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Fundamental-measure free-energy density functional for hard spheres:
Dimensional crossover and freezing
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A geometrically based fundamental-measure free-energy density functional unified the scaled-particle and
Percus-Yevick theories for the hard-sphere fluid mixture. It has been successfully applied to the description of
simple ~‘‘atomic’’ ! three-dimensional~3D! fluids in the bulk and in slitlike pores, and has been extended to
molecular fluids. However, this functional was unsuitable for fluids in narrow cylindrical pores, and was
inadequate for describing the solid. In this work we analyze the reason for these deficiencies, and show that, in
fact, the fundamental-measure geometrically based theory provides a free-energy functional for 3D hard
spheres with the correct properties of dimensional crossover and freezing. After a simple modification of the
functional, as we propose, it retains all the favorableD53 properties of the original functional, yet gives
reliable results even for situations of extreme confinements that reduce the effective dimensionalityD drasti-
cally. The modified functional is accurate for hard spheres between narrow plates (D52), and inside narrow
cylindrical pores (D51), and it gives the exact excess free energy in theD50 limit ~a cavity that cannot hold
more than one particle!. It predicts the~vanishingly small! vacancy concentration of the solid, provides the fcc
hard-sphere solid equation of state from closest packing to melting, and predicts the hard-sphere fluid-solid
transition, all in excellent agreement with the simulations.@S1063-651X~97!07404-7#

PACS number~s!: 61.20.Gy, 64.10.1h
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I. INTRODUCTION

The applications of the density functional formalism a
wide ranging: from quantum mechanical electronic calcu
tions in metals, semiconductors, and insulators@1# to phase
transitions and interfacial problems@2,3# of classical liquids.
In particular, the density functional theory provides a mic
scopic theory for adsorption and wetting phenomena for b
charged and neutral fluid systems. Most of the classical d
sity functionals start from the bulk fluid state where t
equation of state and pair correlation functions are known@4#
and investigate then the inhomogeneous fluid subject to
external potential, e.g., a gravitational field or walls confi
ing the system and inducing a layering in the homogene
bulk fluid. Different kinds of confinement are conceivable;
particular, three of them are important which effectively r
duce the dimensionality of the three-dimensional bulk flu
First let us consider two parallel walls with a spacing
several intermolecular distances. By varying the plate d
tance one can continuously interpolate between two
three dimensions. Second, an even more dramatic con
ment is given by a cylindrical pore@5#: By shrinking the pore
size towards molecular spacing one can effectively red
the dimensionality of the fluid from three to one. Third, b
shrinking the size of a spherical cavity until it can hold
most one particle, one can reduce the effective dimensio
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ity of the fluid from three to zero.
These spatial confinements drastically affect structu

and dynamical quantities as well as the location of ph
transitions. The density profile exhibits sharp peaks co
sponding to microscopic layers of the liquid, the viscosity
observed to increase drastically@6#, and the location of the
freezing transition@7,8#, the glass transition@9#, the critical
point @10#, and the triple point@11# significantly shift with
respect to their bulk values. While it is difficult to prepa
smooth well-defined walls for molecular liquids, it is rela
tively easy to confine mesoscopic colloidal suspensions
tween glass plates and in glassy tubes. The further advan
one gains in dealing with mesoscopic dispersions is that
can directly watch their positions and correlations in re
space by using videomicroscopy. Suspensions confined
tween two glass plates were intensely investigated in rec
years@12–18# and there are also some recent investigatio
for colloids in slit pores@19#.

In principle, the exact three-dimensional~3D! free energy
functional ~if it was available! should be able to provide a
unifying description of all such confined situations with
density functional theory. The main aim of this paper is
present an approximate free-energy functional that featu
reliable crossover properties between effective dimension
ties. Basically the idea is as follows: Suppose we are star
with the exact density functional in three dimensions and
then reduce the dimensionality of the system by apply
confining external potentials as walls and cylindrical por
Then the exact three-dimensional functional reduces to
exact two-dimensional and one-dimensional functionals~re-
spectively!. Upon freezing, in the surface or in the bulk, th
density profile has ‘‘zero-dimensional’’ characteristics, wh
every particle is practically confined to a cage~or a cavity

va,
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defined by it neighbors! which cannot contain more than on
particle. In practice, however, the exact functional is n
known. Hence the requirement to get a realistic low
dimensional functional by shrinking the dimensionality
the system is an important consistency check of any appr
mate functional. This consistency is of particular importan
if the 3D functional is invoked to describe situations of e
tremely confined fluids@20,5#.

A relatively simple and the almost canonical starting po
for classical fluids is the system of hard spheres. A ha
sphere fluid exhibits a freezing transition into a fcc solid
high enough packing fraction. The bulk structure factors
well known in the fluid for arbitrary densities@4#. Density
profiles of inhomogeneous situations involving a single p
nar hard wall@21#, two parallel hard walls@22,23,20,8#, or a
gravitational field@24# are well known. Therefore the inho
mogeneous hard-sphere fluid is considered to be an im
tant situation to test the validity of density functional a
proximations. In two dimensions, the hard-disk fluid is a
well studied and for the one-dimensional hard rods even
exact free-energy functional is known@25#, which provides a
very important paradigm@26# for developing model free-
energy functionals. Hence the hard-sphere fluid represen
convenient reference fluid where the crossover between
ferent dimensionalities starting from the 3D function
should be tested explicitly.

When the free energy is expressed as a functional of
average one-body densities$r i(r )%, of the various species
$ i % of particles, all the relevant thermodynamic functions c
be calculated. The central quantity is the excess free en
~over the exactly known ‘‘ideal-gas’’ contributions!,
Fex@$r i(r )%#, which originates in interparticle interaction
The performance of a 3D functional in quasi-2D a
quasi-1D situations can be inferred from its ability to provi
accurate description of the corresponding uniform~bulk! 2D
and 1D fluids, respectively. The ability of the functional
stabilize a solid, and to predict a freezing transition, can
inferred from its result for the quasi-0D limit. The minima
prerequisite from the 3D functional, to have at least gr
similarity to the exact values in lower effective dimension
ity situations, was achieved@27,5# by the smoothed densit
approximation@27#. Many functionals of comparable, som
times better, accuracy were subsequently developed@3#,
which could provide qualitative, sometimes quantitativ
agreement with simulated density profiles of confined flui
Most of these functionals were also able to exhibit a freez
transition for the hard spheres, which essentially requ
only that the functional is finite in the 0D limit describe
below. They gave melting and freezing densities in reas
able, sometimes excellent, agreement@28,29# with simula-
tions, but they had to assumea priori no vacancies in the
solid. The correct Lindemann parameter of the solid n
melting was sometimes obtained@29#, but with incorrect
density profiles. None of these functionals could feature
exact 0D limit, or the exact bulk-1D@25# limit. Functionals
built upon the bulk-3D data as essentially numerical input
not contain the building blocks for achieving these limits.

The fundamental-measure free-energy model@30–35#, on
the other hand, is an approximation that enables derivatio
the uniform ~bulk! fluid properties as a special case, rath
than employing them as input. The simplest such functio
t
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@31# proved successful for 3D fluids in the bulk or in slitlik
pores, but it was unsuitable for narrow cylindrical pores a
unable to describe the solid. Yet, since it is built upon
well-defined set of geometric basis functions, it is possible
analyze it, term by term, to reveal its crossover propert
and then to improve its form so that it yields accurately ev
the freezing transition. We reemphasize that it is relativ
easy to construct functionals specifically for 2D and 1D s
tems@see, e.g., Eqs.~14! and~15! below#, but having a func-
tional for 3D that works in arbitrary situations ranging fro
0D to 3D is much more demanding.

In this work we show that, in fact, the fundamenta
measure geometrically based theory@30–35# provides a free-
energy functional for 3D hard spheres with the correct pr
erties of dimensional crossover and freezing. A particu
simple modification of the original functional is propose
which retains all the favorableD53 properties of the origi-
nal functional, but gives reliable results even for situations
extreme confinements that reduce the effective dimensio
ity D drastically. It is accurate for hard spheres betwe
narrow plates (D52), and inside narrow cylindrical pore
(D51), and gives the exact excess free energy in
D50 limit ~a cavity that cannot hold more than one pa
ticle!. It predicts the~vanishingly small! vacancy concentra
tion of the solid, provides the fcc hard-sphere solid equat
of state in excellent agreement with the simulations fro
closest packing to melting, and predicts the hard-sph
fluid-solid transition in excellent agreement with the simu
tions.

In Sec. II we briefly review the geometrically base
fundamental-measure free-energy functionals. The quas
and quasi-1D limits are considered in Sec. III, while in Se
IV we investigate the quasi-0D limit of the 3D functional
In Sec. V we discuss the hard-sphere solid and the free
transition as predicted by the functionals. The results
discussed in Sec. VI. In order not to interrupt the discussi
with too much algebra, the essential details of our calcu
tions are given in Appendixes A–E. A short account of t
present work was published elsewhere@36#.

