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Computer simulations of colloidal transport on a patterned magnetic substrate
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We study the transport of paramagnetic colloidal particles on a patterned magnetic substrate with kinetic
Monte Carlo and Brownian dynamics computer simulations. The planar substrate is decorated with point dipoles
in either parallel or zigzag stripe arrangements and exposed to an additional external magnetic field that oscillates
in time. For the case of parallel stripes we find that the magnitude and direction of the particle current is controlled
by the tilt angle of the external magnetic field. The effect is reliably obtained in a wide range of ratios between
temperature and magnetic permeability. Particle transport is achieved only when the period of oscillation of the
external field is greater than a critical value. For the case of zigzag stripes a current is obtained using an oscillating
external field normal to the substrate. In this case, transport is possible only in the vertex of the zigzag, giving
rise to a narrow stream of particles. The magnitude and direction of the particle current are found to be controlled
by a combination of the zigzag angle and the distance of the colloids from the substrate. Metropolis Monte Carlo
and Brownian dynamics simulations predict results that are in good agreement with each other. Using kinetic
Monte Carlo we find that at high density the particle transport is hindered by jamming.
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I. INTRODUCTION

Manipulation and transport of magnetic particles at the
nanometer and micrometer scales are important technological
processes for biological [1] and biomedical applications [2].
Magnetic microspheres are routinely used as markers for
cells or larger molecules. Micron-sized magnetic beads were
attached to the free end of viral DNA [3] for the direct
visualization in a bright field microscope of a DNA-packaging
process. Molday et al. [4] achieved separation of red blood
cells and lymphoid cells using magnetic particles chemically
bound to antibodies. Pamme and Wilhelm [5] achieved con-
tinuous cell sorting of magnetically labeled cells via free-flow
magnetophoresis. Magnetic particles can also be tagged with a
fluorescent dye and followed in real time using microscopy [6],
and their surface can be functionalized to selectively bind to
specific targets in a solution, allowing for selective separation
using magnetic fields [7].

Since a magnetic particle in a homogenous magnetic field
cannot have a net translational motion, a variety of methods
have been developed for the generation of inhomogeneous
magnetic fields that can be used to manipulate and transport
magnetic particles. Deng et al. [8] and Lee et al. [9] used
lithography to fabricate circuits that carry electrical currents
in order to generate the inhomogeneous magnetic field that
is necessary for manipulating the magnetic particles. Another
approach relies on the deposition of discrete ferromagnetic
elements. In particular, Yellen et al. [10] printed cylindrical
magnetic islands on a substrate to drive the assembly of
colloidal particles. The application of a rotating external
magnetic field allows control and transport of small superpara-
magnetic particles [11,12]. Gunnarsson et al. [13] deposited
elliptical magnetic elements and showed the ability to transport
paramagnetic particles along the ellipses by the application of
a rotating magnetic field. Another technique uses ferrite garnet
films [14], which show patterns of alternating magnetization,
and an external field that oscillates in time in order to control
the transport of colloidal particles [14–17]. The pattern on a
garnet film forms spontaneously and is not easily controllable.

On the other hand, the deposition of small magnetic islands
[10,13] opens up the possibility of creating structured magnetic
substrates with full control of the deposition pattern.

In this light, we carry out both kinetic Metropolis Monte
Carlo (MC) and Brownian dynamics (BD) computer simula-
tions to study the behavior of paramagnetic colloidal particles
on a substrate of discrete magnetic dipoles arranged in two
specific patterns, namely parallel and zigzag stripes. The
patterns were inspired by those found in garnet films [14–16]
but could, in principle, also be fabricated by one of the above
deposition techniques [10,13]. The field generated by a garnet
film [15] differs quantitatively from the one produced by
an array of discrete dipoles. Nevertheless, we show that the
differences are small and that our model shows a particle
transport behavior similar to the one found experimentally on
garnet films. In particular, we find that the random Brownian
motion of the colloidal particles is turned into a deterministic
motion by an oscillating external magnetic field. We analyze
the conditions that enable the deterministic motion and hence
the controlled transport of the paramagnetic colloidal particles.

