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Hard sphere fluids at surfaces of porous media

Matthias Schmidt
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 12 December 2002; published 18 August 2003!

An adsorbate fluid of hard spheres is brought into contact with a semi-infinite porous matrix modeled by
immobilized configurations of freely overlapping spheres with a sharp kink one-body density distribution.
Comparison of results from a recent density-functional approach to those of our computer simulations yields
good agreement for the adsorbate density profile across the matrix surface. We show how the matrix can be
replaced by a fictitious external potential that only depends on the distance from the interface, and that leads to
the same adsorbate density profile. This potential is found to be a smooth function of distance, due to the
geometry of the matrix particles. For high matrix densities, the porous medium becomes practically impen-
etrable, and its surface behaves like a rough hard wall whose roughness decreases with increasing matrix
density.

DOI: 10.1103/PhysRevE.68.021106 PACS number~s!: 64.10.1h, 61.20.2p, 61.43.2j, 78.55.Mb
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I. INTRODUCTION

Fluids in porous media have considerable technical
well as fundamental importance@1#. Such systems are intrin
sically inhomogeneous through the presence of a disord
medium that can be regarded as a random external pote
acting on the adsorbed fluid. The behavior of such a confi
fluid may be drastically different from that of the same su
stance in bulk@1,2#. As a theoretical model to study suc
systems, one often relies on so-called quenched-anne
~QA! fluid mixtures, where the immobilized particles of th
quenched species constitute the matrix and the particle
the annealed species represent the adsorbate. Variou
proaches to such systems exist.

Within the framework of a lattice model the importa
problem of hysteresis in sorption isotherms was rece
considered using a mean-field density-functional appro
@3,4#. It was found that hysteresis can occur both with a
without an underlying equilibrium phase transition. Sub
quently, a pronounced change in the desorption behavior
found if a surface of the matrix is explicitly taken into a
count@5#, and hence, direct contact with the gas reservoi
considered.

For continuum fluids similar inhomogeneous situatio
have been considered using integral equation theory
computer simulations. Dong, Kierlik, and Rosinberg deriv
the inhomogeneous replica Ornstein-Zernike equations
treat problems such as the adsorption near a plane boun
of a disordered matrix@6#. Pizio and Sokolowski@7# used a
similar approach to investigate an annealed fluid in a slitl
pore filled with quenched hard spheres. They found that
matrix lowers the amount of adsorbed fluid at low chemi
potentials and that layering occurs for high chemical pot
tials. Subsequently, Kovalenkoet al. @8# extended upon this
work and compared results from different integral equat
closure relations to those from their computer simulatio
finding good agreement.

For such inhomogeneous situations density-functio
theory~DFT! @9# seems to be a natural tool of investigatio
Recently, a DFT, based on Rosenfeld’s fundamental-mea
theory@10#, was proposed that is specially tailored for ads
1063-651X/2003/68~2!/021106~6!/$20.00 68 0211
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bates in porous media@11#. An explicit approximation for
mixtures of particles interacting with either hard core
~vanishing! interactions was given. The particular feature
this QA-DFT approach is that the matrix is described on
level of its one-body density distribution and the free-ene
functional is directly the~over all matrix realizations! aver-
aged free energy. This offers great advantages: First,
gains immediate access to matrices that are nonuniformon
average; second, matrices that are uniform~on average! are
described particularly simple, namely, by aconstantone-
body density distribution of quenched particles. This is
contrast to~computationally more involved! approaches tha
treat the matrix as an external potential@12#. However, the
practical usefulness clearly depends on the quality of resu
In the original work@11#, the structural correlations in~on
average! homogeneous matrices were considered and c
pared to computer simulation results. For both hard sph
and freely overlapping sphere matrices, it was found that
pair correlation functions obtained from the theory are
very good agreement with simulation results. The differi
matrix-matrix correlations in these models have an effect
the detailed structure of the adsorbate, and the theory
shown to describe either case well. Subsequently, the p
lem of phase separation in porous media was treated usi
simple model for a colloid-polymer mixture@13#. Besides the
practical importance of mesoscopic particles in porous m
dia, this is a convenient model as it displays a~colloid!
liquid-vapor phase transition. The DFT results were co
pared with those from an integral-equation approach ba
on the replica Ornstein-Zernike relations together with
optimized random phase approximation~ORPA! @13#. All
major trends found in the ORPA could be reproduced by
DFT. In particular, it was found that by tuning the matri
adsorbate interactions either capillary condensation
evaporation is induced. Although these results seem prom
ing, so far the theory has not yet been tested in inhomo
neous situations. This is the aim of the present work.

