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Using replica density functional theory and Monte Carlo computer simulations we investigate a
system of annealed hard spherocylinders adsorbed in a matrix of quenched hard spheres. Theoretical
predictions for the partition coefficient, defined as the ratio of density of rods in the matrix and that
in a reservoir, agree well with simulation results. Theory predicts the isotropic-nematic transition to
remain first order upon increasing sphere packing fraction, and to shift towards lower rod densities.
This scenario is consistent with our simulation results that clearly show a jump in the nematic order
parameter upon increasing the rod density at constant matrix packing fraction, corresponding to the
isotropic-nematic transition, even for sphere matrix packing fractions&0.3. © 2004 American
Institute of Physics.@DOI: 10.1063/1.1815294#

I. INTRODUCTION

The effect of quenched disorder on the isotropic-nematic
phase transition is a matter of strong current interest and a
variety of experimental, simulation, and theoretical tech-
niques have been used to reveal the nature of orientational
order. The Imry-Ma argument1 prohibits the existence of true
long-range order in a nematic phase exposed to quenched
random orienting fields. The question what happens instead
when long-range order is disrupted in nematics with
quenched disorder has been addressed recently,2 and also dy-
namical aspects have been considered.3 Quasi-long-range or-
der, however, exists in nematics confined in random porous
media.4 Simulation evidence was given for critical behavior
of the isotropic-nematic phase transition in a porous
medium.5 Much work has been devoted to phenomenological
approaches, to rotator lattice models, and the Maier-Saupe
model~see Ref. 6 for recent work on the orientational relax-
ation of this model!. A related binary system is that of col-
loidal particles dispersed in a liquid crystal, see, e.g., Ref. 7
for recent work on capillary condensation of the nematic
phase between two spherical particles dispersed in a bulk
isotropic phase.

Nematic ordering in bulk can be understood on a micro-
scopic level via excluded volume interactions of particles
with continuous spatial and orientational degrees of freedom.
The Onsager isotropic-nematic transition of the hard rod
fluid is a prominent example of a phase transition in such a
system.8 To study orientationally ordered phases density-
functional theory9 is a primary tool, and in fact Onsager’s
theory is based on the low-density expansion of the~exact!
free energy functional. For additive hard sphere mixtures
Rosenfeld’s ~nonperturbative! fundamental-measure theory
~FMT! ~Ref. 10! provides a very accurate description. Early

extensions thereof to arbitrary convex bodies were given11,12

and modified to describe the isotropic-nematic transition of
hard spherocylinders and ellipsoids.13 Recently, a technical
difficulty was overcome and the so-called deconvolution of
the Mayer bond into functions characteristic for single par-
ticles was obtained for mixtures of spheres and~thin!
rods;14–16 other cases have also been considered.17 The rod-
sphere functional predicts the properties of the free interface
between demixed fluid phases very reliably as compared to
simulations,18 and has also been used to study the wetting
behavior at a planar hard wall.19

One approach to model porous substances is to rely on
immobilized particle configurations of model fluids. These
configurations are ‘‘quenched,’’ and are brought into contact
with an equilibrated ‘‘annealed’’ fluid. The conventional tool
to study such quenched-annealed~QA! mixtures is via the
replica trick, and a variety of liquid state integral equations
have been carried over from equilibrium to QA models. Re-
cently, a density functional theory~DFT! approach to such
QA models was proposed20,21and demonstrated to give good
account of hard sphere correlations,20 capillary condensation
and evaporation,22,23 surface behavior of hard spheres,24

freezing in a lattice model,25 and the structure of hard
spheres immersed in random fiber networks.26

