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Abstract

The construction of density functionals for various model systems is summarized and
applications to homogeneous and inhomogeneous situations are presented. The geometry-
based method used relies on Rosenfeld’s fundamental measures approach. Among the
models treated are penetrable spheres, the Widom-Rowlinson model, non-additive hard
sphere mixtures, the Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures, as
well as extensions of the AOV model that treat the influence of polymer non-ideality,
colloid-induced polymer compression, the influence of poor solvent quality, and polymer
penetrability. For the AOV model studies of inhomogeneous situations are presented,
like the free fluid-fluid interface and wetting properties, wall tension and contact angle
of the liquid-gas interface and a hard wall, as well as response to external fields, like
standing laser fields, confining hard or penetrable walls, and gravity. Further model
systems include colloidal rod-sphere mixtures, hard body amphiphilic mixtures, and fluid
adsorbate in random porous media, where bulk demixing and interfacial properties were
investigated. This thesis includes all corresponding original publications as well as an
overview in German.





5

Contents
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J. Phys.: Cond. Matt. 14, 12099 (2002) . . . . . . . . . . . . . . . . . . . 353

Capillary condensation and interface structure of a model colloid-polymer mix-
ture in a porous medium
P. P. F. Wessels, M. Schmidt, H. Löwen,
Phys. Rev. E 68, 061404 (2003) . . . . . . . . . . . . . . . . . . . . . . . . 372

Freezing in the presence of disorder: A lattice study
M. Schmidt, L. Lafuente, J. A. Cuesta,
J. Phys.: Cond. Matt. 15, 4695 (2003) . . . . . . . . . . . . . . . . . . . . 384

Soft interaction potentials 398
Density-functional theory for soft potentials by dimensional crossover

M. Schmidt, Phys. Rev. E 60, R6291 (1999) . . . . . . . . . . . . . . . . . 398
A density functional for additive mixtures

M. Schmidt, Phys. Rev. E 62, 3799 (2000) . . . . . . . . . . . . . . . . . . 402
Fluid structure from density functional theory

M. Schmidt, Phys. Rev. E 62, 4976 (2000) . . . . . . . . . . . . . . . . . . 406



8

Density functional theory for structure and freezing of star polymer solutions
B. Groh, M. Schmidt, J. Chem. Phys. 114, 5450 (2001) . . . . . . . . . . . 412

Miscellaneous 419
Density functional theory for random sequential adsorption

M. Schmidt, J. Phys.: Cond. Matt. 14, 12119 (2002) . . . . . . . . . . . . 419
Freezing transition of hard hyperspheres
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J. Dzubiella, M. Schmidt, H. Löwen, Phys. Rev. E 62, 5081 (2000) . . . . 446

Colloidal particles in emulsions
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Übersicht in deutscher Sprache

Die Entwicklung leistungsfähiger Dichtefunktionale [1, 2] ermöglicht das Studium rele-
vanter inhomogener Situationen in Systemen der weichen Materie. Für eine Reihe von
Modellsysteme werden in der vorliegenden Arbeit explizite Näherungen vorgestellt für die
Helmholtzsche freie Energie, ausgedrückt als Funktional der Einteilchendichte. Ein solches
Dichtefunktional ist spezifisch für gegebene Wechselwirkungen zwischen den Teilchen und
ermöglicht die Behandlung von beliebigem externen Einfluss, sofern dieser durch ein exter-
nes (statisches) Potential modelliert werden kann, wie ein Substrat oder die Gravitation.
Die Konstruktion der hier vorgestellten Dichtefunktionale basiert einerseits auf der geome-
trischen Form der Teilchen, andererseits auf der statistischen Mechanik des betrachteten
Modells in stark einschränkender Geometrie. In diesem sogenannten nulldimensionalen
Grenzfall des Modells kann man die Zustandssumme und damit die freie Energie exakt
berechnen. Ein vermöge der geometrie-basierten Methode konstruiertes Dichtefunktional
interpoliert dann zwischen dem nulldimensionalen Grenzfall und der für kleine Dichten
gültigen Virialentwicklung. Die Anwendungen zeigen, dass die so erhaltene (approxima-
tive) Theorie für beliebig inhomogene Dichteverteilungen vernünftige Resultate liefert.
Das Verfahren basiert auf Rosenfeld’s fundamental measure theory für harte Kugeln [3],
und deren moderner Formulierung [4–7]. Eine kurze Übersicht über behandelte Modelle
und Fragestellungen findet sich in dem Konferenzband der 5th Liquid Matter Conference
2002 [12].

Zu der Reihe grundlegender Modelle, die erfolgreich behandelt wurden, gehören durch-
dringbare Kugeln, deren Paarpotential durch eine repulsive Stufenfunktion gegeben ist
[13, 14], das Widom-Rowlinson-Modell [15] für eine Flüssigkeitsmischung in der nur Teil-
chen verschiedener Komponenten miteinander (wie harte Kugeln) wechselwirken [16], so-
wie nicht-additive harte Kugelmischungen [17]. Das jeweilige Dichtefunktional beschreibt
die Korrelationsfunktionen in fluiden Zuständen sowie das Phasenverhalten sehr zufrieden-
stellend im Vergleich zu Simulationsdaten und eröffnet so die Möglichkeit des detaillierten
Studiums inhomogener Situationen.

Mischungen von kolloidalen harten Kugeln und nichtabsorbierenden Polymeren sind
nützliche Modellsysteme auf mesoskopischer Skala [21, 22], da das Phasenverhalten ähnlich
dem von einfachen Substanzen ist, also Gas, Flüssigkeit und Kristall umfasst. Das Asakura-
Oosawa-Vrij-Modell (AOV-Modell) [23, 24] ist wohl das einfachste theoretische Modell zur
Beschreibung: Die Kolloidteilchen werden durch harte Kugeln mit Radius Rc beschrieben,
die Polymere durch ideale (nicht-wechselwirkende) effektive Kugeln deren Radius Rp gleich
dem Gyrationsradius gesetzt ist, und die mit einer Hartkugel-Abstoßung mit Reichweite
Rp + Rc mit den Kolloiden wechselwirken. Das für das AOV-Modell hergeleitete Dichte-
funktional [25] beschreibt Phasenverhalten und Korrelationsfunktionen sehr gut [27] und
wurde für das Studium verschiedenster inhomogener Situationen verwandt: Benetzung
von Wänden und freie Grenzflächen [28–30], die Grenzflächenspannung an Wänden [32],
sowie der Kontaktwinkel der Flüssig-Gas-Grenzfläche mit einer harten Wand [33]. Vink,
Horbach und Binder haben dieses Modell kürzlich detailliert mit Computersimulationen
untersucht [35–37]. Dass es nützlich ist, solche mesoskopischen Systeme zu betrachten
zeigt eine experimentelle Arbeit, in der es gelungen ist, thermische Kapillarwellen an ei-
ner flüssigen Oberfläche [38, 39] erstmals direkt (mit konfokaler Mikroskopie) sichtbar zu
machen [40] (siehe auch die Referenzen [41, 42]).

Weiterhin wurde die DFT für das AOV-Modell [25] angewendet zum Studium von la-
serinduzierter Kondensation der flüssigen Phase [43], der Kapillarkondensation zwischen
zwei parallelen Platten [44], der Kapillarevaporation zwischen zwei semipermeablen Plat-
ten (die als durchdringbar für die Polymere angenommen werden) [45], des Wettstreits
zwischen Sedimentation und Phasentrennung [46] und der Vorhersage einer “schwebenden
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Flüssigkeit” bei Einfluss von der Gravitation auf Kolloide und Polymere [47].
Die leistungsfähige geometrie-basierte Methode hat es ermöglicht, Modelle zu behan-

deln, die über das AOV-Modell hinausgehen: Jeweils der Einfluss auf das Phasenverhalten
wurde untersucht von Polymererepulsion [48], durch Kolloidteilchen induzierte Kompres-
sion der Polymere [49], der Lösungsmittelqualität [50], sowie dem Eindringen von Kol-
loidteilchen in Polymere [51].

Mischungen von kolloidalen Kugeln und Stäbchen sind interessante Modelle um das
Ordnen von Orientierungsfreiheitsgraden zu studieren [52]. Rosenfeld’s ursprüngliches
Dichtefunktional für allgemeine konvexe Körper [53, 54] liefert nicht die richtige Virial-
entwicklung und einige Verbesserungen wurden vorgeschlagen [55–57]. Für eine Mischung
von harten Kugeln und unendlich dünnen Stäbchen [52] wurde eine DFT hergeleitet, die
die richtige Virialentwicklung bis zur zweiten Ordnung hat [58], und damit die Eigen-
schaften von flüssigen Grenzflächen studiert [59]. Bemerkenswert genau im Vergleich zu
Simulationsdaten sind die vorhergesagten Dichteprofile über die Grenzfläche hinweg [60].
An einer harten Wand zeigt dieses Modell Benetzung durch die kugelreiche flüssige Pha-
se [61]. Weitere Terme, die die Wechselwirkung zwischen Stäbchen beschreiben, konnten
gefunden werden [62]. Als sehr reichhaltig hat sich das Phasenverhalten bei Zugabe von
Polymeren erwiesen [63].

