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Bulk fluid phase behaviour of
colloidal platelet–sphere and
platelet–polymer mixtures
Daniel de las Heras and Matthias Schmidt

Theoretische Physik II, Physikalisches Institut, Universität Bayreuth,
95440 Bayreuth, Germany

Using a geometry-based fundamental measure density
functional theory, we calculate bulk fluid phase
diagrams of colloidal mixtures of vanishingly thin
hard circular platelets and hard spheres. We find
isotropic–nematic phase separation, with strong
broadening of the biphasic region, upon increasing
the pressure. In mixtures with large size ratio of
platelet and sphere diameters, there is also demixing
between two nematic phases with differing platelet
concentrations. We formulate a fundamental measure
density functional for mixtures of colloidal platelets
and freely overlapping spheres, which represent ideal
polymers, and use it to obtain phase diagrams. We
find that, for low platelet–polymer size ratio, in
addition to isotropic–nematic and nematic–nematic
phase coexistence, platelet–polymer mixtures also
display isotropic–isotropic demixing. By contrast, we
do not find isotropic–isotropic demixing in hard-core
platelet–sphere mixtures for the size ratios considered.

1. Introduction
Understanding the equilibrium properties of colloidal
systems and the relationship between the microscopic
properties, such as particle shapes and sizes, and
the macroscopic properties of a dispersion is essential
for the task of creating new materials with desired
characteristics. Here, anisotropic colloids are relevant
owing to the possible formation of liquid crystalline
phases. Among them, platelet-like colloids are ubiquitous
in nature; gibbsite or certain clays are specific examples.

Despite their simplicity, hard-core models are well-
suited candidates to investigate the phase behaviour of
colloidal systems. Since Onsager’s [1] pioneering work
on the isotropic–nematic (IN) phase transition in a fluid
of rods, a wealth of studies have been carried out in order
to elucidate the equilibrium properties of anisotropic

c© 2013 The Author(s) Published by the Royal Society. All rights reserved.
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hard particles, including the fluid of circular platelets with vanishing thickness using Onsager-like
theories [2,3] and fundamental measure theory (FMT) [4,5]; see Harnau [6] for a recent review of
platelets and references [7–9] for reviews of FMT.

During the past few years, binary colloidal mixtures have received considerable attention. The
addition of a second component induces profound changes in the phase diagram, with new
phenomena arising such as demixing, reentrant phase boundaries, as well as the emergence
of phase transitions due to the depletion mechanism. Studies of binary mixtures that involve
platelets were conducted for mixtures of thick and thin platelets [10,11], binary platelets with
different diameters [12] and mixtures of platelets and rods [13,14].

In this paper, we use density functional theory (DFT) [15], and in particular a geometry-based
fundamental measure free energy functional [4], in order to investigate the bulk fluid properties
in mixtures of infinitely thin platelets and hard spheres. Such mixtures have been previously
considered by Harnau & Dietrich [16] using DFT and by Oversteegen & Lekkerkerker [17]
by means of a free-volume scaled-particle approach. Those authors restricted their analyses to
isotropic states of platelets. Both studies found coexistence between an isotropic fluid rich in
platelets and a solid phase rich in spheres, as well as the stability of a phase transition between
two isotropic phases with differing compositions for small values of the platelet–sphere size
ratio. Both studies neglect the excluded-volume interaction between the platelets, which can
certainly be a good approximation if the density of the platelets is very low. We will compare
with these findings below. We compare also with results from an extended Onsager theory
with Parsons–Lee rescaling [18,19] that includes two-body correlations only. By contrast, the
geometry-based density functional that we use here includes explicitly non-local higher-body
correlations. The non-local structure of the free energy functional [4] is specifically tailored for
the present shapes. For general convex bodies, much recent effort [20–22] has been devoted to
improve Rosenfeld’s original FMT for non-spherical shapes [23–25].

Here, we also study mixtures of platelets and non-adsorbing ideal model polymers [26].
Polymers are modelled following the ideas of Asakura & Oosawa [27] and Vrij [28], i.e. they
are treated as fully interpenetrable spheres that cannot overlap with the colloidal platelets. This
is to be regarded only as a minimal model, in particular for the platelet–polymer interaction,
as both softness and penetrability of a platelet into a polymer coil are neglected. We develop
a fundamental measure DFT by linearizing the density functional for hard-core mixtures in
polymer density [29,30].

Experimental mixtures of sterically stabilized gibbsite platelets and silica spheres have been
studied very recently [31]. The authors found phase separation into platelet-rich and sphere-
rich phases, driven by the repulsive interactions between particles of different species. Columnar
ordering has been observed in charged mixtures of gibbsite platelets and silica spheres [32,33].
Furthermore, the crystallization of silica spheres in the presence of gibbsite platelets (silica-coated)
was analysed by Oversteegen et al. [34].

The paper is organized as follows. In §2, we define the model and outline the DFT. The results
are described in §3: mixtures of colloidal platelets and spheres are analysed in §3a; in §3b, we
present the results for mixtures of colloidal platelets and ideal polymers; a comparison between
FMT theory and an extended Onsager theory is given in §3c. Suggestions for future research lines
and conclusions are presented in §4.

