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We use a phase-separated driven two-dimensional Ising lattice gas to study fluid interfaces exposed to
shear flow parallel to the interface. The interface is stabilized by two parallel walls with opposing surface
fields, and a driving field parallel to the walls is applied which (i) either acts locally at the walls or
(ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki dynamics, we
find that the system reaches a steady state in which the magnetization profile is the same as that in
equilibrium, but with a rescaled length implying a reduction of the interfacial width. An analogous effect
was recently observed in sheared phase-separated colloidal dispersions. Pair correlation functions along
the interface decay more rapidly with distance under drive than in equilibrium and for cases of weak drive,
can be rescaled to the equilibrium result.
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Shearing a fluid is a fundamental example in the statis-
tical mechanics of systems driven away from equilibrium
[1]. Profound effects on the liquid structure [2] and new
phase transitions [3] can result. In a recent intriguing
advance in colloidal science, interfacial fluctuations of
capillary-wave-type were observed by direct optical means
[4]; these fluctuations can be strongly suppressed by shear-
ing in the direction parallel to the interface [5].

Kinetic Ising models which have been driven out of
equilibrium are of continuing importance in condensed
matter physics [6–8]. Underlying is the idea of coarse
graining in time [9], where a record of the dynamical state
is only kept at discrete points in time, which is an approxi-
mation that can often be justified by the quality and range
of deductions made. Mass is conserved, but there is no
inertia and associated hydrodynamics. Nevertheless, cur-
rents are predicted as well as densities. Examples showing
the value of such stochastic models include studies of
interfaces under spatially homogeneous and random driv-
ing fields [7], domain growth [8], and nucleation [10] under
shear, as well as of the precursor film in complete wetting
[11].

In this Letter, we investigate the effects of shear on the
interface between coexisting phases using the two-
dimensional (2d) Ising lattice gas with Kawasaki dynamics
[12]. The interface is induced by fixing spins on the
boundaries of a strip; the analogue of shearing in a lattice
gas will be explained below. Studying the 2d problem is
interesting in its own right because in equilibrium, the
interface is known to be rough for all temperatures T below
the bulk critical temperature Tc. If the interface is confined
to a strip of width Ly, then it sweeps out essentially the
entire strip, meandering back and forth between the walls,
such that the interfacial width w� Ly, despite the entropic
repulsion from the walls [13]. Consequently, at fixed T, the
magnetization profile as a function of distance y across the

strip scales as mb�T�Meq�y=Ly�, where mb�T� is the spon-
taneous magnetization in bulk and Meq is the finite size
scaling function for a strip with size Lx (�Ly) along the
walls; ‘‘eq’’ labels equilibrium quantities.

Using Monte Carlo (MC) simulations, we find that the
2d Ising model under shearlike drive parallel to the inter-
face achieves a steady state that is characterized by an
effective length scale L?y , such that the magnetization
profile m�y� at given T obeys

 

m�y�
mb�T�

�Meq

�
y
L?y

�
�Mcorr�y� with L?y < Ly; (1)

where Mcorr�y� is a boundary correction term, which
decays away from the boundaries on the scale of the bulk
correlation length � (on which the exponential decay of
spin-spin correlations occurs in the homogeneous system).
A conjecture based on Eq. (1) is that shearlike drive acts as
effective confinement of the system.

