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We treat a one-dimensional binary mixture of hard-core particles that possess nonadditive diameters. For this
model, a density functional theory is constructed following similar principles as an earlier extension of Rosen-
feld’s fundamental measure theory to three-dimensional nonadditive hard-sphere mixtures. The theory applies
to arbitrary positive and moderate negative nonadditivity and reduces to Percus’ exact functional in the additive
case. Bulk direct correlation functions are obtained as functional derivatives of the excess free energy func-
tional. Results for the partial pair correlation functions in bulk, as calculated via the Ornstein-Zernike route and
using the direct correlation functions as input, show very good agreement with results from our Monte Carlo
computer simulations of the mixture.
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I. INTRODUCTION

The theoretical study of one-dimensional fluids is moti-
vated by experimental realizations of such systems, includ-
ing dispersions of mesoscopic colloidal particles that are
confined topographically inside narrow channels �1� or with
the aid of one-dimensional laser traps �2�. Low spatial di-
mensionality simplifies theoretical treatment as compared to
the three-dimensional case, as has been exploited, e.g., in
investigations of depletion interactions �3,4�, model colloid-
polymer mixtures �5�, transport phenomena �6,7�, and ad-
sorption in model porous media �8,9�.

The one-dimensional hard-core model �or hard-rod model
or Tonks gas �10�� is a basic model fluid with short-ranged
repulsive interparticle forces and continuous position coordi-
nates. Its exact free energy functional has been obtained by
Percus both for the pure �one-component� system �11� and
for additive mixtures �12�. In an additive mixture the dis-
tance at which particles of unlike species interact, �ij, where
i and j label the species and i� j, is given by the mean of the
individual particle sizes, �ij = ��ii+� j j� /2, where �ii �� j j� is
the interaction distance between particles of the same species
i �j�. In a hard-core model the pair interaction potential is
infinite if the center-to-center distance x between two par-
ticles is x��ij, and zero otherwise. Nonadditive mixtures,
however, violate the additive relationship between the length
scales; they rather satisfy �ij = �1+����ii+� j j� /2, where the
parameter � measures the degree of nonadditivity and the
additive case is recovered for �=0.

For three-dimensional nonadditive hard spheres �NAHS�
it is known from simulations and theory that small positive
values of � are already sufficient to induce stable fluid-fluid
demixing into phases with different chemical compositions
�see, e.g., Refs. �13–15� for classic studies and Refs. �16–26�
for more recent work�. In contrast, for ��0 a single fluid
phase is stable, but clustering phenomena can occur, as, e.g.,
recently observed experimentally in �two-dimensional� mag-
netic dispersions �27�. Besides colloids, the NAHS model
has been used to model racemic molecular mixtures �28� and

dense fluid hydrogen �29�. Moreover, it constitutes the natu-
ral reference model for mixtures with soft interactions
�30,31�. In colloids it is of relevance for modeling, e.g.,
colloid-microemulsion mixtures as well as for mixtures of
charged and neutral colloids in nonaqueous solvents. From a
fundamental point of view, binary NAHS form arguably the
simplest �hard-core� model that displays liquid-liquid phase
separation, i.e., phase separation into different dense fluid
phases in which particle packing effects are of relevance. A
variety of methods of study has been used including com-
puter simulations and liquid integral equation theories, but
also approaches such as scaled-particle theory �32–37� and
the virial expansion �38�. Furthermore, a detailed investiga-
tion of depletion phenomena, based on density functional
theory �DFT� �39–41�, has been carried out �42,43�.

Rosenfeld’s fundamental measure theory �FMT� �41� is a
DFT that is widely used in the study of inhomogeneous hard-
sphere systems. Based on ideas of scaled-particle theory and
Percus-Yevick theory, the DFT of Ref. �41� was formulated
for additive hard-sphere mixtures. Subsequent refinements
�44,45� were performed to account for phenomena such as
freezing. Significant insight into the nature of FMT was
gained from applying the approach to hard-core �and other�
lattice gases �46,47�. For a recent continuum study, see Ref.
�48�, where a FMT for aligned hexagons is given �this paper
contains also an in-depth discussion of some of the history
and the current state of FMT�. See Refs. �49,50� for a de-
tailed simulation study and critical discussion of FMT pre-
dictions for depletion phenomena in very asymmetric addi-
tive hard-sphere mixtures. For several models that
correspond to special cases of nonadditivity, FMTs have
been constructed, including the Widom-Rowlinson model of
a symmetric binary mixture �51� �where �11=�22=0 such
that �12�0 is the only relevant length scale�, and the
Asakura-Oosawa model of colloid-polymer mixtures �where
species 2 with �22=0 models ideal polymers with radius of
gyration �12− ��11/2�� �52,53�.