2. Model and theory
We consider a binary mixture of NS hard spheres with radius RS and ND hard circular platelets
with vanishing thickness and radius RD; see figure 1 for a schematic illustration. Here and
throughout, species-dependent quantities are indicated by subscripts S (spheres) and D (discs).
The pair interaction potential between any two particles is infinite if the particles overlap, and
vanishes otherwise.
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Figure 1. Schematic of the hard-core platelet–sphere mixture. The model is a binary mixture of (a) hard circular platelets of
radius RD with vanishing thickness and (b) hard spheres of radius RS. The platelet orientation is described by a unit vector Ω̂
normal to the platelet surface. (Online version in colour.)

(a) Density functional theory for colloidal platelet–sphere mixtures
As is common, we split the Helmholtz free energy functional F into an ideal-gas part, Fid, and an
excess contribution, Fexc. Hence

F = Fid + Fexc. (2.1)

The ideal-gas free energy functional is exactly given by

βFid =
∫

d3r
∫

dΩ̂ρD(r, Ω̂)[ln(ρD(r, Ω̂)VD) − 1] +
∫

d3rρS(r)[ln(ρS(r)VS) − 1], (2.2)

where β = 1/kBT is the inverse thermal energy, kB is the Boltzmann constant, T is absolute
temperature and Vi is the (irrelevant) thermal volume of species i. The spatial integral is over the
system volume, V, and the angular integral is over the unit sphere; here, Ω̂ is a unit vector normal
to the platelet surface (cf. figure 1). The one-body distribution function of platelets is denoted by
ρD(r, Ω̂), and that of spheres by ρS(r), the latter being trivially independent of orientation owing
to the rotational symmetry of the spheres. In general, both distribution functions depend on
position r. In the application to bulk fluid phase behaviour below, we consider only homogeneous
states, which are independent of r. Without loss of generality, we introduce an orientational
distribution function for the platelets, ΨD(r, Ω̂), via ρD(r, Ω̂) = ρD(r)ΨD(r, Ω̂). Here, ρD(r) is the
number density of platelets, which gives the differential number of platelets with any orientation
in the differential volume element at r.

The excess part of the free energy functional, Fexc, which accounts for the excluded-volume
interactions between all particles, is approximated by a geometry-based density functional, which
has the structure

βFexc =
∫

d3r Φ({ni
ν}), (2.3)

where the reduced free energy density (Φ) is a function of a set of weighted densities, {ni
ν},

where i = S, D labels the species, and ν the type of weight function. The free energy density
can be grouped into three different contributions, Φ = ΦS + ΦD + ΦSD. Here, ΦS describes only
sphere–sphere interactions. Both ΦD and ΦSD describe coupling of spheres and platelets, with
ΦD containing the terms that generate the FMT functional for pure platelets [4] in the limit of
vanishing density of spheres. In detail, the reduced excess free energy for the interaction between
spheres (ΦS) is taken to be the original Rosenfeld form [23]

ΦS = −nS
0 ln(1 − nS

3) + nS
1nS

2 − nS
υ1 · nS

υ2

1 − nS
3

+ (nS
2)

3 − 3nS
2nS

υ2 · nS
υ2

24π(1 − nS
3)

2
. (2.4)
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Here and in the following two equations, we drop the spatial dependence on r of the
weighted densities for the sake of notational convenience. The interactions between platelets are
described by

ΦD =
∫

dΩ̂
nDD

1 (Ω̂)nD
2 (Ω̂)

1 − nS
3

+
∫

dΩ̂

∫
dΩ̂ ′ nDDD

2 (Ω̂ , Ω̂ ′)nD
2 (Ω̂)nD

2 (Ω̂ ′)
24π(1 − nS

3)
2

. (2.5)

The first term in equation (2.5) represents the interaction between two platelets. It reduces to the
exact second-order contribution of the virial series for the free energy of platelets, if there are no
spheres in the mixture (ρS = 0). The second term corresponds to the interaction between three
platelets (see [4,12] for details). The factors proportional to (1 − nS

3) in the denominators account
for the volume occupied by the spheres in the system.

The further contribution to the reduced excess free energy due to the interaction between
platelets and spheres is

ΦSD = −
∫

dΩ̂nD
0 (Ω̂) ln(1 − nS

3) +
∫

dΩ̂
nS

1nD
2 (Ω̂) + nSD

2 (Ω̂)nD
1 (Ω̂) − nSD

υ2 (Ω̂) · nD
υ1(Ω̂)

1 − nS
3

+
∫

dΩ̂
[nSD

2 (Ω̂)nSD
2 (Ω̂) − nSD

υ2 (Ω̂) · nSD
υ2 (Ω̂)]nD

2 (Ω̂)

8π(1 − nS
3)

2

+
∫

dΩ̂

∫
dΩ̂ ′ nSDD

2 (Ω̂ , Ω̂ ′)nD
2 (Ω̂)nD

2 (Ω̂ ′)
8π(1 − nS

3)
2

. (2.6)

All weighted densities are obtained by convolving the density with specific weight functions. For
hard spheres, the scalar weighted densities are

nS
ν(r) = wS

ν(r) ∗ ρS(r), ν = 0, 1, 2, 3, (2.7)

and the vectorial weighted densities are

nS
ν(r) = wS

ν(r) ∗ ρS(r), ν = υ1, υ2, (2.8)

where ∗ denotes the three-dimensional convolution h(r) ∗ g(r) = ∫
d3x h(x)g(x − r). Here, wS