We use freely overlapping spheres to represent a po
medium and prescribe their density distribution to be a s
function as a simple model for the surface of a porous m
dium. A hard sphere fluid is brought into contact with th
model solid, and we obtain its density profile both from t
DFT and, as a benchmark, from Monte Carlo compu
©2003 The American Physical Society06-1
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simulations. As expected from the above mentioned bulk
sults, the plateau density inside the matrix is reproduced w
by the theory. Moreover, the interfacial structure is also
scribed very satisfactorily, both on the outside and on
inside of the matrix surface. As a further investigation,
replace the matrix by a fictitious external potential that g
erates the same adsorbate density profile. This can be n
rally done in the DFT framework by requiring the corr
sponding density profiles to be equal and solving the Eu
Lagrange equation for the fictitious external potential. W
find that although the matrix density distribution is a st
function, the fictitious external potential is a smoothly var
ing, slightly oscillating function.

The paper is organized as follows. In Sec. II, we defi
the model of hard spheres in a matrix of freely overlapp
spheres more explicitly. In Sec. III, a brief overview of th
theory is given. Section IV is devoted to the simulati
method. Results are presented in Sec. V and we conclud
Sec. VI.

II. THE MODEL

We consider an annealed adsorbate of hard spheres~spe-
cies 1) with diameters1 immersed in a matrix of quenche
ideal spheres~species 0) of diameters0. The interaction
between matrix particles and adsorbate particles is again
of hard spheres. Explicitly, there are three pair interaction
a function of the center-to-center distancer between two
particles given by

V00~r !50, ~1!

V01~r !5H ` if r ,~s01s1!/2

0 otherwise,
~2!

V11~r !5H ` if r ,s1

0 otherwise,
~3!

see Fig. 1 for an illustration of the model. In order to achie
an ~on average! inhomogeneous matrix, we consider an e
ternal potential acting on the matrix particles given by

FIG. 1. Model of an adsorbate hard sphere fluid of diameters1

~dark circles! inside a matrix of freely overlapping spheres of diam
eters0 ~white circles!. There is hard core interaction between a
sorbate and matrix particles. The matrix particles are homo
neously distributed in the half spacez,0 generating a plana
surface of the porous medium perpendicular to thez direction and
located atz50 ~dashed line!.
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V0
ext~z!5H `, z.0

0 otherwise,
~4!

wherez is the space coordinate perpendicular to the ma
surface. As the matrix alone is a~quenched! ideal gas@Eq.
~1!#, its density distribution under the influence of Eq.~4! is
simply a step function

r0~z!5r0
inQ~2z!, ~5!

wherer0
in is the mean density ‘‘inside’’ the matrix and w

denote one-body density distribution of speciesi 50,1 by
r i(r ), wherer is the spatial coordinate.

Packing fractionsh i , i 50,1 are used as thermodynam
variables: For the matrixh05pr0

ins0
3/6, wherer0

in is the
number density inside the matrix@see Eq.~5!#. For the ad-
sorbate, we use the overall packing fractionh1

5ps1
3N1 /(6V), where N1 is the number of adsorbat

spheres andV is the system volume. In general, the size ra
s1 /s0 is a further control parameter. We will, howeve
present results below only for the case of equal sizes,s0
5s1[s.