Der Frage ob sich amphiphiles Verhalten finden lässt in Modellen, die nur von steri-
scher Abstoßung bestimmt sind, wurde in Ref. [64] mit Hilfe einer ternären Mischung von
Kugeln, Stäbchen und einem Hybrid aus beiden nachgegangen. Sowohl das Phasenverhal-
ten als auch die Adsorption and einer harten Wand [65] lassen schließen, dass in der Tat
amphiphile Eigenschaften durch die Teilchenform alleine entstehen können.

Um Flüssigkeiten, die in ungeordneten porösen Medien adsorbiert sind, zu beschreiben
wurde ein quenched-annealed DFT hergeleitet [69]. Dabei wird das poröse Medium durch
die gequenchten Komponenten einer Flüssigkeitsmischung beschrieben. Der Ansatz kann
durch den Replica-Trick begründet werden [70], beschreibt zuverlässig die Adsorption
and Oberflächen des porösen Mediums [72] und wurde verallgemeinert auf Netzwerke aus
Stäbchen [74]. Mit dieser Theorie wurde gezeigt dass für Kolloid-Polymer-Mischungen
in poröse Medien Kapillarkondensation auftritt [75] und die resultierende Grenzfläche
wurde untersucht [77]. In einem Gittermodell wurde das Einfrieren in der Gegenwart von
Unordnung studiert [78].

Für weiche Paarwechselwirkungen wurde eine DFT vorgeschlagen [79], für Mischungen
verallgemeinert [80], und auf die Paarkorrelationen in der flüssigen Phase einiger Modell-
fluide angewendet [81]. Im Detail wurde ein Modell für Sternpolymere untersucht [82].

Weitere Studien enthalten eine DFT für den Wachstumsprozess random sequential ad-
sorption [83], sowie eine Untersuchung des Einfrierens von harten Hyperkugeln in Raum-
dimensionen D > 3 [84]. Probleme, die mit anderen Methoden, wie Computersimulation,
angegangen worden sind und die in der Zukunft mit DFT behandelt werden könnten,
sind kolloidale Teilchen, die in einem flexiblen Container eingeschlossen sind [85], topo-
logische Defekt in nematischen Tröpfchen [86], kolloidale Teilchen, die in einer Emulsion
suspendiert sind [87], die Abhängigkeit von effektiven Wechselwirkungen von der Wahl
der Koordinaten [88], sowie Dekorationsgitter von Kolloiden, die an streifenförmig gemu-
sterten Substraten adsorbiert sind [89].

Zusammenfassend ist damit gezeigt worden, dass zuverlässige Dichtefunktionale im
Rosenfeldschen Sinn für eine Reihe von Modellsystemen konstruiert werden können. Solch
eine Theorie ermöglicht (und stimuliert) dann das Studium inhomogener Situationen wie
man sie an Grenzflächen oder in äußeren Feldern findet.
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1 Introduction

Inhomogeneous systems provide formidable challenges for both quantitative and qualitat-
ive description. Inhomogeneities in spatial properties, i.e. distribution functions, may arise
intrinsically like in a crystal or at a free fluid interface or may be generated in response to
an external field, like gravity or confining walls. Soft matter systems are excellent model
systems to study such structuring due to the well-accessible time and length scales. The
present thesis presents applications to models such as colloidal dispersions of spherical and
elongated particles, mixtures of (hard sphere) colloids and non-adsorbing polymers. In-
teresting questions range from the bulk phase behavior to interfacial properties, behavior
at walls or in narrow capillaries.

Density functional theory (DFT) for inhomogeneous classical fluids is a reformulation of
classical Statistical Mechanics, such that the one-body density distribution ρ(r), where r is
the space coordinate, represents the microscopic degrees of freedom. It can be shown [1, 2]
that the grand potential Ω at fixed temperature T , volume V , and chemical potential µ can
be expressed as a functional of ρ(r). The existence of a minimization principle, δΩ/δρ(r) =
0, enables one to obtain ρ(r), and via reinserting the solution into the functional one
obtains the equilibrium grand potential, Ω0 = Ω([ρ], T, V ). This formulation becomes
useful via the exact splitting

Ω([ρ], T, V, µ) = Fid([ρ], T, V ) + Fexc([ρ], T, V ) +
∫

drρ(r)(Vext(r)− µ), (1)

where Fid([ρ], T, V ) =
∫

drρ(r)[ln(Λ3ρ(r))− 1] is the (exact) Helmholtz free energy of the
ideal gas, Λ is the thermal wavelength (being irrelevant in this context), Vext(r) is an ex-
ternal potential, and Fexc[ρ] is the excess (over ideal) contribution to the Helmholtz free
energy that is due to non-vanishing interparticle interactions. As Fexc[ρ] is independent
of Vext(r), a reliable approximation of the former will enable one to treat arbitrary realiz-
ations of Vext(r). The present work presents both, approximations of Fexc[ρ] (also in the
context of mixtures and non-spherical interactions, where obvious generalizations of the
above one-component formulation hold), as well as applications to relevant situations that
can be modeled via an external potential. In most investigations computer simulations
are used to assess the accuracy and reliability of the DFT approximation or to back up
DFT predictions.

A particular successful DFT is Rosenfeld’s fundamental measures theory (FMT) for
(additive) mixtures of hard spheres, as initially formulated in a remarkable letter in
1989 [3]. In contrast to its present (rather) widespread use, the community did not
immediately embrace the approach. Possible reasons are its inherently very different
structure as opposed to all other available DFT approximations, and the initial failure
to describe the freezing transition, that was cured via imposing the correct dimensional
crossover to reduced dimensionality [4, 5]. Tarazona and Rosenfeld showed later [6] that
one can systematically construct a DFT for the three-dimensional system via systemat-
ically analyzing zero-dimensional density distributions. The present overview will not do
justice to the exciting developments for the hard sphere functional, ranging from tensorial
weight functions [7] necessary for describing freezing, improved equation of state [8], and,
in particular, the illuminating Lafuente-Cuesta lattice DFT [9–11].

The present work is concerned with the application of the concept to generate a func-
tional for a 3d system via systematically considering its behavior in the 0d situation. Sec.
2.1 present successful treatments of the penetrable sphere model, the Widom-Rowlinson
model, and the general non-additive hard sphere mixture. Sec. 2.2 is concerned with
model colloid-polymer mixtures like the Asakura-Oosawa-Vrij (AOV) model applied to
adsorption at a hard wall, and external fields like gravity, as well as to various simple
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extensions of the basic AOV model. An experimental investigation of thermal capillary
waves using confocal microscopy demonstrates the usefulness of the colloid-polymer mix-
tures as model systems. Sec. 2.3 presents the treatment of colloid rod-sphere mixtures
and investigations of the properties of free fluid interfaces and wetting of a hard wall.
Sec. 2.4 is concerned with a ternary hard body mixture where one component possesses
an amphiphilic character solely due to its geometric shape. In Sec. 2.5 the systematic ex-
tension of DFT to quenched-annealed fluid mixtures is presented. Such models are used
to model adsorbates (annealed components) inside random porous media (represented by
the quenched components). Sec. 2.6 reviews progress to formulate a fundamental-measure
theory for general soft pair interactions. Sec. 2.7 summarizes various further studies, like
the proposal of a DFT for the non-equilibrium process of random sequential adsorption,
freezing of hyperspheres, colloids confined to a flexible container, topological defects in
nematics, colloidal particles immersed in an emulsified host fluid, the dependence of ef-
fective interactions (obtained by integrating out microscopic degrees of freedom) on the
choice of coordinates and the properties of decoration lattices adsorbed on stripe-patterned
substrates.

A brief overview of the state of research in 2002 was published in the proceedings of
the 5th Liquid Matter Conference [12] (p.29)1.

2 Overview of density functional construction and applications

2.1 Basic model fluids

The treatment of three basic model fluids exemplifies the recent progress: Those are
penetrable spheres [13, 14] that interact with a repulsive step-function pair potential, the
Widom-Rowlinson model [15], where the like species possess ideal (vanishing) interactions,
but the unlike species repel like hard cores [16], and the general non-additive hard sphere
mixture [17]. A fourth, and particularly relevant system, that of model colloid-polymer
mixtures, will be described later (Sec. 2.2).

Penetrable spheres that interact with a constant pair potential energy if their separation
distance is smaller than their diameter are a prototype for intermicellar interactions in
a solvent, and are a representative of a class of bounded potentials that allows complete
interpenetrability of the particles. In order to treat this model with DFT, as sufficient
input the geometrical properties of the particles and the exactly known statistical behavior
of the system under strong confinement was needed [13] (p.35). The theory predicts bulk
fluid properties in good agreement with computer simulations, as well as the freezing
transition to a multiply occupied face-centered-cubic lattice. It was shown to become
exact in the limits of strong confinement and high temperature, and reduces to Rosenfeld’s
functional for hard spheres in the limit of zero temperature.

Subsequently DFT and simulation results for the pair correlation functions in a bulk
fluid of penetrable spheres were compared, as a stringent test for the “universality” of the
bridge functional [14] (p.42). Considering either the fundamental-measure functional for
penetrable spheres [13] or a perturbative treatment using a fundamental-measure hard-
sphere functional [3], we concluded that hard-sphere-type bridge functionals are applicable
for bounded potentials with high penetrability.

