
J. Phys.: Condens. Matter8 (1996) L577–L581. Printed in the UK

LETTER TO THE EDITOR

Dimensional crossover and the freezing transition in
density functional theory

Y Rosenfeld†‖, M Schmidt‡, H Löwen‡¶ and P Tarazona§
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Abstract. A modified geometrically based free-energy functional for hard spheres is proposed
which gives reliable results even for situations of extreme confinements that reduce the effective
dimensionalityD. It is accurate for hard spheres between narrow plates(D = 2), inside narrow
cylindrical pores(D = 1), and isexact in the 0D limit (a cavity that cannot hold more than
one particle). This functional also predicts the hard-sphere fluid–solid transition in excellent
agreement with the simulations.

The density functional formalism is one of the most successful and widely applicable
approaches to a variety of interfacial phenomena such as adsorption, wetting, and freezing,
and enables one to investigate confined fluids with all sorts of inhomogeneities [1, 2].
Situations which may be termed as quasi-2D (fluids between two narrow plates), quasi-
1D (fluids inside narrow cylindrical pores), and quasi-0D (cavities that cannot hold more
than one particle) are generated by external potentials acting on the fluid that reduce its
effective dimensionality,D. Spatial confinements drastically affect structural and dynamical
quantities as well as the location of phase transitions. The density profile exhibits sharp
peaks corresponding to microscopic layers of the liquid, the viscosity is observed to increase
drastically [3], and the location of the freezing transition [4, 5], the glass transition [6] and
the triple point [7] shift significantly with respect to their bulk values.

The exact 3D free-energy functional of the average one-body density,ρ(r), should
be able to provide a unifying description of all such confined situations within density
functional theory. The central quantity is the excess free energy (over the exactly known
‘ideal-gas’ contributions),Fex [ρ(r)], which originates in interparticle interactions, and is
generally unknown! Hence, the requirement of obtaining a realistic lower-dimensional
functional by shrinking the dimensionality of the system is an important consistency check
of any approximate functional. This consistency is especially important if the 3D functional
is invoked to describe situations of extremely confined fluids [8, 9].

The well studied hard-sphere fluid serves as the almost standard reference system [10]
for classical fluids, and provides an important test for all density functional approximations.
The minimal prerequisite for the 3D functional, to have at least gross similarity to the exact
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values in lower-effective-dimensionality situations, was first achieved via the smoothed
density approximation [11]. Many functionals of comparable, sometimes better, accuracy
were subsequently developed [1], which could provide qualitative, sometimes quantitative,
agreement with simulated density profiles of confined fluids. The exact functional for 1D
spheres (hard rods), due to Percus [12], provided an important paradigm. Most of these
functionals were also able to exhibit a freezing transition for the hard spheres, with melting
and freezing densities in reasonable agreement with simulations [13, 14]. But none of
these functionals could feature the exact 0D [15] limit, or the exact bulk 1D [12] limit.
Functionals built upon the bulk 3D data as essentially numerical input do not contain the
building blocks for achieving these limits.

A fundamental-measure free-energy model [16–22], on the other hand, derives the
uniform (bulk) fluid properties as a special case, rather than employing them as input.
The simplest such functional [17] proved very successful for 3D fluids in the bulk and in
slit-like pores, but it was unsuitable for describing the solid [17, 20, 23–25]. In this letter
we analyse its behaviour for different effective dimensionalities(D = 2, 1, 0) by applying
confining external potentials to the 3D bulk fluid. We modified the form of the functional
so that it reproduces the exact 0D limit. As a result it gives accurate results for the 3D
fluid–solid transition, and becomes generally reliable in situations of extreme confinements.
A detailed account of the present work will be submitted for publication elsewhere [26].