In this work we combine the tools developed in Refs. 14,
15, 20, and 21 to arrive at a replica DFT for annealed hard
rods in the Onsager limit of large length-to-thickness size
ratios immersed in a matrix of quenched spheres. We con-
sider two types of interactions between matrix particles,
namely, hard sphere and ideal~vanishing! interactions, the
latter leading to more open matrix void structures at equal
density. We find that the isotropic-nematic transition remains
stable upon increasing density of matrix particles. The coex-
isting densities of rods in the void space, however, increase
exponentially with increasing matrix densities. We compare
these findings with results from computer simulations where
we find a similar shift in the coexisting densities via analyz-
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ing the behavior of the nematic order parameter. Both ap-
proaches cannot access the true long-range behavior of the
model. In simulations finite-size effects are present, and the
DFT is essentially a mean-field treatment. We believe, how-
ever, that our findings describe what would be seen in a finite
sample of colloidal rods immersed in a mesoporous
material.27

The paper is organized as follows. In Sec. II we define
the model of thin hard rods immersed in a sphere matrix in
more detail. We outline our DFT approach in Sec. III. The
simulation techniques are briefly discussed in Sec. IV. Re-
sults from DFT and simulations are presented in Sec. V. We
finish with concluding remarks in Sec. VI.

II. THE MODEL

We consider a fluid of needlelike hard rods~speciesN)
of diameterD and lengthL, where L@D. The rods are
immersed in a quenched matrix comprised of spheres of ra-
dius R ~and diameters52R), and we restrict ourselves to
the case of large spheres,LD!s2. The interaction between
a fluid rod and a matrix sphere is that of hard bodies, i.e.,
infinite if both particles overlap and zero otherwise. We con-
sider two different kinds of sphere-sphere interactions:~i! a
hard sphere interaction, being infinite if the separation dis-
tance between spheres centers is,2R and zero otherwise
and ~ii ! freely overlapping spheres that behave like an ideal
gas~i.e., the pair interaction vanishes for all distances!.

We denote the number densities of both species byr i ,
i 5S,N, and also use the sphere packing fractionh
5prSs3/6 as a parameter. The size ratioL/s is a geometric
control parameter. Local density profiles for spheres and rods
are denoted byrS(r ) andrN(r ,V), respectively, wherer is
the space coordinate andV is the rod orientation. See Fig. 1
for an illustration of the model.

III. DENSITY FUNCTIONAL THEORY

A. General strategy

Following the extension of DFT~Ref. 9! to QA
mixtures20,21 we express the grand potential functional as

V@rS ;rN#5F id@rN#1Fexc@rS ;rN#1E d3r

3E d2V

4p
rN~r ,V!@Vext~r ,V!2mN#, ~1!

whereVext(r ,V) is an external potential acting on the rods
~which will be set to zero in the following! andmN is the rod
chemical potential. The ideal free energy functional is given
by

F id@rN#5kBTE d3r E d2V

4p
rN~r ,V! ~2!

3@ ln~rN~r ,V!LN
3 !21#, ~3!

whereLN is the~irrelevant! thermal wavelength of the rods,
kB is the Boltzmann constant, andT is the absolute tempera-
ture. The effects of all interparticle interactions, those be-
tween rods and rods as well as those between rods and
~quenched! spheres are described through the excess free en-

ergy functionalFexc. The following section is devoted to an
explicit approximation thereof. The minimization condition
is

dV@rS ;rN#

drN~r ,V!
U

rS(r8)

50, ~4!

where the density distribution of the quenched species
rS(r 8) is treated as a fixed quantity.20,21 In the case of the
freely overlapping matrix this is just the distribution of an
ideal gas, for the hard sphere matrix it can be calculated from
Rosenfeld’s hard sphere functional.10

B. Excess free energy functional

Following the general structure of FMT~Ref. 10! and, in
particular, the extension to QA fluids,20 the ~Helmholtz! ex-
cess free energy is obtained by integrating over a free energy
density

Fexc@rS ;rN#5kBTE d3r E d2V

4p
F~$nn

i %!, ~5!

where the~reduced! free energy densityF is a simple func-
tion ~not a functional! of the weighted densitiesnn

i , where
i 5S,N labels the species andn labels the type of weighted
density. The functional form ofF is obtained by consider-
ation of the exact zero-dimensional excess free energy.20 For
the case of the hard sphere matrixF5FHSM, where

FHSM52n0
N ln~12n3

S!1
n1

Nn2
SN1n1

Nn2
NN

12n3
S . ~6!