II. GEOMETRICALLY BASED
FUNDAMENTAL-MEASURE

FREE-ENERGY FUNCTIONALS

The fundamental-measure free-energy density functio
which is being developed in recent years@30–35#, keeps the
geometric features to the forefront. It can be formulateda
priori for mixtures of nonspherical molecules, and can der
the uniform fluid properties as a special case, rather t
employ them as input. The basic idea is to interpolate
tween the ‘‘ideal-liquid’’ @37#, high density, limit where the
pair direct correlation function is dominated by convolutio
of single-particle geometries, i.e., overlap volume and ov
lap surface area, and the limit of low density where it
given by the pair exclusion volume. The key for the realiz
tion of this idea is the convolution decomposition of th
excluded volume for a pair of convex hard bodies in terms
characteristic functions for the geometry of the two ind
vidual bodies. On the basis of a unique convolution deco
position for spheres it was possible to derive@31# a
fundamental-measure free-energy functional for hard sph
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55 4247FUNDAMENTAL-MEASURE FREE-ENERGY DENSITY . . .
mixtures, in which the weight functions represent the geo
etry of the individual particles. Starting with the excess fre
energy functional for hard-spheres it was shown that
fundamental-measurebridge functional, which is derived
from the free-energy functional, can then be successfully
lized for arbitrary pair interactions@34,30#. ‘‘Universality of
the bridge functions’’ @38#, which initiated a successfu
theory of the bulk fluid, is thus replaced by ‘‘universality o
the bridge functional’’@34,30#, as a working hypothesis fo
both uniform and nonuniform classical fluids. The direct e
tension of the functional to molecular~‘‘complex’’ ! fluids is
made possible by the relation of the convolution decomp
tion for spheres and the Gauss-Bonnet theorem for con
bodies.

The fundamental-measure excess free-energy functi
for hard-sphere mixtures of dimensionalityD was postulated
@31# to have the form

Fex@$r i~r !%#

kBT
5E dx F@$na~x!%#, ~1!

where it is assumed that theexcess free-energy densityF is
a function of only the system averaged fundamental geom
ric measures of the particles,

na~x!5(
i
E r i~x8!wi

~a!~x2x8!dx8. ~2!

Theweight functions wi
(a) are characteristic functions for th

geometry of the particles, and are obtained from the con
lution decomposition of the excluded volume for a pair
particles in terms of characteristic functions for the geome
of the individual particles. This form implies that th
n-particle direct correlation functionsci1 , . . . ,i n

(n,FD) , which are

functional derivatives ofFex@$r i(r )%#, are given by convolu-
tions of the geometric characteristic functions. In particu
the two-particle functions have the form

ci1 ,i2
~2,FD!~r1 ,r2!52E (

a,b
Cab@$ng~x!%#wi1

~a!~x2r1!

3wi2
~b!~x2r2!dx, ~3!

where

Cab5Fab9 5
]2F

]na]nb
~4!

as required by the scaled-field-particle@39# geometric analy-
sis, and incorporating the basic idea tointerpolatebetween
the ‘‘ideal-liquid’’ @37# ~high density! and ideal-gas limits.
The ideal-liquid pair direct correlation function is dominat
by convolutions of single-particle geometries, i.e., over
volume and overlap surface area, and the low density di
correlation function is given by the pair exclusion volum
This interpolation is realized through the convolution deco
position of the excluded volume for a pair of convex ha
bodies in terms of characteristic functions for the geome
of the two individual bodies. Auniquesolution was found
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for the special case of spheres with aconvolution decompo-
sition involving a minimal number of different weight func
tions @31#:

2 f i j ~r i j !5wi
~0!

^wj
~3!1wj

~0!
^wi

~3!1wi
~1!

^wj
~2!

1wj
~1!

^wi
~2!2wi

~V1!
^wj

~V2!2wj
~V1!

^wi
~V2! ,

~5!

where the Mayer function for a pair of spheres is minus
Heaviside step function,

f i j ~r i j !52Q~Ri1Rj2r !, ~6!

and where the convolution product,

wi
~a!

^wj
~g!5E wi

~a!~x2r i !•wj
~g!~x2r j !dx, ~7!

also implies the scalar product between vectors. The wei
function space forD>1 contains at least three function
two scalar functions representing the characteristic functi
for the volume and the surface of a particle and a surf
vector function,

wi
~D !~r !5Q~Ri2r !,

wi
~D21!~r !5u“wi

~D !~r !u5d~Ri2r !,

wi
~D21!~r !52“wi

~D !~r !5
r

r
d~Ri2r !. ~8!

In 3D, the other weight functions are just proportional
these three, and are given by

wi
~0!~r !5

wi
~2!~r !

4pRi
2 , wi

~1!~r !5
wi

~2!~r !

4pRi
,

wi
~V1!~r !5

wi
~V2!~r !

4pRi
.

~9!

The weighted densitiesna(x) aredimensionalquantities
with dimensions@na# 5 ~volume! (a2D)/D where 0<a<D,
and provide a functional basis set$w j% for expanding the
function

F5(
i
Ai~nD!w i , ~10!

of dimension~volume! 21. The coefficients,Ai(nD), as func-
tions of the dimensionlessnD, are determined from the
scaled-particle differential equation,

2F1(
a

na

]F

]na
1n05

]F

]nD
, ~11!

and the constants of integration can be fixed by known lim
or desirable properties. By including only the following pos
tive power combinations of the weighted densities:

$w j%5n0 ,n1n2 ,nV1•nV2 ,n2
3 ,n2~nV2•nV2!, ~12!

the following simplest3D excess free-energy density wa
derived@31,34#:
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F~D53!@$na%#5F1
~3!1F2

~3!1F3
~3!,

F1
~3!52n0ln~12n3!, F2

~3!5
n1n22nV1•nV2

12n3
,

F3
~3!5

1
3 n2

32n2~nV2•nV2!

8p~12n3!
2 . ~13!

The notationnV2 was chosen in order to emphasize that
general,unV2(x)uÞn2(x). This free-energy model provides
unified derivation of the Percus-Yevick@40# and scaled-
particle @41# theories for hard spheres. The Percus-Yev
and scaled-particle theories provide the most comprehen
available analytic description of the bulk hard-sphere th
modynamics and structure, and serve as the standard
for weighted density models. Indeed, the ability to descr
the Percus-Yevick direct correlations geometrically@39#, in a
form that relates to the scaled-particle thermodynamics,
essential for the derivation of the fundamental-measure fu
tional. For the uniform 3D fluid, the resultingci1 ,i2

(2,FD)(r ) is

identical to the analytic solution of the Percus-Yevick equ
tion as interpreted geometrically@39# by the scaled-field-
particle diagrammatic description. It was subsequently fou
@42,43# that in the special case of 3D spheres the functio
~13! is unique in the sense that a completely equivalent@44#
functional can be derived, so that it contains only sca
weight functions~requiring, however, the inclusion of de
rivatives of the Diracd function!. This equivalence is also
important for checking numerical calculations: The calcu
tions using this so-called ‘‘simplified’’ version are com
pletely equivalent to using the original functional~13!. The
bulk three-particle direct correlation function was calcula
in k space@31,42,44# with good agreement with simulations
The solution of the density profile equations~i.e., the Euler-
Lagrange equations for minimizing the grand potential! us-
ing the functional~13!, in the special case when the extern
potential is generated by atest particleat the origin of coor-
dinates, yields@34,35# bulk pair correlation functions, which
almost satisfy the Ornstein-Zernike relation with the Perc
Yevick direct correlation functions obtained from function
differentiation, yet are in even better agreement with
simulations. The functional~13! yields the Percus-Yevick
bulk direct correlation functions, thus predicting that bu
hard-sphere fluid binary mixtures never phase separate.
in the test-particle bulk limit it predicts phase separation
large size ratios between the spheres@35#. The functional
~13! yields density profiles of hard spheres and hard-sph
binary mixtures@34,43# in slitlike pores, in very good agree
ment with the simulations even for narrow slits.

The same procedure that led to the above 3D result, w
applied@31# to one-dimensional ‘‘spheres,’’ leads to the e
act result for hard rods as obtained earlier by Percus@25#,
and rewritten as

F~D51!@$na%#5F1
~1!52n0ln~12n1!. ~14!

In two dimensions it leads to@33#

F~D52!@$na%#5F1
~2!1F2

~2! ,

F1
~2!52n0ln~12n2!, F2

~2!5
n1n12nV1•nV1
4p~12n2!

, ~15!
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which, with minor adjustments as required for an even
mensionality (D525 even!, also provides accurate analyt
structure factors for hard disks@33#. It should be emphasized
that in both these 1D and 2D functionals, the weighted d
sities involve the characteristic functions for ‘‘spheres’’
the corresponding dimensionality, namely, rods and dis
respectively.