ν and
wS

ν are the Rosenfeld weight functions for hard spheres [23]:

wS
3(r) = Θ(RS − |r|),

wS
2(r) = δ(RS − |r|)

and wS
υ2(r) = wS

2(r)
r
|r| ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

where Θ(·) is the Heaviside step function and δ(·) is Dirac’s delta distribution. Further
weight functions for hard spheres are wS

1(r) = wS
2(r)/(4πRS), wS

0(r) = wS
2(r)/(4πR2

S) and wS
υ1(r) =

wS
υ2(r)/(4πRS).
The sphere–platelet coupling is described by the weighted densities

nSD
2 (r, Ω̂) = wSD

2 (r, Ω̂) ∗ ρS(r),

nSD
υ2 (r, Ω̂) = wSD

υ2 (r, Ω̂) ∗ ρS(r)

and nSDD
2 (r, Ω̂ , Ω̂ ′) = wSDD

2 (r, Ω̂ , Ω̂ ′) ∗ ρS(r),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.10)

where the weight functions are

wSD
2 (r, Ω̂) = 4

π

√
1 − (r · Ω̂/RS)2wS

2(r),

wSD
υ2 (r, Ω̂) = 4

r − (r · Ω̂)Ω̂

πRS
wS

2(r)

and wSDD
2 (r, Ω̂ , Ω̂ ′) = 8

π
|(Ω̂ × Ω̂ ′) · wS

υ2(r)|.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)
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Finally, the weighted densities for platelets are

nD
ν (r, Ω̂) = wD

ν (r, Ω̂) ∗ ρD(r, Ω̂), ν = 0, 1, 2,

nD
υ1(r, Ω̂) = wD

υ1(r, Ω̂) ∗ ρD(r, Ω̂),

nDD
1 (r, Ω̂ ′) =

∫
dΩ̂wDD

1 (r, Ω̂ , Ω̂ ′) ∗ ρD(r, Ω̂)

and nDDD
2 (r, Ω̂ , Ω̂ ′) =

∫
dΩ̂ ′′wDDD

2 (r, Ω̂ ′′, Ω̂ , Ω̂ ′) ∗ ρD(r, Ω̂ ′′),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

and their corresponding weight functions are

wD
0 (r, Ω̂) = 1

2πRD
δ(RD − |r|)δ(r · Ω̂),

wD
1 (r, Ω̂) = 1

8
δ(RD − |r|)δ(r · Ω̂),

wD
υ1(r, Ω̂) = r

RD
wD

1 (r, Ω̂),

wD
2 (r, Ω̂) = 2Θ(RD − |r|)δ(r · Ω̂),

wDD
1 (r, Ω̂ , Ω̂ ′) = 2

RD

∣∣∣Ω̂ · (Ω̂ ′ × r)
∣∣∣ wD

1 (r, Ω̂)

and wDDD
2 (r, Ω̂ , Ω̂ ′, Ω̂ ′′) = 8

π

∣∣∣Ω̂ · (Ω̂ ′ × Ω̂ ′′)
∣∣∣ wD

2 (r, Ω̂).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

The density functional described here is a special case of the functional for ternary platelet–
sphere–needle mixtures [4]. It includes contributions up to third order in platelet density. It
reduces to the original Rosenfeld functional [23] in the case of a monodisperse fluid of hard
spheres, and gives results that are in good agreement with Monte Carlo simulation data when
describing a monodisperse fluid of vanishingly thin platelets [4,12,35]. Hence, we are confident
that it can be applied successfully to the study of binary mixtures of hard spheres and platelets.

(b) Density functional theory for mixtures of colloidal platelets and ideal polymers
We use a model [26] similar in spirit to the colloid–polymer model of Asakura & Oosawa [27] and
Vrij [28] (AOV), to study a mixture of colloidal platelets, which are, as above, taken as infinitely
thin circular discs, and ideal polymers. The polymers are modelled by fully interpenetrable
spheres of radius RP. These model polymers cannot overlap with the platelets. We obtain an
approximation for the free energy of this system by linearizing the excess part of the free energy
for the corresponding hard-core system. This strategy follows the derivation of the FMT for
the AOV model from a corresponding binary hard-sphere mixture [29,30]. Hence, we apply the
linearization to the hard-core functional of §3a in order to obtain a free energy functional for the
polymer–platelet mixture, FPD

exc, via

FPD
exc[ρD, ρP] = Fexc[ρD, ρS = 0] +

∫
d3r

δFexc

δρS(r)

∣∣∣∣
ρS=0

ρP(r), (2.14)

where ρP(r) is the one-body polymer density distribution, and Fexc is the free energy functional
for the hard-core mixture, given in equation (2.3). FPD

exc can be expressed in terms of a reduced free
energy density

βFPD
exc =

∫
d3r ΦPD({ni

ν}), (2.15)
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where the reduced free energy, ΦPD, is a simple expression linear in polymer density and with up
to cubic contributions in platelet density:

ΦPD =
∫

dΩ̂nD
0 (Ω̂)nP

3 (Ω̂) +
∫

dΩ̂(nP
1 (Ω̂)nD

2 (Ω̂) + nPD
2 (Ω̂)nD

1 (Ω̂) − nPD
υ2 (Ω̂) · nD

υ1(Ω̂))