III. THEORY

Let us start with a description of the matrix alone. F
general matrix-matrix interactions, the grand potential of
matrix as a functional of its one-body distribution is given

bV0@r0#5E drr0@ ln$r0~r !L0
3%21#1bF0

exc@r0#

1bE drr0~r !@V0
ext~r !2m0#, ~6!

whereb51/(kBT), kB is the Boltzmann constant,T is the
absolute temperature,L i is the thermal wavelength, andm i is
the chemical potential of speciesi. The first term on the
right-hand side of Eq.~6! is the free energy of an ideal ga
the second term is the excess Helmholtz free energyFexc that
is due to interparticle interactions. In the present case
vanishing interactions between matrix particles@Eq. ~1!#,
F0

exc50. OnceV0
ext(r ) is prescribed, the corresponding de

sity profiles is obtained from minimization of the grand fun
tional

dV0@r0#

dr0~r !
50. ~7!

In the present case@Eq. ~4!#, this is trivial and leads to the
above step function for the matrix profile, Eq.~5!.

Following Ref.@11# also, the~over all matrix realizations!
averaged grand potential of the QA system is expressed
functional, dependent on both the density distribution of
annealed component and that of the quenched compon
Explicitly,

e-
6-2
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bV1@r0 ;r1#5E drr1~r !@ ln$r1~r !L1
3%21#1bFexc@r0 ;r1#

1bE drr1~r !@V1
ext~r !2m1#. ~8!

Again there is a minimization principle, but, in contrast
the case of a fully annealed binary mixture, this applies o
to the adsorbate component

dV1@r0 ;r1#

dr1~r !
U

r0(r )

50. ~9!

The matrix density fieldr0(r ) is treated as a fixed inpu
quantity in Eq.~9!. Once the external potential acting on th
adsorbate,V1

ext(r ) in Eq. ~8!, is prescribed, solving Eq.~9!
yields the adsorbate one-body densityr1(r ). This holds for
the general case, in the present surface investigation w
not consider such an influence, and hence, restrict ourse
to V1

ext(r )50.
In general, unknown part in the grand potential, Eq.~8!, is

the Helmholtz excess free energy functionalF1
exc. Here, we

rely on the geometrical DFT proposed in Ref.@11#. This is
based on both the exact zero-dimensional limit of the
model under consideration and on Rosenfeld’s fundame
measure theory@10#. For technical details, we refer th
reader directly to Ref.@11#. To obtain numerical solutions o
Eq. ~9!, we employ a standard iteration procedure@14#. For
the special case of constant density fields of both matrix
adsorbate the excess free energy per volume as obtaine
applying the density functional to constant density fields
given by

bFexc~r0 ;r1!

V

5
3

ps1
3H 3h1~h01s!3

e2h0~e2h02h1! 2s3

2
3h1h0~h01s!~2212h01s!

eh0~e2h02h1!s3

2
h0„213~221h0!h0…„h01 ln~e2h02h1!…

eh0s3

2h1@312 ln~e2h02h1!#J , ~10!

wheres5s0/s1 .
In order to understand the inhomogeneities caused by

random matrix better, we find it useful to consider an eq
librium pure system under the influence of a fictitious det
ministic ~nonrandom! external potentialV1

fict that possesse
the same symmetry as the one-body matrix density distr
tion; here, r0(z) and hence,V1

fict(z). The benefit is that
V1

fict(z) is a much simpler function than the external poten
corresponding to a given matrix realization that is fully d
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pendent onr . To relateV1
fict(z) to the QA system, we impose

that the corresponding adsorbate density profiles,r1(z), are
the same. In the case of the QA system, this is the ave
density profile caused by the random medium. In the fic
tious potential description, the density profile is the respo
of the system toV1

fict(z). ObtainingV1
fict(z) from r1(z) is

straightforward in the DFT, as within this framework th
one-to-one correspondence between the external pote
and the one-body density distribution is explicit. In the co
mon case, the external potential is known and one solves
the one-body density. Here, the situation is reversed.
one-body density distribution is known@as an output of treat-
ing the matrix on the level of its density field, Eq.~9!#, and
one seeks to obtain the corresponding~fictitious! external
potential. Explicitly, the grand potential and minimizatio
condition for this situation are given~upon replacing specie
index 0 by 1, and settingV0

ext5V1
fict) through Eqs.~6! and

~7!, respectively. Solving for the external potential yields~up
to an irrelevant additive constant!

bV1
fict~r !52 ln@r1~r !L1

3#2
dbFexc

dr1~r !
, ~11!

where the second term on the right-hand side is the one-b
direct correlation functional, for which we take Rosenfeld
approximation@10#.

