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Abstract
We consider the totally asymmetric exclusion process (TASEP) of particles on
a one-dimensional lattice that interact with site exclusion and are driven into
one direction only. The mean-field approximation of the dynamical equation
for the one-particle density of this model is shown to be equivalent to the
exact Euler–Lagrange equations for the equilibrium density profiles of a binary
mixture. In this mixture particles occupy one (two) lattice sites and correspond
to resting (moving) particles in the TASEP. Despite the strict absence of bulk
phase transitions in the equilibrium mixture, the influence of density-dependent
external potentials is shown to induce abrupt changes in the one-body density
that are equivalent to the exact out-of-equilibrium phase transitions between
steady states in the TASEP with open boundaries.

PACS numbers: 05.60.Cd, 61.20.Gy, 61.20.Lc

An important conceptual distinction between equilibrium and non-equilibrium statistical
physics is often emphasized [1–4]: the former possesses a well-defined general theory, based
on Gibbs ensembles, whereas the latter does not. In equilibrium cases density functional theory
(DFT) provides a powerful framework for obtaining in principle all static properties of a system,
in particular in inhomogeneous situations where the one-body density distribution varies in
space [5, 6]. There is a variety of approaches that aim at generalizing DFT to non-equilibrium,
such as the dynamic density functional theory (DDFT) by Kawasaki [7] and by Marconi and
Tarazona [8, 9] and the time-dependent density functional theory (TDFT) [4] pioneered by
Dieterich and co-workers. DDFT has been tested successfully in a variety of situations
[10, 11], including non-equilibrium sedimentation of hard spheres under gravity, where
excellent agreement with results from Brownian Dynamics computer simulations and from
experiments using confocal microscopy of colloidal dispersions was found [12]. Nevertheless
the DDFT is approximative [13, 14] and it is hence of practical interest to develop the
framework further.
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Figure 1. Illustration of the relationship between the TASEP and the hard core lattice gas. In
the TASEP particles (grey dots) occupy a one-dimensional lattice, labelled by x = 1, . . . , L. A
particle can hop from site x to site x + 1 at rate k(x, t). The system is coupled to an input and an
output reservoir with rates α and β, respectively. In the equilibrium binary mixture particles on a
lattice occupy one (species i = 1) or two (species i = 2) lattice sites. The position coordinate of
the two particles is taken as the left excluded site.

Finding relationships between equilibrium and non-equilibrium situations is both of
fundamental as well as of practical importance; the generalization of the Yang–Lee theory
of equilibrium phase transitions to non-equilibrium transition by Blythe and Evans [15] is a
primary example of such an achievement; see also [16, 17]. Here we investigate a relationship
between inhomogeneous equilibrium and driven non-equilibrium systems using the specific
example of a monomer-dimer hard core lattice fluid on the one hand and the totally asymmetric
exclusion process (TASEP) on the other hand; both are simple one-dimensional models. The
relationship is established via associating the one-body distribution functions of one model
with those of the other and is (at present) of approximative nature. One particularly fascinating
aspect is that DFT can be applied to examine the properties of the TASEP. Our arguments are
general and we discuss their applicability to other models.

The TASEP has been studied extensively in the past as a fundamental model for one-
dimensional transport [1–3, 18–23], with applications in intracellular transport, traffic and
transport in porous media; exact solutions are known [22, 23]. Consider a one-dimensional
lattice with L consecutive sites, labelled by x = 1, . . . , L. At time t a particle can hop from
site x to the neighbouring site x + 1 with rate k(x, t) provided that site x + 1 is empty; here
we have chosen formally the most general case and allow the hopping rate k(x, t) to vary in
space (see e.g. [24]) and time. We consider the case of open boundaries, where site 1 is filled
with particles at rate α and site L is emptied with rate β; the upper two panels of figure 1 show
an illustration. Introducing the occupation number τ(x, t) which is unity (zero) if site x is
occupied (empty) at time t, the local instantaneous current distribution is given by the exact
expression

j (x, t) = k(x, t)〈τ(x, t)(1 − τ(x + 1, t))〉, (1)

where 〈·〉 denotes an average over an ensemble of realizations of the TASEP. The term on
the right-hand side of equation (1) is the product of the hopping rate and the probability of
site x being occupied while site x + 1 is empty; for this combination of occupation numbers
a move from x to x + 1 is possible without violating the site exclusion condition. The time-
resolved local density distribution is obtained as ρ(x, t) = 〈τ(x, t)〉, and its time evolution
is determined by requiring the local conservation of the number of particles, expressed as a
continuity equation