+
∫

dΩ̂

∫
dΩ̂ ′ nPDD

2 (Ω̂ , Ω̂ ′)nD
2 (Ω̂)nD

2 (Ω̂ ′)
8π

+
∫

dΩ̂nDD
1 (Ω̂)nD

2 (Ω̂)(1 + nP
3 )

+
∫

dΩ̂

∫
dΩ̂ ′ nDDD

2 (Ω̂ , Ω̂ ′)nD
2 (Ω̂)nD

2 (Ω̂ ′)
24π

(1 + 2nP
3 ). (2.16)

We have suppressed the spatial dependence of the weighted densities in the above expressions.
The weighted densities that depend on the polymer density (denoted by the letter P in the
superscript) are those for hard spheres (2.7) and (2.8), but replacing the hard-sphere colloid
density, ρS(r), by the polymer density, ρP(r), and replacing the colloid radius, RC, by the polymer
radius, RP.

(c) Spatially homogeneous fluids
In the following, we restrict ourselves to considering spatially homogeneous fluid states. We use
the sphere–platelet model (the expressions for the polymer–platelet model being analogous). The
density distributions are independent of the spatial coordinates and

ρS(r) = ρS = const

and ρD(r, Ω̂) = ρDΨD(Ω̂), where ρD = const.

⎫⎬
⎭ (2.17)

The total number of spheres (NS) and that of platelets (ND) are obtained by integrating the number
densities over the system volume:

NS =
∫

d3rρS,

and ND =
∫

d3rρD.

⎫⎪⎪⎬
⎪⎪⎭

(2.18)

Equation (2.18) implies that the orientational distribution function of platelets is normalized
according to ∫

dΩ̂ΨD(Ω̂) = 1, (2.19)

which is a different convention compared to that of Esztermann et al. [4]. As we do not expect
biaxial arrangements of the platelets to occur in bulk, we take the orientational distribution
function to depend only on the polar angle θ with respect to the nematic director, hence Ψ (Ω̂) =
Ψ (θ). We use a parameter, Λ, and prescribe the functional form of the orientational distribution
function as

ΨD(θ) = exp[ΛP2(cos θ)]∫
dΩ̂ exp[ΛP2(cos θ)]

, (2.20)

satisfying by construction the normalization condition (2.19). Here, P2(·) is the second Legendre
polynomial, and Λ determines the degree of orientational order of the platelets. For isotropic
states, ΨD(θ) = 1/4π is obtained for Λ = 0. We characterize the orientational order of the platelets
by SD, the standard nematic order parameter:

SD =
∫

dΩ̂ΨD(θ)P2(cos θ). (2.21)

We have tested the quality of the parametrization (2.20) by computing the isotropic–nematic
(IN) phase transition of the monodisperse fluid of platelets, and comparing the coexisting
densities and order parameter with those obtained from free minimization [4]. The differences for
the coexistence densities between the two methods are of the order of 1 per cent; see table 1 for a
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Table 1. Coexistence values for the INphase transitionof amonodispersefluidofhard circular plateletswith vanishing thickness.
The values in the first row are from freeminimizationwithout an a priori form of the orientational distribution function [12]. The
second row shows the coexisting values using the parametrization (2.20). Monte Carlo data [36] are presented in the third row.
In the fourth row, the results from Onsager theory are shown; these are identical to Parsons–Lee theory (§2d), as the packing
fraction vanishes in the pure system of platelets. Here, ρ I

D and ρN
D are the coexistence densities at the IN transition, and S

N
D is

the nematic order parameter in the coexisting nematic state.

ΨD(θ) ρ I
DR

3
D ρN

D R
3
D SND

FMT, free minimization [12] 0.419 0.469 0.533
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FMT, parametrization (2.20) 0.421 0.462 0.489
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Monte Carlo [36] 0.460 0.498 0.45–0.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Onsager theory 0.672 0.858 0.801
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

comparison. The value of the nematic order parameter at coexistence, SN
D, deviates more strongly

from the result of free minimization. However, as its magnitude is unusually small for the pure
platelet system, this is a very sensitive quantity; see the discussion in Phillips & Schmidt [12].
For completeness, table 1 also gives the results from Onsager theory and from Monte Carlo
simulations.

In spatially homogeneous fluids, the weighted densities are obtained by integrating the weight
functions over the spatial coordinates. For hard spheres, we have

nS
0 = ρS,

nS
1 = RSρS,

nS
2 = 4πR2

SρS,

nS
3 = 4

3 πR3
SρS

and nS
υ1 = nS

υ2 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.22)

The mixed weighted densities that couple spheres and platelets are

nSD
2 (Ω̂) = 4πR2

SρS,

nSD
υ2 (Ω̂) = 0

⎫⎬
⎭ (2.23)

and

nSDD
2 (θ , θ ′) = ρS

∫RS

−RS

dz
∫ 2π

0
dφ′

⎧⎪⎨
⎪⎩

32π |t|, if t2 > s2,

64
(√

s2 − t2 + t arcsin
t
s

)
, otherwise,

(2.24)

where t = z sin θ sin θ ′ sin φ′, and

s =
√

R2
S − z2

√
sin2 θ cos2 θ ′ + cos2 θ sin2 θ ′ − 2 sin θ cos θ sin θ ′ cos θ ′ cos φ′. (2.25)

Owing to our normalization (2.19), equation (2.24) and equation (105) of Esztermann et al. [4]
differ by a factor (4π)2. The integrals over the azimuthal angles φ and φ′ have been performed in
order to arrive at (2.24), as only the polar angle with respect to the nematic director is relevant for
uniaxial configurations.