In Ref. �54� a FMT for nonadditive hard-sphere mixtures
was proposed. This DFT was shown to give very satisfactory
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results for bulk pair correlation functions and for the location
of the fluid-fluid demixing critical point �for ��0� as com-
pared to computer simulation results from the literature. In
the present contribution we apply the same construction prin-
ciples to the binary one-dimensional nonadditive hard-core
mixture and arrive at a DFT for this model. The theory ap-
plies to arbitrary positive and moderate negative nonadditiv-
ity such that �12�max��11,�22� /2 is satisfied. In the addi-
tive case, �=0, it reduces to Percus’s exact functional. The
quality of the DFT is demonstrated by comparing results for
the partial pair correlation functions as obtained from the
Ornstein-Zernike route to results from our computer simula-
tions. Excellent agreement is found, even at considerably
high densities. Nevertheless, there are also shortcomings,
such as the prediction of a spurious demixing phase transi-
tion at very high densities, which is clearly absent in reality.
The explicit form of the excess free energy functional, as
given in Eq. �19�, is more compact than the somewhat formal
derivation might suggest at first glance. Nevertheless, the
derivation given is as explicit and self-contained as possible,
both in order to exemplify its structural strength, as well as
to highlight the analogy with the three-dimensional case.

The paper is organized as follows. In Sec. II the model is
defined and the DFT is constructed. Results for pair correla-
tion functions are presented in Sec. III, and we conclude in
Sec. IV.

II. DENSITY FUNCTIONAL THEORY

A. The model

We consider a binary mixture with pair potentials Vij�x�
that act between particles of species i and j, where i , j
=1,2, given by

Vij�x� = �� , x � �ij,

0 otherwise,
� �1�

where x is the center-center distance between the two par-
ticles; �11, �12, and �22 are the distances of minimal ap-
proach between particles of species ij=11, 12, and 22, re-
spectively. We introduce particle radii as R1=�11/2 and R2
=�22/2, as well as a further length R12 which satisfies �12
=R1+R2+R12, and hence R12=�12− ��11+�22� /2. The rela-
tionship of the nonadditivity parameter to the radii is �
=R12/ �R1+R2�, and hence R12= �R1+R2��. Note that in the
additive case R12=0 and �=0. For cases of negative nonad-
ditivity we restrict ourselves in the following to �R12�
�min�R1 ,R2�, which corresponds to �12�max��11,�22� /2.
See Fig. 1 for an illustration of the length scales involved
and how nonadditivity arises naturally when two-
dimensional �hard-core� shapes are confined on a line.

B. Excess free energy functional

The Helmholtz excess �over ideal gas� free energy as a
functional of the one-body density distributions, �i�x�, for
species i=1,2, where x is the space coordinate, is assumed to
be of the form

Fexc��1,�2� = kBT� dx� dx� 	
	,
=0,1

K	
�x − x��

��	
„
n
�1��x��,
n�

�2��x���… , �2�

where kB is the Boltzmann constant, T is absolute tempera-
ture, K	
�·� are �density-independent� convolution kernels,
and �	
�·� are explicit functions of sets of weighted densi-
ties for each species, 
n

�1��x�� and 
n
�2��x���, where the upper

index �1,2� labels the species and the lower index �� ,�� la-
bels the type of weighted density. Note that in Eq. �2� the
weighted densities for species 1 at position x are coupled to
the weighted densities for species 2 at position x� via the
kernels K	
�x−x��. Both K	
�·� and �	
�·� can be viewed as
the 	
 component of a corresponding a second-rank tensor
�matrix�.

The weighted densities are obtained from the bare density
profiles via convolution,

n
�i��x� =� ds �i�s�w

�i��x − s�, i = 1,2,  = 0,1, �3�

where i labels the species,  labels the type of weighted
density, and w

�i��·� are �density-independent� weight func-
tions that are characteristic of the particle geometries. These
are given by

w1
�i��x� = sgn�Ri����Ri� − �x�� , �4�

w0
�i��x� = ���Ri� − �x��/2, �5�

w−1
�i��x� = sgn�Ri�����Ri� − �x��/4, �6�

where sgn�·� is the sign function, ��·� is the Heaviside step
function, ��·� is the Dirac distribution, and ���·� is the de-
rivative of the Dirac distribution with respect to the argu-
ment. The weight functions w1