The Widom-Rowlinson model [15] is a symmetric mixture, where the like species pos-
sess ideal (vanishing) interactions, but the unlike species repel like hard cores. For the
m-component version of this model a DFT was constructed [16] (p.47), that is exact
for small densities and in the zero-dimensional limit. It predicts bulk fluid structure in

1Page numbers in italics refer to the location of reprints below.
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good agreement with simulations and yields a continuous demixing phase transition for
m = 2. In the limit of large m the Widom-Rowlinson model reduces to effective hard
spheres in the mixed phase and the AOV colloid–ideal polymer model in the demixed
phase. Within the approximation of Ref. [16], both cases are captured correctly. For in-
termediate m we found a first order demixing phase transition, with a rapidly broadening
density discontinuity upon increasing m.

Rosenfeld’s functional [3] applies to additive hard sphere mixtures, i.e. for mixtures
where the hard core distance between two unlike components is given by the mean of the
diameters of both components. The DFT of Ref. [17] (p.51) describes non-additive hard
spheres of arbitrary positive and moderate negative non-additivity between unlike com-
ponents. In bulk it predicts fluid-fluid phase separation into phases with different chemical
compositions. The location of the accompanying critical point agrees well with results
from simulations [18–20] over a broad range of non-additivities and both for symmet-
ric and highly asymmetric size ratios. Results for bulk partial pair correlation functions
indicate good agreement with simulation data.

2.2 Colloid-polymer mixtures

Colloid-polymer mixtures are useful model systems to study many basic phenomena in
condensed matter [21, 22]. In particular their bulk phase behavior resembles closely that
of simple substances involving gas, liquid and crystalline phases. The simplest theoretical
model to describe real colloid-polymer mixtures is that by Asakura and Oosawa [23] and
Vrij [24] (AOV). In their prescription the colloids are assumed to be hard spheres and
the polymers to be freely interpenetrating spheres that experience hard core interactions
with colloids at a distance given by the sum of colloid and polymer radii, the latter taken
to be the polymer radius of gyration.

2.2.1 Construction of a density functional

For the AOV model a DFT was obtained by employing a fundamental measures approach
to construct a functional which incorporates the correct dimensional crossover and the
exact low density limit [25] (p.58). In bulk fluid mixtures the functional yields the same
free energy and, therefore, the same gas-liquid (demixing) transition as given by free-
volume theory [26]. It generates consistent pair correlation functions; the partial structure
factors Sij(k) diverge, as k → 0, at the critical point obtained from the free energy. Our
results for the structure agree well with those from simulation and Percus-Yevick theory.

Further details about this DFT are given in Ref. [27] (p.62), where dimensional cros-
sover was discussed in detail. Emphasis was placed on the properties of homogeneous
(bulk) fluid phases. We showed explicitly that the functional yields the same free energy
and, therefore, the same fluid-fluid demixing transition as that given by a different ap-
proach, namely the free-volume theory. The pair direct correlation functions cij(r) of the
bulk mixture are given analytically. We investigate the partial structure factors Sij(k) and
the asymptotic decay, r →∞, of the total pair correlation functions hij(r) obtained from
the Ornstein-Zernike route. The locus in the phase diagram of the crossover from mono-
tonic to oscillatory decay of correlations was calculated for several size ratios q = Rp/Rc,
where Rp is the radius of the polymer sphere and Rc that of the colloid. Furthermore we
determined the (mean-field) behavior of the partial structure factors on approaching the
fluid-fluid critical (consolute) point.
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2.2.2 Interfacial properties

The DFT of Ref. [25] was used to investigate the free interface between demixed fluid
phases of the AOV model [28] (p.107); many further details are given in Ref [29] (p.115)
and a preliminary account of the results and discussion of other approaches can be found
in Ref. [30] (p.92). We found that both the colloid and polymer density profiles oscillate
on the colloid-rich side of the interface, provided the polymer reservoir packing fraction
ηp,r is sufficiently high. Results for the surface tension are in reasonable agreement with
experiment [31]. When the mixture is adsorbed against a hard wall, entropic depletion
effects give rise to a wetting transition whereby the colloid-rich phase wets completely.
Prior to complete wetting we found three layering transitions, the first of which extends
far into the single-phase region.

Subsequently, an analytic formula for the interfacial free energy of the fluid mixture
in contact with a hard wall was obtained within a scaled-particle treatment [32] (p.151).
The results were found to compare well with explicit DFT for the binary mixture. Expres-
sions were given for the wall tension of the mixture when polymers interact via a simple
stepfunction pair potential, and for the case of contact with a polymer-coated wall, which
was taken to be hard for the colloids but penetrable for the polymers. On the gas side
of the fluid-fluid demixing binodal the wetting transition at the hard wall was confirmed
and complete drying of the polymer-coated wall on the liquid side of the binodal was
predicted.

Inserting DFT results for the liquid-gas, wall-liquid and wall-gas interfacial free energies
[33] (p.159) into Young’s equation we obtained the contact angle between the gas-liquid
interface and the wall. As a function of polymer fugacity this angle exhibits discontinuities
of slope (“kinks”) upon crossing first-order surface phase transitions located on the gas
branch of the bulk binodal. Each kink corresponds to a transition from n− 1 to n colloid
layers adsorbed at the wall, referred to as the n’th layering transition. The corresponding
adsorption spinodal points from n − 1 to n layers upon reducing the polymer fugacity
along the bulk binodal were identified in Refs. [28, 29]. Remarkably, we found desorption
spinodal points from n to n−1 layers to be absent upon increasing polymer fugacity at bulk
coexistence, and many branches (containing up to 7 colloid layers) to remain metastable.
Results for the first layering binodal and both spinodal branches off-bulk coexistence hint
at a topology of the surface phase diagram consistent with these findings. Both the order
of the transition to complete wetting and whether it is preceded by a finite or an infinite
number of layering transitions remained open questions. We compared the locations of
the first layering binodal line and of the second layering binodal point at bulk coexistence
with recent computer simulation results by Dijkstra and van Roij [34]. Vink and Horbach
[35, 36] studied the free gas-liquid interface using grand canonical Monte Carlo simulation,
and Vink, Horbach and Binder investigated in detail the critical behavior [37].

In an experimental collaboration with D. G. A. L. Aarts and H. N. W. Lekkerkerker,
we studied the free fluid-fluid interface in a phase-separated colloid-polymer dispersion
with laser scanning confocal microscopy and directly observed thermally induced capillary
waves [38, 39] at the interface in real space [40] (p.175) (see also [41, 42]). Experimental
results for static and dynamic correlation functions validated the capillary wave model
down to almost the particle level. The ultralow interfacial tension, the capillary length,
and the capillary time were found to be in agreement with independent measurements.
Furthermore, capillary waves were observed to induce the spontaneous breakup of thin
liquid films and thus were concluded to be of key importance in the process of droplet
coalescence.
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2.2.3 Response to external fields

Various further external influence on colloid-polymer mixtures has been studied: Laser-
induced condensation [43], capillary condensation induced by confinement between smooth
parallel hard walls [44], capillary evaporation induced by two parallel semi-permeable walls
[45], the competition between sedimentation and demixing [46], and the occurrence of a
“floating liquid phase” in sedimentation profiles [47].

The AOV model was studied when exposed to a plane wave external potential repres-
enting a three-dimensional standing laser field [43] (p.179). With computer simulations
and DFT we investigated the resulting structure and phase behavior. For varying laser
wavelength λ we monitored the emergence of structure in response to the external field,
as measured by the amplitude of the oscillations in the one-body density distribution.
Between the ideal gas limit for small λ and the bulk limit of large λ we found non-
monotonic crossover that is governed by commensurability of λ and the colloid diameter.
Furthermore, the effect of the periodic field on the liquid-vapor transition was studied, a
situation that we refered to as laser-induced condensation. Above a threshold value for
λ the theoretical phase diagram indicates the stability of a stacked fluid phase, which is
a periodic succession (in the laser beam direction) of liquid and vapor slabs. This par-
tially condensed phase causes a splitting of the liquid-vapor binodal leading to two critical
points and one triple point. We argued that all these predictions should be experimentally
observable for colloid-polymer mixtures in an optical resonator.

We investigated the fluid-fluid demixing phase transition of the AOV model confined
between two smooth parallel hard walls [44] (p.187). Comparing fluid density profiles,
obtained using DFT and computer simulations, for statepoints away from colloidal gas-
liquid coexistence showed good agreement of the theoretical results with simulation data.
Theoretical and simulation results predict consistently a shift of the demixing binodal and
the critical point towards higher polymer reservoir packing fraction and towards higher
colloid fugacities upon decreasing the plate separation distance. This implies capillary
condensation of the colloid liquid phase.

We also investigated the AOV mixture under selective confinement of the colloids to
a planar slab geometry [45] (p.197). This is a model for confinement of colloid-polymer
mixtures by either two parallel walls with a semi-permeable polymer coating or through
the use of laser tweezers. We found that such a model pore favors the colloidal gas over
the colloidal liquid phase and hence induces capillary evaporation. A treatment based on
the Kelvin equation gives a good account of the location of the capillary binodal for large
slit widths. The colloid density profile was found to exhibit a minimum (maximum) at
contact with the wall for large (small) slit widths.