To be specific, in spin language, the Hamiltonian isH �
�J

P
hi;ji�i�j, where the sum runs over nearest neighbor

sites i, j; J > 0 is the spin-spin coupling constant; and the
spins take on values �i � 	1, corresponding to particle
occupation numbers �i � ��i � 1�=2 � 0, 1. The interface
is induced and localized by two walls of fixed spins �i �
�1 at the top (y � Ly � 1) and �i � �1 at the bottom
(y � 0) edges of the strip. Periodic boundary conditions
are applied in the x-direction. In order to induce shear, we
apply a force field JF�y� parallel to the x-direction. In
model I, only the particles in the layer adjacent to each
wall are driven along the walls and in opposite directions:
F�Ly� � F0 and F�1� � �F0, and F�y� � 0 otherwise; for
F0 ! 1, these layers form asymmetric exclusion pro-
cesses [6], coupled to an Ising strip. In model II, the force
varies linearly across the strip, such that it vanishes in
the middle of the slit: F�y� � !
y� �Ly � 1�=2�, where
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! � @F�y�=@y is the (dimensionless) field difference be-
tween adjacent rows; we also use a scaled variable ~y �
�2y� Ly � 1�=Ly, see Fig. 1(a). Model II can be thought
of as mimicking the effects caused by the flow of a back-
ground solvent [5]. The system evolves under spin-
exchange Kawasaki dynamics [12], corresponding to
particle hopping to an (empty) nearest neighbor site. The
work done by (or against) the force field, �F, in a trial
move enters a modified Metropolis acceptance rate,
minf1;exp
���H��F�=�kBT��g, where �H is the change
in internal energy and kB is the Boltzmann constant. The
dynamics capture the local conservation of particle number
and the competition of forced transport with diffusive
motion.

We have performed extensive simulations using single-
spin and multispin coding techniques [14], the latter gen-
eralized to include drive; this facilitates simultaneously
running 64 systems per processor core. We present here
results for Lx � 200 and Ly varying from 10 to 40 at fixed
total magnetization m �

P
i�i � 0 for T=Tc � 0:75, 0.85,

and 0.95 (where Tc � 2:2619J=kB), so that Ly=� > 1.
Sampling large-scale interfacial fluctuations with inher-
ently slow Kawasaki dynamics is challenging and requires
run lengths of the order of NMC � 108 MC steps (Lx � Ly
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FIG. 1 (color online). (a) Illustration of the 2d Ising strip
between �=� walls under an external driving field JF�y�
parallel to the walls. The field acts with strength F0 at the
boundary layers only (model I) or varies linearly with (scaled)
distance ~y across the strip, where ! determines the slope (model
II). (b) Snapshot from simulation for T=Tc � 0:75, Lx � 200,
and Ly � 20 at equilibrium; black (white) regions indicate �i �
�1��1�. (c) Same as (b) but under strong drive according to
model II with ! � 2. (d) The current profile j�~y� parallel to the
walls as a function of ~y for different values of ! (as indicated) in
model II for the same values of T, Lx, Ly as in (b).

-1 -0.5 0 0.5 1

y~

-1

0

1

m
(y~ ) 

/ m
b(T

)

equilibrium
exact (Glauber)
mean field theory
F

0
 = 50

rescaled F
0
 = 50

-1 -0.5 0 0.5 1

y~

-1

0

1

m
(y~ ) 

/ m
b(T

)

equilibrium
ω = 0.025
rescaled ω = 0.025
ω = 0.25
ω = 0.5
ω = 1.0
rescaled ω = 1.0

0 10 20 30 40 50

F
0

3.2

3.6

4

4.4

w
0 0.1 0.2

1 / (L
y
ωs

)

0

0.1

0.3
w

 / 
L

y

(b)

(a)

0.75

0.85

T / T
c
= 0.95

FIG. 2 (color online). Scaled magnetization profiles
m�~y�=mb�T� as a function of the scaled distance ~y for T=Tc �
0:75, Lx � 200, Ly � 20. (a) Model I: Kawasaki equilibrium
result, Glauber equilibrium result, mean-field result, Kawasaki
result for F0 � 50, and the latter rescaled as m�0:83~y�. Inset:
Variation of the interfacial width w with F0 for three different
temperatures (as indicated). (b) Kawasaki simulation results for
model II are shown in equilibrium and for a range of values of
the field gradient ! (as indicated), as well as using rescaling
m�a?~y�, where a? � 1=1:15, 1=3:4 for ! � 0:025, 1, respec-
tively. Error bars are of the order of the line thickness. Inset:
Variation of the scaled interfacial width w=Ly with the scaling
variable 1=�Ly!

s�, where s � 0:3, for ! � 0:025 (diamonds),
0.1 (filled circles), 0.2 (squares), 0.25 (stars), 0.5 (crosses), and 1
(triangles).
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trial moves form one MC step). For each run, we perform
initially NMC MC steps and find that thereafter all observ-
ables of interest fluctuate around their mean value. We
conclude that a steady state is reached, in which we gather
statistics for further NMC steps. Statistical errors are ob-
tained with blocking and bootstrap techniques. Figure 1
displays snapshots of configurations [15].