Earlier discussion of the crossover behavior of t
fundamental-measure functional@Eq. ~13!# can now be re-
called. The 2D limit of the 3D functional tightly bounds th
exact hard-disk excess free energy from above@43,34#. The
1D limit of the 3D functional yields a nonintegrable sing
larity in theF3

(3) contribution@43,34#. It was observed, how-
ever@34#, that without theF3

(3) term, the 1D limit of the 3D
functional yields theexact excess free energy of the bul
hard-rod system. Moreover@34#, without theF3

(3) term the
2D limit of the 3D functional tightly bounds the exact har
disk excess free energy from below. In addition, it was fou
@34# that the 1D limit of the 2D functional provides an ex
cellent approximation to the exact 1D bulk excess free
ergy. Thus the 3D functional@Eq. ~13!# without theF3

(3)

term and the 2D functional@Eq. ~15!# give comparable re-
sults for the 2D~hard disks! and 1D ~hard rods! uniform
hard-sphere fluids. It was clear@34# from all these results tha
as the effective dimensionality of the system is smaller th
D52, then the contributions of theF3

(3) term should gradu-
ally diminish. The crossover behavior of the fundament
measure functionals requires ‘‘switch off’’ of nonintegrab
singularities as the dimensionality decreases, clearly see
comparing the forms Eqs.~13!–~15! of the free-energy den
sity functions. This mechanism should eventually be bu
into the theory by modifying the form of theF3

(3) term in Eq.
~13!, i.e., by enlarging the set$w j% of basis forms. At presen
we still do not have a guiding principle that willuniquely
determine the optimal basis set$w j%. We hope that byde-
tailedanalysis of the behavior of the different components
the functional, in extreme confinements, we shall be able
systematically improve the simplest functional~13!, and
eventually find the optimal form. In order to facilitate th
discussion we introduce the prefactorl ~see Fig. 1! multi-
plying the third term in Eq.~13!, as a function of the effec-
tive dimensionality, i.e., l(Deff), and consider the
l-dependent excess free-energy density:

F~D53!@$na%;l#5F1
~3!1F2

~3!1lF3
~3! . ~16!

FIG. 1. Variation of the prefactorl with the effective dimen-
sionality of the fluid. The error bar forD52 indicates a range o
possible values~see the text!.
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III. QUASI-2D AND QUASI-1D LIMITS
OF THE 3D FUNCTIONAL

A. Excess free energy for additive hard disks

Consider the 3D hard-sphere functional@Eq. ~13!# for a
one-component hard-sphere system in slab geometry, in
‘‘2D limit’’ of the density profiles, r(r )5r(z)5r (2D)d(z),
wherer (2D)5N/A is the 2D density, andh5r (2D)pR2 is the
2D packing fraction. In this limit,f (2D)5Fex@$r(r )%#/NkBT
can be reduced to a single integral that can be perform
analytically @43,34# @see Eq.~A14! in Appendix A#. We see
from Fig. 1 in @34#, as well as from our Fig. 2~a!, that the
exact 2D excess free energy is tightly bound byf (2D) with or
without the contribution ofF3

(3) , and that we can estimat
~see Fig. 1!: l(Deff52)50.420.6. Any initial small differ-
ence between two functions is generally enhanced when
ing the derivatives. Because of the weakl dependence o
f (2D) this choice is better appreciated by taking the first a
second density derivatives of the free energies in Fig. 2~a!, as

FIG. 2. ~a! Excess free energy for hard disks,f ex
(2D) , as a func-

tion of the packing fractionh. ~b! Compressibility factor
Z(2D)511h] f ex

(2D)/]h. ~c! Second derivative~‘‘compressibility’’!
K5 h2]2f ex

(2D)/]h2. The lines from top to bottom correspond
l51,0.6,0.4,0 in Eq.~A14!. The points represent the scaled-partic
equation of state, which is highly accurate@54#.
he

d

k-

d

presented in Figs. 2~b! and 2~c!. Similar reasoning applies
also to functional derivatives, and the choice ofl should be
sharpened by considering the pair direct correlations~see be-
low!.

B. Excess free energy for nonadditive hard disks

Following an idea in Ref.@43#, consider a binary mixture
of hard spheres with radiusR in the 2D limit with densities
r1(z)5r (2D)d(z1v); r2(z)5r (2D)d(z2v) where2r (2D)

5N/A is the 2D density, andp(2r (2D))R25h is the 2D
packing fraction~Appendix B!. This system is equivalent to
an equimolar mixture of nonadditive hard disks wi
R125@R22v2#1/2, with a negativenonadditivity parameter
which, for small values ofv, is given by

D[2~R12/R21!>2~v/R!2. ~17!

The function f (2D)(l,h,v)5Fex@$r(r )%;l#/kBTA can be
calculated analytically~see Appendix C!, and has the
following expansion in powers ofv: f (2D)(l,h,v)
5 f (2D)(l,h) 1 lh2(v/R) 1 a2(l,h)@2(v/R)2# 1•••,
where a2(l50,h)Þ0. Given the nonadditivity paramete
D, the exact excess free energy for the 2D hard-disk fluid
expected to have the following expansion@45#; f exact

~2D! ~h,D!
5 f exact

~2D! (h)1a2,exact
(2D) (h)D1•••, and we find~see Fig. 3! that

a2,exact
(2D) (h)>h] f exact

(2D)(h)/]h is comparable witha2(l,h).
However, the correct expansion type~i.e., without the
lh2v term! is achieved only withl50. Otherwise, for
l.0 we havef (2D)(l,h,v). f (2D)(l,h) for small values of
v, which is unphysical. Yet we find that, in terms of ma
nitude, f (2D)(l>0.5,h,v) still agrees well~see Fig. 4! with
the expansion off exact

(2D)(h,D), for 2D,;0.1. Moreover,
f (2D)(l,h,v52R)5 f (2D)(l,h/2,v50), which should be
compared with the exact relationf exact

(2D)(h,D521)
5 f exact

(2D)(h/2,D50).
Regarding this last result, we can make the general ob

vation that the fundamental-measure picture guarantees
the above construction of nonadditive hard disks or h
rods, by considering two planes or two lines, respective
should always give the resultf (h,D521)5 f (h/2,D50),
where f (h,D50) is the result of the same theory for th
one-component system of additive disks or rods, resp
tively. In particular, since withl50 we obtain~Appendix C!

FIG. 3. Nonadditivity coefficient for hard disks~see Appendix
C!. Comparison ofa2,exact

(2D) (h) as approximated by Eq.~B14! ~dia-
monds!, with a2(l,h) for different values ofl ~lines, from top to
bottoml51,0.5,0) forh50.6.
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4250 55Y. ROSENFELD, M. SCHMIDT, H. LÖWEN, AND P. TARAZONA
the exactf (1D)(h,D50)52 ln(12h), we thus also get the
exact f (1D)(h,D51), and we interpolate accurately betwe
D50 andD51.

C. Direct correlation functions for additive hard disks

The 2D limit of the pair direct correlation functions ca
also be reduced to a one-dimensional integration of explic
given functions, but the final integral is evaluated nume
cally ~see Appendix A!. The contributions toc(2,FD)(r ),
which are associated with the convolutions of twod func-
tions, contain a 1/r singularity. This singularity is canceled
however, in the terms that contribute to the pair direct c
relation function of the uniform 3D fluid. The convolutio
terms related toC2,V25CV2,252lnV2/4p(12n3)

2 ~see
Appendix A! have a singularity@46# which is not canceled
out. But the vector weighted densities, and thus alsoC2,V2
andCV2,2, vanish in the uniform 3D limit, so that the sin
gularity disappears anyway. The 1/r singularity, which re-
mains, however, for the 2D~‘‘hard-disk’’ ! limit of the 3D
functional, has a marked effect on the direct correlation fu
tion c(r ) ~see Fig. 5!. Yet, it is integrable, and we can ge
quite accurate structure factors~see Fig. 6!, S(k), for the
hard-disk fluid if we takel50.3. If we discard the singula
term, then withl50.4 we obtain good agreement with th

FIG. 4. Excess free energy for nonadditive hard disks~see Ap-
pendix C!. Comparison off (2D)(l,h,v) for different values ofl
~from top l51,0.7,0) with the expansion SPT

f (2D)(h,D)
5 f SPT

(2D)(h)1a2,SPT
(2D) (h)D ~diamonds! for h50.6. On the scale of the

figure all lines and the continuation of the sequence of diamond
meet at about the same point forv51.

FIG. 5. Direct correlation functionc(2,FD)(r ), for the hard disks
at h50.6. The lines from bottom to top correspond
l51,0.5,0.24,0, in Eq.~A24!. The points give the solution of the
Percus-Yevick equation@47#. Compare with Fig. 3 in@33#.
y
-

-

-

numerical solution@47# of the Percus-Yevick equation fo
hard disks, for bothc(r ) andS(k). In either Fig. 6~see also
Fig. 7! or Fig. 8, the correspondingS(k)’s for l51 and
l50 are significantly worse than those forl50.420.6, and
the prefactorl(Deff52)50.420.6 is similar to that ob-
tained above from considering the equation of state~see Fig.
1!.

D. Excess free energy and direct correlation functions
of hard rods

The 1D limit for the one-component system is obtain
with the following density profile:r(x,y)5r (1D)d(x)d(y),
wherer (1D)5N/L is the number of spheres divided by th
length of the line~i.e., the 1D density!, and the 1D packing
fraction is defined byh52r (1D)R. In this limit the contribu-
tion from the third term diverges,

f 3
~1D!5E F3

~3!d3r→2`. ~18!

Yet ~see Appendix C!, the limit for the excess free energ
per particle without the contribution of theF3

(3) term in Eq.
~13! is the exact 1D result for the excess free energ
f (1D)5Fex/NkBT:

FIG. 7. Same as Fig. 5 but without the~singular! last term in Eq.
~A26!. The lines from bottom to top correspond t
l51,0.5,0.24,0.

ll

FIG. 6. Structure factorS(k)51/@12r c̃ (2,FD)(k)#, for the hard
disks ath50.6. The lines from top to bottom near the first pe
correspond tol51,0.5,0.24,0. The points give the results of t
analytic fundamental measure description developed in 2D@33#.
Compare with Fig. 5 in@33#.
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f 112
~1D!5

Fex@$r~r !%;l50#

NkBT
5E @F1

~3!1F2
~3!#d3r

52 ln~12h!. ~19!

