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Abstract
Based on fundamental measure theory, a Helmholtz free energy density functional for
three-component mixtures of hard spheres with general, non-additive interaction distances is
constructed. The functional constitutes a generalization of the previously given theory for
binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both
functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree
of complexity than the binary diagrams. Results for partial pair correlation functions, obtained
via the Ornstein–Zernike route from the second functional derivatives of the excess free
energy functional, agree well with Monte Carlo simulation data.

1. Introduction

Rosenfeld’s fundamental measure theory (FMT) for additive
hard sphere mixtures [1, 2] has become a cornerstone of
classical density functional theory (DFT) [3]. FMT features
in numerous applications to a wide variety of interesting
phenomena in liquids [4–6]. In additive hard sphere mixtures
the interaction distance between unlike components is taken
to be the arithmetic mean of the (like-species) diameters.
Additive mixtures are often considered as prototypical in the
description of liquid mixtures. Nevertheless, non-additivity is
a generic feature [7] that arises very naturally in effective
interactions, e.g. due to the depletion effect [8], or when
integrating out solvent degrees of freedom in electrolytes [9,
10]. A generalization of FMT to binary non-additive hard
sphere (NAHS) mixtures [11] was based on the scalar version
of the additive hard sphere functional [2], and has been
used successfully in the investigation of bulk [12–14] and of
interfacial [15] phenomena that occur in NAHS mixtures.

Recently significant progress has been made in the
formalization of the mathematical structure of FMT. This
includes (i) insights into the geometry of the non-local aspects
of the theory, i.e. the algebraic group structure and symmetry
properties of the convolution kernel matrix K(R, r) [11, 16,
17], which controls the range of non-locality in the functional.
Here R is a fixed length-scale and r is the radial distance in
three-dimensional space. Formally, K(R, r) is a 4 × 4-matrix
that is indexed by powers of length-scale. Its remarkable

algebraic properties [16] allow us to view it as an object
that is suitable to add or remove a layer of thickness R from
a given sphere. Furthermore, (ii) the FMT for additive hard
sphere mixtures was obtained from a tensorial-diagrammatic
series in density [18]. The diagrams possess star-like topology,
which is an approximation of the combinatorial complexity
of the exact virial expansion. Apart from a central space
integral, all field points are integrations over the density
field(s), as they are in the exact virial expansion. The bonds,
however, are weight functions rather than Mayer functions
and possess only half the range of the (hard sphere) Mayer
function. In one dimension, the result from the series is equal
to Percus’ exact functional [19]. In three dimensions it gives
the Kierlik–Rosinberg form [2] of FMT. The five-dimensional
hard hypersphere version is investigated in detail in [18].
Comparison to data from the literature for bulk structure and
thermodynamics demonstrates the capability of this theory for
studying bulk and inhomogeneous hypersphere mixtures.

In the present work we generalize the tensorial-
diagrammatic series to NAHS interactions. We use the kernel
matrix K(R, r) as a further type of bond. This enables us
to represent the binary NAHS functional of [11] as a series
of diagrams that are formed by two stars, one for each
species. Here the center of one star is connected to the center
of the second star by a K-bond. Formulating an FMT for
general ternary NAHS mixtures requires us to modify this
topology. Treating special cases of ternary mixtures that have
a suitably high degree of additivity amounts to straightforward
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generalizations of [11]. This is the case where the cross
interaction between (say) species 1 and 2 is additive, and
the non-additivities between 13 and 23 are coupled in a
certain way (see the discussion below (1)) and hence cannot
be chosen independently of each other. The general case,
however, requires the introduction of diagrams with different
topology. Here three stars, one for each species, are connected
to a central three-arm star. As laid out in detail below,
all (four) inner junctions are bare space integrals, without
multiplication by a one-body density. Only the outer ends
carry multiplication by a (bare) density variable. We show that
the theory predicts the bulk structure of ternary mixtures, via
the Ornstein–Zernike route, with good quality as compared to
Monte Carlo simulation data.