Brownian dynamics is based on the equations of motion for
overdamped particles without hydrodynamic interactions; on
the other hand, Monte Carlo reproduces the correct dynamics
only under certain conditions [18–23]. The advantage of
Monte Carlo is its higher computational efficiency with respect
to Brownian dynamics. Therefore, we explicitly compare
the results of Monte Carlo and Brownian dynamics at low
density and carry out only Monte Carlo simulations in the
computationally demanding high-density regime.

The paper is organized as follows: In Sec. II we summarize
the model used and describe the simulation details. In
particular, in Sec. II A we define the particle-particle and
particle-substrate interactions; in Sec. II B we discuss the
energy landscape of the model, and in Sec. II C we give the
simulation details. In Sec. III, we show and discuss the results
for both parallel and zigzag stripes. In Sec. IV we give some
concluding remarks. In Appendix we discuss similarities and
differences between the field produced by our model and that
produced by a Garnet film.
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II. MODEL AND METHOD

A. Definition of the interactions

We study a fixed lattice of size Nx × Ny of point magnetic
dipoles �mln lying in the x-y plane with components (±m0,0,0).
The lattice sites are enumerated by the pair of integers (l,n),
where l refers to the x direction and n to the y direction. The
x component is +m0 for dipoles sitting at an odd l position
and −m0 for dipoles sitting at an even l position. The dipole
moments have all the same magnitude m0 and form a pattern of
parallel [Fig. 1(a)] or zigzag stripes [Fig. 1(b)]. The wavelength
of the repeating pattern in the x direction is denoted by λ. The
separation distance between point dipoles in the y direction is
�y and the separation distance between point dipoles in the
x direction is �x = λ/2. The zigzag pattern is characterized
by the angle θz, as shown in Fig. 1(b).

The substrate generates a magnetic field

�Hsub(�r) =
∑
l,n

1

4π

[
3 �rln( �mln · �rln)

r5
ln

− �mln

r3
ln

]
, (1)

where �rln is the distance between the dipole (l,n), and
the space point �r = (x,y,z). In addition, a time-dependent
and spatially homogeneous external magnetic field �Hext(t) =
�Hmax

ext sin(2πt/τ0) is applied to the system. Here �Hmax
ext =

(Hx,Hy,Hz) is the amplitude of the external field, τ0 is its
oscillation period, and t is the time.

A colloidal fluid of N paramagnetic spheres with hard-core
diameter σ lies suspended at a distance zcoll from the patterned
substrate and is constrained to move in the x-y plane only.
The total magnetic field exerted on a paramagnetic particle i

at position �ri = (xi,yi,zcoll) is the sum of the external field and
the substrate field

�H(�ri ,t) = �Hsub(�ri) + �Hext(t). (2)

Hence, a dipole moment �mi = χ �H(�ri ,t), is induced in the
paramagnetic particle i with susceptibility χ .

The interaction energy between the dipoles in the substrate
is constant in time, therefore the relevant energy of our model
is the sum of three contributions: first, the hard-core interaction
between the particles; second, the interaction between the
particles’ (induced) dipole moments �mi and the total magnetic
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FIG. 1. (Color online) Sketch of the model. The colloidal particles
(spheres) are suspended at a distance zcoll over a pattern of discrete
point dipoles (arrows). The dipoles are oriented along the x axis
with alternating magnetization �m = (±m0,0,0). The wavelength of
the repeating pattern is λ. The particles in the figures are shown
with diameter 2σ to help visualization. (a) Parallel stripes pattern.
(b) Zigzag pattern with the zigzag angle θz as a control parameter.

field �H(x,y,zcoll,t); and, third, the dipole-dipole interaction
between the particles. The total energy can therefore be written
as