For ideal matrix spheres we findF5F IDM , where

F IDM5n0
Nn3

S1n1
Nn2

SN1n1
Nn2

NN exp~n3
S!. ~7!

The dependence on the spatial coordinater and the orienta-
tion V are suppressed in the notation in Eqs.~6! and~7!; we
give the explicit dependences and the relation to the bare
density fields in the following. The weighted densities for
rods are given by

n0
N~r ,V!5rN~r ,V!* w0

N~r ,V!, ~8!

n1
N~r ,V!5rN~r ,V!* w1

N~r ,V!, ~9!

n2
NN~r ,V8!5E d2V

4p
rN~r ,V!* w2

NN~r ,V;V8!, ~10!

where the asterisk denotes the spatial convolution,
g(r )* h(r )5*d3x g(x)h(r2x), and the weight functions are
defined as

w0
N~r ,V!5

1

2
@d~r1VL/2!1d~r2VL/2!#, ~11!

w1
N~r ,V!5

1

4 E2L/2

L/2

dl d~r1V l !, ~12!

w2
NN~r ,V;V8!516DA12~V•V8!2 w1

N~r ,V!, ~13!

where d(•) is the Dirac distribution. For spheres the
weighted densities are

n0
S~r !5rS~r !* w0

S~r !, ~14!
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n2
SN~r ,V!5rS~r !* w2

SN~r ,V!, ~15!

n3
S~r !5rS~r !* w3

S~r !, ~16!

where the weight functions are given by

w0
S~r !5d~R2r !/~4pR2!, ~17!

w2
SN~r ,V!52d~R2r !U r

r
•VU, ~18!

w3
S~r !5Q~R2r !, ~19!

with r 5ur u, and Q(•) being the step function. This com-
pletes the prescription of the functional.

Note that the weight functions are constructed in order to
generate the Mayer bondsf i j 5exp@Vij /(kBT)#21, whereVi j

is the pair potential between particles of speciesi and j ,
upon convolution. Explicitly,

f SN~r ,V!52w3
S~r !* w0

N~r ,V!2w2
SN~r ,V!* w1

N~r ,V!,
~20!

f NN~r ,V,V8!522w2
NN~r ,V;V8!* w1

N~r ,V8!, ~21!

see Appendix A of Ref. 15 for the explicit calculation. By
Taylor expandingF around h50 one can show that the
current functional is exact on the second virial level. Higher
orders inh are included in an approximative way.

C. Homogeneous matrices

Considerable simplifications of the theory outlined
above arise if the matrix particles are distributed uniformly
in space, i.e.,rS(r )5const. This still permits the study of rod
orientational order, as well as inhomogeneous situations in-
duced by an additional external influence modeled by
Vext(r ,V) in Eq. ~1!. The weighted densities for speciesi
become proportional to the bulk density of speciesi , hence
nn

i 5jn
i r i , where the proportionality constants are fundamen-

tal measures. For spheresj0
S51, j2

SN54pR2, andj3
S

54pR3/3. For rodsj1
N5L/4, j0

N51, and, in an isotropic
state,n2

NN5j2
NNrN , where j2

NN5pLD equals the leading
contribution to the surface of a rod in the limitL/D→`.
@Recall that for spherocylinders of finite aspect ratio the fun-
damental measures arej051, j15L/41D/2, j25pD(L
1D), andj35pD2(L/41D/6).]

The free energy density per volume for either type of
matrix is then

FHSM52n0
N ln~12h!1

~3h/R!n1
N1n1

Nn2
NN

12h
, ~22!

F IDM5hn0
N1~3h/R!n1

N1exp~h!n1
Nn2

NN, ~23!

where the explicit dependence of all rod weighted densities
on variables isnn

N(r ,V), and the sphere packing fractionh is
just a constant.