2. Non-additive hard sphere interactions

Non-additive hard sphere mixtures possess pair potentials
vij(r) between species i and j as a function of the center–center
distance r of the two particles, that are given as vij(r) =
∞ if r < σij and zero otherwise. In the general case
all σij are independent of each other, except for the
trivial symmetry σij = σji. Non-additivity parameters are
conventionally defined as 1ij = 2σij/(σii + σjj) − 1 for
i 6= j, where 1ij ≥ −1. For additive mixtures all 1ij = 0.
For positive non-additivity, 1ij > 0, the unlike components
interact at a larger distance than the arithmetic mean of their
diameters. For negative non-additivity,1ij < 0, the interaction
distance is smaller than the mean of the diameters. While
a binary NAHS mixture is characterized by either positive
or negative non-additivity, in ternary systems mixed cases
are possible, where not all of the 1ij have the same sign.
In ternary NAHS mixtures the equation of state [20] was
considered and phase stability was investigated using integral
equation theory [21]. Phase equilibrium was also considered
in polydisperse NAHS systems [22, 23].

3. Density functional theory

3.1. Overview and choice of length-scales

In order to construct an FMT for ternary NAHS mixtures,
we first identify suitable length-scales. Consistent with
Rosenfeld’s additive case [1], we use the particle radii Ri =

σii/2 of each species i = 1, 2, 3. For the binary mixture [11],
the cross diameter between species 1 and 2 was decomposed
as σ12 = R1 + R12 + R2, where the length-scale R12 = σ12 −

(σ11 + σ22)/2 accounts for the non-additivity. For the ternary
system, we generalize this to a decomposition of the cross
diameters into sums of four contributions,

σij = Ri + di + dj + Rj, (1)

where ij = 12, 13, 23, and the three length-scales di, i =
1, 2, 3, control the degrees of non-additivity. Inverting
equation (1) is possible for ternary mixtures and yields dj =

(σij + σjk − σik − σjj)/2; here ijk = 123 or any permutation
thereof. As a simple check, a counting exercise assures us
that the number of parameters Ri (three) and di (also three)

Figure 1. Illustration of the decomposition (1) of the hard sphere
interaction distances σij into like-species particle radii Ri and
non-additivity distances di. Thin solid lines represent distances
between a space point (dots) and a junction; thick solid lines
represent the distance between two junctions. The dashed arrows
indicate paths that possess length σij (as indicated); the sense of
direction is only a guide to the eye. Decompositions are shown for
the binary additive mixture (a), the binary non-additive mixture with
the cross diameter being divided into three (b) and four (c)
contributions, and the ternary non-additive mixture (d). The two
binary cases (b) and (c) are equivalent when R12 = d1 + d2.

is enough to represent the six independent components of
σij. The binary case above is recovered if we set R12 =

d1 + d2. Here the relative splitting of R12 into d1 and d2 is
arbitrary. If we keep three species and set d1 = d2 = 0, then
only d3 6= 0 remains in order to control the non-additivities
between 13 and 23. For mixtures with such restricted degree
of non-additivity, as mentioned above, the binary NAHS
functional can be generalized easily. Figure 1 illustrates the
different types of decomposition of the σij in binary additive
(a), binary non-additive ((b), (c)), and ternary non-additive (d)
mixtures. Note that the di can be negative, but that Ri + di +

dj+Rj ≥ 0 must hold due to (1). Furthermore certainly Ri ≥ 0.
As a means to control the different length-scales in

the density functional, we use the kernel matrix K(R, r)
of [11, 16, 17]. Two of its properties render this a suitable
object for the construction of the density functional: (i) the
four scalar Kierlik–Rosinberg weight functions (where R is
identified with the particle radius) feature as components
and (ii) matrices can be chained, K(R + R′, r) = K(R, r) ∗
K(R′, r), where the asterisk denotes the three-dimensional
spatial convolution and matrix multiplication is implied on
the right-hand side. The three-dimensional Fourier transform
of K(R, r) can be expressed as K̃(R, q) = exp(RG), where q
is the radial distance in reciprocal space, and the (generator)
matrix G depends on q and is defined by its components
G0