βUtot(t) =
∑
i<j


(rij ) − βμsχ
∑

i

�H(�ri ,t)
2

−
∑
i<j

βμsχ
2

4πr3
ij

[
3 �H(�ri ,t) · �eij

�H(�rj ,t) · �eij

− �H(�ri ,t) · �H(�rj ,t)
]
, (3)

where the hard-sphere potential 
(rij ) = ∞ if rij < σ and
zero otherwise, with rij = |�ri − �rj | the distance between
colloidal particles i and j , �eij = �rij /r2

ij , �ri = (xi,yi,zcoll) and

�rj = (xj ,yj ,zcoll). The field �H is defined by Eq. (2), μs is the
magnetic permeability of the solvent, and β = 1/kBT , where
kB is the Boltzmann constant and T is the temperature.

B. Analysis of the energy landscape

As shown by Eq. (3), the particle-particle interaction
depends quadratically on χ , while the substrate-particle
interaction has a linear dependence on χ . Therefore, in the
limit of small χ , the particle-substrate interaction is the leading
contribution to the total energy. Hence, valuable information
about the model can be extracted by simply analyzing the
particle-substrate contribution to the total energy, i.e., the
limiting case of a single colloidal particle. The potential (3)
for a single particle, taken as i = 1, reads βU (x1,y1,zcoll,t) =
−βμsχ �H(x1,y1,zcoll,t)2. Figure 2(a) shows this potential as
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FIG. 2. (Color online) (a) Scaled energy landscape βU as a
function of x/σ at position y = 0, and z = zcoll for a pattern of
parallel stripes at time t = 0. The circle indicates the preferred
position of the particle. (b) Same as (a) but at time t = τ0/4 in a
tilted external potential. The arrow indicates that the particle jumps
to the next energy minimum. (c) Same as (b) but at time t = 3τ0/4.
(d) Magnetic field lines of a sequence of positive and negative point
dipoles in the x-z plane. These dipoles generate the energy landscape
shown in (a).
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a function of x = x1 for the case of y1 = 0 and for a pattern
of parallel stripes [as shown in Fig. 1(a)], at time t = 0. The
external field is zero and the energy has a series of minima
at the positions of the dipoles [shown in Fig. 2(d)], whereas
the maximum of the energy is exactly halfway between two
dipoles. Let us assume that at t = 0 the particle is sitting in the
energy minimum at position x1 = −3σ , i.e., at the position of
a dipole pointing in the positive direction. At time t = τ0/4 the
external field has positive x and z components. Consequently,
it reduces the total field above the dipoles pointing in the
positive x direction and enhances the field above the dipoles
pointing in the negative x direction. Likewise, the field between
dipoles is enhanced and reduced alternately. This gives rise to
an asymmetry in the energy landscape, as shown in Fig. 2(b).
Due to the presence of a point of inflection in the energy,
the particle moves toward the energy minimum that is now
located above a negative dipole. At time t = τ0/2 the external
field vanishes, and the energy landscape is the same as shown
in Fig. 2(a). On the other hand, at time t = 3τ0/4 the external
field has negative x and z components. The total field above
the positive dipoles is now enhanced and the total field above
of the negative dipoles is reduced. The field between dipoles is
again reduced and enhanced alternately. The point of inflection
is again present in the energy landscape [Fig. 2(c)] and the
particle moves to the next energy minimum, which is now
located above a positive dipole. It is clear from the sequence
of Fig. 2 that after one cycle τ0 of the external field the particle
has covered the distance λ and that the cycle can be repeated
indefinitely. When the inclination angle of the external field is
such that either the z component or the x component is zero,
the point of inflection in the energy landscape is never formed
and the particle does not move in any preferential direction.
For the point of inflection to form both an x and a z component
of the external field are necessary to break the symmetry for a
pattern of parallel stripes.