Extending this calculation to evaluate the direct correlat
function ~see Appendix C!, without the contribution of the
F3

(3) term, we find the remarkable result that

c~2,FD!~r5ur12r2u;l50!5
2h

~12h!2 S 12
r

2RD2
1

12h
,

~20!

which is againexactfor hard rods. Considering the require
contribution of theF3

(3) term in Eq.~13!, relative to the full
term, as a function of the effective dimensionality, i.
l(Deff) in Eq. ~16!, we thus find thatl(Deff51)50 elimi-
nates the nonintegrable singularity of the free energy to y
the theexact f(1D) andc(2,FD)(r ) ~see Fig. 1!.

IV. QUASI-0D LIMIT OF THE 3D FUNCTIONAL

The quasi-0D situation for hard spheres of any dimensi
ality is achieved by an external potential such that there
cavity which cannot hold more than one particle. Consi
first the strict 0D limit, r(r )5r (0D)d(r ), where
r (0D)5N5h<1 is also the 0D packing fraction. This is a
asymptotic limit of the solid~see below! when considered a
a superposition ofd functions. We now try to recover tha
limit as the ultimate crossover for any density function
The exactF (D51) is directly integrated to give the exac
f (0D) by a change of variables,t512n1(x) and
dt52n0(x)dx. It is important to note that the same appli
to the first term of the fundamental-measure functional,
any dimension,F1

(D)52n0ln(12nD), and in particular to
F1

(2) andF1
(3) , which have the same structure as the ex

F (D51) : Since for anyD we have

wi
~D !~r !5Q~Ri2r ! ~21!

and

VDwi
~0!~r !5wi

~2!~r !52
dwi

~D !~r !

dr
5d~Ri2r !, ~22!

FIG. 8. Same as Fig. 6 but without the~singular! last term in Eq.
~A26!. The lines from top to bottom near the first peak correspo
to l51,0.5,0.35,0.
n

,

ld

-
a
r

.

n

t

whereVD is the surface area of the unit sphere, we make
important observation that when evaluating the 0D limit f
hard spheres of any dimensionality, theF1

(D) term yields the
same result,

f ~0D!5
Fex@$r~r !%#

kBT
5E dr @2n0ln~12nD!#

52E
0

`

VDr
D21dr hw~0!~r !ln@12hw~D !~r !#

5h1~12h!ln~12h!, ~23!

which is theexact0D limit ~see Appendix D!. This provides
additional justification for the validity of the geometri
building blocks entering the fundamental-measure gene
zation,F (D), of the exact 1D functional,F (D51).

Note that in the strict 0D limit,r(r )5r (0D)d(r ), the terms
n(D21)n(D21) andnV(D21)•nV(D21) become equal, and the
diverge atr5R. However,

n~D21!n~D21!2nV~D21!•nV~D21!50, ~24!

i.e., the ‘‘antisymmetric’’ form of bothF2
(2) andF2

(3) can-
cels out exactly these diverging terms, and thus bothF2

(2)

andF2
(3) vanish. However,F3

(3) does not possess such a
anti-symmetry, and gives a strong negative divergen
*F3

(3)d3r→2`. From the point of view of Eq.~16! then the
prefactor should bel(Deff50)50 ~see Fig. 1!.

A deeper insight into the functional may be obtained
considering the quasi-0D case, withr(r ) restricted to the
inside of a spherical cavity of radiusd, whereD5d/R!1
The exactF (D51) still gives the exactf (0D), but in 3D the
volume integral ofF1

(3)differs from the exactf (0D) by a term
of order D. At the same time, the cancellation by an
symmetry ofF2

(3) becomes incomplete. Remarkably, its vo
ume integral is exactly such thatf 112

(0D)5*dr @F1
(3)1F2

(3)#
differs from the exactf (0D) only by a term of orderD2. This
makes clear that the first two terms in Eq.~13! fit properly in
a hierarchical expansion, and the fundamental-meas
forms, which were originally proposed for describing th
fluid, provide the correct basis functions also in quasi-
situations. Moreover, we attempted to find the exact th
term in quasi-0D. We considered several radial forms~Ap-
pendix E! of r(r )5r(r ) ~step, parabolic, and Gaussian@48#!
to find numerically~see Table I! that the difference from the
exact 0D result was alwaysf (0D)2 f 112

(0D)5*dr @F3,exact-0D
(3) #,

where

F3,exact-0D
~3! 5F 1

3 ~n2!
3

8p~12n3!
2G3j~12j!2, ~25!

and j(r )[unV2(r )/n2(r )u. With n2;D21, 12j;D2, and
the integral being extended over a shell width of orderD,
this gives a total contribution of orderD2. However, the third
term, F3

(3), diverges as2D22, and produces unbounde
negative free energy for strongly localized density distrib
tions. This explains why earlier studies@31,42,43# found the
functional Eq.~13! to be unsuited for applications to freez
ing.

d
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TABLE I. Contributions of the different terms in the free-energy functional, to the excess free energy in the quasi-0D limit

Gaussian density distributionr(r )5h(a/p)3/2e2ar2 as a function of the occupancyh, for a550, as compared with the exact 0D excess fr
energy f (0D)5h1(12h)ln(12h). We definedf 1

(0D)5*F1
(3)d3r , f 2

(0D)5*F2
(3)d3r , D f5 f (0D)2( f 1

(0D)1 f 2
(0D)), f 3

(0D)5*F3,exact-0D
(3) d3r . The

numbers in brackets represent powers of 10.

h f (0D) f 1
(0D) f 2

(0D) D f D f2 f 3
(0D)

0.999980@21# 0.517533@22# 0.398896@22# 0.118424@22# 0.212685@25# 0.100472@29#

0.199996@10# 0.214843@21# 0.164745@21# 0.499071@22# 0.190490@24# 0.168709@29#

0.299994@10# 0.503254@21# 0.383674@21# 0.118852@21# 0.727571@24# 0.206725@29#

0.399992@10# 0.935005@21# 0.708121@21# 0.224906@21# 0.197812@23# 0.236631@29#

0.499990@10# 0.153419@10# 0.115294@10# 0.376746@21# 0.450856@23# 0.413538@29#

0.599988@10# 0.233473@10# 0.173828@10# 0.587140@21# 0.930517@23# 0.669544@29#

0.699986@10# 0.338791@10# 0.249326@10# 0.876409@21# 0.182472@22# 0.948285@29#

0.799984@10# 0.478087@10# 0.346427@10# 0.128112@10# 0.354769@22# 0.148643@28#

0.899982@10# 0.669700@10# 0.474002@10# 0.188392@10# 0.730603@22# 0.251677@28#

0.999980@10# 0.999764@10# 0.662866@10# 0.311892@10# 0.250050@21# 0.229100@25#
on
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V. THE HARD-SPHERE fcc SOLID
AND THE FLUID-SOLID TRANSITION

Modeling the 3D solid by Gaussians, of width 1/Aa, at
fcc sitesRl @27,28#,

r~r !5h0(
l

S a

p D 3/2e2a~r2Rl !
2
, ~26!

the solution of the density profile equations, by minimizati
of the grand potential, gives the optimal parametera for a
given total average density of the system. We found that
contribution of @F1

(3)1F2
(3)#, which was so dominant in

quasi-0D, is also dominant for the excess free energy of
solid ~Fig. 9!. Yet, due to the contributions of neighborin
particles, the effects of the remaining relatively small con
butions obtained from different trial forms~see below! for a
correctedF3

(3) are not always as expected by the quasi-
analysis. In particular,F3,exact-0D

(3) does not describe the soli
more accurately than some other forms considered be
On our way towards improving the density functional theo
of the hard-sphere fluid-solid transition, we still need to u
derstand the systematics in these final steps towards the
rect third term, and it is still uncertain at what level of s
phistication, of the improved functional, anisotrop
deviations from the Gaussian profiles@29# come in.

The result obtained from the quasi-0D analysis, nam
F3,exact-0D

(3) , is obviously unsuitable to describe the bulk-3
fluid, but it provides a guideline as to the appropriate mo
fications of the originalF3

(3) which, in turn, is accurate fo
quasi-3D fluids. The simplest modification ofF3

(3) which is
suggested by the need to get the exact 0D limit is the ‘‘
tisymmetrization.’’ In particular, we considered the follow
ing simple ‘‘antisymmetrized’’ versions ofF3

(3):

F3,asym~q!
~3! 5

1
3 ~n2!

3

8p~12n3!
2 ~12j2!q, ~27!

which give the same bulk-3D excess free energy asF3
(3) ,

and whereq>2 in order that the contribution of the term b
of orderD2 or smaller. Withq52 the term is of the correc
e

e

-

w.

-
or-

,

i-

-

orderD2. The significance of the caseq53 with the form
(12j2)3 is that it recoversF3

(3) by the first two terms,
123j2, in its j2 expansion, and thus yields also the sam
Percus-Yevick pair direct correlations for the bulk flui
Since the difference@F3,asym(3)

(3) 2F3
(3)# is of order j4 then

the functional withF3,asym(3)
(3) also yields the same bulk three

particle direct correlation functions as withF3
(3). In turn, it

contributes to the quasi-0D limit the incorrect order ofD4.
On the other hand, the following interpolation form give
F3

(3) in the bulk limit and is almost identical toF3,exact-0D
(3) in

the quasi-0D limit:

FIG. 9. Contributions of the different terms in the free-ener
functional to the free-energy densityF/VkBT of the fcc hard-sphere
solid as a function of the Gaussian parameteras2 at the melting
densityrs356h/p51.0409. The dotted line~denotedF id) repre-
sents the ‘‘ideal’’ part of the functional, the long-dashed lin
(DF1) is the contribution of the first term in the excess part of t
functional, the dot-dashed line (DF112) is that of the first and
second terms, the short-dashed line (DF11213) is the total excess
contribution using the symmetrized termF3,asym(3)

(3) . The solid line is
the sum of the total excess and ideal contributions.
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F3,int
~3! 5

1
3 ~n2!