Furthermore we have investigated the effects of gravity on the equilibrium behavior
of colloid-polymer mixtures. Taking the polymers to possess vanishing buoyancy mass,
the density profiles of the two components were calculated within DFT and using Monte
Carlo simulations [46] (p.207). Under appropriate conditions the profiles were found to
exhibit discontinuities or steeply varying regions associated with the interface separating
colloid-rich and colloid-poor phases. The position of the interface could be shown to be
very sensitive to the strength of the gravitational field and, more surprisingly, to the total
height L of the suspension. Phase coexistence in the absence of gravity was shown to be
entirely suppressed beyond a critical ratio of the height L over the gravitational length of
the colloids.

Even more dramatic effects were found in the case where polymers are assumed to have
nonzero buoyancy mass. Again DFT and computer simulation were used to investigate
sedimentation equilibria of colloid-polymer mixtures within the AOV model of hard sphere
colloids and ideal polymers [47] (p.217). If the ratio of buoyant masses of the two species
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is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas
and liquid phases, a floating liquid stable phase was found, i.e., a thin layer of liquid
sandwiched between upper and lower gas phases. The full phase diagram of the mixture
under gravity shows coexistence of this floating liquid phase with a single gas phase
or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple
point. We argued that this scenario remains valid for general asymmetric binary mixtures
undergoing bulk phase separation.

2.2.4 Beyond Asakura-Oosawa-Vrij

Several investigations have been undertaken to render the AOV model more realistic
at small increase of complexity, i.e. by retaining most of the simplistic appeal. Those
include a simplified description of polymer-polymer interactions [48], polymer-induced
colloid-compression [49], the influence of poor solvent quality on the bulk demixing phase
behavior [50], and taking into account that colloidal particles can penetrate inside polymer
coils if polymer-to-colloid size ratios are sufficiently large [51].

In order to investigate colloid-induced polymer compression a mixture was considered
where the polymer component is modeled as a polydisperse mixture of effective spheres,
mutually noninteracting but excluded from the colloids, with radii that are free to adjust
to allow for colloid-induced compression [49] (p.230). The bulk fluid demixing behavior
of this model system was obtained from a DFT treatment that includes the polymer
size polydispersity and configurational free energy, obtained from the exact radius-of-
gyration distribution for an ideal (random-walk) chain. Free energies were computed
by minimizing the free energy functional with respect to the polymer size distribution.
With increasing colloid concentration and polymer-to-colloid size ratio, colloidal confine-
ment was found to increasingly compress the polymers. Correspondingly, the demixing
fluid binodal shifts, compared to the incompressible-polymer binodal, to higher polymer
densities on the colloid-rich branch, stabilizing the mixed phase.

The influence of poor solvent quality on fluid demixing of a model mixture of colloids
and nonadsorbing polymers was investigated [50] (p.242) using the AOV model with
an addition of modeling the solvent as a two-component mixture of a primary solvent,
regarded as a background theta solvent for the polymer, and a cosolvent of point particles
that are excluded from both colloids and polymers. Cosolvent exclusion favors overlap
of polymers, mimicking the effect of a poor solvent by inducing an effective attraction
between polymers. For this model, a geometry-based DFT was derived and applied to bulk
fluid phase behavior. With increasing cosolvent concentration (worsening solvent quality),
the predicted colloid-polymer demixing binodal shifts to lower colloid concentrations,
promoting demixing. For sufficiently poor solvent, a reentrant demixing transition is
predicted at low colloid concentrations.

In order to treat polymer non-ideality the polymers were regarded as effective spheres
that interact with one another via a repulsive step-function pair potential and with colloids
solely via excluded volume [48] (p.221). The system was treated with a geometry-based
DFT based on the exact zero-dimensional limit of the model. For bulk fluid phases, the cal-
culated demixing binodals demonstrate that with increasing strength of polymer-polymer
interaction the coexisting colloidal liquid (vapor) phase becomes more concentrated (di-
lute) in polymer. In contrast to a simple mean-field-like perturbative density functional,
our approach yields good agreement with an experimental demixing phase diagram.

In order to study the effects of penetrability in mixtures of dissimilar particles hard
colloidal spheres and penetrable spheres were considered [51] (p.248). The latter may
be taken to represent ideal, noninteracting polymer coils. Polymers and colloids interact
by means of a repulsive step-function pair potential, which allows for insertion of colloids
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into the polymer coil. The potential strength was obtained from scaling arguments for the
cross virial coefficient of true colloid-polymer systems. For this model the geometry-based
density functional applied to bulk fluid demixing demonstrates that taking into account
penetrability leads to a significant stabilization of the mixed phase for large polymer-to-
colloid size ratio.

2.3 Rod-sphere mixtures

Mixtures of colloidal spheres and rods are excellent model systems to study a rich variety
of ordering phenomena, including those of orientational degrees of freedom. A simple
model, very much in the spirit of AOV, is that proposed by Bolhuis and Frenkel [52]
of hard spheres and hard rods that are taken to be of vanishing thickness. Due to an
excluded-volume argument, the interactions between rods vanish, but rods do interact
with spheres in a hard core fashion. Recall that Rosenfeld’s original DFT for general
convex bodies [53, 54] does not feature the correct virial expansion (and improvements
have been proposed [55–57]). For the above rod-sphere mixture a DFT was constructed
[58] that is correct on the second virial level, subsequently extended to account for residual
Onsager-like rod-rod interactions [59], and applied to the free fluid-fluid interface [59, 60],
and to adsorption at a hard wall [61]. An improved DFT was formulated that uses
new weight functions [62]. Furthermore the influence of polymer addition to the binary
sphere-needle mixture was considered [63].

The DFT presented in Ref. [58] (p.253) applies to the model colloidal mixture of hard
spheres and infinitely thin hard rods. For these freely rotating particles the fundamental
measures approach was used to obtain a functional that features the correct dimensional
crossover and the exact low density limit. For isotropic bulk fluid mixtures, the free energy,
and hence the demixing phase diagram, were found to be identical to that obtained from
free volume theory [52]. Results for the partial pair correlation functions of the bulk
mixture were shown to be in good agreement with those of computer simulations.

The theory of [58] was used to investigate the free interface between demixed bulk fluid
phases in the rod-sphere mixture [59] (p.257). Results were presented for the spatial and
orientational density distributions of the particles, as well as for the interface tension.
Density profiles display oscillations on the sphere-rich side of the interface provided the
sphere-rich liquid phase is on the oscillatory side of the Fisher-Widom line in the bulk
phase diagram. Needles tend to align parallel (perpendicular) to the interface on the
needle-rich (sphere-rich) side. Furthermore, the DFT was generalized to the Onsager
limit for interacting rods, and explicit expressions for the functional in simple geometries
were given.

Carrying out Monte Carlo simulations for the free interface revealed that the agreement
between theoretical and simulation results for density and orientation order profiles across
the interface is remarkable, even for states not far from the critical point [60] (p.270). The
simulation results confirmed the previously predicted preferred vertical (parallel) align-
ment of rod orientation to the interface plane at the sphere-rich (sphere-poor) side, and
it was argued that this ordering should be experimentally observable in phase-separated
colloidal rod-sphere mixtures.

Subsequently the DFT was extended to incorporate effects due to nonvanishing rod
thickness. This was accomplished by introducing several new geometric weight functions
into the framework, which were demonstrated explicitly to recover the sphere-rod Mayer
bond [62] (p.285).

When exposed to a hard wall, for small size ratios of rod length and sphere diameter
it was found that the colloidal liquid phase wets the wall completely upon approaching
the fluid demixing binodal from the colloidal gas side, provided the density of the rods
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lies below the wetting point [61] (p.278). Using an effective one-component description
based on the pairwise depletion potential for higher density of rods, a finite sequence of
layering phase transitions was found. For large rod-to-sphere size ratios, using a binary
treatment, thick films are obtained even close to the triple point.

In order to investigate the effect of added polymers on the phase behavior of rod-sphere
mixtures a ternary mixture of hard colloidal spheres, ideal polymer spheres, and rigid van-
ishingly thin needles, which model stretched polymers or colloidal rods was introduced [63]
(p.289). For this model, a geometry-based DFT was developed and applied to bulk fluid
phases to predict demixing phase behavior. In the case of no polymer-needle interactions,
two-phase coexistence between colloid-rich and colloid-poor phases is found. For hard
needle-polymer interactions, rich phase diagrams were predicted, exhibiting three-phase
coexistence, and reentrant demixing behavior.

2.4 Hard body amphiphiles

In order to study ternary amphiphilic mixtures, a simplistic model featuring only hard
body interactions was considered. In this mixture hard spheres correspond to water, hard
needles correspond to oil, and amphiphilic hybrids consist of the hydrophilic head modeled
as a hard sphere and the hydrophobic tail modeled as an infinitely thin needle attached
radially to the sphere (hence resulting in a lollipop shape). The equation of state derived
from the DFT [64] (p.297) was found to be in remarkable agreement with Monte Carlo
simulation results. The trends in the theoretical demixing phase diagram were found to
support the amphiphilic character of the model.

