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Abstract
We use density functional theory to study the capillary phase behaviour of
a discotic system of colloidal platelets that are confined in a planar slit
pore. The model plates have circular shape, continuous orientations and
vanishing thickness; they interact via hard-core repulsion with each other
and with the walls which induces homeotropic wall anchoring of the nematic
director. We find that the isotropic–nematic capillary binodal is shifted to
lower values of the chemical potential as compared to bulk isotropic–nematic
coexistence. Capillary isotropic–nematic coexistence vanishes below a critical
wall separation distance which is significantly larger than it is in a reference
system of thin hard (Onsager) rods confined between two parallel hard walls
that act on the particle centres.

1. Introduction

The bulk phase behaviour of dispersions of nonspherical colloidal particles can be considerably
more complex than that of dispersions of spheres due to the occurrence of partially ordered,
liquid crystalline phases in such systems. The stability of liquid crystals (LCs) originates from
complex particle shapes and is accompanied with properties between those of liquids and those
of solids. A simple example of a LC phase transformation is that between an isotropic (I)
fluid and an orientationally ordered nematic (N) fluid. The nematic phase is characterized by
macroscopic orientational order; the particles align preferentially along a common direction,
called the nematic director. The symmetry breaking in director space and the resulting elastic
behaviour of the nematic phase resemble a crystal, while the spatial distribution of position
coordinates remains homogeneous like in a liquid. The isotropic–nematic (IN) transition was
first observed experimentally in suspensions of (rod-like) tobacco mosaic virus particles [1, 2],
and a famous theoretical description was given by Onsager [3]. Cast into modern language,
this theory can be viewed as a truncation of the Taylor expansion of the Helmholtz excess free
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energy functional at second order in density and becomes exact, due to a scaling argument,
in the limit of thin rods [4]. However, such scaling does not hold for (vanishingly) thin
hard platelets; when applied to this system the Onsager theory is known to predict the bulk
IN transition correctly to be of first order, but to overestimate the transition densities and
value of the nematic order parameter at coexistence quite severely as compared to simulation
results [5, 6]. The peculiar features of the bulk IN transition of hard platelets are the very small
density jump at coexistence and the very low value of the nematic order parameter, S ∼ 0.5, in
the coexisting nematic phase.

During recent years considerable experimental, simulation and theoretical work has been
devoted to gaining understanding of the behaviour of platelet dispersions. A well-established
experimental model system is gibbsite platelets dispersed in toluene, for which the existence
of the IN transition was observed with polarization microscopy [7]. In the same system the
nematic–columnar phase transition [8], the hexagonal-columnar liquid crystal phase [9], and
gelation and nematic ordering [10] were investigated. Also the influence of external potentials
was considered, e.g. that of gravity [11, 12] and of electric [13] and magnetic fields [14].
Platelike clay particles [15, 16] and mixtures of colloidal platelets and polymers [17, 18] have
also received attention. Theoretical investigations were devoted to the influence of gravity on
phase behaviour [19], and the phenomenon of nematic density inversion [20]. An interaction
site model for lamellar colloids was investigated [21]. The phase diagram of a mixture of hard
colloidal spheres and discs was obtained from a free volume approach [22], and the free IN
interface in fluids of charged platelike colloids was investigated using the Zwanzig model with
discrete orientations [23]. Reference [24] is devoted to the effects caused by polydispersity in
a mixture of rods and platelets. A model fluid of hard platelike particles has also been used to
describe the structure factor of macromolecular solutions of stilbenoid dendrimers [25].

The presence of a substrate commonly leads to rich phenomenology of surface phase
transitions. The smooth hard planar wall is a basic model for a substrate which despite
its simplicity induces intriguing effects. For hard-core models energy is irrelevant and one
refers to ‘entropic wetting’ [26]; examples include ordering of rods near a hard wall [27], the
uniaxial–biaxial transition of hard rods [28–30], and prefreezing of hard spheres [31]. Also the
entropic torque acting on a single hard rod in a solvent of hard spheres close to the wall was
investigated [32]. The isotropic phase of platelets in contact with a wall has been considered
in [33] using Onsager theory, and results were compared to those for a hard-rod fluid. For the
Zwanzig model of platelets with restricted orientations [34] wetting and capillary effects were
investigated [35], as well as bulk and interfacial properties of binary mixtures [36].