D. Isotropic-nematic transition

1. Hard sphere matrix

In isotropic and homogeneous bulk states the free energy
is obtained by applying the density functional to constant

density fields of spheres and rods. The resulting excess
Helmholtz free energy per system volumeV is given by

Fexc

kBTV
52rNln a1

p

4

rN
2 L2D

12h
, ~24!

a5~12h!expS 2
3L

2s

h

12h D , ~25!

wherea has the interpretation of a free volume fraction of a
rod in a sea of spheres~i.e., the ratio of average volume
accessible to the rods and the total volume!.

In a spatially homogeneous, but orientational ordered
phase~i.e., a bulk nematic! additional simplifications arise in
the free energy density, Eq.~23!,

FHSM5rNF2 ln~12h!1
3L

4R

h

12h G1
n1

N~V!n2
NN~V!

12h
,

~26!

whererN is the~bulk! rod number density. The only depen-
dence on the orientational distribution is through the numera-
tor of the second term on the right-hand side of Eq.~26!; the
denominator is a trivial constant. The specific combination of
weighted densities is precisely the Onsager functional, re-
stated in FMT terminology, see the end of Sec. III B. The
effect of the denominator, however, is toincreasethe excess
free energy ash grows. Note further that the first term on the
right-hand side of Eq.~26! is linear in rN , and hence does
not affect phase equilibria. Hence we can immediately obtain
the isotropic-nematic phase transition within the present
theory by rescaling the known bulk~i.e., in the absence of
matrix particles! solution. We find that the densities of the
coexisting isotropic phaserN, iso and the nematic phase
rN,nem are

rN, iso

rN, iso
0 5

rN,nem

rN,nem
0 5~12h!, ~27!

where the coexisting densities in bulk are (p/4)rN, iso
0 L2D

54.189 in the isotropic phase and (p/4)rN,nem
0 L2D55.336

in the nematic phase.28 It might at first glance be surprising
that the densities of the coexisting states in the matrix are
smaller than those without matrix. This is, however, simply
due to the occupied matrix volume that depletes rods. More
relevant is the ratio of density of rods in the free volume left
by the quenched spheres and that in bulk~without matrix!.
This is

rN, iso

arN, iso
0 5

rN,nem

arN,nem
0 5expS 3L

2s

h

12h D , ~28!

which is an increasing function of h, in accordance with
physical expectation, as higher rod densities are required to
induce the nematic order against the quenched matrix disor-
der. For large size ratiosL/s the effect is stronger, however,
the overall analysis is, as stated above, restricted toLD
!s2, hence the limitL/s→` is not directly accessible.
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2. Ideal sphere matrix

Carrying out the same analysis as above for the case of
freely overlapping matrix spheres yields

Fexc

kBTV
52rNln a1

p

4
rN

2 L2D exp~h!, ~29!

a5expF2hS 11
3L

2s D G . ~30!

In the nematic phase

F IDM5rNhS 11
3L

4RD1exp~h!n1
N~V!n2

NN~V!. ~31!

The bare coexisting densities of the isotropic and the nematic
phase decrease as a function ofh:

rN, iso

rN, iso
0 5

rN,nem

rN,nem
0 5exp~2h!. ~32!

However, the actual rod density in the free volume is again
increasing at coexistence,

rN, iso

arN, iso
0 5

rN,nem

arN,nem
0 5expS 3L

2s
h D . ~33!

The increase is weaker than in the above case of the hard
sphere matrix@Eq. ~28!#, as the present matrix induces a
more open void structure due to sphere overlaps.

IV. COMPUTER SIMULATION TECHNIQUE

We have carried out Monte Carlo simulations to obtain
results for the partition coefficient, defined as the ratio of
densities in the matrix and in the reservoir~free of matrix
spheres! in chemical equilibrium with the systemrN /rN

r .
We perform simulations of hard spherocylinders for a fixed
matrix configurations and for the bulk simultaneously in two
separate simulation boxes. The linear dimension of the cubic
simulation boxes is about 5L and periodic boundary condi-
tions are applied. Matrix configurations are taken to be
equilibrated hard sphere configurations of the prescribed
packing fractionh. Most of the results presented below are
for a length-to-diameter ratioL/D520 of the spherocylin-
ders, while the rod-sphere size ratio is chosen to beL/s
51. Moreover, the boxes can exchange spherocylinders in
order to ensure equal chemical potential of the rods in bulk
and in the matrix, while the total number of spherocylinders
in the two boxes is kept constant. Typical particle numbers
are <60 spheres and<12 000 rods. We measure the aver-
aged number densities of the spherocylinders in bulk and in
the matrix to obtain the~averaged! partition coefficient
rN /rN