1 = 1,G1
2 = 8π,G2

3 = 1,G2
1 =−q2/(4π),G3

0 =−q4/(8π);
all other Gνµ = 0. Here the lower index indicates the
row and the upper index indicates the column; all Greek
indices run from 0 to 3 here and in the following. Due
to the symmetry Kνµ(R, r) = K3−ν

3−µ(R, r) [17], the matrix
K(R, r) has ten independent components [12, 17]. The four
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scalar Kierlik–Rosinberg [2] weight functions wν(R, r) are
contained herein, i.e. Kν0 (R, r) = wν(R, r), explicitly given
in real space as w3(R, r) = 2(R − r), w2(R, r) = δ(R − r),
w1(R, r)= δ′(R−r)/(8π), and w0(R, r)=−δ′′(R−r)/(8π)+
δ′(R − r)/(2πr). An explicit real-space expression for all
further components of K(R, r) can be found in [16].

The Mayer f -bond for hard spheres equals −1 if the
two spheres overlap and vanishes otherwise. For like-species
the deconvolution into scalar weight functions [2] can
be written as fii(r) = −

∑3
µ=0wµ(R, r) ∗ w3−µ(R, r) ≡

−
∑3
µ,ν=0wµ(R, r)Mµνwν(R, r). Here the spatial convolution

of two functions is defined as (f ∗ g)(x) =
∫

dr f (r)g(x −
r), and the metric M [17] has components Mµν = Mµν

=

1 if µ + ν = 3 and is zero otherwise. The crucial
property of K(R, r) that we will exploit in the following
is the group structure for the combined operation of
matrix multiplication and (real-space) convolution. For the
interactions between particles of the same species K(2Ri, r) =
K(Ri, r) ∗ K(Ri, r), where the convolution product implies
also matrix multiplication and the Mayer bond is just the
special case fii(r) = −w3(2Ri, r) = −K3

0(2Ri, r). We exploit
the fact that several matrices can be chained [16], in
order to model the interactions between unlike species via
K(σij, r) = K(Ri, r) ∗ K(di, r) ∗ K(dj, r) ∗ K(Rj, r), where the
length-scales on the right-hand side satisfy (1). Furthermore
the terms on the right-hand side commute (i.e. the group is
Abelian [16]). The Mayer bond between unlike species i and
j is fij(r) = −K3

0(σij, r) and can hence be written as fij(r) =

−
∑3
µ,µ′,ν,τMµµ′wµ′(Ri, r) ∗Kνµ(di, r) ∗Kτν (dj, r) ∗wτ (Rj, r).

This identity, as well as that for the intra-species case above,
can be verified by explicit algebra, most conveniently in
Fourier space, where the convolutions become mere products
and algebraic theorems for trigonometric functions can be
used to simplify the expressions.

3.2. Algebraic-diagrammatic structure of the free energy
functional

Using the four weight functions wµ(Ri, r), we build species-
dependent weighted densities nµ(i, r) in the standard way
via convolution with the bare density distribution of the
corresponding species,

nµ(i, r) = wµ(Ri, r) ∗ ρi(r). (2)

We use the third-rank ‘junction’ tensor J of [18] in order
to couple the nµ(i, r) and hence generate terms that are
non-linear in densities. Let us denote the components of J
by Jµντ . The tensor is symmetric under exchange of indices
and is non-zero only if µ + ν + τ = 6. One can specify
J completely via the elements J123

= J033
= 1 and J222

=

1/(4π). As a basic building block for the construction of
the density functional, we use the matrix N(i, r) of weighted
densities [18] that is obtained by contracting the vector of
weighted densities nτ (i, r) with the J-tensor and lowering one
of the indices via contraction with the metric M. Hence the
components of the matrix N(i, r) are obtained as Nνµ(i, r) =

