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Density-functional theory for soft interactions by dimensional crossover
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A density-functional theory for spherical particles interacting via an arbitrary soft pair potential is presented.
The derivation is solely based on limits, where the behavior is exactly known, namely, a zero-dimensional
cavity and the low-density virial expansion. The approach generalizes the fundamental-measure theory for hard
bodies and yields the structure and thermodynamics of the homogeneous fluid as an output. We apply the
theory to an ultrasoft logarithmic potential that mimics star polymers in a good solvent. The theory, when
supplemented by a rescaling procedure, reproduces the peculiar features of the pair correlations in this system
that we also find in computer simulations.@S1063-651X~99!50712-5#

PACS number~s!: 61.20.Gy, 64.10.1h, 61.25.Hq, 05.20.Jj
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Particles interacting via soft pair potentials build up
general class of statistical systems ranging from the C
lomb interaction of charged bodies, the screened Coulom
Yukawa potential present in suspensions of charged collo
particles to inverse-power potentials@1#. Another important
example is the Lennard-Jones potential that describes
noble gases accurately. In the context of soft matter on
faced with a zoo of potentials acting on a mesoscopic len
scale. Two examples are the depletion potential that acts
tween large spheres immersed in a suspension of s
spheres@2# and the ultrasoft repulsive logarithmic potenti
between star polymers@3#. These examples clarify that a so
potential is a pairwise interaction that is finite everywhe
except for a possible singularity at the origin. The count
part of soft potentials are hard-body interactions, as in
famous hard sphere system. The interaction in these sys
is infinite once two particles overlap. There are elabor
theories dealing with these purely entropic forces.

We propose a generalization of a successful dens
functional theory ~DFT! for hard bodies, the so-calle
fundamental-measure theory~FMT!, to soft potentials. The
FMT approach has proven to describe accurately the st
ture and thermodynamics of hard bodies, as hard sph
@4,5#, or aligned hard cubes@6,7#. It is able to yield the struc-
ture of the homogeneous fluid, namely, the pair correlat
function as an output rather than needing it as an inpu
other DFTs do@8#. In the case of hard spheres the resulti
fluid structure is the same as the solution of the Perc
Yevick closure relation. Also the freezing transition into
face-centered cubic crystal is captured correctly@4,5#.

The FMT has also been used to deal with soft potenti
In these approaches it is used to describe the hard spher
a reference system for a perturbation theory, e.g., via
assumption of universality of the bridge functional@9#. Con-
cerning non-FMT approaches for soft potentials there i
large literature of successful applications; see the review
Singh @10#, Evans@8#, and Löwen @1#. Recently, Kol and
Laird studied the inverse-power potentials@11#.

We attempt to find a generalization of the FMT to so
potentials. Let us therefore first outline the major features
the FMT. The FMT is a weighted density approximatio
~WDA!. In this approach a smoothing of the density profi
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is used to cope with highly inhomogeneous situations, l
the density peaks representing the lattice sites in a crysta
a WDA this smoothing is implemented by a convolution
the one-particle density distribution with appropriate weig
functions yielding weighted densities. To construct a WD
one has to define the weight functions. It is worth noting th
the FMT uses a set of several weight functions. Anoth
important feature of the FMT opposed to other WDAs is t
range of the weight functions. While to our knowledge
other WDAs for hard spheres use weight functions with
range of the particle diameters, the FMT weight functions
have a range of half the particle diameter, or particle rad
R5s/2. In this way the non-overlap criterion for har
spheres can be fulfilled exactly. The small range of
weights is not a drawback in cases where a range of n
locality of the sphere diameters is needed, e.g., for the pa
correlation function. In this case the arising convolutions
two weights render the functional non-local with ranges.

One essential ingredient of the FMT is a geometrical vi
of hard particles. The basic statistical objects such as
Mayer function are either zero or unity for hard particles.
the geometrical picture a function value of unity means ‘‘i
side the geometrical shape,’’ while a function value of ze
means ‘‘outside of the geometrical shape.’’ Using this cor
spondence one can exploit powerful results from integral
ometry like the Gauss-Bonnet theorem@12#. In the case of
soft cores the statistically relevant functions take on n
trivial values different from zero and unity.

The main modification of the FMT we present here is
generalization of the weight functions to handle soft co
while keeping their short range. The emerging new weig
are built to

~i! deconvolve the Mayer function,
~ii ! yield the exact zero-dimensional single cavity limit.
~iii ! give a reasonable, albeit not exact, multi-cavity lim

It turns out that the ‘‘thermodynamic ingredients,
namely, the free energy density depending on the weigh
densities remain unaffected and keep their hard body for

Let us start by introducing a generic form of a DF. Th
excess free energy is expressed as
R6291 © 1999 The American Physical Society
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Fexc
„T,@r~r !#…5kBTE dx F„T,$na~T,x!%…, ~1!

whereT is the temperature, andkB is Boltzmann’s constant
The integrand is a reduced free energy densityF depending
on T and on a set of weighted densities$na% indexed bya.
Each weighted density is given by a convolution of
temperature-dependent weight functionwa with the density
profile

na~T,x!5E dr r~r !wa~T,x2r !. ~2!

