.4(as indicatey siderable change in densities. In principle, this opens possi-

0.8 T . T T : T .
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0.1 v, it

p,0°

-6 -4 -2 0 2 4 6
z/C z/o

FIG. 4. Fictitious external potential§Vi®(z) as a function of FIG. 5. Adsorbate density profiles,(z)o* (solid lineg and
the (scaled coordinatez/ o for the same state points as in Fig. 3. fictitious external potential§V}{®(z) (dotted lines, scaled by a fac-
Vi°(7) is constructed to generate the same adsorbate density distfior of 0.1 as a function of the distance from the matrix surfate
butionp,(z) as the inhomogeneous porous matrix with density fieldfor matrix packing fractionn,=0.4 and different reservoir adsor-
po(2) (see Fig. 3 The dashed line is the result fajo=27; bate packing fractionsy;=0.1,0.2,0.3,0.4(from bottom to top.
=0.2, but multiplied by a factor of 2.78; compare with the caseThe matrix particles are homogeneously distributed in the half
70=27,=0.4. spacez<0. The fictitious external potentials generate the same
p1(2) in a pure hard sphere fluid as the porous matrix. The thin

bilities t imolified d ioti f h t dotted line is the fictitious external potential fgf=0.1, but mul-
fites 1o a simplied description of such systems. tiplied by a factor of 2.6; compare with the cage=0.4.

To conclude this section, we present theoretical results for
two further paths along varying density. We will consider a%:3 leads to more compact roughness. In the limit

single surface(withqut periodic images TO cpntrol the ad- —oo, the matrix becomes amoothhard wall located at
sorbate, we prescribe its packing fraction in the half space_ 0/’2 In Fig. 6, the density profile at a hard smooth wall is
without matrix,m:(mrf/G)pl(z—wo). Practically, this acts ) .

. S . shown, and one can verify, from the structure of the DFT,
as an adsorbate reservoir that is in direct contact with th

di As a first fix th trix densit $hat this is indeed the correct asymptotic behavior. As an
pOrous medium. AS a lirst case, we 1ix thé matrix density a‘llustration, we show in Fig. 7 views in the direction perpen-

the highest packing fraction considered aboygs-0.4, and dicular towards the matrix surface. The matrices shown in

increase the bulk packing fraction outside over a rampge Figs. Ma,b) possess packing fractiong,=1,3, respectively,

:.0'1’0'2.’0'3.’0'4’ see Fig. 5 for results. 'Inc.reallsing the Oler}:'orresponding to the two densest matrices where results are
sity outside increases the plateau density inside the matrix, .\ 'in Fig. 6. It is clear that even in the cage=3, there
monotonically. For »,=0.1, the profile is very smooth T '

across the surface. Upon increasing pronounced oscilla-

tions outside develop and also somewhat smaiteampli-

tude oscillations are apparent fa<<0. The wavelength is

of the order of the particle size, hence, as expected, thesé_

oscillations are due to packing effects of the particles. Figure =

5 also shows results for the fictitious external potential. It is —

remarkable that the plateau value inside the matrix increase <

as a function of theadsorbatedensity. Hence, an adsorbate

fluid at a higher density experiences a higher energy penalty

although the matrix density is unchanged. b
The second path that we investigate is at constant bulk &

density  outside, #7,;=0.4, and increasing 7,

=0.1,0.2,0.4,0.8,1.5,3, see Fig. 6. For small matrix density,

170=0.1, the adsorbate density remains almost constant, onl

a slight decrease is observed for 0. Increasingy, lowers

p1 inside the matrix considerably. Fagp=1, it is vanishing zle

on the scale of the plot. Note that as the matrix consists of FG 6. Same as Fig. 5, but for fixed reservoir packing fraction

freely overlapping spheresy;=1 does not correspond to ;=04 and different matrix packing fractions 7,

space filling, rather there remain occasional free voids inside-0.1,0.2,0.4,0.8,1.5,8rom bottom to top. The dashed line indi-

the matrix. The surface of the matrix at such high densities igates the hard wall result fgr,(z); this is approached agy— .

hardly penetrable and practically constitutes a rough hardhe thin dotted line is the fictitious external potential fgg=0.2,

wall with a random surface structure. Increasing further tobut multiplied by a factor of 2.9; compare with the cagg=3.

2 T . .
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step function density distribution that models the surfi@ce
wards an adsorbate reseryoif a porous medium. We have
applied for the first time a recent DFT approach to such an
inhomogeneous situation and have performed computer
simulations in order to provide benchmark results. The the-
oretical results for the adsorbate one-body density distribu-
tion across the matrix interface are found to be in good
agreement with simulation results up to considerably high
matrix packing fractions, i.e., low porosities. The benefit of
the theoretical approach is that the required double average
over the equilibrated fluid configurations and the quenched
disorder is already takerll]; no subsequent averaging “by
hand” is necessary. Within the DFT framework, we relate the
QA model to a pure system exposed to a fictitious external
potential that only depends on the perpendicular distance
from the interface. Although the matrix surface has a sharp
kink shape, the fictitious potential is found to be a smooth
function that crosses over from its plateau values inside and
outside the matrix over about two sphere diameters.

As an outlook to possible future work, we mention the

FIG. 7. Surface structure of randomly overlapping spheres Witrposs_ibil_ity of a further eX_pIicit external potential, such as a
packing fractionsyo=1 (a), 7o=3 (b), 77o=10 (), 7= 100 (d). gravitational field or gonfmement by walls. Furthermore, as
we have shown, the important problem of surface roughness
%an be treated. Also the behavior for more asymmetric sizes

are considerable voids in the surface. The matrix packin
fraction needs to be increased further in order to level ou
these voids, see Figs.(c{d) for »=10,100, respectively.
Even for n,= 100, there remains residual surface roughness,
although clearly the smooth wall is almost obtained.

nd hence, the effect of size selectivity in porous media is an
Interesting topic.
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