Figure 2. Illustration of the topology of the diagrams that constitute
the density series of the FMT free energy functional for various hard
sphere mixtures. The one-body density distribution of each species
ρi(r) (represented by a filled symbol) is connected by weight
function bonds, w = (w0,w1,w2,w3) (thin lines), to a central space
integral (junction). The different topologies are for the binary
additive hard spheres (a), binary NAHSs ((b), (c)) and ternary
NAHS mixtures (d). The numbers indicate the different species. In
(b)–(d) the junctions are joined by convolution kernel bonds K. The
bonds that meet at a junction are multiplied by third-rank tensors J.
Multiplying with the metric M at the center of (c) joins the two
K-bonds and restores the topology of (d). All junctions and all end
points are integrated over.

∑3
µ′,τ=0Mµµ′Jµ

′ντnτ (i, r) and given explicitly by

N(i, r) =


n3(i, r) n2(i, r) n1(i, r) n0(i, r)

0 n3(i, r)
n2(i, r)

4π
n1(i, r)

0 0 n3(i, r) n2(i, r)

0 0 0 n3(i, r)

 . (3)

As an illustration of the power of this formalized framework,
we can obtain [18] the additive FMT functional as the
03-component of

∫
dxφ0d(

∑
iN(i, x)), where the integration

variable was renamed from r to x and the zero-dimensional
excess free energy is

φ0d(η) ≡ (1− η) ln(1− η)+ η =
∞∑

m=2

ηm

m(m− 1)
, (4)

with the (dummy) variable η being the average occupation
number of the zero-dimensional system. Here a function of
a matrix is defined via its power series. In order to represent
the mathematical structure of the integrals in the density
functional, we use the diagrammatic formulation of [18], see
figure 2 for an overview. In particular, the star topology shown
in figure 2(a) constitutes the relevant type of diagram for
additive hard sphere mixtures. The center of the diagram
represents the integration variable x, the arms represent the
weight functions wµ(r), and the filled symbols represent the
one-body density ρi(r) at space point(s) r. All spatial variables
are integrated over. The number of arms equals the order
in density. Summing up all orders and using the coefficients
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of the power series of φ0d yields the Kierlik–Rosinberg free
energy functional [18].

In the following we require only the last column of the lth
power of the density matrix, obtained formally as

ψ (l)ν (i, r) = Nl(i, r) · (0, 0, 0, 1)t, (5)

where Nl(i, r) indicates the lth (matrix) power of N(i, r),
the dot represents the multiplication between a matrix and a
vector and the superscript t indicates transposition. Explicitly,
the four components in (5) are

ψ
(l)
0 (i, r) = ln0nl−1

3 − l(l− 1)n1n2nl−2
3

+
l(l− 1)(l− 2)

24π
n3

2nl−3
3 (6)

ψ
(l)
1 (i, r) = ln1nl−1

3 −
l(l− 1)

8π
n2

2nl−2
3 (7)

ψ
(l)
2 (i, r) = ln2nl−1

3 (8)

ψ
(l)
3 (i, r) = nl

3, (9)

where the superscripts of the weighted densities indicate
(scalar) powers, the weighted densities are those of species
i, i.e. nµ ≡ nµ(i, r), and the arguments have been omitted for
clarity.

For non-additive mixtures we ‘transport’ the expres-
sions (6)–(9) via convolution with K(di, r). We hence obtain a
four-vector for each species i, indexed by µ = 0, 1, 2, 3 and
given as

8(l)µ (i, r) =
3∑
ν=0

Kνµ(di, r) ∗ ψ (l)ν (i, r). (10)

These objects serve as ansatz functions for representing
the free energy density; they are specific for each species
(indicated by the argument i), are of lth order in density, and
carry the dimension of (length)3−µ.

3.3. Rewriting the binary NAHS functional

Using the above definitions, we can write the density
functional for binary NAHS mixtures [11] as

Fexc[ρ1, ρ2] = kBT
∫

dy
3∑

µ,ν=0

Mµν
∞∑

k,l=0

(k + l− 2)!
k! l!