IV. COMPUTER SIMULATIONS

In order to assess the accuracy of the theoretical res
we have carried out canonical Monte Carlo~MC! computer
simulations. The matrix was realized by placingN0 matrix
spheres randomly in one-half of the~cubic and periodic!
simulation box. Hence, we consider a periodic system s
that Eqs.~4! and ~5! describing the matrix distribution ar
valid within the simulation box2L/2<z,L/2, whereL is
the box length. This introduces~as usual! a second matrix
surface located atz5L/2 ~and identified withz52L/2).
Strictly speaking, the simulated system is a periodic succ
sion of slit pores and layers of porous material.

The initial configuration for the adsorbate~species 1) is
such that all particles are in the empty~of matrix particles!
half space. We allow equilibration for half a million MC
steps per adsorbate particle and then perform the same n
ber of steps for data production. For each state point con
ered, we used 30 matrix realizations to perform the aver
over the disorder. Particle numbers are fixed toN05N1
5512 and then the system volumeV5L3 is adjusted to ob-
tain the prescribed packing fractions. As an illustration,
display a snapshot of a configuration in Fig. 2.

V. RESULTS

For simplicity, we restrict ourselves to casesh052h1 and
s05s1. We consider a range of matrix packing fractio
h052h150.2, 0.3, 0.4. To obtain theoretical results at the
state points, we adjustm1 in Eq. ~8! to obtain the prescribed
h1. In Fig. 3, results for the adsorbate density profiles acr
6-3
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MATTHIAS SCHMIDT PHYSICAL REVIEW E 68, 021106 ~2003!
the matrix surface are presented. As mentioned above
consider a periodic system with periodicity lengthL. This
length is different for the three state points considered,
hence, we display also parts of the periodic images in Fig
These serve also as a guide to assess the actual size o
simulated system.

As the overall packing fraction of the adsorbateh1 is
prescribed, the partitioning between adsorbed fluid inside
matrix and bulk fluid outside the matrix is an output both
the computer simulation and of the theory. For the low
packing fraction considered,h052h150.2, there is almos

FIG. 2. Snapshot from computer simulation of the hard sph
fluid ~dark spheres! adsorbed in a random matrix of freely overla
ping spheres~light spheres! of the same size. The matrix particle
are distributed homogeneously in the left half of the simulation b
and possess packing fractionh050.3. The overall adsorbate pack
ing fraction ish15h0/250.15.

FIG. 3. Density profilesr1(z)s3 of hard spheres at the surfac
of a porous medium as a function of the~scaled! coordinatez/s
perpendicular to the matrix surface. The matrix density distribut
r0(z)s3 is a step function~dotted line! and the system is periodic in
the z direction. Results from the DFT~solid lines! and MC simula-
tion ~dashed lines! are shown for packing fractionsh052h1

50.2,0.3,0.4~as indicated!.
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perfect agreement between simulation and theoretical res
Both plateau values, inside and outside the matrix, are re
duced very well. Also the smooth crossover at the interfa
and the damped oscillations outside are reproduced a
rately.