We have recently developed a density functional theory (DFT) for platelets [37] based on
fundamental measure theory (FMT), an approach that was originally developed for additive
hard-sphere mixtures by Rosenfeld [38]. The platelets are modelled as having circular shape
and vanishing thickness; they possess continuous orientations, which is somewhat more
realistic than in the Zwanzig model where orientations are restricted to the three Cartesian
directions. The FMT of [37] was shown to give very accurate results for bulk and interfacial
properties of model platelet dispersions as compared to results from large-scale Monte Carlo
computer simulations [39, 40]. It was also shown that the FMT improves significantly over
results obtained from the Onsager theory. A peculiar feature of the model is that the value of
the IN interfacial tension is unusually low. From measuring the capillary rise of the nematic
phase at a vertical substrate a corresponding experimental value for the IN interface tension was
obtained [39], in reasonable agreement with the theoretical prediction. It was also demonstrated
that a hard wall is wetted completely by the nematic phase upon approaching IN coexistence
from the (low-density) isotropic side [39, 40].
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In this paper we use the theory of [37] to investigate the capillary effects that arise when the
hard-platelet system is confined in a planar slit pore. It is well known that situations of strong
confinement can have a profound effect on the phase behaviour and structure of condensed
matter. A prominent effect that occurs in simple liquids is capillary condensation, i.e. the
pore stabilizes the liquid phase at statepoints where the gas is stable in bulk [41, 42]. The
analogue in the case of the IN transition is capillary nematization where the presence of the
capillary stabilizes the nematic at statepoints where the bulk is isotropic. A corresponding shift
of the IN transition to lower chemical potentials occurs. Confinement has been considered for
different types of molecular liquid crystals and of colloidal dispersions, see e.g. [43, 44] for
the behaviour of confined thermotropic liquid crystals. Reference [45] investigates hard rods
confined by two parallel hard walls using integral equations and computer simulations. The
authors examine the dependence of the free energy on the separation of the walls and conclude
that capillary nematization should occur. References [28, 29] examine capillary nematization
for biaxial hard rods within the Zwanzig model, and [30] confirms these results with Monte
Carlo simulations. Reference [46] investigates a confined soft ellipsoid fluid with DFT, and
in [47] computer simulations of long thin hard rods in a quasi-two-dimensional planar geometry
were performed. In [48, 49], a detailed investigation of hard rods in a capillary with walls acting
on the centres of the rods and an additional external potential is carried out. The authors find
capillary nematization as well as capillary smectization, i.e. a shift of the nematic–smectic
phase transition to lower chemical potentials upon confining the system. Much less work has
been devoted to systems of confined hard-platelet fluids. In [35] the authors investigate the
wetting and capillary nematization behaviour of binary hard-platelet (and also hard-rod) fluids
using the Zwanzig model. They obtain density profiles and find a capillary critical point upon
decreasing the wall separation. We comment on the very recent computer simulation study
published in [50] at the end of this paper. Here we investigate the same phenomenon using a
hard-platelet fluid with continuous orientations. As a well-studied reference system, we use a
confined system of thin hard rods that we study with Onsager theory.

This paper is organized as follows. In section 2 we describe the model interactions and
give an overview of DFT. We present results for capillary phenomena of plates and rods in
section 3 and conclude in section 4.

2. The model and density functional theory

We consider a fluid of infinitely thin hard circular platelets of diameter D. The platelets interact
with a hard-core pair potential φ(r,ω,ω′) that depends on the centre-to-centre distance r
between both platelets and on their orientations, ω and ω′, taken to be unit vectors perpendicular
to the plane of the respective particle. φ(r,ω,ω′) is infinite provided that the two particles
overlap and vanishes otherwise. The system is confined by a pair of planar smooth hard walls,
which we take to be perpendicular to the z-direction and to be located at z = 0 and H , such
that only the slab 0 � z � H is accessible to the particles. Hence the interaction between the
hard walls and a platelet is described by an external potential,

Vext(z, θ) =
{

0 (D/2) sin θ � z � H − (D/2) sin θ

∞ otherwise
, (1)

where θ is the angle between the z-direction and the particle orientation ω, which we can choose
to be in the range 0 � θ � π/2 due to the inflection symmetry, ω → −ω, of the particles. See
figure 1 for an illustration of the model.