Focusing on the pure amphiphile system exposed to a hard planar wall results for the
positional and orientational order profiles obtained from the DFT were found to agree
well to those of computer simulations. For low densities the structure at the wall is ruled
by the loss of orientational free volume due to direct fluid-wall interactions, while for
higher densities packing of the spherical heads dominates. The wall sum rule was tested
explicitly for this model fluid and rich structure of the contact distribution was found
which was interpreted in terms of typical particle configurations [65] (p.307).

2.5 Fluids in random porous media

In order to study the behavior of fluids adsorbed inside random porous media, one often
disregards microscopic details of the confinement and relies on equilibrium fluid configura-
tions of model systems. The advantages are that the statistics of such model matrices are
well studied and understood and a direct link to the statistical mechanics of equilibrated
fluids is provided. The primary tool in the description of adsorbates in such matrices are
quenched-annealed (QA) averages [66–68].

As simple models for substances adsorbed in amorphous solid matrices, mixtures
of spheres with either hard or ideal interactions where several matrix components are
quenched and the remaining adsorbate components are equilibrated. The proposed DFT,
based on the exact zero-dimensional limit, treats both matrix and adsorbate components
on the level of the respective one-body density profiles. As a test, pair correlation func-
tions for hard spheres adsorbed in either a hard sphere or an ideal sphere matrix, were
found to agree well with computer simulation results [69] (p.314).

A systematic derivation of the underlying replica DFT was given in Ref. [70] (p.321),
where a binary quenched-annealed hard core mixture was considered in one dimension in
order to model fluid adsorbates in narrow channels filled with a random matrix. As the
model is one-dimensional, two different density functional approaches could be employed
to calculate adsorbate bulk properties and interface structure at matrix surfaces. The first
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approach uses Percus’ exact functional [71] for the annealed component and an explicit
averaging over matrix configurations; this yields numerically exact results for the bulk
partition coefficient and for inhomogeneous density profiles. The second approach is
based on the above quenched-annealed density functional whose results were found to
approximate very well those of the former over the full range of possible densities.

Returning to three dimensions, in order to assess further the accuracy of the novel the-
ory, an inhomogeneous test case was considered, by bringing an adsorbate fluid of hard
spheres into contact with a semi-infinite porous matrix modeled by immobilized configur-
ations of freely overlapping spheres with a sharp kink one-body density distribution [72]
(p.341). Comparison of results from the DFT to those of computer simulations yields
good agreement for the adsorbate density profile across the matrix surface. Furthermore
it was argued that the matrix can be replaced by a fictitious external potential that only
depends on the distance from the interface, and that leads to the same adsorbate dens-
ity profile. This potential was found to be a smooth function of distance, although the
matrix one-body distribution features a sharp kink. For high matrix densities, the porous
medium becomes practically impenetrable, and its surface behaves like a rough hard wall
whose roughness decreases with increasing matrix density.

One particular example of porous matrices in the colloidal domain are assemblies of thin
rods that are immobilized due to coagulation or sedimentation [73]. The hard sphere fluids
was considered in such a random fiber network modeled by quenched, vanishingly thin
hard needles. The quenched-annealed DFT presented in Ref. [74] (p.347) treats arbitrary
spatially inhomogeneous situations, in particular anisotropic and spatially varying needle
distributions. As a test case the structure of the hard sphere fluid at the surface of an
isotropic fiber network was considered and found to agree well with computer simulation
results. For high needle densities the surface acts like a rough impenetrable wall. In the
limit of infinite needle density the behavior near a smooth hard wall is recovered.

In order to allow for the possibility of fluid-fluid demixing, colloid-polymer mixtures
served once more as an excellent model system. Hence a model mixture was considered in
Ref. [75] (p.353) where colloids and matrix particles are represented by hard spheres and
polymers by ideal spheres. Integrating out the degrees of freedom of the polymers leads
to a binary colloid–matrix system with effective AOV pair potentials, which was treated
with an integral equation theory using the (exact) replica Ornstein-Zernike relations and
the optimized random phase approximation as a closure. DFT results for the structure
were obtained through the direct correlation functions obtained through differentiation
of the excess free energy. Inverting the replica OZ relations then yields (partial) pair
distribution functions. Results from both theories were found to be in good agreement
with computer simulation results. The theoretical results for the demixing binodals com-
pare well, provided the polymer-to-colloid size ratio, and hence the effect of many body
interactions neglected in the effective model, is not too large. Consistently, we found that
hard (ideal) matrix polymer interactions induce capillary condensation (evaporation) of
the colloidal liquid phase.

Especially desorption phenomena are believed to be strongly influenced by the presence
of a planar fluid-fluid (gas-liquid) interface inside the porous medium [76]. For the present
model density profiles normal to the interface and surface tensions were calculated and
compared to the case without matrix [77] (p.372). Two kinds of matrices were considered:
i) colloid-sized matrix particles at low packing fractions and ii) large matrix particles at
high packing fractions. These two cases were found to show fundamentally different
behavior and it was argued that both could be experimentally realizable. We find that in
case ii), even at high packing fractions, the main effect of the matrix is to exclude volume
and, to high accuracy, the results can be mapped onto those of a bulk system (without
matrix) via a simple rescaling.
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In the above studies the freezing transition was disregarded as this presents a formidable
challenge for a continuum treatment. Progress, however, has been made by employing
a lattice model where the space coordinates are discretized. The freezing transition was
investigated in a two-dimensional lattice model of annealed hard squares that are subject
to the influence of randomly placed quenched particles of the same size [78] (p.384). Hence
the hard core interactions are such that nearest and next-nearest neighbors on the square
lattice are excluded. The randomly placed particles serve to model a random porous
medium. By combining two QA DFT with the lattice fundamental measure theory of
Lafuente and Cuesta [9–11] a theory for quenched-annealed lattice fluids that treats the
quenched particles on the level of their one-body density distribution was formulated. This
approach was shown to yield thermodynamics that compare well with results from treating
matrix realizations explicitly and performing subsequent averaging over the disorder. The
freezing transition from a fluid to a columnar phase was found to be continuous and upon
increasing matrix density to shift towards close packing vanishing beyond a threshold
matrix density.

2.6 Soft interactions

An ultimate goal is to be able to construct a reliable density functional given any inter-
action potential. Some progress has been made resulting in a theory the inherits most
of its features from the Rosenfeld functional [79], is applicable to mixtures, albeit with
an additivity constraint [80], and predicts reasonable pair correlation functions for short-
ranged models and moderated densities [81]. A detailed study has been carried out for a
model of star polymers in solution [82].

The derivation of this DFT is solely based on limits, where the behavior is exactly
known, namely, a zero-dimensional cavity and the low-density virial expansion [79] (p.398).
The approach yields the structure and thermodynamics of the homogeneous fluid as an
output. We applied the theory to an ultrasoft logarithmic potential that mimics star
polymers in a good solvent. The theory, when supplemented by a rescaling procedure,
reproduces the peculiar features of the pair correlations in this system that we also found
in computer simulations

For various common fluid models, like those given through the inverse-power, Asakura-
Oosawa, and Lennard-Jones potential, the pair correlations in the fluid phase at moderate
densities were found to be reliably predicted as compared to computer simulation results.
Explicit expressions for the weight functions and the fundamental measures were given
which permit to carry out practical calculations for a large class of inhomogeneous systems
[81] (p.406).

The generalization to mixtures is suitable for systems with soft or hard interactions
between like species, but the cross interactions between unlike species are restricted to
obey an additivity constraint [80] (p.402). The density functional respects both, the
zero-dimensional limit and the virial expansion. For the pair distribution functions of a
model mixture of colloidal hard spheres and star polymers, good agreement with computer
simulation results was found.

For the model of pure star polymers in solution further liquid and solid structural prop-
erties, as well as freezing, solid-to-solid, and remelting phase transitions were investigated
[82] (p.412). Even subtle physical effects, like deviations from Gaussian crystal peaks and
an anomalous peak broadening upon increasing density as well as a reasonable vacancy
concentration are captured correctly by the theory. Good overall quantitative agreement
with simulation data is found, however, with a tendency to overestimate the structural
correlations.
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2.7 Miscellaneous

We summarize several further studies that either use DFT directly, like for random se-
quential adsorption [83] or the freezing of hard hyperspheres [84], or have been carried
out using other means, like computer simulations. Interesting physical situations that
could be treated in the future with DFT, like colloids confined to a flexible container
[85], nematic crystals in spatial confinement [86], mixtures of colloidal particles and pen-
etrable emulsion droplets [87], the dependence of effective interactions on the choice of
coordinates [88], and freezing on stripe-patterned substrates [89],

The process of random sequential adsorption of hard particles onto a solid substrate
represents a non-equilibrium growth process [90, 91]. Its statistical properties are closely
related to quenched-annealed mixtures, albeit in a special limit of large numbers of com-
ponents each with vanishing concentration in the sense of a differentially quenched sys-
tem. A generalization of the approach of [69] allows to treat random sequential adsorption
within a DFT framework [83] (p.419). As applications the influence of a hard boundary
of the adsorption region in the one-dimensional car parking problem and for colloidal
deposition on a two-dimensional solid substrate was studied and good agreement with
computer simulation results for the oscillatory density profiles near the boundary was
found. The amplitudes of the density oscillations are considerably smaller than in the
corresponding equilibrium models.