For platelets, the bulk weight functions reduce to

nD
0 (Ω̂) = ρDΨD(Ω̂),

nD
1 (Ω̂) = π

4
RDρDΨD(Ω̂),

nD
2 (Ω̂) = 2πR2

DρDΨD(Ω̂)

and nD
υ1(Ω̂) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.26)
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Further contributions to the free energy due to the weighted densities nDD
1 and nDDD

2 are
the same as given in equations (13) and (27) of Phillips & Schmidt [12], to which we refer the
reader directly.

The angular integrals were calculated numerically using Gaussian quadrature. We used 2000
roots for the integrals over the azimuthal angle and 25 roots for the integrals in the polar angle.
The orientational distribution function does not depend on the azimuthal angle, and hence the
integrals over φ can be computed and stored for subsequent use. We checked the accuracy of the
numerical procedure by computing selected coexisting points with 100 roots for the integrals over
the polar angle. The differences were less than 1 per cent.

(d) Parsons–Lee theory for colloidal platelet–sphere mixtures
Parsons–Lee theory [18,19] constitutes an approximation where the second virial contribution
to the excess free energy is weighted with a prefactor in order to approximate the effects of
higher virial contributions. According to Parsons–Lee theory, the excess free energy for a spatially
homogeneous binary mixture of hard bodies can be written as [37]

βFexc

V
= φ(η)

∑
ij

ρiρj

∫
dΩ̂

∫
dΩ̂ ′Ψi(Ω̂)Ψj(Ω̂

′)vij
ex(Ω , Ω ′), (2.27)

where v
ij
ex(Ω̂ , Ω̂ ′) is the excluded volume between two particles of species i and j with orientations

given by Ω̂ and Ω̂ ′, respectively. The prefactor φ(η) depends on the chosen reference system.
Here, η is the total packing fraction of the mixture, η = ∑

i ρivi, where vi is the particle volume of
species i. Our reference system is a pure fluid of hard spheres, and for the present model η = vSρS,
as the platelet volume vanishes. Using the Carnahan–Starling equation of state, the prefactor in
the excess free energy is

φ(η) = 4 − 3η

8(1 − η)2 . (2.28)

The orientational distribution function for spheres is ΨS(Ω̂) = 1/4π , and for platelets is given in
equation (2.20). The excluded volume between two spheres is

vSS
ex (Ω̂ , Ω̂ ′) = 32

3 πR3
S, (2.29)

between platelets and spheres is

vDS
ex (Ω̂ , Ω̂ ′) = 2πRSR2

D + π2RDR2
S + 4

3 πR3
S, (2.30)

and, finally, between two platelets is

vDD
ex (Ω̂ , Ω̂ ′) = 4πR3

D sin γ , (2.31)

where γ is the angle between Ω̂ and Ω̂ ′. For pure platelets η = 0, and hence (2.28) reduces to
φ(η) = 1

2 , which renders (2.27) identical to the (Onsager) second virial functional.

(e) Coexistence conditions
In what follows, we denote the composition of the mixture, x, by the molar fraction of hard
spheres, i.e. x = ρS/ρ, where ρ = ρS + ρD is the total density. The molar fraction of platelets is
then simply ρD/ρ = 1 − x. The equilibrium properties of the mixture are obtained by minimizing
the Gibbs free energy per particle g = F/NT + p/ρ at constant composition x, pressure p and
temperature T. Here, F is the total Helmholtz free energy, and NT = NS + ND is the total number
of particles. We use a standard Newton–Raphson method to minimize g as a function of ρ and Λ.
Binodal lines are located by a common-tangent construction on g(x), which is equivalent to the
equality of chemical potentials of both species at the coexisting values of x and ρ. Thermal and
mechanical equilibrium are satisfied in advance by fixing both temperature and pressure.
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Correspondingly, for the platelet–polymer mixture, x = ρP/ρ and ρ = ρP + ρD. The coexistence
conditions are those given earlier, with colloidal sphere quantities exchanged by the respective
polymer quantities.

3. Results
The pure fluid of hard platelets with vanishing thickness undergoes a first-order IN phase
transition as a function of density. Table 1 summarizes the values for the coexisting densities and
for the nematic order parameter according to the present FMT. The results are in good agreement
with Monte Carlo simulation data [38,39]. Columnar and solid phases appear only in the limit
of infinite density in a pure system of platelets with vanishing thickness [36]. In a monodisperse
fluid of hard spheres, there is a well-known first-order fluid–solid phase transition on increasing
the density. We have not studied spatially ordered phases, but give some comments about the
stability of spatially homogeneous phases with respect to hard-sphere crystallization in §4.