The one-body density distribution of the particles is denoted by ρ(r,ω), where r is
the position coordinate of the particle centre. The bulk density is denoted by ρ and the
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θ

Figure 1. Model of hard platelets of diameter D and vanishing thickness confined between
two planar parallel hard walls with separation distance H . The angle between the z-direction,
perpendicular to the walls, and the platelet orientation ω is denoted by θ . In a reference system of
thin hard rods of length L and thickness d � L the hard walls act on the centres of the particles.

normalization is chosen such that ρ = ∫
dr dω ρ(r,ω)/(4πV ), where V is the system volume.

As we do not expect biaxiality to occur, we can assume invariance with respect to rotations
around the z-axis, as well as translational invariance in the x- and y-directions. The remaining
relevant angle θ is that between the orientation ω and the z-axis; see figure 1. It follows that
the (number) density distribution ρ(r,ω) = ρ(z, θ).

As a reference system we use the well-studied model of thin hard rods of length L and
diameter d in the Onsager limit where d/L → 0. A planar capillary that induces homeotropic
alignment is constituted by two parallel hard walls that act on the particle centres such that

Vext(z) =
{

0 0 � z � H

∞ otherwise.
(2)

Again planar geometry is assumed, where the only relevant spatial coordinate is z and the
remaining angle θ is that between the orientation ω (along the rod) and the z-axis, as sketched
in figure 1.

In DFT the grand potential is expressed as a functional of the one-body density
distribution [51],

�̃([ρ], μ) = Fid[ρ] + Fexc[ρ] +
∫

dr
∫

dω

4π
ρ(r,ω) (Vext(r,ω) − μ) , (3)

where Fexc[ρ] is the excess (over ideal gas) contribution to the total (Helmholtz) free energy
functional that arises from interparticle interactions, Vext(r,ω) is an external potential acting on
the particles, μ is the chemical potential, and the ideal gas (Helmholtz) free energy functional
for uniaxial rotators is given by

Fid[ρ] = kBT
∫

dr
∫

dω

4π
ρ(r,ω)

(
ln(ρ(r,ω)�3) − 1

)
, (4)

where kB is Boltzmann’s constant, T is the absolute temperature, and � is the (irrelevant)
thermal wavelength for which we choose � = D/2; the dependence on volume V and
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temperature has been suppressed in the notation. In the following we use the scaled
chemical potential μ∗ = βμ with β = 1/kBT . For any given external potential Vext(r,ω),
minimizing the grand potential with respect to the one-body density distribution ρ(r,ω) gives
the equilibrium density profile,

δ�̃[ρ]
δρ(r,ω)

= 0, (5)

which can be rewritten, using equation (3), as an Euler–Lagrange equation

kBT ln(ρ(r,ω)�3) − kBT c1([ρ], r,ω) + Vext(r,ω) = μ, (6)

where c1([ρ], r,ω) = −(kBT )−1δFexc[ρ]/δρ(r,ω) is the one-body direct correlation
functional. One systematic way to write down the excess free energy functional is to expand it
in a virial series,

Fexc[ρ] = −kBT

2

∫
dr

∫
dω

4π

∫
dr′

∫
dω′

4π
ρ(r,ω)ρ(r′,ω′) f (r − r′,ω,ω′) + O(ρ3), (7)

where f (r,ω,ω′) = exp(−βφ(r,ω,ω′)) − 1 is the Mayer function that for hard bodies is
−1 if the two particles overlap and vanishes otherwise. In practice, one has to resort to
approximations to Fexc[ρ] and Onsager’s theory relies on truncating equation (7) at second
order in density. For platelets we use the theory of [37] that possesses the exact second-order
contribution, but also contains an (approximative) contribution of third order in density; for
details see [37, 39]. In the reference case of rods, we use the Onsager theory.

In order to facilitate a quantitative comparison between results for the two models, we
scale the density distributions with the second virial coefficient of the respective pair potential,
i.e. for platelets B2 = π2 D3/16 = 0.616 85D3, and for rods B2 = π L2d/4 = 0.785 398L2d .
We hence define the respective scaled densities c(z, θ) = B2ρ(z, θ) as

c(z, θ) = π

4
d L2ρ(z, θ) (rods), c(z, θ) = π2

16
D3ρ(z, θ) (plates). (8)

The inhomogeneous density distributions in the capillary are conveniently analysed using an
orientation-averaged density profile,

c(z) =
∫ π/2

0
dθ sin(θ)c(z, θ), (9)

and a nematic order parameter profile, defined as

S(z) = 1

c(z)