Driving creates a nonvanishing current profile j�y� par-
allel to the walls; j�y� gives the net (mean) number of
particles that move from x to x� 1 at given y in one MC
step. For the boundary-driven case (model I), the current is
localized at both walls, y � 1, Ly, and vanishes in the
middle of the system (apart from a very small anticurrent
at y � 2, Ly � 1). In the bulk-sheared case (model II), j�~y�
varies smoothly with ~y, see Fig. 1(d). For small values of
!, a near-linear behavior is observed. For strong drive, the
current saturates upon approaching the walls. Surprisingly,
jj�~y�j displays pronounced maxima offset from the center
of the strip, indicating an optimum between sufficiently
strong drive and sufficiently large number of particle-hole
pairs.

Having established the occurrence of shear flow, we
investigate the interfacial magnetization profile m�y� �
L�1
x h

P
x��x; y�i, where the angles denote an average in

the steady state. We have checked that the aspect ratio
Lx=Ly is large enough such that at equilibrium, the exact
result [13] for m�y�, for Lx ! 1, is indistinguishable
within statistical errors from our simulation results (not
displayed) using Glauber dynamics [16], where m can
fluctuate. Using Kawasaki dynamics (that constrain m �
0) leads to larger flat regions near the walls and a sharper
interfacial region, see Fig. 2(a); this effect increases
strongly if Ly=�� 1. The importance of the contribution
of capillary-wave-type fluctuations to m�y� can be gauged
by the stark contrast to the kinklike behavior obtained in
equilibrium mean-field theory. For cases of weak boundary
drive (small values of F0), the magnetization near the walls
increases and the interfacial region gets squeezed (be-
comes narrower) upon increasing F0; this behavior is
more apparent for higher values of T. For F0 * 5, there
are no further changes in the profile within error bars; in
Fig. 2(a), the limiting behavior, F0 � 50, is shown. The
effect on m�y� arises from a competition of advection and
diffusion: the boundary drive helps to break up clusters into
smaller constituents; these possess high mobility and are
hence able to migrate towards and coalesce with their bulk
phase for energetic reasons. This dynamic mechanism
makes the observed additional confinement of the interface
physically reasonable. The effect of the boundary drive
cannot be mimicked by assuming equilibration in static
boundary fields acting at y � 2 and Ly � 1. Even infinitely
strong surface fields h�y � 1� � �h�y � Ly� � 1 induce
a significantly weaker effect. Particularly striking is the
scaling behavior of m�y�, see Eq. (1), which indicates that
the effect of the boundary drive on the interfacial region of
the profile is the same as that induced by increasing the

confinement, and hence reducing the width of the strip
from Ly to L?y � 0:83Ly for F0 * 5. This corresponds to
the scaling m�a?~y� � meq�~y�, where for strong boundary
drive (such that essentially F0 ! 1), we find a? �
L?y =Ly � 0:83 for Lx � 200 and all values of T and Ly
considered. We expect that w� L?y , which we have
checked explicitly by calculating w as the second moment
of @m�y�=@y, showing thatw decreases rapidly with F0 and
eventually saturates at a finite value, see the inset in
Fig. 2(a). Model II displays similar squeezing of the inter-
facial region, see Fig. 2(b). For small values of!, the effect
is very similar to the boundary-driven case. Increasing !
leads to very pronounced squeezing, such that the central
section of the profile for ! � 1 resembles the mean-field
solution in equilibrium. Even this case can be rescaled to
the equilibrium profile, see Fig. 2(b). We find that the
variation of w with transversal system size and field
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FIG. 3 (color online). Spin-spin pair correlation function Gk�x�
at the center of the strip (a) and height-height correlation
function C�x� (b) as a function of distance x for T=Tc � 0:75,
Lx � 200, Ly � 20. Shown are results in equilibrium, from
mean-field theory [only for Gk�x� in (a)], from Kawasaki simu-
lations with strong boundary-drive in model I (F0 � 50), the
same rescaled as Gk�x=1:4�; Kawasaki simulation results for
model II are shown for ! � 0:025, 0.1 [only for C�x� in (b)] and
0.5, as well as the former case rescaled as Gk�x=1:27�.
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strength can be condensed into dependence on the scaling
variable 1=�Ly!