Increasing the packing fraction toh052h150.3, both
plateau values also increase, hence, the higher density
side presses more adsorbate particles inside. The ge
agreement is again quite good, however, there are some
ferences inside the matrix, where the simulation profile
smaller than the theoretical one and displays irregular os
lations~a precursor of this behavior can be already obser
for the above caseh052h150.2). This behavior may be
partially due to insufficient equilibration of the simulation
As we start from a situation where all adsorbate particles
outside the matrix, the MC dynamics needs to migrate
particles inside the matrix. Using simple single moves as
do, this can be a slow process at high matrix densities. T
effect then may lead to a slightly higher density outside
matrix than that in true equilibrium. Moreover, in genera
the matrix can have cavities that are kinetically inaccess
by the MC dynamics. As the DF is grand-canonical it will fi
such cavities by coupling to the particle reservoir. This co
stitutes a principle difference between both approaches.
h052h150.4, the discrepancy grows worse, but still th
agreement is reasonable. Here, pronounced oscillations
velop outside, and the situation is more that of a slit po
than that of decoupled surfaces. Also inside the matrix so
layering is predicted by the theory, which can, however, o
be guessed from the simulation data.

That the theory works well outside the matrix is to b
expected, as our theory reduces in the absence of m
particles to the very accurate Rosenfeld hard sphere fu
tional. However, in the present case the inhomogeneity
caused by the matrix surface and that this is described
accurately can be rated as a success of the current appr

We display results for the fictitious external potential
Fig. 4. Normalization is such thatV1

fict(z)50 outside the ma-
trix ~i.e., z53s). The plateau value inside the matrix~i.e.,
z523s), when reinterpreted in the binary QA system,
the chemical potential change required to move a part
from outside to inside. In the binary model, this is solely d
to a reduction of entropy for the particle in the confinin
matrix. In contrast to the sharp kink matrix density profi
V1

fict(z) has a smooth, slowly varying shape. Considering
interface located atz50, one observes deviations from th
plateau values inside and outside the matrix in the range
about 2s,z,s, consistent with a geometrical picture o
the surface.

As the density is increased not only the vertical scale
V1

fict(z) changes, but also its shape. To demonstrate this,
show in Fig. 4 the result forh052h150.2, but multiplied
by a factor of 2.78 to get agreement of the potential stren
inside the matrix for the caseh052h150.4. It can be
clearly seen that the actualV1

fict(z) is a steeper function than
would be expected from the simple rescaling. Howev
these differences are still small taking into account the c
siderable change in densities. In principle, this opens po

e

x

n
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HARD SPHERE FLUIDS AT SURFACES OF POROUS MEDIA PHYSICAL REVIEW E68, 021106 ~2003!
bilities to a simplified description of such systems.
To conclude this section, we present theoretical results

two further paths along varying density. We will consider
single surface~without periodic images!. To control the ad-
sorbate, we prescribe its packing fraction in the half sp
without matrix,h15(ps1

3/6)r1(z→`). Practically, this acts
as an adsorbate reservoir that is in direct contact with
porous medium. As a first case, we fix the matrix density
the highest packing fraction considered above,h050.4, and
increase the bulk packing fraction outside over a rangeh1
50.1,0.2,0.3,0.4, see Fig. 5 for results. Increasing the d
sity outside increases the plateau density inside the ma
monotonically. For h150.1, the profile is very smooth
across the surface. Upon increasingh1 pronounced oscilla-
tions outside develop and also somewhat smaller~in ampli-
tude! oscillations are apparent forz,0. The wavelength is
of the order of the particle size, hence, as expected, th
oscillations are due to packing effects of the particles. Fig
5 also shows results for the fictitious external potential. I
remarkable that the plateau value inside the matrix increa
as a function of theadsorbatedensity. Hence, an adsorba
fluid at a higher density experiences a higher energy pen
although the matrix density is unchanged.

The second path that we investigate is at constant b
density outside, h150.4, and increasing h0
50.1,0.2,0.4,0.8,1.5,3, see Fig. 6. For small matrix dens
h050.1, the adsorbate density remains almost constant,
a slight decrease is observed forz,0. Increasingh0 lowers
r1 inside the matrix considerably. Forh051, it is vanishing
on the scale of the plot. Note that as the matrix consists
freely overlapping spheres,h151 does not correspond t
space filling, rather there remain occasional free voids ins
the matrix. The surface of the matrix at such high densitie
hardly penetrable and practically constitutes a rough h
wall with a random surface structure. Increasing further