∫ π/2

0
dθ sin(θ)c(z, θ)P2(cos θ), (10)

where P2(x) = (3x2 − 1)/2 is the second Legendre polynomial. The corresponding spatially
averaged quantities are obtained as

〈c〉 = 1

H

∫ H

0
dz c(z), (11)

and

〈S〉 = 1

H

∫ H

0
dz S(z). (12)

Capillary coexistence is found through the condition that at a given value of the plate
separation distance H and of the chemical potential μ both phases possess the same value of
the grand potential � per unit area (equality of the temperatures in both phases is trivial for
hard-core systems).
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Our numerical implementation to solve equation (6) uses an equidistant grid in the z-
direction with 40 grid points per diameter D in the case of plates and 100 grid points per length
L in the case of rods. The angle θ is discretized on a non-equidistant grid with 20 (100) grid
points in the interval [0; π/2] for plates (rods). As a minimization procedure we use molecular
dynamics-type simulated annealing [52–54]. For some more details about the numerics that
also apply to the current study see [40].

3. Results

The variation of the phase coexistence densities for confined hard platelets as a function of the
scaled inverse wall separation distance D/H is shown in figure 2(a). As found previously [37],
the values in bulk, D/H → 0, as obtained from the DFT agree well with results from
simulations [5, 6]. For increasing values of D/H (and thus confining the system more strongly)
we find an initial increase in both coexistence densities. Indeed the low-density coexistence
phase for finite values of D/H possesses a certain degree of nematic order (discussed in detail
below) which is induced by the orientational ordering effect of the walls. One could rightfully
refer to this as a paranematic phase, but we will use in the following the term isotropic phase,
as is commonly done for such confined states.

The increase of the average density is due to the presence of adsorption layers at both walls
which contribute significantly to 〈c〉, even for small values of D/H . With further decreasing
the wall separation distance (and hence increasing D/H ) the isotropic coexistence density
continues to increase, but does this more slowly. We attribute this to the shift of the IN
transition to lower chemical potentials, which is an effect in the opposite direction to the density
increase due to the adsorption layer. The nematic coexistence density, on the other hand, is
maximal at around D/H = 0.08 (or H = 12.5D) and decreases for smaller plate separation
distances (larger values of D/H ). Ultimately the binodal terminates at an upper critical point,
D/H = 0.172 (or H = 5.8D). Close to the capillary critical point the numerical effort is very
demanding, which gives rise to some small numerical artefacts that are apparent in figure 2.
The chemical potential at coexistence, μ∗

coex, shifts to smaller values upon confining the system
(increasing D/H ); see the inset of figure 2(a). This demonstrates that capillary nematization
does indeed occur, i.e. that (over a range of statepoints) the capillary is in a nematic state in
equilibrium with an isotropic bulk.

We next compare our density functional results for the capillary binodal with the prediction
obtained from the Kelvin equation [41, 42]; see applications of the Kelvin equation for simple
fluids in slit pores in [41, 42] and for a lattice model of the IN transition in [55]. The Kelvin
equation for the present case reads


μ = 2γIN

H (ρN − ρI)
, (13)

where 
μ is the change of the chemical potential at capillary coexistence with respect to
the bulk coexistence values and γIN is the interfacial tension of the free IN interfaces, as
is appropriate in the present situation where the nematic phase wets a (single) hard wall
completely [39, 40]. With the value γIN D2/kBT = 0.026 624 of [39] and ρN D3 − ρI D3 = 0.4
we obtain 
μ as a function of H ; the result is shown in the inset of figure 2(a). The predictions
of the Kelvin equation for the capillary coexistence chemical potential are in good agreement
with the results from the calculations for D/H = 0.086 (which corresponds to a capillary
width of H = 11.6D) but become increasingly poor for larger values of D/H . Such behaviour
could be expected as the Kelvin equation is valid only for H 
 D.