The particles can, on average, advance in discrete steps of
0.5 λ every half-period τ0. We will hence quantify the transport
by the (time) average current 〈Jx〉 = 〈 1

N

∑
i

xi (t)−xi (t0)
t−t0

〉, where
xi(t) and xi(t0) are the positions of the colloidal particle i at
time t and initial time t0, respectively. With this definition, the
maximum current measurable is 〈Jx〉 = λ/τ0, and an average
current 〈Jx〉 < λ/τ0 is an indication of a decreased efficiency
of the transport mechanism, e.g., due to thermal motion or
collisions among particles. Performing computer simulations,
as laid out in the next section, allows us to investigate the values
of the external magnetic field that induce a particle current and
the effect of the particles’ Brownian motion as well as effects
due to many particle interactions.

C. Simulation method

The simulation box has a lateral size Lx × Ly = 30 ×
60 σ 2 and has periodic boundary conditions in the x and y

directions. The substrate lies in the z = 0 plane and contains
2600 point dipoles with dipole moment m0 = 50H0σ

3 with H0

the unit of the magnetic field. We choose a wavelength λ = 3σ

and a dipole separation distance �y = 0.3σ . The colloidal
particles are constrained to move in the z = zcoll = const.
plane and have a susceptibility χ = 0.4 σ 3, arbitrarily chosen
such that the linear term in the energy is the leading term.

We sampled averages for 100 τ0, after 5 τ0 of “equilibration”
time. The long-range dipole-dipole interactions are treated
through the Ewald sum [24,25]. In order to speed up the
interaction calculations, we precompute the field �Hsub due to
the substrate on a 400 × 400 grid. During the simulations,
the field intensity is obtained by interpolation of the tabulated
values. The time is in units of the Brownian time τB = σ 2/D,
with D = kBT /ξ the Stokes-Einstein diffusion coefficient of
the particles and ξ the friction coefficient of the solvent. In
our simulations, the hydrodynamic interactions are neglected.
Due to solvent hydrodynamics, the diffusion coefficient of
particles depends on their distance from the substrate [26–33].
Therefore, simulation carried out at constant distance zcoll are
characterized by a Brownian time τB that depends on zcoll.
However, this has no effects on our results because they are
scaled by the Brownian time. Further many-body effects due
to hydrodynamics are neglected, though.

We carry out both standard Metropolis MC [34] simu-
lations with a small MC displacement, d = 0.01σ , and BD
simulations [34]. The relationship between MC and BD has
been extensively studied in the literature. Both modified
MC schemes [18–20] as well as standard Metropolis MC
simulations [21–23] give dynamical properties that can be
in good agreement with the results of BD simulations. In
particular, it was recently shown [23] that the dynamical
properties obtained from Metropolis MC simulations are in
good agreement with those obtained from BD as long as the
maximum step size of the MC move, d, is small enough and
the time scale in MC simulations is obtained according to the
relations δt = ad2/6 τB , where a is the average acceptance
probability of the MC moves. The relation was demonstrated
for one particle in a arbitrary one-dimensional potential and
verified explicitly for a many-body system and various three-
dimensional potentials. Scaling the time with the acceptance
probability in equivalent to advancing the MC time only when
a move is accepted, this concept was called “internal clock” by
Royall et al. [35]. Given the presence of an oscillating external
field in our model we explicitly investigate the agreement
between MC and BD simulations at low particle density.

We carried out simulations for a set of four distances
between the colloidal particles and the substrates, zcoll =
1.0,1.5,1.7,2 σ . For zcoll = 1.0 σ the current 〈Jx〉 was zero in
all cases while the results for zcoll = 1.5,1.7,2 σ are discussed
in detail below.