r . To approach the Onsager limit, we have also carried
out simulations for thinner rods withL/D580 and 800. Such
aspect ratios severely limit the maximum obtainable reduced
densityc5(p/4)rNL2D.

We also performed Monte Carlo simulations in the ca-
nonical ensemble to estimate the isotropic-nematic transition
as a function of the matrix packing fractionh. We measure
as a function of the reduced density of the rodsc, the nem-
atic order parameterS defined as the largest eigenvalue of
the standard nematic order parameter tensor

Qnt5K 1

NN
(
i 51

NN S 3

2
Vn

( i )Vt
( i )2

dnt

2 D L , ~34!

whereVn
( i ) is then component of the unit orientation vector

of particlei , NN is the number of spherocylinders, anddnt is
the Kronecker delta. At sufficiently low rod densities,S is
about zero, which corresponds to the isotropic phase. We
observe a jump inS upon increasingc, denoting a transition
from the isotropic to nematic phase. The densities at which
the jump inS occurs gives us a rough estimate of the coex-
isting densities of the isotropic-nematic transition. It is worth
noting that the coexisting densities of the isotropic and nem-
atic phase in bulk can be determined more accurately using
Gibbs ensemble Monte Carlo simulations.29 In these simula-
tions the two coexisting phases are simulated simultaneously
in two separate boxes which can exchange particles and vol-
ume to ensure equal chemical potential and equal pressure.
However, Gibbs ensemble Monte Carlo simulations cannot
be used to determine phase equilibria in systems at a fixed
matrix packing fractionh as it is impossible to exchange
volume between the two simulation boxes while keepingh
fixed ~see, however, Ref. 30!. While histogram reweighting
~see, e.g., Ref. 31! does not suffer from this problem, we
expect it to be difficult to sample accurately the two phases
of different symmetry with greatly differing values of the
order parameter in both phases.

V. RESULTS

As a first check of the accuracy of the DFT we compare
results for the partition coefficient,rN /rN

r , to those from
MC simulation in Fig. 2. The DFT results are obtained from
the ~analytic! expression for the rod chemical potential ob-
tained asmN(rN ,h)5V21](F id1Fexc)/]rN and inserted
into the condition for chemical equilibrium~with respect to
exchange of rods! of the reservoir and the system
mN(rN ,h)5mN(rN

r ,0), which is solved numerically. For
fixed matrix sphere packing fractionh, there is a slow in-
crease ofrN /rN

r as a function of the reservoir densityrN
r .

Simulation results are shown for reduced reservoir densities
cr5(p/4)rN

r L2D&2.5, about halfway of the density of the
isotropic phase at isotropic-nematic coexistence in bulk in
the case of the Onsager limit and close to the result for
L/D520 ~see Ref. 32!. In this regime the acceptance prob-

FIG. 1. Illustration of the model of hard rods of lengthL and diameterD
immersed in a matrix of fixed hard spheres of diameters. The rods are
equilibrated in the presence of quenched configurations of spheres. The
statistical distribution of spheres is that of a pure hard sphere system.
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ability of particle swaps between system and reservoir in the
simulation is sufficiently large in order to obtain reliable
data. Most of our simulations are carried out for an aspect
ratio of L/D520. The DFT results~derived in the Onsager
limit, L/D→`) overestimate slightly the MC data for small
rN

r , but these deviations decrease for increasingrN
r . In order

to assess the influence of finite rod thicknesses we have also
carried out simulation runs for larger aspect ratios ofL/D
580 and 800. Due to the scaling ofc and cr with L2D
these large values significantly limit the accessible values of
c with reasonable particle numbers. It is, however, evident
that for smallrN

r the theoretical curve is indeed approached
for increasingL/D. We hence conclude that the DFT gives
good account of the thermodynamic properties of isotropic
states of rods in a quenched sphere matrix.