∂ρ(x, t)

∂t
= −∇j (x, t), (2)
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with the discrete partial derivatives defined as ∂ρ(x, t)/∂t = ρ(x, t + 1) − ρ(x, t) and
∇j (x, t) = j (x + 1, t) − j (x, t). The celebrated mean-field theory for the TASEP is obtained
by assuming the factorization of the nearest neighbour occupancy correlations in equation (1),
〈τ(x, t)τ (x + 1, t)〉 ≈ 〈τ(x, t)〉〈τ(x + 1, t)〉 = ρ(x, t)ρ(x + 1, t), and hence taking the current
distribution to be

j (x, t) = k(x, t)ρ(x, t)[1 − ρ(x + 1, t)]. (3)

For steady states, where ∂ρ(x, t)/∂t = 0 and hence j (x, t) = const, this theory predicts the
exact out-of-equilibrium phase diagram of the TASEP as a function of the boundary rates α

and β [18, 25] (discussed below). Corresponding results for the (inhomogeneous) density
profiles are approximative.

Density functional theory (DFT) is a powerful tool for investigating equilibrium properties,
in particular of inhomogeneous systems that are exposed to the influence of external potentials
V ext

i (x) acting on species i (in the case of mixtures) [5, 6]. Here we focus on one-dimensional
lattice systems with space coordinate x = 1, . . . , L as above and denote the occupation
numbers of species i at site x by τi(x). As we treat static properties, there is no dependence
on time t. Particles interact with pairwise interaction potentials Vij (x, x ′) that act between
a particle of species i at site x and a particle of species j at site x ′ (and considering x < x ′

suffices). The density profile of species i is the grand canonical average ρi(x) = 〈τi(x)〉, and
we restrict ourselves in the following to binary mixtures such that i = 1, 2. In DFT the grand
potential is expressed as a functional of the one-body density distributions, ρ1(x) and ρ2(x),
as

�̃([ρ1, ρ2], µ1, µ2, T , L) = F([ρ1, ρ2], T , L) +
∑

i=1,2

L∑

x=1

(
V ext

i (x) − µi

)
ρi(x), (4)

where F([ρ1, ρ1], T , L) is the Helmholtz free energy functional4, µi is the chemical potential
of species i = 1, 2 and T is temperature. The equilibrium density distributions are those that
minimize the grand potential, i.e. that fulfil the Euler–Lagrange equations

δ�̃([ρ1, ρ2], µ1, µ2, T , L)

δρi(x)
= 0, i = 1, 2. (5)

The value of the grand potential at equilibrium, �, is obtained by inserting the solutions
of equation (5) for ρ1(x) and ρ2(x) into the grand potential functional, equation (4), i.e.
�(µ1, µ2, T , L) = �̃([ρ1, ρ2], µ1, µ2, T , L). The Helmholtz free energy functional F is
conveniently split into the free energy functional of an ideal gas (second term on the right
hand side below) and an excess (over ideal) part, Fexc, that is due to interactions between the
particles:

F([ρ1, ρ2], T , L) = Fexc([ρ1, ρ2], T , L) + kBT
∑

i=1,2

L∑

x=1

ρi(x)(ln(ρi(x)) − 1), (6)

where kB is the Boltzmann constant. The framework as outlined above is exact. In typical
applications, Fexc[ρ1, ρ2] is unknown for a given model fluid (specified by Vij (x, x ′)), and
one has to rely on an approximation for it in order to calculate density profiles and the grand
potential (and hence all thermodynamic quantities) for given external potentials V ext

i (x) via
solving (possibly numerically) equation (5).