III. RESULTS

First we study the low-density behavior of the suspended
fluid of colloidal particles on a pattern of parallel lines of
point dipoles, as shown in Fig. 1(a). We apply a tilted oscil-
lating external magnetic field, with vanishing y component,
H

y
ext(t) = 0, and x and z components given by H

x,z
ext (t) =

Hx,z sin(2πt/τ0). The current measurements were conducted
using only a single colloidal particle. Figure 3(a) shows the
time average current 〈Jx〉 as a function of the oscillation
period of the external field �Hext(t) for three different values
of zcoll and with kBT /μs = 5 × 10−3. We find that the current
is induced only for values of the oscillation period τ0 larger
than a critical value. This result can be interpreted easily. If
the external magnetic field is oscillating too quickly (small
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FIG. 3. (Color online) Average current 〈Jx〉 in the direction
perpendicular to the parallel stripes for zcoll = 1.5,1.7,2.0 σ . (a) As
a function of the period τ0 of the external field. (b) As a function of
the temperature-susceptibility ratio, kBT /μs , with an external field
oscillation period τ0 = 10τB .

period, high frequency) on the scale of the characteristic
diffusion time (Brownian time), then the particle is unable
to follow the rapidly changing energy landscape. Figure 3(b)
shows the x component of the measured current 〈Jx〉, as a
function of kBT /μs , for three different values of zcoll and
with τ0 = 100τB .

We find that the external field drives a particle current for
values of temperature over permeability, kBT /μs smaller than
a critical value. This result suggests that if the thermal energy
is too large, the Brownian motion randomizes the motion of
the colloidal particles and suppresses the transport.

Figure 4(a) shows the comparison between MC and BD
simulation results for the current as a function of the period of
oscillation τ0. The two simulation techniques give qualitatively
the same behavior, including the presence of a critical
oscillation period beyond which the transport is possible.
Nevertheless, the BD predicts a critical period that is 2 times
smaller than that of the MC simulations. We also show the
period rescaled by the average acceptance probability a as
suggested by Sanz and Marenduzzo [23]. The procedure leads
to a much better (but not perfect) comparison. On the other
hand, for oscillation periods far from the critical value, the
comparison between BD and MC is very good. Figure 4(b)
shows that for a value τ0 = 10τB , both BD and MC simulations
give the same behavior for the current as a function of the
temperature over permeability.

Figure 5(a) shows the value of the average current 〈Jx〉
as a function of the magnitude of the external field |Hext|,
at a fixed inclination angle θt = arctan(Hy/Hx) = 45◦ of the
external magnetic field, zcoll = 1.7σ , and with an oscillation
period τ0 = 10τB . We find that a critical value of the external
field needs to be reached in order to initiate the particle
transport. Figure 5(b) shows the value of the average current
〈Jx〉 as a function of the inclination angle θt at a fixed external
field magnitude |Hext| and for zcoll = 1.7 σ . We find that the
current magnitude and direction can both be controlled by
the inclination angle of the external magnetic field. Note

FIG. 4. (Color online) Comparison among MC, MC scaled with
the acceptance probability a, and BD simulation results for the
measured average current 〈Jx〉 for zcoll = 1.5 σ . (a) As a function of
the period τ0 of the external field. (b) As a function of the temperature-
susceptibility ratio, kBT /μs , with an external field oscillation period
τ0 = 10τB .

that for angles θt = ±180◦, ± 90◦,0◦ the current is zero.
These angles correspond to an external field with either only
a component of the external magnetic field parallel to the
substrate (θt = ±180◦,0◦) or only a component normal to the
substrate (θt = ±90◦). Figure 5 also shows BD simulation
results. The comparison between MC and BD simulations is
very good.

We next investigate the dependence on particle density. We
characterize the system by a linear density ρ = 2σN/NxLy ,
where N is the total number of particles. Here, we carried
out only MC simulations. These posses higher computational
efficiency over BD at the large number of particles that we
are considering. Figure 6 shows the current induced on a
parallel stripes pattern as a function of ρ. We find that the

FIG. 5. (Color online) Average current 〈Jx〉 in the direction
perpendicular to the parallel stripes for zcoll = 1.7 σ . (a) As a function
of the magnitude |Hext| of the external field at an inclination angle
θt = arctan(Hy/Hx) = 45◦. (b) As a function of the inclination angle
θt for a magnitude |Hext| = 50 m0/σ