To simplify the notation and discussion we shall consider specifically the single-
component system of hard spheres of radiusR. The fundamental-measure excess-free-
energy functional was postulated [17] to have the following form:

Fex [{ρ(r)}]
kBT

=
∫

dx 8[{nα(x)}] (1)

where it is assumed that8 is a function of the following six weighted densities:

nα(x) =
∫

ρ(x′)w(α)(x − x′) dx′

which are dimensionalquantities. The weight functionsw(α), α = 3, 2, 1, 0, V 2, V 1,
are [17] characteristic functions for the geometry of the sphere: two scalar functions,
representing the characteristic functions for the volume and the surface of a particle,
w(3)(r) = 2(R − r), w(2) (r) = δ(R − r), and a vector functionw(V 2)(r) = r/rδ(R − r);
the other three weights are simply proportional:

w(0)(r) = w(2)(r)

4πR2
w(1)(r) = w(2)(r)

4πR
w(V 1) (r) = w(V 2) (r)

4πR
.

The weighted densitiesnα(x) provide a functional basis set,
{
φj

}
, for expanding the function

8 = ∑
i Ai(n3)φi , of dimension(volume)−1. By including only the five positive power

combinations of the weighted densities,{φj } = n0, n1n2, nV 1 · nV 2, n
3
2, n2(nV 2 · nV 2), the

following 3D excess free-energy density was derived [17, 20]:

8[{nα}] = 81 + 82 + 83

81 = −n0 ln(1 − n3) 82 = n1n2 − nV 1 · nV 2

1 − n3
83 =

1
3n3

2 − n2(nV 2 · nV 2)

8π(1 − n3)2
.

(2)

This free-energy model unifies the Percus–Yevick [27] and scaled-particle [28] theories.
The bulk direct correlation function, as obtained from the second functional derivative of
this functional, is identical to the analytic solution of the Percus–Yevick equation [27, 29].
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Density profiles obtained from this functional for the fluid in confinement situations between
‘quasi-2D’ and ‘quasi-3D’ (e.g. slit-like pores of various widths) are in very good agreement
with the simulations [16–22, 23–25]. It also gives an accurate free energy in the 2D limit,
but it has negative divergence in the 1D limit, and it cannot stabilize the solid in coexistence
with the liquid [17, 20, 23–25].

In order to improve the dimensional crossover behaviour of the functional equation (2),
let us consider in more detail the contributions of the different components,81, 82, 83.
In the 1D-limit, ρ(x, y) = ρ(1D)δ(x)δ(y), where ρ(1D) = N/L is the 1D density and
η = 2ρ(1D)R is the 1D packing fraction,83 yields a non-integrable singularity [24, 20].
Yet 81+2 = 81 + 82 (i.e. eliminating83) yields [20] theexactexcess free energy of the
bulk hard-rod system, and [26] remarkably also the correspondingexactdirect correlation
function.

The quasi-0D situation for hard spheres of any number of dimensions is achieved via
an external potential such that there is a cavity which cannot hold more than one particle.
The 0D packing fraction is the average occupation of the cavity,η = N 6 1, and there is
an excess free energy

f (0D) = Fex

kBT
= η + (1 − η) ln(1 − η)

independent of the confining potential [15]. We now try to recover this result as the ultimate
crossover for any density functional. In the 0D limit,ρ(r) = ηδ(r), the first term81 is
directly integrated to give the exactf (0D) via a change of variables,τ = 1 − n3(x) and
dτ = −n0(x) dx. In this limit nV 1(r) · nV 2(r) andn1(r) · n2(r) become equal, and they
diverge at|r| = R. The ‘anti-symmetric’ form of82 cancels out these diverging terms
exactly. However,83 does not possess such an anti-symmetry, and gives a strong negative
divergence. This is why the functional equation (2) overstabilized the solid with respect to
the fluid.