4 Strictly speaking, for lattice models �̃ and F are not functionals but rather functions of the discrete set of variables
{ρ1(1), ρ1(2), . . . , ρ1(L), ρ2(1), ρ2(2), . . . , ρ2(L)}; the continuum notation is used for convenience and to highlight
the analogy of the continuum and the discrete cases.
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In the following we apply DFT to an equilibrium mixture of small (species 1) and large
(species 2) hard core particles that occupy one and two lattice sites, respectively. This model
can be viewed as a discrete version of the Tonks gas [26]. In detail, the interactions between
particles are such that a particle at site x excludes particles of both species from site x and that
a particle of species 2 at site x additionally excludes particles of both species from site x + 1.
These exclusion rules are equivalent to pair potentials given by V11(x, x ′) = ∞ if x = x ′ and
zero otherwise; V12(x, x ′) = ∞ if x = x ′ and zero otherwise; V21(x, x ′) = ∞ if x ′ − x � 1
and zero otherwise; and V22(x − x ′) = ∞ if x ′ − x � 1 and zero otherwise. The exact excess
free energy functional for this model [27–29] is given by

Fexc[ρ1, ρ2] = kBT

L∑

x=1

[�0(ρ1(x) + ρ2(x) + ρ2(x + 1)) − �0(ρ2(x))], (7)

where the function �(·) is given by �0(η) = (1 − η) ln(1 − η) + η and can be interpreted as
the excess free energy density of a ‘zero-dimensional’ system, i.e. that of an isolated site with
mean occupancy number η. Using equations (4) and (6) and carrying out the derivatives in
equation (5) yields the two Euler–Lagrange equations

ρ1(x) = z1(x)[1 − ρ1(x) − ρ2(x − 1) − ρ2(x)], (8)

ρ2(x) = z2(x)
[1 − ρ2(x) − ρ2(x + 1) − ρ1(x + 1)][1 − ρ2(x − 1) − ρ2(x) − ρ1(x)]

1 − ρ2(x)
, (9)

where zi(x) = exp
((

µi − V ext
i (x)

)/
kBT

)
is the local fugacity of species i at site x. To lowest

order in ρ2(x), corresponding to neglecting interactions between particles of species 2, one
can simplify equations (8) and (9) to obtain

z1(x) = ρ1(x)

1 − ρ1(x)
, (10)

ρ2(x) = z2(x)

z1(x)
ρ1(x)[1 − ρ1(x + 1)]. (11)

We are now in a position to detail the relationship between the two models. Our key
finding is that the linearized Euler–Lagrange equation for species 2, equation (11), becomes
equivalent to the mean-field expression for the current in the TASEP, equation (3), upon
making the following identification of the fields of the two models:

ρ1(x, t) = ρ(x, t), (12)

ρ2(x, t) = j (x, t), (13)

z1(x)

z2(x)
= k(x, t). (14)

This mapping exploits an intuitive similarity of the binary mixture and the TASEP: small
particles in the binary mixture resemble particles at rest in the TASEP, equation (12).
Large particles in the binary mixture resemble particles in the TASEP that move (and hence
contributes to the current), equation (13); this is because a successful move from x to x + 1
implies that site x is occupied and site x + 1 is empty—a configuration that is enforced in
the binary mixture by the extended size of the particle of species 2, see figure 1. The ratio
z1(x)/z2(x) is the Boltzmann factor of the free energy cost of an identity (species) exchange
of a particle at position x, and is hence intimately related to the hopping rate in the TASEP,
equation (14), because moving a particle at site x corresponds to choosing a particle at rest
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Figure 2. Upper panel. Representative density profiles ρ(x) as a function of position x for
the TASEP with open boundaries. Results are obtained from mean-field theory for a system of
size L = 100 in the high density phase (α = 0.6, β = 0.2, dashed line), low density phase
(α = 0.2, β = 0.6, dotted line), maximal current phase (α = 0.6, β = 0.8, solid line) and
coexistence between high and low density phases (α = β = 0.3, dash-dotted line). The inset
shows the out-of-equilibrium phase diagram of the TASEP as a function of α and β including high
density, low density, maximal current and coexistence (thick line) phases. Lower panel. Local
fugacities z1(x) of small particles that generate the same density profiles for species 1, ρ1(x), as
shown in the upper panel.

(This figure is in colour only in the electronic version)

(species 1) and transforming it into a particle that moves (species 2), see the Lower panel
of figure 1. We note further that using equation (12) the right-hand side of equation (10)
becomes ρ(x)/(1 − ρ(x)) which is known as the ‘auxiliary field’ in the mean-field theory for
the TASEP, which we recover here as the local fugacity z1(x) in the binary mixture.