(a) Mixtures of colloidal platelets and spheres
In figure 2, we present the phase behaviour of mixtures of platelets and spheres for three different
mixtures with size ratios RD/RS = 2 (figure 2a–c(i)), 5 (figure 2a–c(ii)) and 10 (figure 2a–c(iii)). We
comment on the behaviour for smaller size ratios at the end of the section. In figure 2a(i), we show
the phase diagram in the plane of reduced pressure, βpR3

D, and molar fraction of spheres, x, for
a mixture with size ratio RD/RS = 2. The IN phase transition in the pure fluid of platelets (x = 0)
moves to higher pressures and the fractionation becomes stronger when spheres are added to the
system. Upon increasing the pressure, the nematic branch of the binodal initially moves to higher
compositions, but then bends back on itself approaching x = 0. The nematic phase is stable only
when the molar fraction for spheres is very low.

In figure 2b(i), we plot the phase diagram for the same mixture in the plane of reduced
density of discs, ρDR3

D, and packing fraction of spheres, ρSvS, where vS is the sphere volume.
The IN biphasic region strongly broadens when the packing fraction of spheres in the mixture is
increased. The orientational order parameter of platelets, SD, along the nematic side of the binodal
is shown in figure 2c(i). We also display the total orientational order parameter of the mixture, i.e.
the nematic order parameter of platelets weighted by the composition of platelets,

Stot = ρD

ρSD
= (1 − x)SD. (3.1)

As the composition of spheres at the IN phase transition is low, the two orientational order
parameters are similar to each other, increasing along the nematic side of the binodal.

The second column of figure 2 shows the results for mixtures with RD/RS = 5, i.e. for increased
relative size of the platelets. The topology of the phase diagrams in both representations is the
same as in the above mixture. The main difference to the case of RD/RS = 2 is the strongly
increased range of compositions for which the nematic phase is stable. For example, in figure 2a(ii)
one can observe that, for a range of pressures, it is possible to find a stable nematic phase even if
the composition of the mixture is x � 0.6. The mechanism that induces the IN phase transition is
different at low and at high pressures. At low pressures, the transition is mainly due to the gain
in configurational entropy of the platelets in the nematic phase, as the excluded volume between
two platelets is minimal if they are parallel to each other. In this regime, there is low partitioning
between the isotropic and nematic phases. At high pressures, however, the transition is driven
by the (unfavourable) excluded-volume interactions between platelets and spheres. As a result,
there is strong demixing between a nematic phase rich in platelets and an isotropic phase mostly
composed of spheres.

We focus next on the behaviour of ρD along the nematic branch of the binodal. For low size
ratios, it monotonically increases as spheres are added to the mixture; but for RD/RS � 2, ρD
slightly decreases when the packing fraction of spheres is low (see the inset of figure 2b(ii)). This
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Figure 2. Phase diagrams of binary mixtures of spheres and platelets with three different values of the platelet–sphere size
ratio: RD/RS = 2 (i), 5 (ii) and 10 (iii). For each mixture, we show (a) the reduced pressureβpR3D versus composition of spheres
x, (b) the reduced density of platelets ρDR3D as a function of the packing fraction for spheres ρSvS and (c) the nematic order
parameters along the nematic side of the binodal. The shaded areas indicate two-phase regions. Empty circles represent critical
points. Dotted lines represent triple points. The dashed lines in the second row are selected tie lines that connect two coexisting
points on the binodal. The inset in (b(ii)) is a zoom of the region close to the IN phase transition of the pure fluid of platelets.
The solid black (dashed red) lines in the third row represent the platelets’ (total) nematic order parameter, SD (ST). The insets in
the third row are cartoons showing the relative size between species. (Online version in colour.)

behaviour appears to be counter-intuitive. However, a reduction in the density of platelets at
which the nematic phase is stable in the mixture has recently been observed in sedimentation
experiments on sterically stabilized mixtures of gibbsite platelets and silica spheres [31] of size
ratio ≈ 6. However, the authors found a much stronger effect than that obtained in our theory. The
quantitative difference could be due to the influence of gravity on the bulk phase diagram [40].
The polydispersity of the components, the finite thickness of the platelets and further interactions
between the particles (not purely entropic, as we are considering here) in the experimental set-up
could also be relevant to explain the quantitative differences.

The last column in figure 2 shows results for the phase behaviour of a mixture with size ratio
RD/RS = 10. A prominent alteration of the topology of the phase diagram is that, in addition
to the IN phase transition, there is also demixing between two nematic phases with differing
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compositions. The nematic–nematic phase coexistence region is bounded by a lower critical
point and merges with the IN phase transition at an isotropic–nematic–nematic triple point. At
pressures above the triple point pressure, there is strong demixing between an isotropic phase rich
in spheres and a nematic phase mostly composed of platelets. The nematic–nematic demixing
can be viewed as being driven by a depletion attraction induced between the platelets by the
small spheres.

The behaviour of the orientational order parameters along the binodal is shown in the third
row of figure 2. For small size ratios, figure 2c(i), both the order parameter of platelets, SD, and the
total order parameter, Stot, increase along the nematic branch of the binodal. However, in mixtures
where the size ratio is high (figure 2c(ii), (iii)), SD monotonically increases along the binodal, but
the total order parameter, Stot, first decreases to a minimum and then increases. This qualitative
difference may be observable experimentally.