In a system of D-dimensional hard spheres in D-dimensional space, where D > 3, we
have generalized scaled particle theory and furthermore used the virial expansion and the
Percus-Yevick integral equation to describe the fluid state [84] (p.428). For the crystalline
phase of these hyperspheres, we adopted a cell theory based on elementary geometrical
assumptions about close-packed lattices. Regardless of the approximation applied, and
for dimensions as high as D = 50, we found a first order freezing transition preempting
the Kirkwood second-order instability of the fluid. The relative density jump increases
with D, and a generalized Lindemann rule of melting holds. We have also used ideas
from fundamental-measure theory to obtain a free energy density functional for hard
hyperspheres. We have also calculated the surface tension of a hypersphere fluid near a
hard smooth (hyper-)wall within scaled particle theory.

For colloids confined to a flexible container a model of hard spheres trapped inside a
container of fluctuating shape was proposed to describe colloidal particles in a vesicle or in
an emulsion droplet [85] (p.437). In this model the container is assumed to be the convex
hull of the particles and is described by an integral geometric approach including volume
and surface terms. In the limit of large volume coupling, the model reduces to the well-
known geometric problem of natural bin packing. Using computer simulations and cell
theory, we calculated equilibrium properties for various finite numbers of confined particles
in conformations ranging from clusters to planar and linear structures and identified
transitions between these different conformations.

Using computer simulations we investigated the microscopic structure of the singular
director field within a nematic droplet [86] (p.446) using the model of hard spherocyl-
inders. To induce an overall topological charge, the particles were either confined to a
two-dimensional circular cavity with homeotropic boundary or to the surface of a three-
dimensional sphere. Both systems exhibit half-integer topological point defects. The
isotropic defect core was found to possess a radius of the order of one particle length and
to be surrounded by free-standing density oscillations. The effective interaction between
two defects was investigated.

In a model for a mixture of colloidal particles and penetrable emulsion droplets [87]
(p.457) we modeled the particles as hard spheres, the interaction between droplets also
as hard, but the particles to be able to penetrate the droplets. A swelling of droplets is



22

taken into account to ensure mass conservation of the droplet liquid. Hence the presence of
the colloids generates droplet polydispersity. Using computer simulation and liquid state
theory, we found that the the relative polydispersity exhibits non-monotonic behavior as
a function of the particle packing fraction, and relate this phenomenon to hard sphere
bulk density fluctuations.

A common approach to complex systems like colloidal suspensions or polymer solu-
tions describes the mesoscopic behavior using effective interactions. These potentials act
between the macromolecular entities and can be derived by integrating out the micro-
scopic degrees of freedom. The remaining macroparticle coordinates need to be chosen a
priori. Two obvious choices are (i) the centers of mass and (ii) distinct microscopic entit-
ies, like special “tagged” monomers. To assess whether effective interactions depend on
the choice of coordinates we compared both choices in the framework of the AOV colloid-
ideal polymer mixture. Using computer simulations, we found that although the effective
pair interaction between colloid and polymer differ markedly, correlation functions are in
fair agreement [88] (p.464).

Harreis et al. [89] (p.468) calculated the equilibrium structure of decoration lattices
composed of colloidal particles adsorbed on periodic stripe-patterned substrates as a func-
tion of the stripe width and separation and for different interparticle interactions. Due
to a competition of length scales, a wealth of different decoration lattices occurs such
as triangular, quadratic, rhombic, kite-like and sheared honeycomb lattices, triangular
slices as well as triangle superlattices. This was argued to be of relevance for constructing
templates that enforce crystal growth of unusual solid structures.

3 Conclusions

We have established that density-functionals in the Rosenfeld spirit can be constructed for
quite a range of model systems including penetrable spheres, the Widom-Rowlinson model,
the AOV model and variants thereof, as well as certain mixtures of non-spherical particles.
The respective approximations share many desirable features with Rosenfeld’s theory for
hard spheres, namely the correct expansion on the second virial level, and well-controlled
dimensional crossover; the properties of fluid states are an output of the theory rather
than an input as is frequent in other DFTs [2]. The construction of these functionals relies
heavily on the concept of so-called zero-dimensional density distributions, given as (sums
of) delta-distribution(s). Such density distributions correspond to external potentials
modeling confinement in small cavities. Possibly somewhat contrary to intuition, the
analysis of the Statistical Mechanics in that situation retains some of the essentials of the
physics of the three-dimensional (and possibly inhomogeneous) system. This allowed to
broaden the scope of an essentially equilibrium theory (see however e.g. [92, 93]) to non-
equilibrium systems like quenched-annealed mixtures as models for adsorbates in porous
media and to describe the process of random sequential adsorption.

Besides thorough investigations of the predicted bulk fluid structure, numerous applic-
ations to inhomogeneous systems have been presented, including free interfaces between
demixed fluid phases, adsorption and wetting behavior of solid substrates, and unusual
sedimentation phenomena. One can easily envisage many further applications of the
derived DFTs.
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[89] H. M. Harreis, M. Schmidt, and H. Löwen, Phys. Rev. E 65, 041602 (2002). (Reprin-
ted on p. 468 ff.)

[90] J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).

[91] P. Schaaf, J. Voegel, and B. Senger, J. Phys. Chem. B 104, 2204 (2000).



28

[92] U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999).

[93] F. Penna and P. Tarazona, J. Chem. Phys. 119, 1766 (2003).



State of research 2002 29



30 Review



State of research 2002 31



32 Review



State of research 2002 33



34 Review



Penetrable spheres 35



36 Basic model fluids



Penetrable spheres 37



38 Basic model fluids



Penetrable spheres 39



40 Basic model fluids



Penetrable spheres 41



Fluid of penetrable spheres: Testing the universality of the bridge functional
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Penetrable spheres have been the object of recent extensive investigations as a prototype for intermicellar
interactions in a solvent, and as representing a class of bounded potentials allowing complete interpenetrability
of the particles. Here we compare density-functional and simulation results for the pair-correlation functions in
a bulk fluid of penetrable spheres, as a stringent test for the approximation of ‘‘universality’’ of the bridge
functional. Considering either a fundamental-measure functional for penetrable spheres or a perturbative treat-
ment using a fundamental-measure hard-sphere functional, we conclude that hard-sphere-type bridge function-
als are applicable also for bounded potentials with high penetrability.

PACS number~s!: 61.20.Gy, 05.70.Ce, 82.70.Dd, 61.25.Hq

I. INTRODUCTION

There has been continuous progress in the theory of non-
uniform classical fluids in recent years, bringing new ap-
proximations and models within density-functional theory
@1,2#. The central quantity is the Helmholtz free-energy func-
tional, F@r(r )#, of the inhomogeneous density distribution,
r(r ). The geometrical character of the hard-sphere interac-
tions, which has been a major reason for their long-standing
central role in the microscopic theory of classical fluids, also
simplifies the construction of model functionals, and eventu-
ally led to the geometrically based so-called fundamental-
measure theory~FMT! @3#. Several very recent analyses
@4–6# revealed the important role played by the dimensional
crossover properties of the fundamental-measure functionals,
and in particular their zero-dimensional~0D! limit corre-
sponding to a cavity with at most one particle. Recent studies
showed@5,6# that the correct 0D crossover can be systemati-
cally imposed, and the exact 0D limit plays the role of a
generating functional forD-dimensional hard-sphere FMT
functionals. The original FMT@3# together with its exten-
sions and modifications@4–6# proved very successful for de-
scribing the inhomogeneous hard-sphere fluid, and sophisti-
cated algorithms for implementing the hard-sphere FMT in
complex geometries have been developed recently@7#. FMT
has also been applied successfully to parallel hard cubes@8#,
and a possible extension of FMT to general hard convex
bodies was offered@9#. Very recently, the FMT was gener-
alized to penetrable spheres@10# and to soft interactions@11#,
with particular extensions to star polymer solutions@12# and
colloid-polymer mixtures@13#.

It should be noted, however, that the Ornstein-Zernike
equations using the second functional derivatives~i.e., the
direct correlation functions! of the generally accurate FMT
free-energy functionals do not always yield positive definite
and physically acceptable bulk pair correlations. The Percus-

Yevick pair correlations as obtained with the FMT for hard
spheres are an exception which proves the case. The reason
for such failures is that even generally accurate free-energy
functionals will develop certain errors when functionally dif-
ferentiated, especially to second and higher orders. Neverthe-
less, any approximate excess free-energy functional can be
self-consistently corrected up to second order by employing
the corresponding bridge functional in the test-particle limit
@14–16#. Moreover, the approximation of ‘‘universality of
the bridge functional’’@14–19# enables us to use the accurate
FMT hard-sphere functionals~with optimized hard-sphere
radii when applicable! in order to obtain free-energy func-
tionals for arbitrary pair interactions. Of particular impor-
tance is the possibility to solve accurately the inverse scat-
tering problem~i.e., obtain the pair potential from a known
structure factor! @17,18#. However, we should not forget the
geometrical nature of the hard-sphere interaction, which
means that, e.g., systems with a tendency to form pairs and
higher-order clusters due to their attractions or peculiar re-
pulsion are not expected to be well treated with the hard
spheres as reference. In particular, the pairing in electrolytes
@22# cannot be addressed by invoking the hard-sphere bridge
functional. In this paper we focus attention on the system of
penetrable spheres, i.e., particles that can sit on top of each
other with a finite energy cost@20#. We employ both the
hard-sphere and the penetrable-sphere FMT functionals in
order to obtain a stringent test of the approximation of uni-
versality of the bridge functional.