3

8p~12n3!
2 ~123j212j3!. ~28!

The termj3 affects, however, the bulk-3D three-particle d
rect correlations.

As far as the properties of the solid are concerned,
four forms,F3,exact-0D

(3) andF3,asym(q)
(3) with q52 andq53,

andF3,int
(3) , all give comparable equations of state~e.g., ex-

cess free energy and pressure! in excellent agreement with
the simulations from closest packing to the melting dens
~Figs. 10 and 11!. The results fromF3,int

(3) are always between
those fromF3,asym(q)

(3) with q53 andq52, and are not dis-
played in the figures in order to make them more reada
These four forms also give comparable values for the Lin
mann parameter, i.e., comparable values for the Gaus
parametera ~Fig. 12!. We wish to emphasize that after ob
taining the results for our initial choice@36# F3,asym(q)

(3) with
q53, we investigated the other forms mainly in order
have a better clue to what is required for improving the v
ues of the Gaussian widths. The fact that all these forms,
in particularF3,exact-0D

(3) , give about the same~and much too
narrow! Gaussians is very significant. It may indicate that
order to obtain the correct Gaussian widths the correct t
term of the functional must contain tensorial forms~see the
discussion in the next section!. Similarly much too narrow
Gaussians were obtained by most previous weighted den
functionals in the literature@27–29#, but these functionals
did not offer any way to improve the results. It should
noted that due to the dominant contribution
@F1

(3)1F2
(3)#, the total excess free energy as a function

a for a given density remains a very slowly varying functio
so that the rather incorrect values for the Lindemann par
eter~i.e.,a) do not affect the quality of the equation of stat

FIG. 10. Free-energy densityF/VkBT of the fcc hard-sphere
solid as a function of the densityrs3, as obtained with each one o
the following ‘‘third’’ terms: F3,asym(3)

(3) ~solid line!, F3,asym(2)
(3)

~dashed line!, F3,exact-0D
(3) ~dotted line!, as a function of the reduce

density rs356hp, compared with the corresponding fluid fre
energy density~dash-dotted line!.
e

y

e.
-
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d

ity

f
,
-

.

It is interesting to observe~Fig. 13! that withF3,exact-0D
(3) the

functional yields the solid only as a local minimum~the glo-
bal minimum being a liquid, i.e., for very broad Gaussians!,
and that the local minimum~i.e., the solid as described
above! disappears at about the correct melting dens
(h'0.54). With F3,int

(3) , or with F3,asym(q)
(3) ~with q52 or

q53) we obtain better solid-fluid transition parameters tha
almost all previous functionals in the literature when com
pared with simulations. In particular, forq53 we get~the
simulation results are given in parentheses@28,29#!: the
packing fraction of the fluidhF50.491~0.494!, and the solid
hS50.540 ~0.545!, the melting pressurePs3/kBT512.3
~11.7!, Lindemann ratioL50.101~0.129!, and vacancy con-
centratione217.1 ('0!.

FIG. 11. ~a! PressurePs3/kBT of the fcc hard-sphere solid, as a
function of the densityrs3, as obtained with one of the following
‘‘third’’ terms: F3,asym(3)

(3) ~solid line!, F3,asym(2)
(3) ~dashed line!,

F3,exact-0D
(3) ~dotted line!, as a function of the reduced density

rs356h/p, compared with the simulations~open circles@55#!. ~b!
Same as~a! but for a larger density range~note thatrs35A2 is the
closest packing density!. On this scale the dashed and dotted line
would be almost indistinguishable from the full line.
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4254 55Y. ROSENFELD, M. SCHMIDT, H. LÖWEN, AND P. TARAZONA
The vacancy concentratione217.1 is obtained as follows:
Let h0<1be the average occupancy~which corresponds to
the normalization of the Gaussians!. Then we have

] f

]h0
5m5

] f

]r
517.1 ~at melting! ~29!

but, in turn, for our functionals we have

] f

]h0
'

]

]h0
f exact-0D~h0!52 ln~12h0!. ~30!

This result, 12h05 e217.153.7531028, could be estimated
from the known chemical potential of the hard-sphere soli

FIG. 12. ~a! Gaussian parameteras2 of the fcc hard-sphere
solid, as a function of the densityrs3, as obtained with one of the
following ‘‘third’’ terms: F3,asym(3)

(3) ~solid line!, F3,asym(2)
(3) ~dashed

line!, F3,exact-0D
(3) ~dotted line!, as a function of the reduced density

rs356h/p, compared with the simulations~open circles@55#!. ~b!
Same as ~a! but for the Lindemann parameter
L5A3(rs3)1/3/22/3Aa, with triangles and circles representing
@55,29#, respectively.
,

and in practice, for numerical purposes, we have perform
our calculations usingh051. If one approximates the solid
by a superposition ofnormalizednarrow Gaussians, then
can be stabilized by any functional that is able to achie
gross similarity with the exact result forh51 in the 0D
limit. Due to its correct 0D properties, the fundament
measure theory is the first that can yield the solid un
completely free minimization, and the correct vacancy co
centration~i.e., the normalization of the Gaussians! is ob-
tained from the free minimization of the functional. In th
application of previous functionals to freezing, it was eith
assumeda priori thath051 @an inconsistent assumption fo
functionals that could not satisfy Eq.~30!#, or the vacancy
concentration would come out to be of order 10% or mo

None of the previous weighted density functionals in t
literature featured the correct divergence of the equation
state at closest packing for the fcc lattice. Some of th
showed a very steep~but finite! rise in the region of closes
fcc packing: When the nearest neighbor Gaussians enter
the excluded volume sphere they have to pay a very la
~but finite! free-energy price. For the bcc lattice, howeve
which has fewer neighbors, the rise of the pressure is m
less steep@49# for these functionals, which shows that the
approximations could not keep track of the individual e
cluded volumes. On the other hand, due to their particu
building blocks, involving the geometry of the particles, t
fundamental-measure functionals, e.g., withF3,int

(3) ,
F3,asym(q)

(3) , or F3,exact-0D
(3) , diverge at closest packing~CP! for

any structure. Our numerical results for fcc seem to follo
rather well the free-volume result, PV/NkBT
5@12(h/h

CP
)1/3#21. More recent investigation@50# reveals

quite generally that fundamental-measure functionals~a!
have the mechanism to locate situations of hard-sphere c
est packing,~b! they can feature ‘‘symmetry breaking’’ tha
separates the solidlike and liquidlike solutions for the dens
profiles, and~c! they contain the free-volume cell theory as

FIG. 13. The free-energy densityF/VkBT of the fcc hard-sphere
solid, as obtained with F3,asym(3)

(3) ~solid line! and
F3,exact-0D

(3) ~dashed line!, as function of the Gaussian paramet
as2 at the melting densityrs356h/p51.0409.
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special limit case. Specifically, the fundamental-meas
functionals that feature the exact 0D limit for ad(x) distri-
bution obey the the free-volume equation of state near c
est packing for any lattice structure.

VI. DISCUSSION

The fact thatF3,asym(q)
(3) with q52 yields an almost iden

tical solid to that obtained withq53 should be considered i
view of the fact that the corresponding bulk two-particle
rect correlation functionsc(2,FD)(r ) are significantly differ-
ent. In particular, forq53 c(2,FD)(r ) is the Percus-Yevick
result, while forq52 it contains a 1/r singularity at the
origin. This shows that the relative importance of the deta
of the bulk fluid properties, for the correct description of t
solid, may depend strongly on the way these are imp
mented in the theory. The bulk Percus-Yevick direct cor
lations are just one example for a convolution form obtain
by the fundamental-measure functional. Different forms
the functional can be obtained with the same bulk excess
energy, different bulk direct correlations, yet with simil
predictions for the solid. This ‘‘freedom’’ is one of the rea
sons so many different weighted density approximations
the past@28#, all essentially based on the Percus-Yevi
numerical input, could give reasonable solids. T
fundamental-measure functionals, however, provide the b
fluid properties as a special case, and thus enable a sys
atic search of the optimal functional form by imposing t
correct dimensional cross-over and freezing properties
physical costraints on the functional form of the excess f
energy.