× 8(k)µ (1, y)8(l)ν (2, y), (11)

where we take the convention that the factorial vanishes
for negative arguments and we have renamed the spatial
integration variable from r to y. The scalar coefficients inside
the double sum over k, l are those in the Taylor expansion of
the zero-dimensional excess free energy, which for a binary

mixture is φ0d(η1+η2) =
∑
∞

k,l=1

(
k + l

k

)
ηk

1η
l
2/[(k+ l)(k+ l−

1)]. Writing the coefficients as
(

k + l
k

)
/[(k + l)(k + l − 1)] =

(k + l− 2)!/(k! l!) gives the form in (11).
A closed expression for the series (11) can be obtained.

This is identical to the previously given [11] form of the binary

functional

Fexc[ρ1, ρ2] = kBT
∫

dx
∫

dx′

×

3∑
µ,ν=0

Kµν(d1 + d2, x− x′)8µν(x, x′), (12)

where the components of the free energy tensor are

8µν(x, x′) =
3∑

α,β=0

Aµα(1, x)Aνβ(2, x′)

× φ
[α+β]

0d (n3(1, x)+ n3(2, x′)), (13)

where φ[α]0d (η) ≡ dαφ0d(η)/dηα is the αth derivative of the 0d
excess free energy. Explicit expressions for the coefficients
in (13) are

A01(i, x) = n0(i, x),

A02(i, x) = n1(i, x)n2(i, x),

A03(i, x) =
[n2(i, x)]3

24π
,

A11(i, x) = n1(i, x),

A12(i, x) =
[n2(i, x)]2

8π
,

A21(i, x) = n2(i, x),

A30(i, x) = 1,

(14)

where i labels the species (i = 1, 2 for (13)). In the above we
have exploited the convolution property

Kµν(d1 + d2, x− x′) =
3∑

τ,τ ′=0

Mττ ′

×

∫
dy Kµτ (d1, x− y)Kτ

′ν(d2, x′ − y). (15)

Due to the group structure of the convolution kernels [16,
17], the identity Kνµ(di + dj, r) =

∑3
τ=0Kτµ(di, r) ∗ Kντ (dj, r)

holds, such that the length-scale R12 ≡ σ12 − (σ11 + σ22)/2
of the binary functional [11] is recovered as R12 = d1 + d2.
The structure of the diagrams corresponding to (12) is shown
in figure 2(b) and that corresponding to (11) is shown in
figure 2(c).

3.4. Constructing a ternary NAHS functional

The benefit of rewriting the binary functional in the form (11)
is that this allows for straightforward generalization to
three-component mixtures as

Fexc[ρ1, ρ2, ρ3] = kBT
∫

dx
3∑

µ,ν,τ=0

Jµντ

×

∞∑
k,l,m=0

(k + l+ m− 2)!
k! l!m!

× 8(k)µ (1, x)8(l)ν (2, x)8(m)τ (3, x), (16)

where (k + l + m − 2)!/(k! l!m!) is the coefficient of order
ηk

1η
l
2η

m
3 in the Taylor expansion of φ0d(η1 + η2 + η3). Again

4
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Figure 3. Partial pair correlation function gij(r) for symmetric
ternary NAHS mixtures with σ11 = σ22 = σ33 ≡ σ for varying
degree of non-additivity 112 = 123 = 113 ≡ 1 = −0.1, 0, 0.1 as a
function of the scaled distance r/σ . Symbols denote Monte Carlo
data; lines represent DFT results. Shown are the like correlation
function g11(r) (solid lines and crosses) and the unlike correlation
function g12(r) (dashed lines and pluses). The results for 1 = 0
(0.1) are shifted upwards by two (four) units.

a closed expression can be obtained, which is in the form

Fexc[ρ1, ρ2, ρ3] = kBT
∫

dy
∫

dx
∫

dx′
∫

dx′′

×

3∑
µ,ν,τ=0

Jµντ
3∑

µ′,ν′,τ ′=0

Kµ
′

µ (d1, x− y)