3.
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FIG. 6. (Color online) Average current 〈Jx〉 for a pattern of
parallel stripes, zcoll = 1.7 σ , τ0 = 10τB , and kBT /μs = 0.05 as a
function of the linear density ρ.

current remains roughly constant at low densities with a value
slightly smaller than unity. This result indicates a decreased
efficiency of the transport mechanism due to the presence
of other particles. Interestingly, the current decays to zero
at densities larger than ρ � 2. At this density, all stripes are
filled with particles. If more particles are present, they must
fill positions that are not ideal for the transport mechanism.
These excess particles effectively jam the transport.

We next analyze the motion of the particles suspended
over a zigzag pattern with an external field perpendicular
to the substrate. The x and y components of the external
field vanish, Hx,y

ext (t) = 0, and the perpendicular z component,
Hz

ext(t) = Hz sin(2πt/τ0), is oscillating in time with period
τ0. Analysis of the particles trajectories shows that transport is
achievable only in the vertex region of the zigzag. Therefore,
to reliably measure the current, we initialized the simulations
with a single colloid randomly positioned along the x direction
but localized at the vertex. Figure 7(a) shows the current 〈Jx〉
as a function of the period of oscillation τ0 for three different
values of zcoll and for θz = 68◦. As for the case of parallel
lines, the period of oscillation of the external field needs to
be large enough in order to induce a current. Furthermore, we

FIG. 7. (Color online) Average current 〈Jx〉 for a zigzag pattern
with kBT /μs = 5 × 10−3 for zcoll = 1.5,1.7,2.0σ . (a) As a function
of the oscillation period τ0 of the external field for θz = 68◦. (b) As a
function of the zigzag angle θz for τ0 = 7τB .

FIG. 8. (Color online) Comparison among MC, MC scaled with
the acceptance probability a, and BD simulation for the measured
average current 〈Jx〉 for zcoll = 1.5σ . (a) As a function of the
oscillation period τ0 of the external field for θz = 68◦. (b) As a
function of the zigzag angle θz for τ0 = 7τB .

find that for zcoll = 1.5,1.7σ the current is negative, whereas
for zcoll = 2.0σ the current is positive. Figure 7(b) shows the
average current as a function of the zigzag angle θz for external
field Hz = 10 m0/σ

3 and τ0 = 100τB . The current direction
differs for different distances zcoll. In particular, it is positive
for zcoll = 2.0σ and negative for zcoll = 1.5σ . Interestingly, for
the intermediate value zcoll = 1.7σ , the current is negative for
large angles but positive at smaller zigzag angles. The current
vanishes for θz = 90◦, corresponding to the case of parallel
stripes. We stress that the current is obtained only at the zigzag
vertex because the external field only has a normal component.
This means that the local relative position of the dipole located
around the vertex plays a fundamental role in the creation of
the point of inflection in the energy that is necessary for the
transport mechanism (see Sec. II B). Nevertheless, if a tilted
external field is applied to the zigzag patterns, transport is
achieved also away from the vertex. Figures 8(a) and 8(b)
show the comparison between MC and BD simulations for
zcoll = 1.5σ . We find a discrepancy in the predicted value of the
critical period. Contrary to the case of the parallel lines pattern,
the BD predicts a critical period that is 2 times larger than MC.
Rescaling with the average acceptance probability leads to a
worse comparison. On the other hand, the comparison is very
good for the current as a function of the zigzag angle for a
value of the oscillation period τ0 = 7τB far from the critical
value.

IV. CONCLUSIONS

We have studied a simple model for the transport of col-
loidal particles suspended at a fixed distance over a magnetic
patterned substrate with MC and BD computer simulations
Magnetic dipoles were distributed in two specific patterns,
namely parallel stripes and zigzag stripes. We analyzed the
effect of an oscillating external magnetic field that was applied
to the system.