s� for any value of T considered; for
T=Tc � 0:75, data collapse is achieved for s � 0:3, see
the inset of Fig. 2(b). Similar quality of scaling can be
obtained by including �T � Tc�=Tc in the scaling variable
[7]; these results (not shown) indicate that in cases of weak
drive, a? � L?y =Ly increases (and hence the effective con-
finement becomes weaker) with increasing T.

We next investigate the interfacial structure on the two-
body level and consider the spin-spin pair correlation
function in steady-state G�x; y; y0� � h�i�ji, where i �
�0; y� and j � �x; y0�, focusing on the behavior along the
center, Gk�x�  G�x; Ly=2; Ly=2�; this should reveal most
clearly interface-mediated correlations. The simulation re-
sults shown in Fig. 3(a) indicate that shear induces a faster
decay of Gk�x� with distance x than at equilibrium. For
model I and for weak drive in model II, the behavior at
short and intermediate distances can be accurately de-
scribed by rescaling the lateral coordinate, Gk�akx� �
Geq
k
�x�. From fitting the data, we find the ratio of the lateral

(interfacial) correlation lengths in and out of equilibrium,
ak � �k=�

eq
k
< 1, see Fig. 3. Unlike the behavior on the

one-body level, Gk�x� under strong drive in model II does
not resemble the equilibrium mean-field result (obtained
by calculating the inhomogeneous magnetization around a
fixed spin in the interface), which displays significantly
longer-ranged decay.

We studied coarse-grained interfacial properties via the
local position (height) of the interface h�x�, obtained either
following [17] or based on the (scaled) column magneti-
zation: h�x� � �2mb�

�1P
y��x; y�; both methods give con-

sistent results. Figure 3(b) displays results for the height-
height correlation function C�x� � hh�x�h�0�i; this is di-
rectly related to the spin-spin correlation function: C�x� �
�4m2

b�
�1P

y;y0G�x; y; y
0�. The intercept, C�0� � hh�0�2i,

provides an alternative measure of the (squared) interfacial
width; we find that C�0� decreases under shear, very simi-
larly to the behavior of w2, exhibiting a very strong effect
for large values of !. C�x� decays faster with x than in
equilibrium, in agreement with the behavior of the spin-
spin correlation function. Hence, from the scaling of m�y�
and Gk�x�, we expect a�2

? C�akx� � Ceq�x�, in correspon-
dence with Weeks scaling in equilibrium [18]: Ceq�x� �
w2C�x=�eq

k
�, where C is the scaling function, and w� Ly.

Indeed both for strong boundary drive and weak bulk drive
data, collapse is achieved using the same values for ak and
a? as obtained above.

Comparing our findings for C�x� to experimental results
for the height-height correlation function of a phase-
separated colloid-polymer mixture, Fig. 3 of Ref. [5] re-
veals a striking similarity in the reduction of the amplitude
of the correlation function under shear. This is consistent
with the observation of a reduction of the interfacial rough-
ness in both studies. However, Derks et al. find an increase
of the lateral correlation length under shear (Fig. 4b of [5]),

as obtained from fitting the correlation function of the
equilibrium capillary wave model to the steady-state
data. This finding is in contrast to the behavior of our
models. Despite the differences in the way the interface
is localized (whether experimentally by gravity or here by
walls), the fundamental question arises as to which features
of interfaces under shear are universal. Clearly, dimension-
ality is expected to play a major role. The 3d Ising model
has a rough phase above the (finite) roughening transition
temperature. However, the roughness of the interface is
established by a very different mechanism than in 2d, in
that the interface throws out spikes [19], which are ex-
pected to hinder fluid flow to a much lesser degree than
interface meandering in 2d. This should have important
repercussions on the interfacial structure under drive.
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