In the following we compare the above finding to the capillary phase behaviour of rods.
Confinement of rods by walls that act on the particle centres and hence induce homeotropic
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Figure 2. (a) Variation of the average isotropic and nematic coexistence density 〈c〉 (horizontal
axis) with the scaled inverse capillary width D/H (vertical axis) for hard platelets between parallel
hard walls. The average density 〈c〉 is defined via equations (8) and (11); the symbols represent
results from FMT calculations, the lines are a guide to the eye. The capillary critical point (full
circle) is located at 〈ρ〉 = 2.26 and D/H = 0.172 (H = 5.8D). The inset shows the variation
of the (scaled) chemical potential at coexistence, μ∗

coex (horizontal axis), with the inverse scaled
plate separation distance D/H (vertical axes), as obtained from the full DFT calculation (symbols)
and from the Kelvin equation (line). (b) Same as (a), but as obtained from Onsager theory for hard
rods confined between hard walls that act on the particle centres. The critical point (full circle) is
located at 〈c〉 = 4.07 and L/H = 0.373 (H = 2.68L). For comparison the result for platelets
from part (a) is replotted (dashed line). Also shown are the results from Gibbs ensemble computer
simulations [50] for the isotropic (open squares) and nematic (filled squares) coexistence densities
for a system of hard cut spheres with aspect ratio 0.1.

anchoring has been considered in detail before [48, 49]. We have used the Onsager functional
to reconsider this situations as a reference case. Figure 2(b) shows the variation of the average
density 〈c〉 at coexistence with the scaled inverse plate separation distance L/H . Both the
isotropic and nematic coexistence densities increase with increasing values of L/H . While
this increase holds for the isotropic density up to the critical point, the nematic density starts
to decrease beyond a maximum at L/H = 0.16. The binodal ends it a critical point with
L/H = 0.372. Again we apply the Kelvin equation (13) to calculate the shift of the chemical
potential. The results are plotted in the inset of figure 2(b). Good agreement is found with the
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Figure 3. (a) Variation of the average order parameter 〈S〉 (horizontal axis), defined via
equation (12), for the isotropic and nematic phase at capillary coexistence as a function of the inverse
capillary width D/H (vertical axis) as obtained from FMT for hard platelets between parallel hard
walls. (b) Same as (a), but as obtained from Onsager theory for hard rods confined between parallel
hard walls that act on the midpoints of the particles; here the inverse capillary width is L/H . For
comparison the result for plates from (a) is also shown (dashed line).

data obtained from the full numerical DFT for small values of L/H ; for L/H closer to the
critical point the predictions become increasingly poor.

The variation of the average nematic order 〈S〉 along the capillary coexistence binodal
confirms the scenario; see figure 3(a) for the results for platelets. The value at the isotropic
coexistence branch increases with increasing D/H , up to the critical value. The nematic
coexistence branch possesses a maximum at about D/H = 0.08 (or H = 12.5D). The
behaviour of the order parameter 〈S〉 for rods differs slightly from that for platelets; see
figure 3(b). The value at isotropic coexistence decreases monotonically upon confining the
system, but the nematic coexistence curve exhibits no maximum.

In figure 4(a) we plot density profiles c(z) for isotropic and nematic states at coexistence
for typical values of the capillary width of the confined platelet system, H/D =
6, 6.5, 9.05, 11.55. The density in the centre of the capillary, z = H/2, increases from
c(z = H/2) = 2.063 to c(z = H/2) = 2.073 upon reducing the plate separation distance
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Figure 4. (a) Scaled density profiles c(z) as a function of the scaled distance from one of the walls,
z/D, for H/D = 6, 6.5, 9.05, 11.55 (from left to right) for hard platelets between parallel hard
walls. Shown are the isotropic (full line) and nematic (dashed line) profiles at capillary coexistence.
The coexistence chemical potential decreases from μ∗ = 4.991 at H/D = 11.55 to μ∗ = 4.943
at H/D = 6. (b) Scaled density profile c(z) as a function of the distance from one of the walls,
z/L , for H/L = 3, 5, 9 (from left to right) for hard rods confined between parallel hard walls that
act on the particle centres. Shown are isotropic (full line) and nematic (dashed line) coexistence
profiles. The coexistence chemical potential decreases from μ∗ = 7.72 at H/L = 9 to μ∗ = 7.56
at H/L = 3.

from H/D = 11.55 to 6.5, although the chemical potential at coexistence decreases in this
case, as discussed above. This effect is related to the fact that for H/D = 6.5 the wetting
films of each wall ‘see’ each other and so shift the density to a higher value. Corresponding
density profiles c(z) as a function of z for the confined rod system with capillary widths of
H/L = 3, 5, 9 are shown in figure 4(b). In the centre of the capillary, z = H/2, the values of
the density at coexistence are almost reached for the cases H/L = 9 and also 5. The maximum
of the density profile c(z) is directly at the wall.