The 1/r singularity in the pair direct correlation obtaine
from the functional Eq.~13!, as we noticed in the 2D limit
exists for arbitrarily small nonuniformity of the 3D densi
profile,Dr(r )5r(r )2r0, for which the vector densities ar
nonzero. This singularity does not contribute to the pair
rect correlations in the bulk-3D limit, where the vect
weighted densitiesn2 vanish. Since the nonuniform pair d
rect correlation function can be expanded around
r(r )5r0 uniform fluid limit, in powers ofDr(r ), then the
3D bulk three-particle direct correlation function must al
contain singular terms~Appendix B!. Recall, however, tha
the 3D bulk three-particle direct correlation function, as o
tained from the same 3D functional, was calculated ink
space@31,42,43# and was found to agree well with the sim
lation data, so that the singularity apparently does not af
much the resulting Fourier transforms. In general, the c
volution of two d functions in D53 leads to a 1/r -type
singularity, which is thus inherent to the geometric discr
tion. In turn we found out that the geometric weight fun
tions are essential for obtaining the correct 0D limit. Thus
singularities must eventually be canceled out by a cor
functional form forF (D)@$na(x)%#. Even though the cancel
lation is incomplete for Eq.~13!, it does not affect the high
accuracy of the density profiles@30–35, 42–44# as obtained
from it for a large variety of confinement situations. Mor
over, in most situations we can just ignore the singular te
in the pair direct correlations of the inhomogeneous flu
corresponding to minor changes inF (D53) for a small free-
energy price.

The exact 3D functional for hard spheres will contain a
e
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tomatically all the required ‘‘mechanisms’’ to make it obe
the 2D, 1D, and 0D limits. Our task was to identify the
mechanisms within the class of functionals which are c
structed through the fundamental geometric measures o
particles. These functionals feature the exact 1D functio
when applied directly to hard rods, and yield a unifi
scaled-particle Percus-Yevick theory when applied to
spheres. We have demonstrated that the 3D functional, w
taken in the 0D, 1D, and 2D limits, can reproduce ba
properties of the 0D, 1D, and 2D functionals, respective
We have found that by enlarging a little the simplest basis
$w l% we can significantly improve the crossover properties
the simplest functional Eq.~13!.

As part of the subtle interplay of the dimensional cros
over, the antisymmetrized form, which is suggested by
need to get the exact 0D limit, also affects thebridge func-
tional near the bulk-3D limit@51#. With F3,asym(3)

(3) the initial
slope of the nonadditive hard-disk limit of the functional
negative as it should physically be~Appendix B and Fig. 14!.
The contribution of the newF3,asym(3)

(3) does not strictly van-
ish in the bulk quasi-1D limit, as required to give the exa
result, but it is generally very small, except nearh51 where
it dominates~Appendix C and Fig. 15!. In the quasi-2D limit
it performs about as well asF3

(3) ~Appendix A and Fig. 16!,
but the 1/r singularity is of opposite sign~Fig. 17!. Our
functional provided very accurate density profiles when co
pared with simulations for hard spheres confined betw

FIG. 14. Same as Fig. 4 but using the new third te
F3,asym(3)

(3) , for several values ofl ~from topl51,0.5,0).

FIG. 15. Excess free energy for hard rods,f ex
(1D), as a function of

the packing fractionh, as obtained from the first two terms of th
functional, Eq.~C9!, i.e., the exact 1D result~dashed line!, com-
pared with that obtained by adding the contribution ofF3,asym(3)

(3)

@see Eq.~C18!#, solid line.
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very narrow plates~quasi-2D situations! @52#.
The fundamental-measure weighted densities were fo

to have many correct properties, but they cannot be expe
to provide the complete basis set for the exact function
Yet, as we have demonstrated, our approach enables sys
atic analysis and systematic improvement of the approxim
fundamental-measure functional. In view of their role in t
1D and 0D limits, the first two terms,F1

(3) andF2
(3), seem to

be correct. More insight is needed in order to reach the
timal third termF3

(3). The desirableF3
(3) should ultimately

have also the following properties:~i! cancel out the 1/r
singularity, ~ii ! should not contribute in the 1D limit,~iii !
behave likeF3,exact-0D

(3) in the quasi-0D limit,~iv! behave like
' 1

2F3
(3), of Eq. ~13!, in the 2D limit, and~v! give the correct

Lindemann parameter of the solid. These desirable prope
are probably interrelated, and we have indications that so
of them, if not all, can be achieved by replacing the fac
(12j2)q in Eq. ~27! with slightly more complicated forms
including tensorial terms like(Mi jkj ij jjk , involving the el-
ements of the dimensionless vectorj[nV2/n25(jx ,jy ,jz).
The analysis of the fundamental-measure theory as app
to parallel hard cubes@53# may prove useful. We demon
strated the special role played by the fundamental-mea
functional, as derived from ‘‘liquid’’ considerations and a
justed to the exact 0D limit, for obtaining the correct descr

FIG. 16. Excess free energy for hard disks,f ex
(2D), as a function

of the packing fractionh, as obtained withl51 in Eq. ~A14!,
dashed line, compared with that obtained by replacingF3

(3) with
F3,asym(3)

(3) @see Eq.~A39!#, solid line.

FIG. 17. Direct correlation functionc(2,FD)(r ), for the hard disks
at h50.6. The diamonds give the solution of the Percus-Yev
equation@47#. The dashed line obtained by usingF3

(3) ~compare
with Fig. 5!, and the solid line by usingF3,asym(3)

(3) . Note the oppo-
site sign of the 1/r behavior near the origin.
d
ed
l.
m-
te

p-

es
e
r

ed

re

-

tion of the solid. Its understanding may lead to a better
derstanding of the density functional theory of freezin
Pending further progress along these lines, the new t
term F3,asym(3)

(3) @which in the notations of Eq.~16! corre-
sponds to the prefactorl5(12j2)3/123j2# already pro-
vides a free-energy functional for 3D hard-sphere fluids w
adequate properties of dimensional crossover.
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APPENDIX A: EXCESS FREE ENERGY
AND PAIR DIRECT CORRELATION FUNCTIONS
IN THE 2D LIMIT OF THE 3D FUNCTIONAL

For a one-component hard-sphere system in slab ge
etry

r~r !5r~z! ~A1!

the fundamental-measure excess free-energy functional t
the form

bFex@$r~r !%;l#

A
5E dz F~z,l![E dz F@$na~z!%,l#,

~A2!

where the weighted densitiesna(x)5na(z) are given by
@34,43#

n3~z!5pE
z2R

z1R

r~z8!@R22~z82z!2#dz8, ~A3!

n2~z!52pRE
z2R

z1R

r~z8!dz8, ~A4!

nV2~z!5S 22pE
z2R

z1R

r~z8!~z82z!dz8D ẑ[nV2~z!ẑ,

~A5!

n0~z!5
n2~z!

4pR2 , n1~z!5
n2~z!

4pR
, nV1~z!5

nV2~z!

4pR
.

~A6!

In the 2D limit

r~z!5r~2D!d~z!, ~A7!
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wherer (2D)5N/A5number of spheres divided by the ar
of the slab, i.e., the 2D density, these weighted densities
the form

n3~z!5pr~2D!~R22z2!Q~R2uzu!, ~A8!

n2~z!52pr~2D!RQ~R2uzu!, ~A9!

nV2~z!5~2pr~2D!z!Q~R2uzu!ẑ, ~A10!

whereQ(x)51 for x>0 andQ(x)50 for x,0. The 2D
packing fraction is defined byh5r (2D)pR2. Measuring
length in unitsR, and lettingR51, then the weighted den
sities are given by

n3~z!5h~12z2!Q~12uzu!, ~A11!

n2~z!52hQ~12uzu!, n1~z!5
h

2p
Q~12uzu!,

n0~z!5
h

2p
Q~12uzu!, ~A12!

nV2~z!5~2hz!Q~12uzu!ẑ,

nV1~z!5S h

2p
zDQ~12uzu!ẑ. ~A13!

The excess free energy per particle can be obtained
lytically @34,43#:

f ~2D!~l,h!5
~1/kBT!Fex@$r~r !%#

N
5E

21

1

dzF~z!/r~2D!

5lh1
lh2

3~12h!
1S 22l1

lh

3~12h!
D

3A h

12h
arctanSA h

12h D ~A14!

and this result agrees with the previous results@34,43# for
l51.

The direct correlation function coefficientsCab5Fab9
5]2F/]na]nb for the functional~13!, i.e., usingF3

(3) , are
given by

C035C305C125C215
1

12n3
, ~A15!

CV1V25CV2V152
1

12n3
, ~A16!

2C225CV2V252l
n2

4p~12n3!
2 , ~A17!

C135C315
n2

~12n3!
2 , ~A18!

C235C325
n1

~12n3!
2 1l

n2
22nV2•nV2
4p~12n3!

3 , ~A19!
ke

a-

C335
n0

~12n3!
2 1

2n1n222nV1•nV2
~12n3!

3

1l
n2
323n2nV2•nV2
4p~12n3!

4 , ~A20!

C3,V15CV1,352
nV2

~12n3!
2 , ~A21!

C3,V25CV2,352
nV1

~12n3!
2 2l

n2nV2
2p~12n3!

3,
~A22!

C2,V25CV2,252l
nV2

4p~12n3!
2 . ~A23!

The two-particle direct correlation function for a pair
distancer in the planez50, parallel to the slab walls@r is in
units ofR51, and recall thatc(r.2R)50 # is written in the
form

2c~r ,l!52cU~r ,l!2cN~r ,l!, ~A24!

where

2cU~r ,l!5E
2zmax~r !

zmax~r !

C33~z,l! f V~z,r !dz

1E
2zmax~r !

zmax~r !

C23~z,l! f S~z,r !dz

1E
2zmax~r !

zmax~r ! FC13~z!
f S~z,r !

4p

1@C22~z,l!1u~r !CV2,V2~z,l!#2g~z,r !Gdz
1E

2zmax~r !

zmax~r ! FC03~z!
f S~z,r !