The system under consideration is a fluid of penetrable
spheres~PS! interacting via the following pair potential:

f~r !50 if r .2R,
~1!

f~r !5e if r<2R,

and characterized by the reduced temperature,T* 5kBT/e,
and reduced density,h54prR3/3. For e5` ~i.e., for T*
50), this system corresponds to the hard spheres~HS!, and
then h is the standard hard-sphere packing fraction. This
system is of interest as a prototype for the interaction be-

*Present address: Central Research, Building E 41, Bayer AG,
D-51368 Leverkusen, Germany.
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tween micelles in a solvent@23#, and was investigated re-
cently by several methods@20#. It is the simplest of the class
of bounded interactions which allow penetrability, another
example being the Gaussian core model@24,21# which was
recently shown to arise between the centers of star polymers
if the polymeric arms are treated in the harmonic approxima-
tion @25#. Although diverging at the origin, an ultrasoft pair
potential between star polymers@26# was validated by simu-
lations @27#. The glass transition for the penetrable spheres
was investigated by simulations@28#. Standard integral-
equation theories for the bulk pair structure employ closures
which are biased towards the concept of a hard core in the
pair correlation, and thus are less accurate for penetrable
spheres@20#. A very recent work@29# demonstrated a suc-
cessful approximate closure relation for penetrable spheres
which employs, however, three free parameters which are
determined from thermodynamic self-consistency require-
ments, in particular the zero-separation theorem. As will be
shown below, comparable accuracy can be obtained from the
penetrable-sphere FMT bridge functional without any free
parameters, or from the hard-sphere FMT functional by op-
timizing the effective radius.

II. FREE-ENERGY FUNCTIONALS, BRIDGE
FUNCTIONALS, AND THE TEST-PARTICLE LIMIT

The starting point for the application of the density-
functional method for both uniform and nonuniform fluids is
the density-profile equation, i.e., the Euler-Lagrange equa-
tion for minimizing the grand potential@1#. The equations
determining the density profiler(rW) for the fluid subject to
an external potentialu(rW) can be written in the modified
hypernetted-chain~MHNC! form @30,14–16# involving the
bridge functional, which is related to the sum of all terms
beyond second order in the functional Taylor expansion of
the excess free energyFex@r(rW)# around some reference den-
sity. For a fluid in contact with a reservoir bulk fluid, of
average densityr0, the density profile equations can be writ-
ten in the following form:

ln g~rW !52
u~rW !

kBT
2B@r0 ;r~rW !;rW#

1r0E drW8c(2,FD)~r0 ;urW2rW8u!@g~rW8!21#. ~2!

Here g(rW)5r(rW)/r0, is the bulk limit of the direct correla-
tion function given by the second functional derivative
c(2,FD)(rW1 ,rW2)52d2Fex@r(rW)#/kBTdr(rW1)dr(rW2), and the
‘‘Bridge’’ functional is given by@14–16#

B@r0 ;r~rW !;rW#5
mex@r~rW !;rW#

kBT
2

mex@r0#

kBT

1r0E drW8c(2,FD)~r0 ;urW2rW8u!@g~rW8!21#,

~3!

wheremex@r(rW);rW#52dFex@r(rW)#/dr(rW). By truncating the
expansion of the excess free energy after second order, the

bridge functional vanishes, and the density profile equation
~2! then has the hypernetted-chain-approximation~HNC!
form.

An elementary test of the accuracy of a model free-energy
functional for a given pair potentialf(r ), and of the corre-
sponding bridge functional, is performed by considering the
density profile equation for the same potential in the special
case when the external potential is generated by atest par-
ticle at the origin of coordinates,u(rW)5f(r ). The resulting
density profiles correspond to the bulk pair-correlation func-
tions, g(r )5r(r )/r0. The test-particle limit of the density
profile equations takes the form@14–16#

g~r !5expS 2
f~r !

kBT
2b~r !

1r0E drW8c(2,FD)~r0 ;urW2rW8u!h~r 8! D , ~4!

whereh(r )5g(r )21, and the bridge function,b(r ), is de-
rived from the bridge functional B@r0 ;r(rW);rW# by using
r(rW)5r0g(r ),

b~r !5B@r0 ;r0g~r !;r #. ~5!

The exact free-energy functional must obey the ‘‘test-
particle self-consistency’’: the exact g(r ) as obtained from
the solution of the exact coupled density profile equations~4!
and ~5! is identical to that obtained from the Ornstein-
Zernike relation using the direct correlation function from
the second functional derivative of the functional

h~r !5c(2,FD)~r0 ;r !1r0E drW8c(2,FD)~r0 ;urW2rW8u!h~r 8!.

~6!

Given a model free energy based on an approximate bridge
functional, it can beoptimized up to second orderby impos-
ing the test-particleself-consistency~SC! @14–16# which is
achieved bycoupling the density-profile equations~4! and
~5! with the Ornstein-Zernike relation~6!. A measure of the
accuracy of an approximate excess free-energy functional for
the potentialf(r ) is given by the degree of test-particle self-
consistency obtained by comparisonc(2,FD)(r0 ;r ) with the
self-consistent resultc(2,SC)(r0 ;r ).

This method can be used also for potentials for which the
free-energy functional is not available. The assumption one
makes leading to the ‘‘universality’’ hypothesis is that the
bridge functional is~approximately! independent of the pre-
cise form of the pair interaction, hence it is regarded as being
a universal quantity that can be obtained from any appropri-
ate givenreferencepotential. When the potential and the
reference potential are different, then it is possible toopti-
mize the reference-system parametersby free-energy mini-
mization that leads to an equation of the form@14–16#

E drW@g~rW !2greference~rW !#db~rW !50. ~7!

As the hard-sphere FMT is an especially successful theory, it
is expected that it gives a reasonable approximation for the
bridge functional, and the method is, in principle, applicable
to any pair potential. The penetrable-sphere system, how-
ever, is a stringent test case, as it isa priori unclear whether
the universality extends to systems without hard core. The
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hard-sphere FMT functional realizes the nonoverlap crite-
rion, whereas the penetrable-sphere FMT takes into account
the effect of potential energy of overlapping particles.

III. RESULTS AND DISCUSSION

In this paper we compare simulation results for the pair-
correlation functions in the bulk fluid of penetrable spheres,
with the following four approximations.~i! The hypernetted-
chain approximation~obtained by ignoring the bridge func-
tions altogether!, denoted HNC.~ii ! The bulk pair correla-
tions as obtained via the Ornstein-Zernike relation from the
direct correlation functions as given by the second functional
derivatives of the penetrable-spheres FMT free-energy func-
tional, denoted by OZ-PS.~iii ! The bulk pair correlations as
obtained from the solution of the test-particle self-
consistency equations using the penetrable-spheres FMT
functional, denoted SC-PS. This is equivalent to using the
bridge function in Eq.~4! as obtained from the penetrable-
spheres FMT bridge functional through Eq.~5!, without any
adjustment of parameters.~iv! The bulk pair correlations as
obtained from the hard-spheres FMT bridge functional, with
an optimal value for the reference hard-sphere packing frac-
tion, denoted SC-HS. The comparison of OZ-PS and SC-PS
and both with the simulations reveals the accuracy of the
penetrable-sphere FMT and its level of self-consistency. The
comparison of SC-PS and SC-HS and both with the simula-
tions enables us to test the ‘‘universality’’ hypothesis.

We compared an extensive set of Monte Carlo~MC!
simulation results with many solutions of density-profile
equations, for bulk pair correlations, of which we display
graphically only two extreme representative cases:~a! sub-
stantial but relatively low penetrability~on average less than
two particles with interpenetrating cores!: T* 50.2, h
50.35; and~b! high penetrability, mean field@31# cases: 4
<T* 5h<12. In the context of this paper, we must first
consider the behavior of the HNC approximation, which ig-
nores the bridge functions altogether. Recall that for hard
spheres the HNC overestimates the first peak ofg(r ) just
outside the core. With increasing penetrability, the HNC re-
sults outside the core become almost indistinguishable from
the simulations. For relatively small penetrability, the main
drawback of the HNC approximation is the substantial over-
estimation of the penetrability, namely ofg(r ) close to zero
separation@Fig. 1~a!#. With increasing penetrability, the
HNC results represent the simulations increasingly better,
both inside and outside the core. In the high penetrability
region, the simulations are reproduced very well@31# by the
mean field~mean spherical approximation, denoted MSA!
for the direct correlation function, i.e.,c(r )52f(r )/kBT,
and even better results are obtained with the HNC.