The order parameter profiles S(z) in the coexisting isotropic and nematic states are plotted
in figure 5(a) for the same values of H/D as the density profiles in figure 4(a). The variation
of S(z) with z is similar to that at a single wall [40]. Here, however, capillary effects can be
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Figure 5. Order parameter profile S(z) as a function of the scaled distance z/D for hard platelets
between parallel hard walls for the same statepoints at capillary coexistence as in figure 4(a).
(b) Order parameter profile S(z) for hard rods between parallel hard walls that act on the particle
centres as a function of z/L for the same statepoints as in figure 4(b).

clearly observed for H/D = 6.5 and 6; see figure 5(a): the value of the order parameter for
the isotropic coexistence profile in the middle of the capillary is S > 0.15, significantly larger
than zero (as it is in the isotropic bulk). The nematic profile in the centre of the capillary is
S(z = H/2) = 0.4, a value that is lower than that of the bulk nematic at coexistence; this is
consistent with the shift of the chemical potential at capillary coexistence to lower values than
in bulk at coexistence.

In contrast to the behaviour of the density profiles for the confined rod system—recall
figure 4(b)—the maximum of the order parameter profile S(z) is surprisingly not located
directly at the wall; see figure 5(b). This is in agreement with the profiles obtained in [48].
When looking at the profiles for H/L = 3, relatively close to the critical capillary width at
H/L = 2.68, one finds that the capillary effects are more pronounced. In the centre of the
capillary the value of the order parameter is significantly larger than zero. As observed for
H/L = 5 and 9, the maximum of the density is at the wall, while the maximum of the order
parameter is shifted away from the wall.

10
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4. Conclusions

In conclusion, we have investigated the behaviour of hard colloidal platelets of diameter D
confined inside of a capillary that is constituted by two parallel planar hard walls. We find a
critical plate separation distance of H = 5.8D; for smaller values of H the capillary phase
separation ceases to exist.

We have carried out reference calculations of a system of hard rods confined between
parallel hard walls that act on the particle centres. This type of wall induces similar alignment
to that of the hard (impenetrable) walls acting on the platelets. Comparing the results found
for the capillary nematization of platelets and rods, we find remarkable differences. The
most prominent one is the critical value of H . For platelets, we find H = 5.8D, for rods
H = 2.67L. Thus, the critical capillary width for platelets is twice as large as that for
rods, when measured in the natural length scale of the respective system. Similar behaviour
is exhibited by the correlation length ξ that governs the decay both of the one-body density at
large distances from a perturbation (such as a wall) and the pair correlation function at large
separation of the particles. For platelets ξI/D = 0.66 (at the isotropic side of the free IN
interface) and ξN/D = 0.675 (at the nematic side of the interface); for rods ξI/L = 0.335 and
ξN/L = 0.332 [56]. Hence the correlation length of platelets (measured on the length scale of
the particle) is about twice as large as that of rods.

Comparing the values for the shift in chemical potential at the capillary critical point
with respect to the bulk value, 
μ, we find 
μ = 0.25kBT for rods and 
μ = 0.06kBT
for platelets. Recalling equation (13), we see that 
μ is proportional to the IN interfacial
tension γIN and inversely proportional to the IN density jump ρI − ρN. The interfacial
tension γIN = 0.0266kBT/D2 for platelets is much smaller than that for rods, which is
γIN = 0.16kBT/(Ld). This significant difference is, however, partially compensated by a
difference in the density jump, leading together to a smaller shift for platelets.

After completion of the current work we became aware of a very recent computer
simulation study by Piñeiro et al [50]. These authors have investigated a system of hard cut
spheres with aspect ratio (thickness over diameter) of 0.1 confined between either parallel plates
or hard walls that act on the particle centres. Our current model of platelets is attained as the
limit of cut spheres with vanishing aspect ratio. The results of the Gibbs ensemble computer
simulations of [50] are reproduced in our figure 2(b). The shift of the simulation data to higher
densities as compared to the DFT in bulk, L/H = 0, is due to the finite aspect ratio considered
in the simulations. Apart from this effect a very similar shape of the binodal is found. Piñeiro
et al quote a critical wall separation of 4D, which is similar in magnitude to our value of 5.8D.
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