�i��x� and w0
�i��x� for both spe-

FIG. 1. Illustration of nonadditive hard-core mixtures in one
dimension, where the hard-core interaction distance �ij between a
pair of particles of species ij is �11=2R1, �12=R1+R12+R2, and
�22=2R2. Top graph: A mixture of small left-tilted �species 1� and
large right-tilted �species 2� rhombi exhibits positive nonadditivity.
Middle graph: A mixture of small �species 1� and large inverted
�species 2� wedges exhibits negative nonadditivity. Note how �12

�white arrow� is larger �top� or smaller �middle� than the arithmetic
mean of �11 and �22 �black arrows�. Bottom: A similar situation of
negative nonadditivity arises when disks are confined to either
boundary of a strip of finite width.
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cies i=1,2 with Ri�0 are the familiar Rosenfeld weight
functions in one dimension �see, e.g., �55��, which are used
in the FMT re-formulation of Percus’s functional for one-
dimensional additive hard-core mixtures �11,12�; these are
used in �3�. Equation �6� introduces a further geometric func-
tion w−1

�i��x�, which will be used below as one component of
the matrix of convolution kernels K	
�·�, namely, K10�·�, but
will not serve to build weighted densities according to �3�.
The generalization of �4� and �5� to Ri�0 serves the same
purpose.

Before continuing with the construction of the functional,
we make the relationship of the weight functions to the exact
low-density limit of the free energy functional explicit. On
the second virial level the exact functional is bilinear in den-
sities, Fexc��1 ,�2���−kBT /2�dxdx�	i,j=1,2�i�x�� j�x��f ij�x
−x��, where the Mayer function f ij�x� is related to the pair
potential as f ij�x�=exp�−Vij�x� / �kBT��−1. For the hard-core
mixture under consideration f ij�x�=−���ij − �x��. Convolu-
tions of weight functions are conveniently carried out as
products in Fourier space, where the weight functions are
obtained as w̃

�j��k�=−�
� dx exp�i kx�w

�j��x�, with i being the
imaginary unit. Explicitly these are given as

w̃1
�i��k� = 2 sin�kRi�/k , �7�

w̃0
�i��k� = cos�kRi� , �8�

w̃−1
�i��k� = − k sin�kRi�/2. �9�

The weight functions can be related to the Mayer bonds of
the mixture via products in Fourier space �and hence convo-
lutions in real space� as

− f̃12�k� = 2 sin�k�R1 + R2 + R12��/k = w̃1
�1��k�w̃−1

�12��k�w̃1
�2��k�

+ w̃1
�1��k�w̃0

�12��k�w̃0
�2��k� + w̃0

�1��k�w̃0
�12��k�w̃1

�2��k�

+ w̃0
�1��k�w̃1

�12��k�w̃0
�2��k� , �10�

− f̃ ii�k� = 2 sin�2kRi�/k = 2w̃1
�i��k�w̃0

�i��k�, i = 1,2. �11�

It is instructive to rewrite Eq. �10� by grouping the weight
functions that contain the same length scale Ri �i.e., those
with the same upper index i� into vectors �for i=1,2� and
into a matrix �for i=12�. This yields

− f̃12�k� = �w̃0
�1�,w̃1

�1���w̃1
�12� w̃0

�12�

w̃0
�12� w̃−1

�12� ��w̃0
�2�

w̃1
�2� � , �12�

where the argument k has been omitted on the right-hand
side in order to unclutter the notation.

We choose to use the matrix that appears in �12� as the
convolution kernels K	
�·� that appear in the generic formu-
lation of the free energy functional Eq. �2�. Hence in Fourier
space

�K̃00�k� K̃01�k�

K̃10�k� K̃11�k�
� = �w̃1

�12��k� w̃0
�12��k�

w̃0
�12��k� w̃−1

�12��k�
�

= �2 sin�kR12�/k cos�kR12�
cos�kR12� − k sin�kR12�/2

� ,

�13�

and in real space, as is relevant for the free energy functional
�2�,

�K00�x� K01�x�
K10�x� K11�x�

�
= �w0

�12��x� w1
�12��x�

w−1
�12��x� w0

�12��x�
�

= �sgn�R12����x� − �R12�� ���x� − �R12��/2
���x� − �R12��/2 sgn�R12�����x� − �R12��/4

� ,

�14�

where we have used x as the space coordinate in �14�; as
noted above, in the free energy functional Eq. �2�, the argu-
ment is K	
�x−x�� for all elements 	 ,
=0,1.