× Kν
′

ν (d2, x′ − y)Kτ
′

τ (d3, x′′ − y)8µ′ν′τ ′(x, x′, x′′), (17)

where

8µντ (x, x′, x′′) =
3∑

α,β,γ=0

Aµα(1, x)Aνβ(2, x′)Aτγ (3, x′′)

× φ
[α+β+γ ]

0d (n3(1, x)+ n3(2, x′)+ n3(3, x′′)). (18)

Equations (18) and (17) together with equation (14) (where
i = 1, 2, 3) prescribe the DFT for the general ternary hard
sphere mixture. It is straightforward to verify that this
functional reduces, in the corresponding limits, to the FMT
for additive ternary hard sphere mixtures [1, 2], and for binary
NAHS mixtures [11]. The diagrammatical structure of (17) is
shown in figure 2(d).

4. Results for bulk fluid structure

We test the theory by calculating the partial two-body
direct correlation functions for bulk fluids from cij(|r −
r′|) = − (kBT)−1 δ2Fexc/δρi(r)δρj(r′)|ρk=const. Analytic ex-
pressions for the corresponding expressions c̃ij(q) in
Fourier space can be obtained. Inserting these into the
Ornstein–Zernike equation for ternary mixtures and Fourier
transforming numerically yields partial pair correlation
functions gij(r). Such results are shown in figure 3 for
symmetric mixtures, σ11 = σ22 = σ33 ≡ σ , with varying

Figure 4. Same as figure 3, but for total packing fraction η = 0.25.

degree of non-additivity 112 = 123 = 123 ≡ 1, and at
equal (and constant) bulk densities, ρ1 = ρ2 = ρ3. We
choose the overall packing fraction as η =

∑
iπρiσ

3
ii/6 =

0.2 and compare with benchmark Monte Carlo simulation
results for 1023 particles, obtained with 106 attempted moves
per particle of which the initial 105 moves were used for
equilibration. Except for (numerically) small core violation,
the OZ results reproduce the simulation data very well. This
is also the case for the slightly higher total packing fraction,
η = 0.25, where again MC and DFT data are compared in
figure 4.

In order to consider a fully asymmetric case, we have
chosen the σij in order to mimic the correlations that were
obtained in molecular dynamics simulations of an aqueous
binary salt solution [10]. Here the solvent is at large packing
fraction and both types of ions are at vanishing concentration.
In this case the model parameters can be tuned to mimic the
simulation data (not shown). This constitutes a step toward
possible applications of the current theory to electrolyte
solutions. However, for mixtures with very asymmetric size
ratios one would expect to find similar shortcomings as are
present in the additive FMT [24] and indeed Percus–Yevick
theory.

5. Conclusions

In conclusion, we have presented a fundamental measure
functional for ternary NAHS mixtures. The mathematical
structure of the functional is based on a diagrammatic
expansion in density with star-like (tree-like) topology of
the diagrams. We have shown that pair correlation functions
obtained from the density functional via the Ornstein–Zernike
route agree well with computer simulation data. Possible
applications of the current theory include its use as a reference
system in modeling electrolytes in bulk and in inhomogeneous
situations. Furthermore, considering one-dimensional cases
(see [25] for the exact solution of bulk properties of binary
mixtures) could be interesting.

It is worthwhile discussing possible generalization
to mixtures with more than three components. The
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general ternary case presented here rests crucially on the
decomposition of the interaction distances σij into suitable
length-scales Ri and di, compare with (1). This allowed us
to use suitable diagrams with tree-like structure, compare
with figure 2(d). However, (1) does not have a general
solution (for Ri and di once the σij are prescribed) for M ≥ 4
components. That this is true can be gleaned from the fact
that the σij are M(M + 1)/2 independent constants, whereas
the Ri and di constitute only 2M free parameters. These
numbers, seemingly by accident, match in the special case
M = 3. Hence we can conclude that possible extensions to
four and more components requires further changes in the
mathematical structure of the present FMT.
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