FIG. 4. Fictitious external potentialsbV1
fict(z) as a function of

the ~scaled! coordinatez/s for the same state points as in Fig.
V1

fict(z) is constructed to generate the same adsorbate density d
butionr1(z) as the inhomogeneous porous matrix with density fi
r0(z) ~see Fig. 3!. The dashed line is the result forh052h1

50.2, but multiplied by a factor of 2.78; compare with the ca
h052h150.4.
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h053 leads to more compact roughness. In the limith0
→`, the matrix becomes asmoothhard wall located atz
5s/2. In Fig. 6, the density profile at a hard smooth wall
shown, and one can verify, from the structure of the DF
that this is indeed the correct asymptotic behavior. As
illustration, we show in Fig. 7 views in the direction perpe
dicular towards the matrix surface. The matrices shown
Figs. 7~a,b! possess packing fractionsh051,3, respectively,
corresponding to the two densest matrices where results
shown in Fig. 6. It is clear that even in the caseh053, there

tri-

FIG. 5. Adsorbate density profilesr1(z)s3 ~solid lines! and
fictitious external potentialsbV1

fict(z) ~dotted lines, scaled by a fac
tor of 0.1! as a function of the distance from the matrix surfacez/s
for matrix packing fractionh050.4 and different reservoir adsor
bate packing fractionsh150.1,0.2,0.3,0.4~from bottom to top!.
The matrix particles are homogeneously distributed in the h
spacez,0. The fictitious external potentials generate the sa
r1(z) in a pure hard sphere fluid as the porous matrix. The t
dotted line is the fictitious external potential forh150.1, but mul-
tiplied by a factor of 2.6; compare with the caseh150.4.

FIG. 6. Same as Fig. 5, but for fixed reservoir packing fract
h150.4 and different matrix packing fractions h0

50.1,0.2,0.4,0.8,1.5,3~from bottom to top!. The dashed line indi-
cates the hard wall result forr1(z); this is approached ash0→`.
The thin dotted line is the fictitious external potential forh050.2,
but multiplied by a factor of 2.9; compare with the caseh053.
6-5
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MATTHIAS SCHMIDT PHYSICAL REVIEW E 68, 021106 ~2003!
are considerable voids in the surface. The matrix pack
fraction needs to be increased further in order to level
these voids, see Figs. 7~c,d! for h510,100, respectively
Even forh05100, there remains residual surface roughne
although clearly the smooth wall is almost obtained.

VI. CONCLUSIONS

In conclusion, we have considered the behavior of an
sorbate hard sphere fluid at the surface of a porous ma
The matrix is modeled by freely overlapping spheres wit

FIG. 7. Surface structure of randomly overlapping spheres w
packing fractionsh051 ~a!, h053 ~b!, h0510 ~c!, h05100 ~d!.
.

.

J.

io
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step function density distribution that models the surface~to-
wards an adsorbate reservoir! of a porous medium. We hav
applied for the first time a recent DFT approach to such
inhomogeneous situation and have performed comp
simulations in order to provide benchmark results. The t
oretical results for the adsorbate one-body density distri
tion across the matrix interface are found to be in go
agreement with simulation results up to considerably h
matrix packing fractions, i.e., low porosities. The benefit
the theoretical approach is that the required double ave
over the equilibrated fluid configurations and the quench
disorder is already taken@11#; no subsequent averaging ‘‘b
hand’’ is necessary. Within the DFT framework, we relate t
QA model to a pure system exposed to a fictitious exter
potential that only depends on the perpendicular dista
from the interface. Although the matrix surface has a sh
kink shape, the fictitious potential is found to be a smoo
function that crosses over from its plateau values inside
outside the matrix over about two sphere diameters.

As an outlook to possible future work, we mention th
possibility of a further explicit external potential, such as
gravitational field or confinement by walls. Furthermore,
we have shown, the important problem of surface roughn
can be treated. Also the behavior for more asymmetric s
and hence, the effect of size selectivity in porous media is
interesting topic.
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