The phase diagrams of mixtures with size ratios RD/RS < 2 (not shown) are qualitatively
similar to the results for RD/RS = 2. In particular, the topology remains unchanged and only
IN phase separation occurs. This is in contrast to previous studies of mixtures of infinitely thin
platelets and hard spheres [16,17], which reported isotropic–isotropic demixing if the size ratio of
the mixture is small. In our DFT treatment, we do not find isotropic–isotropic coexistence in the
range of size ratios 0.2 ≤ RD/RS ≤ 10.

(b) Mixtures of colloidal platelets and ideal polymers
We turn to the analysis of mixtures of colloidal platelets and ideal model polymers. Bates and
Frenkel studied such mixtures using Monte Carlo simulations and perturbation theory [26].
Following the ideas of Asakura and Oosawa [27] and Vrij [28], the polymers are modelled as
freely interpenetrable spheres that cannot overlap with the platelets due to the hard repulsion
between the unlike species. A DFT for such mixture is obtained by linearizing the excess free
energy, equation (2.3), around ρS = 0 (see §2b for details).

The bulk fluid phase behaviour of mixtures of colloidal platelets and non-adsorbing polymers
is depicted in figure 3 for three different values of the size ratio RD/RP. The upper row shows the
phase diagram in the pressure–composition plane. The polymer fugacity, zP = exp(βμP)/VP, with
μP the chemical potential of the polymers, as a function of the density of platelets is represented
in the lower row. Here, the chemical potential of species i is obtained from ∂F/∂Ni = μi. Note that
the fugacity is independent of the (hence irrelevant) thermal volume VP because the chemical
potential μp is shifted according to the particular choice of VP.

The main difference to platelet–colloid mixtures is that mixtures of platelets and ideal
polymers display prominent demixing between two isotropic states when the size ratio is low
enough. In figure 3a(i), we show the results for RD/RP = 2. There is strong demixing between
two isotropic phases bounded by a lower critical point. The isotropic–isotropic phase separation
occurs almost entirely at pressures below the IN pressure of the pure fluid of platelets. At higher
pressures, the isotropic–isotropic binodal merges with the IN binodal via a nematic–isotropic–
isotropic triple point. This phase diagram differs significantly from that of the hard-core mixture
with the same size ratio shown in figure 2a(i). The difference between the two systems lies in the
sphere–sphere excluded-volume interactions. In a mixture of platelets and ideal polymers, the
gain in accessible volume in the demixed isotropic–isotropic state overcompensates the loss of
mixing entropy. This is not the case in mixtures of colloidal platelets and spheres for the size ratios
considered. It is interesting to note that isotropic–isotropic demixing has been found by computer
simulation in mixtures of platelets with finite thickness and non-adsorbing polymers [41].

In figure 3b(i), we show a comparison with Monte Carlo simulation data (full circles) [26] for
the same mixture (RD/RP = 2). The agreement is reasonably good, although DFT underestimates
the IN coexisting densities at low polymer concentration and also the fugacity of the polymers
along both branches of the isotropic–isotropic binodal and hence the location of the critical point.
This trend is similar to what was found for the AOV model [42].
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Figure 3. Phase diagrams of mixtures of colloidal platelets and ideal model polymers for size ratios RD/RP = 2 (i), 5 (ii) and
10 (iii). For each mixture, we show (a) pressure,βpR3D, as a function of the composition of polymers, x, and (b) fugacity of the
polymers, zPR3D, versus density of platelets,ρDR3D. Empty circles represent critical points. Dotted lines represent triple points. Full
circles in (b(i)) indicate Monte Carlo simulation data [26].

The middle (right) column of figure 3 shows the phase diagrams of a mixture with size
ratio RD/RP = 5 (RD/RP = 10). The behaviour is very similar to the corresponding mixtures of
colloidal spheres and platelets, depicted in figure 2a(ii), (iii). Such similarity might be expected
because, by increasing the relative size of the platelets (in hard-core platelet–sphere mixtures), the
platelet–platelet and platelet–sphere interactions dominate over the sphere–sphere interactions.
Recall that we do not consider the freezing transition of hard spheres, which would dramatically
change the phase behaviour between ideal polymers and colloidal spheres at densities above the
freezing transition.

Our results are in qualitative agreement with the experimental observations. For example,
isotropic–isotropic coexistence has been found in suspensions of sterically stabilized colloidal
gibbsite platelets and non-adsorbing polymers (with RD/RP ≈ 2.9) by Lekkerkerker et al. [43].
The same study also showed a strong broadening of the IN two-phase region on increasing
the polymer concentration. Nematic–nematic demixing has recently been found [44] in a related
system of mixtures of non-adsorbing polymers and positively charged platelets.

(c) Fundamental measure theory versus Parsons–Lee theory
The geometry-based DFT of §2a contains contributions to the excess free energy that are of third
order in density. In this section, we compare the results from this theory to those from an extended
Onsager theory with Parsons–Lee rescaling that explicitly includes only two-body interactions.
For details about Parsons–Lee theory, see §2d. The phase diagram of a hard-core mixture with
size ratio RD/RS = 2 according to Parsons–Lee theory is depicted in figure 4. It is to be compared
with figure 2a,b(i), where corresponding results obtained from FMT are shown. An immediately
noticeable difference is in the location of the IN phase transition in the pure fluid of platelets. In
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Figure 4. Bulk phase diagrams of a colloidal mixture of platelets and spheres according to Parsons–Lee theory. (a) Scaled
pressure βpR3D versus composition of spheres x. (b) Density of platelets ρDR3D as a function of the packing fraction of spheres
ρSvS. The size ratio is RD/RS = 2.

this limit (x = 0), Parsons–Lee theory gives an unchanged result when compared with Onsager
theory owing to the vanishing packing fraction in the pure fluid of platelets. Hence, Parsons–
Lee theory clearly overestimates the coexisting densities (ρI

DR3
D = 0.67 and ρN

D R3
D = 0.86). It also

predicts a much too high nematic order parameter at the IN coexistence, SN = 0.80 (not shown),
compared with FMT and Monte Carlo simulation.