Thus, a simple way to achieve the exact 0D limit is to modify83in such a way that the
diverging terms cancel each other, preserving at the same time of all the favourable features
of the functional in the 3D situations. We therefore propose the followingnewform for the
third term:

8
(new)

3 =
[ 1

3(n2)
3

8π(1 − n3)2

]
(1 − ξ2)3 (3)

whereξ(r) ≡ |nV 2(r)/n2(r)|. From

(n2)
3(1 − ξ2)3 = (1/n2)

3((n2)
2 − nV 2(r) · nV 2(r))3

one directly observes that8(new)

3 vanishes in the 0D limit sincen1(r)n2(r) − nV 1(r) ·
nV 2(r) → 0 and 1/n2(r) → 0 at |r| = R. The form equation (3), which is a key result of
this letter, was chosen since it recovers83 by the first two terms, 1−3ξ2, in its ξ2-expansion
of (1 − ξ2)3, and thus it also yields the Percus–Yevick pair direct correlations for the bulk
fluid. Since it does not have a term of orderξ3, the new form, equation (3), yields the same
three-particle bulk direct correlation functions as the original one in equation (2), but higher-
order direct correlation functions do differ from those obtained from the original functional.
The new form, equation (3), is within the original fundamental-measure description, and
just corresponds to some enlargement of the basis set,{φj }.

This anti-symmetrized form, suggested by the 0D limit, also improves the functional
near the bulk 3D limit. For example, the thermodynamic consistency of the bulk pair
correlations obtained by using thebridge functional [20, 16], derived from the free-energy
functional with the new8(new)

3 is much better than that obtained with83. In 2D situations
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it performs about as well as83. The contribution of the new8(new)

3 does not strictly vanish
in the bulk 1D limit, as required to give the exact result, but it is generally very small. We
re-emphasize that, by construction, the 0D limit is reproduced exactly.

Finally let us consider the 3D freezing transition. In the hard-sphere solid the particles
can be viewed as confined in a fluctuating almost spherical cage of its nearest neighbours.
This kind of confinement is very similar to that achieved by the 0D limit. Hence, any
free-energy functional which attempts to describe the solid correctly should simultaneously
provide reliable results for the 0D limit. This important interconnection was ignored by
all previous density functional studies of the hard-sphere freezing, but it is automatically
incorporated by our new functional. If one approximates the solid by a superposition of
normalizednarrow Gaussians, then it can be stabilized by any functional that is able to
achievegross similaritywith the exact result forη = 1 in the 0D limit. This explains why
such a large class of disparate free-energy functionals was able to provide a reasonable
description of the freezing transition parameters. However, because these functionals could
not yield the exact 0D limit, none of them could yield the correct vacancy concentration
of the solid. In addition, none of these functionals featured the correct divergence of the
equation of state of the solid at closest packing for the fcc lattice.

Due to its remarkable 0D properties, our new functional is the first that can yield the solid
with the correct vacancy concentration (i.e. without assuminga priori the normalization of
the Gaussians). With8(new)

3 we can obtain excellent solid–fluid transition parameters when
compared with simulations (simulation results [13, 14] are given hereafter in parentheses):
the packing fraction of the fluid,ηF = 0.491 (0.494), and the solid,ηS = 0.540 (0.545), the
melting pressure,Pσ 3/kBT = 12.3 (11.7), the Lindemann ratio,L = 0.101 (0.129), and
the vacancy concentration, e−17.1 (≈ 0). We also obtain an excellent equation of state for
the fcc hard-sphere solid, including the correct divergence at closest packing. More detailed
results will be presented elsewhere [26]. We have indications that further improvements of
the 2D and 1D limits can be achieved by including also slightly more complicated (e.g.,
tensorial) forms ofξ in 83. The analysis of the fundamental-measure theory as applied
to parallel hard cubes [30] should prove useful. The understanding of the special role
played by the fundamental-measure functional, derived from ‘liquid’ considerations, for
the correct description of the solid, may also lead to a better understanding of the density
functional theory of freezing. Pending further progress along these lines, our result, using
8

(new)

3 , provides the first comprehensive free-energy functional for 3D hard-sphere fluids
with adequate properties of dimensional crossover.
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