4p

1@C12~z,l!1u~r !CV1,V2~z,l!#
g~z,r !

p Gdz
~A25!

contains the terms that contribute to the uniform~bulk! 3D
fluid result, and

2cN~r ,l!5E
2zmax~r !

zmax~r !

zV1,3~z!
uzu
4p

f S~z,r !dz

1E
2zmax~r !

zmax~r !

zV2,3~z,l!uzu f S~z,r !dz

1E
2zmax~r !

zmax~r !

zV2,2~z,l!4uzug~z,r !dz

~A26!

contains the remaining terms~which may contribute in the
general nonuniform fluid case!. We defined

CV1,35zV1,3ẑ, CV2,35zV2,3ẑ, C2,V25z2,V2ẑ, ~A27!
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zmax~r !5A12S r2D
2

, Y5A12z2, u~r !512
r 2

2
,

~A28!

f V~z,r !5Y2H p22AF12S r

2YD 2G S r

2YD
22arcsinS r

2YD J , ~A29!

f S~z,r !54arccosS r

2YD ,
g~z,r !5

1

rA12~r /2!22z2
. ~A30!

In order to check the geometric factors in these expr
sions, we considered also the uniform fluid limit~with
l51) where by comparison with@31,39# we verified that.

E
2zmax~r !

zmax~r !

f V~z,r !dz5DV~r !5
4p

3 F12
3

2
~r /2!1

1

2
~r /2!3G ,

~A31!

E
2zmax~r !

zmax~r !

f S~z,r !dz5DS~r !54p@12~r /2!#,

~A32!

E
2zmax~r !

zmax~r ! F 12p
@12u~r !#g~z,r !Gdz5 1

2
~r /2!,

~A33!
n
n

ffi
-

s-

E
2zmax~r !

zmax~r ! F f S~z,r !

4p
1

1

2p
@12u~r !#g~z,r !Gdz5DR~r !,

~A34!

E
2zmax~r !

zmax~r ! F f S~z,r !

4p
1
1

p
@12u~r !#g~z,r !Gdz5Q~22r !,

~A35!

and thus also

DR~r<2!5
1

2 S 11
DS~r !

4p D . ~A36!

The function associated with the convolutions of twod
functions,g(z,r ), contains a 1/r singularity which is can-
celed by the factor@12u(r )# in the terms that contribute to
pair direct correlation functions of the uniform 3D fluid
cU , i.e., the singularity as appears in the convolution
scalar-surface characteristic functions cancels out by
from the vector functions. This cancellation does not work
cN . The reason this singularity does not show up in t
uniform 3D limit is because the vector weighted densit
vanish in that limit, i.e., the functions~A21!–~A23! vanish in
that limit, makingcN50 .

The singularity found above for the 2D limit exists fo
arbitrarily small nonuniformity of the density profile whic
will make the vector densities nonzero, and as a result,
noncanceled singularity from the convolution of surfa
characteristic functions will contribute. The nonuniform pa
direct correlation function can be expanded around its u
form fluid limit, r i(r )5r i

(0), in powers of the deviations o
the density profiles from uniformity,Dr i(r )5r i(r )2r i

(0),
ci1 ,i2
~2,FD!~r1 ,r2!5ci1 ,i2

~2,FD!,~0!~r5ur12r2u!1(
i3

E ci1 ,i2 ,i3
~3,FD!,~0!~ ur12r3u,ur22r3u!Dr i3~r3!dr31•••, ~A37!

which, for the functional~13!, takes the form

ci1 ,i2
~2,FD!~r1 ,r2!52E dx(

a,b
Cab@$ng~x!%#wi1

~a!~x2r1!wi2
~b!~x2r2!

52E dx(
a,b

Cab@$ng
~0!%#wi1

~a!~x2r1!wi2
~b!~x2r2!2(

i3
E F E dx (

a,b,g
Cabg@$ng

~0!%#wi1
~a!~x2r1!

3wi2
~b!~x2r2!wi3

~g!~x2r3!GDr i3~r3!dr31•••. ~A38!
ty
ith

rgy
Thus if ci1 ,i2
(2,FD)(r1 ,r2) contains a singularity then

the 3D bulk three-particle direct correlation functio
ci1 ,i2 ,i3
(3,FD),(0)(ur12r3u,ur22r3u) must contain singular terms. I

particular, in the pairs of terms associated with the coe
cientsCabg5C2,2,2 andCV2,V2,2, as well as in those asso
ciated withCabg5C1,2,3 and CV1,V2,3, and Cabg5C2,1,3
-

and CV2,V1,3, the singularity cancels out. The singulari
does remain, however, in the terms associated w
Cabg5C2,V2,V2 andCV2,2,V2.

The change in the bulk-2D limit of the excess free ene
resulting from replacing the originalF3

(3) with the new third
term,F3,asym(3)

(3) , is given by
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D f ~2D!~h!5E
21

1

dz@F3,asym~3!
~3! ~z!2F3

~3!~z!#/r~2D!

5h2E
21

1 F z42z6/3

@12h~12z2!#2Gdz. ~A39!

The ratioD f (2D)(h)/ f (2D)(1,h) is an increasing function o
h which is very small and reaches a value of only about 0
at h50.8 ~see Fig. 16!.

When we replaceF3
(3) by the new symmetrized form

F3,sym(3)
(3) , the direct correlation function coefficient

Cab5Fab9 which change are the following~see the text!:

C225l
n2

4p~12n3!
2 ~11j422j6!, ~A40!

CV2V252l
n2

4p~12n3!
2 ~126j215j4!, ~A41!

C2,V25l
nV2

4p~12n3!
2 ~112j223j4!, ~A42!

C3,V252
nV1

~12n3!
2 2l

n2nV2
2p~12n3!

3 ~12j2!2,

~A43!

C235C325
n1

~12n3!
2 1l

n2
2

4p~12n3!
3 ~12j2!2~11j2!,

~A44!

C335
n0

~12n3!
2 1

2n1n222nV1•nV2
~12n3!

3

1l
n2
3

4p~12n3!
4 ~12j2!3. ~A45!

APPENDIX B: EXCESS FREE ENERGY
OF NONADDITIVE HARD DISKS

AS A 2D LIMIT OF THE 3D FUNCTIONAL

Following Ref. @43#, consider a binary mixture of har
spheres with radiiR1 andR2 in the 2D limit with densities

r1~z!5r1
~2D!d~z1v!, r2~z!5r2

~2D!d~z2v!, ~B1!

where r1
(2D)5N1 /A, r2

(2D)5N2 /A are the numbers o
spheres divided by the area of the slab, i.e., the 2D densi
This system is equivalent to a mixture of nonadditive ha

disks withR125
1
2@(R11R2)

22(2v)2#1/2. For small values
of v the negative nonadditivity parameter is
D[@2R122(R11R2)#/(R11R2)52v2/ 12(R11R2)

2. The
weighted densities take the form

n3~z!5pr1
~2D!

„R1
22~z1v!2…Q„R12u~z1v!u…

1pr2
~2D!

„R2
22~z2v!2…Q„R22u~z2v!u…,

~B2!
6

s.
d

n2~z!52pr1
~2D!R1Q~R12uz1vu!

12pr2
~2D!R2Q~R22uz2vu!, ~B3!

nV2~z!5@2pr1
~2D !~z1v!#Q~R12uz1vu!ẑ

1@2pr2
~2D!~z2v!#Q~R22uz2vu!ẑ, ~B4!

whereQ(x)51for x>0 and (x)50 for x,0. The integral

~1/kBT!Fex@$r~r !%#

A
5E

2R12v

R21v

dz F~z! ~B5!

can be calculated analytically, but the expressions
lengthy. In order to demonstrate our point we focus attent
on the simplest case whenR15R25R51, r1

(2D)5r2
(2D), so

that 2pr1
(2D)52pr2

(2D)5h, r (2D)5r1
(2D)1r2

(2D)5h/p, and
D52v2. We noticed that by defining

w~l,h,v2,z2!52
h

2p
ln~12h1hv21hz2!

1
h2

p

~12z2!

~12h1hv21hz2!

1l
h3

p

~ 1
3 2z2!

~12h1hv21hz2!2
~B6!

we can calculate the free energy in the following form:

f ~2D!~l,h,v!5
~1/kBT!Fex@$r~r !%#

N

5
1

~h/p!
E

212v

11v

dz F~z!

5
2

~h/p! S E012v

w~l,h,v2,z2!dz

1E
122v

1

w~l,h/2,0,z2!dzD . ~B7!

We checked thatf (2D)(l,h,0)5 f (2D)(l,h) as defined in
Appendix C below. We also check tha
f (2D)(l,h,v51)5 f (2D)(l,h/2,v50), which is a general
result that follows by construction and from the weight fun
tions having the range of the particles. This relation sho
be compared with the exact result@45# f exact

(2D)(h,D521)
5 f exact

(2D)(h/2,D50).
The functionf (2D)(l,h,v) has the following expansion in

powers ofv:

f ~2D!~l,h,v!5 f ~2D!~l,h!1a1~l,h!v

1a2~l,h!@2v2#1•••, ~B8!

where
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a1~l,h!5F] f ~2D!~l,h,v!

]v G
v50

5
2

~h/p!
@2w~l,h,0,1!12w~l,h/2,0,1!#5lh2

~B9!

vanishes forl50, and where

a2~l50,h!52
1

2 F]2f ~2D!~l50,h,v!

]v2 G
v50

5S h

12h D H 11A h

12h

3FarctanAS h

12h D G J . ~B10!