The remaining task is to prescribe the functional depen-
dence of �	
 on the weighted densities. In order to do so we
impose a relationship with the zero-dimensional excess free
energy �0D���, here expressed as a function of the auxiliary
variable � �which can be viewed as the average occupation
number of the zero-dimensional system�. Together with its
first and second derivatives, this is given by �55�

�0D��� = �1 − ��ln�1 − �� + � , �15�

�0D� ��� = − ln�1 − �� , �16�

�0D� ��� =
1

1 − �
. �17�

Straightforward dimensional analysis yields constraints
on the analytic form of �	
. Note that the product K	
�	


must be of dimension �length�−2 �cf. Eq. �2��. The dimen-
sionality of K	
 is �length�−	−
 �see Eq. �14��. The only di-
mensional weighted density is n0

�i�, which carries �length�−1;
recall that n1

�i� is dimensionless. Hence �	
 must contain
2−	−
 factors of n0

�i�. Furthermore, we assume that �	


depends on the sum n1
�1�+n1

�2� via the �	+
�th derivative of
�0D. This leads to the following form:

��00 �01

�10 �11
� = �n0

�1��x�n0
�2��x���0D� n0

�1��x��0D�

n0
�2��x���0D� �0D

� , �18�

where the �omitted� argument of �0D, �0D� , and �0D� is
n1

�1��x�+n2
�2��x��. Inserting Eqs. �14� and �18� into the generic

form �2�, we obtain the excess free energy functional explic-
itly as
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Fexc��1,�2� = kBT� dx� dx��w−1
�12��x − x����1 − n1

�1� − n1
�2��

� ln�1 − n1
�1� − n1

�2�� + �1 − n1
�1� − n1

�2���

− w0
�12��x − x���n0

�1� + n0
�2��ln�1 − n1

�1� − n1
�2��

+ w1
�12��x − x��

n0
�1�n0

�2�

1 − n1
�1� − n2

�2�� , �19�

where the spatial arguments of the weighted densities
n

�1��x� and n
�2��x�� for =0,1 have been omitted to unclutter

the notation, and the convolution kernels w
�12��·� with 

=1,0 ,−1 are defined in �4�–�6� with Ri=R12.
In the additive case, R12=0, the Percus functional is re-

covered by noting that w1
�12��x�=0, w−1

�12��x�=0, and w0
�12��x�

=��x�, which yields Fexc��1 ,�2�=kBTdx�n0
�1�+n0

�2��ln�1
−n1

�1�−n1
�2��, with all weighted densities being evaluated at x.

III. RESULTS

As a stringent test for the quality of the density functional
theory obtained, we compute partial pair correlation func-
tions in bulk, gij�x�, via the Ornstein-Zernike route. The
starting point is set by the bulk direct correlation functions
that follow from functional differentiation of the excess free
energy functional, c2

�ij��x−x��=−�kBT�−1�2Fexc/��i�x��� j�x��,
where the density distributions are set to constant �bulk� val-
ues after the derivative has been taken. This yields analytic
expressions for the direct correlation function in real space;
those can be �analytically� transformed to Fourier space to
obtain expressions for the c̃2

�ij��k�. Those are given by

c̃11�k� = −
2 − 2� + 4R12�2

�1 − ��2 w̃0
�1�w̃1

�1�

−
�1 − ���2 + �1 − � + 4R12�2��1

�1 − ��3 w̃1
�1�w̃1

�1�, �20�

c̃22�k� = −
2 − 2� + 4R12�1

�1 − ��2 w̃0
�2�w̃1

�2�

−
�1 − ���1 + �1 − � + 4R12�1��2

�1 − ��3 w̃1
�2�w̃1

�2�, �21�

c̃12�k� =
− 1

1 − �
�w̃0

�1�w̃0
�12�w̃1

�2� + w̃0
�1�w̃1

�12�w̃0
�2� + w̃1

�1�w̃0
�12�w̃0

�2�

+ w̃1
�1�w̃−1

�12�w̃1
�2�� −

1

�1 − ��2 ��1w̃1
�1�w̃1

�12�w̃0
�2�

+ ��1 + �2�w̃1
�1�w̃0

�12�w̃1
�2� + �2w̃0

�1�w̃1
�12�w̃1

�2��

−
2�1�2

�1 − ��3 w̃1
�1�w̃1

�12�w̃1
�2�, �22�

where �=�11�1+�22�2 and the w
�i��k� have been stripped off

the argument k for the sake of notational clarity. Partial struc-
ture factors are calculated via solving the Ornstein-Zernike
equation in Fourier space �56�, and �numerically� Fourier

transforming back to real space, which yields results for the
partial pair correlation functions gij�x�.