As derived in Sec. III D the DFT predicts the first-order
isotropic-nematic transition to remain stable forh.0. In Fig.
3 the results for the coexistence densities are displayed as a
function of sphere packing fractionh. An almost linear de-
crease withh is found, which might seem at first glance
surprising. The reason is thatrN is the average density in the
system, hence both the volume of the void space between
spheres and the forbidden~for rods! volume contribute. The
latter clearly increases withh leading to the observed de-
crease in transition densities. We also display in Fig. 3 esti-
mates of the transition densities from simulations. Those val-
ues are obtained from analysis of the nematic order
parameter~as described below! obtained forL/D520. For
this size ratio the scaled coexistence densities are consider-
ably smaller than in the Onsager case forh50. The decrease
of the coexistence densities upon increasingh is very similar
to that predicted by the theory.

Next we investigate the behavior of the rod density in
the void space of the matrix, i.e., the number of rods divided
by their accessible volume rather than the total system vol-

ume. This density is obtained asa21rNL2Dp/4, wherea is
the free volume fraction accessible to the rods as given in Eq.
~25! for hard sphere matrices and in Eq.~30! for ideal ma-
trices. The results, as displayed in Fig. 4, indicate a strong
increase withh. Hence largereffective rod densities are
needed to overcome the quenched disorder and drive the sys-
tem into a nematic state.

We next turn to the simulation results of the nematic
order parameter, from which the coexistence densities in Fig.
3 were obtained. In Fig. 5 we plotS as a function ofc for
different values ofh. The results for the bulk,h50, serve as
a reference case. In the isotropic stateS'0.05, which is.0
only due to the finite system size. At sufficiently highc, we
observe a jump inS from which we can estimate the coex-
istence densities asciso52.5 andcnem53.0, in fair accor-
dance with data from the literature. ForL/D520 the coex-

FIG. 2. Partition coefficientrN /rN
r , whererN is the density of rods in the

hard sphere matrix andrN
r is the density of rods in a reservoir, as a function

rN
r L2Dp/4 for packing fractions of the hard sphere matrixh50.1,0.2,0.3

~from top to bottom! and size ratioL/s51. Results from DFT~lines! and
from simulations~symbols! are shown. Simulation results are shown for rod
aspect ratios ofL/D520 ~dots!, 80 ~pluses!, 800 ~crosses!; theoretical re-
sults correspond to the limitL/D→`. The inset shows the area inside the
rectangle marked in the main plot on an expanded scale; the simulation
results approach the theoretical curve for increasingL/D.

FIG. 3. Phase diagram of hard rods immersed in a matrix of quenched hard
spheres displayed as a function of matrix packing fractionh and scaled rod
densityrNL2Dp/4. Shown are DFT results for the binodal of the isotropic-
nematic transition of Onsager rods~i.e., L/D→`) inside the hard sphere
matrix ~solid lines! and inside the ideal matrix~dashed lines!. Coexistence is
along vertical tie lines~not shown!. In this representation the phase diagram
is predicted to be independent of the rod-sphere size ratioL/s. Simulation
results are shown for coexistence densities~obtained from analysis of the
nematic order parameter! inside the HS matrix forL/D520 ~symbols!.

FIG. 4. Same as Fig. 3, but as as a function of matrix packing fractionh and
density of rods in the void space, i.e.,a21rNL2Dp/4, wherea is the free
volume fraction accessible to the rods. The inset shows the results for size
ratiosL/s50.5 and 2~as indicated!.
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isting phases in bulk~i.e., h50) have densities ofc
52.645 ~isotropic phase! and 3.337~nematic phase! as ob-
tained from Gibbs ensemble simulations andc52.698 ~iso-
tropic phase! andc53.315~nematic phase! as obtained from
Kofke integration.32 Remarkably, for increasing values of
sphere packing fraction,h50.1,0.2, the qualitative shape of
the order parameterS as a function of densityc remains the
same as forh50, hence there can still be a transition region
identified. However, a marked shift to lower values ofc oc-
curs. Also the order parameter in the nematic phase attains
smaller values as compared to that at the bulk transition. For
the very large matrix packing fractionh50.4 no reliable
indication of a phase transition can be determined.