To summarize, the DF has the following properties:

1. There is asetof weighted densities.
2. The free energy density is a function of the weight

densities.
3. The weighted densities are obtained by convolutions

the density profile with appropriate weight functions.
4. The weight functions are explicitly known, i.e., do n

implicitly depend on the density distribution.

The task is to give explicit expressions forF and$na% to
model the DF for a given pair potential. Let us discuss
range of non-locality of the present functional by consider
the direct correlation function which can be obtained
functional differentiation

c2~@r#,r1 ,r2!52~kBT!21
d2Fexc

dr~r1!dr~r2!
U

r5r0

, ~3!

wherer0 is the equilibrium density. In the framework of th
FMT, the differentiation of the generic functional results

c2~@r#,r1 ,r2!5(
a,g

cagna* ng , ~4!

where cag5]2F/(]na]ng) are numerical coefficients no
depending on any spatial coordinate and the convolution
two weights is defined as

na* ng5E d3x na~r12x!ng~r22x!. ~5!

The crucial point is thatc2 has the double range compared
that of the weight functionswa . The direct correlation func-
tion is only known in the low-density limit c2→ f
5exp(2bV)21, asr→0, wheref is the Mayer function, and
b51/kBT. The requirement to fulfill this limit will be used
to find the explicit form of the weight functions.

The second requirement is to reproduce the exact
energy in the zero-dimensional~0D! limit. The 0D limit is
defined through the density distributionr0d5hd(rW). Physi-
cally, it describes a small cavity that can hold only one sin
particle. The 0D limit has proven to be a useful construct
hard spheres@4,5,13#. In this case it can be realized by
spherical cavity with diameters with hard walls. It has only
two states: Either it is empty, or it holds a single partic
However, the idea is not restricted to hard bodies. We us
to model a cavity for a soft particle. As we assume a div
gence to infinity of the soft potential under consideration
d
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would cost infinite energy to insert a second particle. Hen
the 0D limit for soft cores is the same as for hard bodies
was shown@13# that a functional that fulfills the 0D limit is
given by

F152n0 ln~12n3!, ~6!

if the weight functions have the property

w0~r !52~4pr 2!21
]

]r
w3~r !, ~7!

with boundary conditionsw3(0)51, andw3(`)50. The in-
dex a50,3 is related to the dimension of the weighted de
sities, which is (length)a23. The emerging integral can b
solved and yields the exact 0d free energyFexc5h1(1
2h)ln(12h) @4,5#, no matter what the functional depen
dence ofn3 on r is. The freedom can be used to tune t
weight functions to fit a prescribed interaction potential.

We assume that the set of weight functions is related
the ‘‘generating’’ weight functionw3 through

w2~r !52
]w3~r !

]r
52w38~r !, ~8!

wv2~r !5w2~r ! r /r , ~9!

w1~r !5w2~r !/~4pr !, ~10!

wv1~r !5w1~r ! r /r , ~11!

w0~r !5w1~r !/r , ~12!

wherew2 , w1, and w0 are scalar quantities andwv1 ,wv2
are vectors. What remains is to find an explicit expression
the generalized local packing fraction weightw3(r ). There-
fore, we consider the low-density limit of the true dens
functional,

Fexc→2
kBT

2 E dr1 dr2 f ~ ur12r2u!r~r1!r~r2!,

~13!

and impose that we recover the Mayer-bond,f (r )5exp
@2bV(r)#21, by a sum of convolutions of weight function

2
1

2
f ~r !5w0* w31w1* w22wv1* wv2 , ~14!

where the convolution product, denoted by* , also implies
scalar products between vectors. Inserting the hierarch
relations yields

12exp@2bV~r !#5
2

4p S 2
w38~r !

r 2 * w3~r ! 1
w38~r !

r * w38~r !

2
w38~r !

r 2
r * r

w38~r !

r D , ~15!

which is an equation for the determination of the generat
weight w3, once a pair potentialV(r ) is specified. The de-
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pendence ofw3 on temperature has been suppressed in
notation, and the prime denotes differentiation with resp
to the argumentr.

For the free energy density we take over the hard sph
expressionF5F11F21F3, with the contributionsF1
52n0 ln(12n3), F25(n1n22nv1•nv2)/(12n3), F3

5n2
3@12(nv2 /n2)2#3/@24p(12n3)2#. As discussed above,

F1 yields the exact single-cavity limit. The additional term
F2 andF3 correctly vanish in this limit. The two-cavity cas
is not reproduced exactly, but a numerical evaluation sho
satisfactory agreement@14#.