Given the nonadditivity parameterD, the exact excess fre
energy for the 2D hard-disk fluid is expected to have
expansion@45#

f exact
~2D!~h,D!5 f exact

~2D!~h!1a2,exact
~2D! ~h!D1••• ~B11!

where

a2,exact
~2D! ~h!>h

] f exact
~2D!~h!

]h
. ~B12!

The exact 2D result is well approximated@54# by the scaled-
particle result

f exact
~2D!~h!> f SPT

~2D!~h!5
h

12h
2 ln~12h! ~B13!

and

h
] f SPT

~2D!~h!

]h
5h

22h

~12h!2
~B14!

compares well~especially withl>0.5! with

h
] f ~2D!~l,h,v50!

]h

5
1

~12h!2 H hF12h1lS 121
2h~h21!

3 D G
1F12h1lS h2

1

2D GA h

12hS arctanA h

12h D J .
~B15!

Moreover, it compares reasonably also witha2(l50,h). Re-
call, however, thatD52v2, and thus the correct expansio
type@i.e., without thea1(l,h)v term#, is achieved only with
l50. For l.0 we have f (2D)(l,h,v). f (2D)(l,h) for
e

small values ofv, which is unphysical. Yet, forD,;0.1 we
find numerically thatf (2D)(l,h,v), especially withl>0.5,
agrees well with the expansion off exact

(2D)(h,D) as
approximated by the scaled-particle theory, and w
f exact
(2D)(h,D521).
For the new third term,F3,asym(3)

(3) , the same analysis a
above can be repeated using

w~l,h,v2,z2!52
h

2p
ln~12h1hv21hz2!

1
h2

p

~12z2!

~12h1hv21hz2!

1l
h3

p

1
3 ~12z2!3

~12h1hv21hz2!2
.

~B16!

The results using this term are numerically similar to tho
using the originalF3

(3), except that the unphysical linea
term now vanishes,a1(l,h)50.

APPENDIX C: EXCESS FREE ENERGY
AND PAIR DIRECT CORRELATION FUNCTIONS
IN THE 1D LIMIT OF THE 3D FUNCTIONAL

In the 1D limit

r~x,y!5r~1D!d~x!d~y!, ~C1!

wherer (1D)5NeL is the number of spheres divided by th
length of the line, i.e., the 1D density, we lett denote the
radial coordinate in the plane perpendicular to the line,

t5Ax21y2, t̂5
xx̂1yŷ

Ax21y2
~C2!

and the weighted densities take the form

n3~ t !52r~1D!AR22t2Q~R2t !, ~C3!

n2~ t !52r~1D!
R

AR22t2
Q~R2t !, ~C4!

nV2~ t !5
~2r~1D!t !

AR22t2
Q~R2t ! t̂, ~C5!

whereQ(x)51 for x>0 andQ(x)50 for x,0. The 1D
packing fraction is defined byh52r (1D)R. Measuring length
in unitsR, and lettingR51, then the weighted densities a
given by ~in the cylinder:t<1)

n3~ t !5hA12t2Q~12t !, ~C6!

n2~ t !5
h

A12t2
Q~12t !, n1~ t !5

h

4pA12t2
Q~12t !,

n0~ t !5
h

4pA12t2
Q~12t !, ~C7!
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nV2~ t !5h
t

A12t2
Q~12t ! t̂,

nV1~ t !5
h

4p

t

A12t2
Q~12t ! t̂, ~C8!

As a check of the weighted densities we rederived
limit for the excess free energy per particle~with l50)
@34,43#:

f 112
~1D!5

~1/kBT!Fex@$r~r !%#

N

5
1

hE0
1

4pt dt@F1
~3!~ t !1F2

~3!~ t !#52 ln~12h!,

~C9!

which is the exact 1D excess free energy. With the subs
tion u5A12t2, t dt52udu, this and subsequent integra
can be calculated analytically.

The direct correlation function coefficient
Cab5Fab9 5]2F/]na]nb are given in Appendix A. The
two-particle direct correlation function for a pair at distan
r on the line (x50, y50) @r is in units ofR51, and recall
that c(r.2R)50# is written in the form

2c~r !52cU~r !2cN~r !, ~C10!

where

2cU~r !54pE
0

12 r /2

dzE
0

rm~z!

C33~ t !t dt

14pE
0

12 r /2

C32„t5rm~z!…dz

1
rm~z50!C12„rm~z50!…

rA12~r /2!2
, ~C11!

and

2cN~r !54pE
0

12 r /2

C3,V2„t5rm~z!…rm~z!dz,

~C12!

and where we defined

rm~z!5A12S r21zD 2, ~C13!

C32~ t !5C32~ t !1
C31~ t !

4p
1

C30~ t !

4p
, ~C14!

C3,V2~ t !5C3,V2~ t !1
C3,V1~ t !

4p
, ~C15!

C12„rm~z50!…5C12„rm~z50!…

1CV1,V2„rm~z50!…~12r 2/2!.

~C16!
e

u-

As for the 2D limit above,cU(r ) contains the terms tha
contribute to the uniform~bulk! 3D fluid result, andcN(r )
contains the remaining terms~which may contribute for the
general nonuniform 3D fluid!. The integrations can be per
formed analytically, and the result is

2c~r !52cexact~r !5
h

~12h!2 S 12
r

2D1
1

12h
,

~C17!

wherecexact(r ) is the exact 1D result. Notice the ln(r) singu-
larity at r50 in the contribution ofC3,V2(t) and of the first
two terms ofC3,2(t) which, however, cancels out.

The contribution of the new third term,F3,asym(3)
(3D) , to the

1D limit excess free energy is given by

f 3,a sym~3!
~1D! 5

1

hE0
1

4pt dt F3,asym~3!
~3! ~ t !

5
1

6h3 F103 2S 2
1

12h
24ln~12h!

16~12h!22~12h!21
1

3
~12h!3D G .

~C18!

The ratio f 3,asym(3)
(1D) / f 112

(1D) is small for most values ofh: it is
about 1/10 ath50.7, and reaches 1 only ath50.97~see Fig.
15!

APPENDIX D: EXCESS FREE ENERGY
OF THE 0D LIMIT

Consider hard spheres in any number of dimensions
side a cavity that cannot hold more than one particle. T
exact 0D limit can be obtained as follows. The canoni
partition function isZ1 for N51 andZN>250. The grand
partition is

J5 (
N50

`
ZN
N!

ebmN511Z1e
bm, ~D1!

whereb51/kBT, from which we get

N5
]

]bm
lnJ5

Z1e
bm

11Z1e
bm ~D2!

so that

bm5 lnS N

Z1~12N! D . ~D3!

The ‘‘pressure’’ is

bP5 lnJ52 ln~12N!, ~D4!

so that the free energy is

bF52bP1bmN5 ln~12N!1NlnF N

Z1~12N!G .
~D5!
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For ideal particles with no restriction on occupation of t
cavity, andZN5(Z1)

N, so that

J5exp~Z1e
bm!, ~D6!

N5Z1e
bm, ~D7!

bm id5 lnS NZ1D , ~D8!

bPid5N, ~D9!

and

bF id52N1NlnS NZ1D . ~D10!

Thus the excess free energy is

b~F2F id!5N1~12N!ln~12N!, ~D11!

which, as the pressure, is independent ofZ1, i.e., they corre-
spond to the equation of state of a well-definedD50 limit,
which does not depend on the details of the confining po
tial.

APPENDIX E: FUNDAMENTAL-MEASURE WEIGHTED
DENSITIES FOR A SPHERICALLY SYMMETRIC

DENSITY DISTRIBUTION

Considering a spherically symmetric density distributi
centered at the origin,

r~r !5r~r !, ~E1!

we would like to calculate the corresponding weighted d
sities

na~r !5E r~r 8!w~a!~r2r 8!dr 8, ~E2!

For the scalar weights this is easily done using

na~r !5
2p

r E
0

`

w~a!~r 8!r 8dr8E
ur2r 8u

r1r 8
r~y!y dy. ~E3!
,

-

t-
n-

-

The vector function obtained fromnV2(r )52“n3(r ). For a
Gaussian density distribution centered at the origin

r~r !5h0S a

p D 3/2e2ar2 ~E4!

then forw(3)(r 8)5Q(R2r 8) we use either Eq.~E3! or

na~r !52pE
0

`

w~a!~r 8!r 8dr8

3E
2r 8

r 8
h0S a

p D 3/2e2a~r21r 8222rz8!dz8 ~E5!

to get

n3~r !5
h0

2 Ferf@Aa~R1r !#1erf@Aa~R2r !#

1
e2a~R1r !22e2a~R2r !2

rAap
G , ~E6!

which for aR2@1 takes the form

n3~r !5
h0

2 F11erf@Aa~R2r !#2
e2a~R2r !2

rAap
G . ~E7!

For w(2)(r 8)5d(R2r 8) we get

n2~r !5h0

R

r
Aa

p
~e2a~R2r !22e2a~R1r !2! ~E8!

and foraR2@1 it takes the form

n2~r !5h0

R

r
Aa

p
e2a~R2r !2. ~E9!

The vector function, obtained fromnV2(r )52“n3(r ), is
given by

nV2~r !

n2~r !
5j~r !5S 11e24arR

12e24arR 2
1

2arRD rr . ~E10!
.
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