For the case of parallel stripes we found that the current
magnitude and direction was controlled by the tilt angle of the
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external field and that the effect was reliably obtained in a wide
range of ratios between temperature and solvent permeability.
Furthermore, a net current was measured only when the period
of oscillation was greater than a critical value. For the case
of zigzag stripes a current was obtained using an oscillating
external field normal to the substrate. In this case, transport
was possible only in a small region of the patterned substrate,
namely near the vertex of the zigzag. This result opens up
the possibility to transport colloidal particles in a very narrow
stream. Furthermore, the current magnitude and direction was
found to be controlled by a combination of the zigzag angle and
the distance of the colloids from the substrate. The comparison
between MC and BD is overall qualitatively very good. We find
quantitative agreement for values of the period of oscillation
of the external field far from the critical period, while the two
simulations techniques predicts quantitatively different values
of the critical period beyond which transport of particles is
possible.

The mechanism behind the transport of the colloidal
particles is a consequence of the changing energy landscape.
The sum of the oscillating external field and of the substrate’s
magnetic field results in an energy landscape that changes
in time. The Brownian motion enables the particles to locally
sample the phase space and follow the energy landscape toward
the local (in space and time) energy minimum. Colloidal
transport is hence achieved when the particles are able to
“follow” this landscape. The mechanism explained here is the
same as the one described by Dhar et al. [14] as a deterministic
ratchet. Yellen et al. [11] found the same mechanism and
describe it as particles following a traveling wave. That
is, the particle is transported by the translating inflection
point in the energy landscape. We find that transport of the
paramagnetic colloidal particles is possible for a large set of
model parameters. The magnetic patterns can be created by
deposition of discrete magnetic islands [10–12]. Despite that
the field generated by a garnet film [15] differs quantitatively
from the one produced by an array of discrete dipoles, the
differences are surprisingly small (see Appendix). Therefore,
we expect that the behavior for the transport of particles on
top of garnet films is similar to the one shown by our model.

Controlling the deposition pattern means controlling the
behavior of the nano or micro magnetic particles. As a

consequence laboratory-on-chip devices with well-defined
functions can be envisioned. Our model and method can be
easily applied to different and more complicated patterns,
like, for example, a combination of parallel and zigzag stripes.
Other possible extensions of the current work include the study
of substrate boundary effects. In this work we applied periodic
boundary condition, but it would be interesting to study the
transport of colloidal particles on top of finite discrete patterns.

Furthermore, given the range of phenomena shown by two-
dimensional colloidal suspensions of paramagnetic particles
trapped at a liquid-air interface (see, for example, Ebert et al.
[36] and references therein) it would be interesting to explore
in more detail the effect of a patterned magnetic substrate
on the phase behavior and the dynamical properties of two-
dimensional fluids.
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APPENDIX: GARNET FILM

Tierno et al. [15] calculated the magnetic field above the
garnet film, for a pattern of parallel stripes aligned in the y

direction as �H = ∇Re[
] with the potential


 = i

π
dilog

{
1 − exp

[
4iπ

2
w + Im(h)

]}

− i

π
dilog

{
1 + exp

[
4iπ

2
w − Im(h)

]}
, (A1)

with w = x + iz and h = �Hext · (�ex − i�ez) and the dilogarithm
function dilog(t) = ∫ z

1 dt ln(t)
(1−t) . Figure 9 shows the comparison

between the energy of the garnet film from the potential (A1)
and the energy of an array of dipoles from Eq. (3). The energies
were shifted by the mean value 〈E〉 and rescaled by the
maximum value of the energy Emax. Both with and without
external field the differences between the two energies are
small, validating the use of the set of discrete dipoles as a
good approximation for patterns on garnet films.

FIG. 9. (Color online) (a) Comparison between the energy of one paramagnetic particle in the magnetic field of a garnet film and the dipole
array. (b) Like (a) but zoomed in to highlight the differences.
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