We have checked that these results do not sensitively
depend on the matrix configuration. In Fig. 6 results forS for
the same matrix packing fractionh50.3, but different~ran-
dom! configurations of the matrix are shown. The systematic
deviations between results for different matrix configurations
are comparable to the statistical error~of the annealed aver-
age!.

As further illustrations of the remarkable stability of the
nematic phase we display snapshots from the MC simulation
in the isotropic and in the nematic phase. In Fig. 7 configu-
rations forc52.0 andc52.75 are shown forh50.1, clearly

resembling closely a bulk situation without matrix particles.
In our simulations the overall director orientation is deter-
mined by the initial condition. Although there should be an
optimal global director orientation for each different geom-
etry of the void structure, in practice the system hardly
changes its initial director during the course of the simula-
tion. For h50.2, displayed in Fig. 8, we observe different
competing local directors, especially close to the parts of the
sphere surfaces normal to the global nematic director. The
disturbance of the nematic phase is even more pronounced
for h50.3, as displayed in Fig. 9.

While the theory predicts artificially the existence of an
isotropic-nematic transition for allh,1, the simulation re-
sults suggest that the transition disappears for matrix packing
fractions larger than abouth50.3. We did not focus on the
precise nature of this disappearance and the question of
whether it is accompanied by a critical point.

VI. CONCLUSIONS

In conclusion, we have considered the nematic-isotropic
phase transition of rodlike particles immersed in a model
porous medium represented by quenched hard spheres. We
have used hard spherocylinders as a truly microscopic model
for the steric interactions between elongated molecules or
colloidal rods, and have employed DFT and Monte Carlo
~MC! simulation to investigate the isotropic-nematic phase
transition. As the theory is mean field in character, true long-
range order and quasi-long-range order in the nematic phase
cannot be distinguished. Also nematic glass phases are out of
the scope of the current equilibrium approach. Within these

FIG. 5. Simulation results for the nematic order parameterS as a function of
the scaled rod densityc5rNL2Dp/4 for different matrix sphere packing
fraction h50(bulk),0.1,0.2,0.3.

FIG. 6. Simulation results for the nematic order parameterS as a function of
the scaled rod densityc for fixed matrix sphere packing fractionh50.3 and
three different realizations of the quenched hard sphere matrix.

FIG. 7. Snapshots from MC simulation at statepoints close to isotropic-
nematic coexistence of hard rods of aspect ratioL/D520 immersed in a
matrix of quenched hard spheres of packing fractionh50.1. The reduced
density of rods isc52.0 ~isotropic phase, left! andc52.75 ~nematic phase,
right!. Rods are colored according to their orientation.

FIG. 8. Same as Fig. 7, but forh50.2, c51.75 ~left! andc52.51 ~right!.
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limitations we find that the density of rods in the void struc-
ture of the matrix necessary to induce nematic order in-
creases strongly with matrix packing fraction~exponential in
the case of the ideal matrix and stronger than exponential for
the hard sphere matrix!. These findings are supported by MC
simulation results, that clearly demonstrate the existence of
nematic ordering, and the possibility of a first-order
isotropic-nematic transition. As an outlook on possible future
work, we mention the behavior of fluids of rodlike particles
near curved surfaces33 in the nematic phase. Furthermore it
would be fascinating to experimentally test our predictions,
i.e., using optical tweezers34–36 to fix colloial spheres as a
model porous matrix and investigate the behavior of, e.g.,
suspended colloidal silica rods,37 favorably in real space us-
ing confocal microscopy. Including the influence of~length!
polydispersity is an interesting issue that will further enrich
the phase behavior~see, e.g., Refs. 38–41 for recent work of
the matrix-free hard rod system!.
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