We want to apply the theory to star polymer solutions t
are characterized by an ultra-soft repulsive interaction@15#.
This system has two parameters, the functionality or a
number of the starsf and a length scales* , which are used
to build a dimensionless densityh* 5(p/6)s* 3N/V, where
N is the particle number inside a volumeV. The pair poten-
tial @16# consists of a logarithmic potential for small di
tances and an exponentially decaying Yukawa potential
large distances. In order to keep the present analysis sim
we use a modified form for large distances,

b V~r !55
22q ln~r /R!1 lnS 2q

q D 0<r ,R

fq~r !1 lnS 2q
q D R<r ,2R

0 2R<r ,

~16!

where (q
2q) is the binomial coefficient. The crossover fun

tion between small and large distances is given by

fq~r !52 ln@~11j!2q2jq11Bq 2F1~1,12q;21q;2j!#,
~17!

where j5(r /R)21, Bq52G(112q)G21(q)G21(21q),
and 2F1 is the hypergeometric function. The parameters
related to Ref.@16# via q5(5/36)f 3/2, and R/s* 5exp@(1
1Af /2)212(2q)21ln( q

2q)#. It is natural to define a dimen
sionless densityh5(4p/3)R3N/V58h* (R/s* )3. The po-
tential V(r ) given by Eq. ~16! is shorter ranged than th
original one. It is slightly smoother as it isq times differen-
tiable atr 5R and one time differentiable atr 52R.

The specific form of the crossover functionfq(r ) allows
us to deconvolve the Mayer function@Eq. ~14!# and construct
the weight functions analytically. The solution is

w3~r !5H 12~r /R!q if 0>r>R

0 else.
~18!

In the limit q→` we recover hard spheres: The weight fun
tion approaches a step-function,w3(r )→Q(R2r ) and the
potential becomes hard core with range 2R.

The weighted densities, Eq.~2!, when evaluated for the
homogeneous fluid are constant in space,

na54prE
0

a

dr r 2wa~r !, ~19!
e
ct

re

s

t

r
le

e

-

with a→`. In particular,n3 is proportional tor. The free
energy densityF, however, is only defined forn3,1, thus
implying an unphysical upper limit of densities. To circum
vent this problem, we propose to reduce the upper limit
integration in Eq.~19! to the Wigner-Seitz~WS! radius a
5Rh21/3, so that only the density field within a WS ce
contributes to the weighted density. As usuallyw3<1 holds,
it can be seen that the cutoff ensuresn3<1. When applied to
the hard sphere case no harm is done, as only unphy
states are affected: Allh.1 are mapped ontoh51. The
validity of the procedure will be checked by comparison w
simulations.

To test the theory, we calculate pair distribution functio
g(r ) in the fluid phase. We choose the extremely soft c
q53, that corresponds to a~noninteger! arm number of
roughly 7.75. To perform a severe test, no use of the t
particle limit is made, i.e., no minimizing of the functiona
with an external field given by the pair potential itself
done. Instead, we use the direct correlation function given
the second functional derivative of the excess free ene
functional, Eq.~3!. The Ornstein-Zernike relation yields th
pair correlation functiong(r ). In Fig. 1 we show results for
a large range of densities,h50.05– 10, corresponding to
h* 50.007 97– 1.595. For comparison, Monte Carlo simu
tion data are shown in Fig. 2. The reasonable agreemen
however, achieved by an empirical modification. We resc
heuristically the direct correlation function,l* c2, wherel is
roughly proportional toh21. The particular values are (h
given in parentheses! l51 ~0.05!, 0.7 ~0.5!, 0.2 ~1.0!, 0.05
~2.0!, 0.04 ~4.0!, and 0.02~10.0!. The main effect is a res

FIG. 1. Pair correlation functionsg(r ) as a function of the
scaled distancer /R obtained from density-functional theory for
solution of star polymers@Eq. ~16!#. The variation with densityh is
shown.

FIG. 2. Same as Fig. 1, but obtained from Monte Carlo co
puter simulation.
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caling of the amplitude of the oscillations ing(r ). From a
strict point of view, we have introduced one fit parameter
curve. We note, that this is only necessary for the extrem
soft caseq53. For q.12 andh50.5 good agreement i
found without rescaling~i.e., l51).

The results are fairly good. Wavelength and phase of
oscillations are correct. The peculiar shrinking of the fi
peak and growing of the second peak upon decreasing
density is reproduced. For small distances, the theory yi
unphysical negative values ofg(r ) ~not shown in Fig. 1!.
The worst case isg(0)521.11 forh510. Apart from this,
we find a remarkable agreement between theory and sim
tion.

In conclusion, we have proposed a systematic way to g
eralize the fundamental-measure density-functional the
for hard bodies to soft interactions. This ‘‘soft FMT’’ i
based on the exactly solvable dimensional crossover to a
of zero-dimensional cavities and on the virial expansion.
.
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a test case, we studied the ultrasoft logarithmic potential
mimics the effective interaction between star polymers
solution. Prominent features such as the anomalous pair
relation function are captured qualitatively correct. An e
pirical modification leads to good quantitative agreem
with computer simulation results. Concerning future work
is highly desirable to apply the soft FMT to the recen
found freezing transitions for star polymers@17# and to in-
homogeneous liquid situations. Furthermore, the per
mance for other soft repulsive interactions like the Yuka
or inverse-power potentials should be investigated. It wo
also be highly interesting to test the current approach
attractive interactions like the Lennard-Jones potent
where preliminary investigations have shown that the
merical deconvolution of the Mayer function is possible.
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