For RD/RS = 2, the topology of the phase diagram predicted by the two theories is the same.
According to Parsons–Lee theory, the partitioning between isotropic and nematic phases is higher
than in FMT. A similar trend was observed on comparing the current FMT and Onsager theory in
binary mixtures of hard platelets with different radius [12]. Parsons–Lee theory predicts demixing
between two nematic phases in mixtures with high size ratio, as does FMT. However, the minimal
size ratio for phase segregation to occur between two nematics using Parsons–Lee theory is
RD/RS � 15, considerably higher than the threshold for FMT, which is RD/RS ≈ 10. One important
difference is that Parsons–Lee theory predicts isotropic–isotropic demixing for low size ratios
RD/RS � 1. Nevertheless, the isotropic–isotropic phase boundary is located at very high pressures
and densities, and is most probably metastable with respect to segregation between an isotropic
phase rich in platelets and a solid phase rich in spheres.

4. Conclusions
We have investigated the fluid bulk phase behaviour of mixtures of colloidal platelets and spheres
using a geometry-based DFT [4]. The size ratio RD/RS is the key parameter that controls the
behaviour of the system. In mixtures with 0.2 ≤ RD/RS � 10, we find only IN phase separation.
We have identified two different mechanisms behind the IN phase transition. If the composition
of spheres is low, the IN transition is driven by the excluded-volume interaction between the
platelets, similar to the mechanism in a pure fluid of platelets. In this regime, the transition takes
place between two phases with low partitioning. As the composition of spheres is increased,
the interaction between dissimilar species becomes dominant, and the (unfavourable) excluded-
volume interactions between spheres and platelets drives strong demixing between an isotropic
sphere-rich phase and a nematic platelet-rich phase.

Mixtures with high size ratio, RD/RS � 10, also display demixing between two nematics at
different compositions. However, reliably describing such highly asymmetric mixtures is very
difficult for any theoretical treatment; see the comparison of FMT and simulation results for
asymmetric binary hard-sphere mixtures [45,46].
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The possible existence of demixing between two isotropic fluids in mixtures of colloidal
platelets and spheres remains an open question. The FMT approach does not predict isotropic–
isotropic demixing. Previous studies [16,17] reported isotropic–isotropic phase separation in
mixtures where the size of both species is similar. Nevertheless, in both studies, the authors
neglected excluded-volume interactions between platelets. This approximation is valid only if
the platelet density is very low. By contrast, our theory includes platelet–platelet interactions,
modelled via up to cubic contributions in platelet density to the free energy. The bulk free energy
for isotropic states from the present DFT is the same as that from scaled-particle theory [47], which
gives further confidence in our results. Carrying out a careful simulation study in order to shed
further light on the existence of isotropic–isotropic demixing in the hard-core mixture would be
very valuable.

We have not considered spatially inhomogeneous phases in this work. The pure fluid of hard
spheres undergoes a fluid–solid phase transition. The freezing transition, according to Monte
Carlo simulations [48,49], takes place at packing fractions ρSvS = 0.49 for the liquid and 0.54 for
the solid (values that are higher than the packing fractions considered in the present work). Hence,
we expect our fluid phase diagrams to be stable with respect to freezing of the hard spheres. For
low size ratios (smaller than those analysed here), we expect an isotropic–solid demixing region in
the phase diagram. Columnar as well as solid phases become relevant in the systems of platelets
with non-vanishing thickness at sufficiently high densities. Hence, it is possible that nematic–
nematic demixing in mixtures with high size ratio will be metastable with respect to columnar
ordering. Recent experiments by Lekkerkerker and co-workers on mixtures of charged gibbsite
platelets and silica spheres [32,33] have shown a large isotropic–columnar coexisting region.
Columnar ordering has also been studied theoretically in mixtures of board-like platelets and
spheres in a cubic lattice [50]. Smectic phases are not very common in discotic liquid crystals, but
they could appear in real systems with finite thickness [51]. Recent experiments with mixtures of
colloidal gibbsite platelets and spheres [52] show that also glass formation can occur at sufficiently
high sphere concentrations.

As our theory is mean-field in character, we expect the location of the nematic–nematic
critical point to change upon including neglected fluctuations, say in computer simulations.
Such (future) work could ascertain the stability of nematic–nematic demixing. Furthermore, it
would be interesting to consider the stability of the nematic–nematic transition upon altering
the platelet–polymer interactions, in order to take into account penetrability of platelets and
polymers.

The results presented in this work can form the basis for studies of inhomogeneous platelet–
sphere mixtures using DFT, such as the analysis of gravity [40,53], as well as wetting and
confinement effects.
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