In order to obtain benchmark results we have carried out
canonical Monte Carlo �MC� simulations with 40–80 hard-
core particles on a line and 107 MC moves per particle. His-
tograms of relative particle coordinates yield the gij�x�. In the
following we fix the size ratio as �22=2�11 and consider
various different degrees of positive nonadditivity. In Fig. 2,
results for gij�x� at �=0,0.1666,0.25 and two different state
points characterized by the packing fractions �i=�i�i, i
=1,2, are shown. For the additive case the gij�x� possess
identical shape, but are shifted along the x axis �57–59�.
Finite values of � break this symmetry. Upon increasing �
and keeping the overall densities of both components fixed a
considerable increase in structuring is found. The DFT re-
sults model those from simulations very well; significant dif-
ferences become apparent only at considerably high densi-
ties. The DFT violates the core condition, gij�x��ij�=0, but
numerically the violation is not very strong. A test-particle
calculation would circumvent this problem.

For completeness, the bulk excess free energy per volume
V is

Fexc/�kBTV� = − ��1 + �2�ln�1 − �� +
2R12

1 − �
�1�2. �23�

Note that the so-called fundamental measures are obtained
from Eqs. �7�–�9� as �

�i�= w̃
�i��k→0� yielding the particle

length w1
�i�=2R1, the Euler characteristic w0

�i�=1, and a van-
ishing value �−1

�j� =0.
It is worth pointing out that this DFT predicts a �superflu-

ous� bulk demixing phase transition for ��0. Such failure is
not uncommon for approximations of this type, and is, e.g.,
also present in the FMT for the one-dimensional Asakura-
Oosawa model �53�; see also Ref. �5� for a discussion of the
free volume theory that is reproduced in bulk by this FMT
�and by the present one in the Asakura-Oosawa limit�. For
given packing fractions �1 and �2, the spinodal value of the
nonadditivity is �spin=�2�1−�1−�2� / �3��1�2�. For the
state points considered in Fig. 2 this occurs at �=1.22 �for
�1=0.15,�2=0.3�, and �=0.33 �for �1=0.25,�2=0.5�. Note
that, although close-packed bulk states for ��0 consist of
two macroscopically distinct parts of the system where in
one part all particles of species 1 agglomerate and in the
other part all particles of species 2 agglomerate, such order
should be immediately lost for any density below close pack-
ing �i.e., at finite values of both chemical potentials�. This is
expected on the grounds of general arguments that apply to
one-dimensional models with short-ranged forces �see, e.g.,
Ref. �60� for a recent discussion�.

IV. CONCLUSIONS

In conclusion, we have obtained a fundamental measure
density functional for a one-dimensional binary hard-core
mixture with nonadditive diameters. The construction of the
functional follows very similar lines as in the corresponding
case of binary nonadditive hard-sphere mixtures in three di-
mensions. The quantities involved, in particular the weight
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functions and convolutions kernels that are used to express
the Mayer bonds of the mixture via convolution, and hence
the exact low-density limit of the functional, are consider-
ably simpler than the corresponding quantities of the three-
dimensional theory. As a test for the accuracy of the func-
tional, results for the partial bulk pair correlation functions
were shown to compare very favorably to results from com-
puter simulations. Experimental realizations of the model
might be obtained by confining mixtures of charged and neu-
tral colloids in one-dimensional geometries. In such systems

negative nonadditivity arises naturally. A different realization
of mixtures with negative nonadditivity could be via hard-
core particles that adsorb to the boundaries of an extended
one-dimensional channel �see Fig. 1�.
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FIG. 2. Partial pair correlation functions gij�x� for one-dimensional binary hard-core particles as a function of the scaled distance x /�11

for species ij=11,12,22 �as indicated� for size ratio �22/�11=2 obtained from �i� DFT employing the Ornstein-Zernike route �lines� and �ii�
MC simulation �symbols�. The insets show the DFT result for the direct correlation functions cij�x� for ij=11 �dashed lines�, 12 �dash-dotted
lines�, and 22 �solid lines�. The size ratio is �22/�11=2 and the nonadditivity increases, �=0,0.1666,0.25, from top to bottom �in both
columns�. Left column: Packing fractions are �1=0.15, �2=0.3; the results for g12 �g22� are shifted upward by one �two� units for clarity.
Right column: packing fractions are �1=0.25, �2=0.5; the results for g12 �g22� are shifted upward by two �four� units for clarity.
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