To illustrate the correspondence between the two models, we have calculated the one-
body distributions for four typical steady states, as characterized by the input and output rates,
α and β, see figure 2. Results from two different numerical methods agree, that is from
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numerical minimization of the density functional, using Picard iteration, and from using a
recursion formulation of the mean-field equation for the TASEP. The inhomogeneous local
fugacity z1(x) of small particles (shown in the lower panel of figure 2) generates the same
density profile for species 1, ρ1(x), as shown in the upper panel for each of the four cases.
The non-equilibrium phase diagram of the TASEP includes maximal current phase, high-
density, low-density phase and coexistence between the latter, as a function of α and β (see
the inset of figure 2). The phase diagram as obtained from the mean-field theory is exact.
It is worth emphasizing that the DFT generates the same phase diagram; this seems at first
sight to contradict the rigourous absence of equilibrium phase transitions in one-dimensional
models with short-ranged interparticle forces (for a discussion see e.g. [30]). However, closer
inspection resolves this puzzle, as the equilibrium problem is stated in a slightly non-standard
way. Note that the steady-state condition j (x, t) = const translates via (12) to ρ2(x) = const.
Hence the equilibrium problem consists of solving for ρ1(x) and z1(x) given a known field
z1(x)/z2(x) and the above condition ρ2(x) = const. Hence the apparent phase transitions
are generated by sudden changes in the external fields z1(x) and z2(x). Note that the profiles
shown in figure 2 are approximate (in particular the exact profile of the coexistence phase has
a linear dependence on x).

We are now in a position to generalize the considerations above and to outline a DFT-
based approach for driven lattice models other than the simple TASEP, i.e. models that
include particles of arbitrary size [31], mixtures of different species, as well as higher spatial
dimensions [32]. Given such a model the following steps need to be carried out. (i) To treat
particles at rest as species 1 (monomers in the example above) and to introduce new species
i that correspond to moving particles; for hard core models the shape of those particles is
obtained from ‘fusing’ the particle shape before the move and that after the move (species 2
of dimers in the example above). (ii) To treat the equilibrium mixture with DFT. There is
a variety of approaches to obtain approximate DFTs in cases where the exact free energy
functional is unknown; the recent lattice fundamental measure theory [28, 29] provides a
particularly powerful means to construct systematically such approximations. (iii) To obtain
the Euler–Lagrange equations for the mixture and to identify the hopping rate in the direction
i with the ratio of fugacities zi/z1, where z1 is the local fugacity of species 1, and zi is the
local fugacity of species i.

As an example we sketch the application to the TASEP in two spatial dimensions [32],
where particles are driven on a square lattice (x, y) with rate k(x, y, t) in the positive x
direction and behave diffusively in the y direction, i.e. jump with rate k′(x, y, t) in the positive
or negative y direction. We keep the above monomers (species 1) and dimers (species 2),
and introduce two further quasi-species, whose particles correspond to moves in the positive
y direction (species 3) and negative y direction (species 4). The hard core pair interactions
model dimers that are aligned along the y direction and are such that particles of species 3
occupy sites (x, y) and (x, y + 1) and particles of species 4 occupy sites (x, y) and (x, y − 1).
The approach of [28, 29] is well suited to formulate a DFT for this four-component mixture.
As above, the density profile of species 2, ρ2(x, y), is identified with the (partial) current
across the ‘bond’ (x, y) to (x + 1, y). The density profiles of the new species correspond to the
partial current from (x, y) to (x, y + 1) (species 3) and from (x, y) to (x, y − 1) (species 4).
The hopping rates are associated with the local fugacities via k(x, y, t) = z1(x, y)/z2(x, y)

and k′(x, y, t) = z1(x, y)/z3(x, y) = z1(x, y)/z4(x, y), where zi is the local fugacity of
species i at site (x, y). How such applications compare to mean-field theories obtained from
factorization of correlations (e.g. generalizations of equation (3) to higher dimensions) remains
to be seen and will be the object of further studies. One might hope that the consistency inherent
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in equilibrium DFT proves advantageous, in particular in the case of more complicated models
than those considered here.

As a further outlook, it might be interesting to investigate whether one might be able to
find, at least on a formal level, a density functional representation that is equivalent to the exact
equations of motion of the one-dimensional TASEP, equation (1), rather than the mean-field
version (3).
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