For cases of type~a!, both SC-PS and SC-HS significantly
improve on the HNC@Fig. 1~a!#, and the overall picture is
better seen in Fig. 1~b! for the structure factor. With respect
to SC-HS, it should be emphasized that according to the
standard criterion usually applied for optimizing the refer-
ence hard-sphere radius, an integral of a weighted difference
between the reference hard-sphere and the penetrable-sphere
pair correlations has to vanish. However, when the penetra-
bility is non-negligible, and the pair correlations manifestly
belong to different classes, this criterion is no longer appli-

cable. Instead, in order to see to what extent the approxima-
tion of ‘‘universality’’ holds even when the hard-sphere ref-
erence is no longer expecteda priori to be good, we have
varied the value of the reference packing fraction in the hard-
sphere bridge functional in order to see how it affects the
bridge functions. The comparison with simulations shows
that the reference parameter can be chosen by imposing any

FIG. 1. ~a! Pair-correlation functiong(r ) for penetrable spheres
for T* 50.2, h50.35. The lines and symbols represent the MC
simulations~open circles!, HNC ~full line!, method OZ-PS~short-
dash–long-dash line!, method SC-PS~dashed line!, and method
SC-HS~dotted line!, with the value of the reference packing frac-
tion h* 50.32. ~b! Structure factorsS(k) corresponding to~a!. ~c!
Bridge functions,b(r ), as calculated by the bridge functionals:
Penetrable-sphere functional with the HNC~long dash line!, and the
method SC-PS~short-dash–long-dash line! g(r ) results as input;
hard-sphere functional, with indicated reference packing fraction
h50.32, with the HNC~full line!, and the method SC-HS~dotted
line! g(r ) results as input.
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single thermodynamic consistency criterion. Indeed, with an
appropriately chosen value of the packing fraction for the
reference hard-sphere system,h* , the bridge functions from
method SC-HS are comparable to those from method SC-PS
@Fig. 1~c!#. The accuracy of OZ-PS for penetrable spheres is
comparable to that of the same method, namely the Percus-
Yevick result, when applied via the FMT functional for the
case of hard spheres. As for hard spheres, the test-particle
limit results for the penetrable-sphere functional improve on
the corresponding Ornstein-Zernike results, i.e., SC-PS is
more accurate than OZ-PS. However, the difference between
the SC-PS and OZ-PS results is relatively small, demonstrat-
ing that the new penetrable-sphere functional obeys quite
well ~to about the same extent as the corresponding FMT
theory for hard spheres! the ‘‘test-particle self-consistency’’
between the density-profile and the Ornstein-Zernike equa-
tions. Thus, by comparison with the simulations, both
density-functional treatments are quite successful. We fur-
thermore conclude that the hard-sphere bridge functional is
applicable even for bounded potentials with substantial pen-
etrability.

With increasing penetrability and the increase of the ac-
curacy of the HNC, then the method SC-HS based on the
hard-sphere bridge functional with a judicious choice ofh*
will automatically work well since thermodynamic consis-
tency will naturally imposeh* !1 ~i.e., the HNC!. This,
however, represents a favorable feature of the method which
automatically resorts to the HNC when the HNC becomes
thermodynamically consistent@30#, but it does not mean that
the bridge functional itself is accurate. In turn, the
penetrable-sphere bridge functional does not contain any free
parameters when applied to penetrable spheres, so that its
performance in the test-particle limit checks its intrinsic ac-
curacy. Considering cases of type~b!, the pair-correlation
function g(r ) in the regime of high penetrability,T* 5h
54,6,8,10,12, is shown in Fig. 2. We see that OZ-PS de-
scribes the behavior quite well, while SC-PS essentially co-
incides with the HNC and the simulations.

In summary, by investigating the bulk fluid of penetrable

spheres, considering either a fundamental-measure func-
tional for penetrable spheres or a perturbative treatment us-
ing a fundamental-measure hard-sphere functional in com-
parison with simulations, we conclude that hard-sphere-type
bridge functionals are applicable also for bounded potentials
with high penetrability. In particular, the penetrable-sphere
bridge functional, as a generalization of the hard-sphere
FMT functional, is applicable without any adjustable param-
eters for arbitrary penetrability including the special case of
hard spheres. Moreover, the PS bridge functional can be em-
ployed for the treatment of bounded potentials other than PS
themselves. Then the penetrable spheres act as a reference
system with adjustable parameterse and R, and the same
theoretical framework can be used as in the case of diverging
interactions and the hard-sphere bridge functional with ad-
justableR.
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We present a density functional theory for them-component Widom-Rowlinson model, for a mixture of
spherical particles where the unlike species interact with a hard-core potential and the interactions between like
species vanish. The functional is exact for small densities and in the zero-dimensional limit. It predicts the fluid
structure in good agreement with simulations and yields a continuous demixing phase transition form52. In
the limit of largem the Widom-Rowlinson model reduces to effective hard spheres in the mixed phase and the
Asakura-Oosawa~colloid-ideal polymer! model in the demixed phase. Within the present theory, both cases
are captured correctly. For intermediatem we find a first order demixing phase transition, with a rapidly
broadening density discontinuity upon increasingm.

DOI: 10.1103/PhysRevE.63.010101 PACS number~s!: 64.10.1h, 64.70.Ja, 61.20.Gy, 64.60.Fr

Whether two or more fluids are miscible is often an im-
portant question, e.g., in engineering, physical chemistry, or
food science. From a physical point of view, many multi-
component fluids will be in a single phase because of a gain
in mixing entropy. Changing the thermodynamical variables
then may lead to demixing. There are~at least! two basic
mechanisms that explain the phase separation. One is the
depletion interaction, where the presence of one of the com-
ponents generates an effective attraction between particles of
the other component~s!. The effective attraction accounts for
the phase separation via the common entropy-versus-energy
mechanism as is present in the gas-liquid transition of simple
liquids, say the Lennard-Jones system. The second mecha-
nism for demixing lies in the relative strengths of repulsion
between like and unlike particles. If the unlike particles ex-
perience a stronger repulsion than the like ones, demixed
phases are favored, at least at high density. The prototype for
this behavior is the Widom-Rowlinson~WR! model @1–4#.
There the interaction betweenm species is such that particles
of the same species do not interact; that is, are assumed to be
ideal, whereas the unlike species interact with a hard core
potential. It is clear that for high densities a mixed phase will
suffer from strong packing effects, which are greatly reduced
in a demixed phase with a single majority component. At
low density the system reaches ideal gas behavior, which, of
course, will cause a mixed phase. The intervening phase
transition has been studied with a range of approaches, in-
cluding mean-field theory~MFT! @4#, Percus-Yevick~PY!
integral equation theory@3,5#, scaled-particle theory~SPT!
@6#, as well as computer simulations@5,7,8#.

Essentially all theories give a demixing phase diagram for
m52 with a lower critical point~as a function of total den-
sity! and a rapidly broadening coexistence region upon in-
creasing density. The precise location of the critical point
was a matter of discussion since the introduction of the
model, and it is remarkable that only recently two indepen-
dent simulations located it about 50% higher than previously
thought@5,7#.

Obviously, the WR model does not possess a solid phase
for m52, as any possible solid is preempted by demixing. It
has been found, however, that for large number of compo-
nents m.31, a crystal becomes stable for parallel hyper-

cubes@9#. This is amixedphase, as only repulsion is present,
which is the essential ingredient for freezing. Apart from this
and the study of the free interface between demixed fluid
phases@4,10#, little is known about inhomogeneous situa-
tions. To study those, density-functional theory~DFT! @11#
can be an important tool. It accounts for spatially varying
density profiles, and, in its sophisticated versions, for the
structure at the two- and higher-body level. To our knowl-
edge the WR model has so far resisted any DFT treatment
that goes beyond the MFT of Ref.@4#.

In this work, we propose an approximation for the density
functional of the m-component WR model. It is a
fundamental-measure theory~FMT!, an approximation
scheme pioneered by Rosenfeld for hard spheres@12–14#,
and also applied to hard parallel cubes@15,16#, penetrable
spheres@17,18#, as well as to the Asakura-Oosawa~AO!
model @19#.

The pair correlationsderived from the functional are
found to be in good agreement with simulation results. The
m52 phase diagram is comparable in quality to other theo-
ries. Form>3, we find a first-order fluid demixing phase
transition, with an increasingly large coexistence interval~in
density! upon increasingm. We expect form→` hard
sphere behavior in the mixed phase and AO@20# behavior in
the demixed phase~with the majority component identified
as ideal polymer!. Indeed we find that the functional reduces
to the corresponding DFTs~Refs.@12,14#, and@19#, respec-
tively! for these systems.

Let us define the WR model as anm-component mixture
of spherical particles with radiiRi , and particle numbersNi
in a volumeV. The interaction pair potentialsf i j (r ) between
particles of speciesi 51, . . . ,Ni and j 51, . . . ,Nj are
f i i (r )50; andf i j (r )5`, if r ,Ri1Rj , iÞ j , and zero else
@21#. As reduced densities we use the packing fractions of
each speciesi, given ash i54pNiRi

3/(3V), and define the
total packing fraction ash5( i 51

m h i .
Let us give an overview of our DFT. It is a weighted

density approximation. This means that in order to smooth
the possibly highly inhomogeneous density fields, convolu-
tions with weight functions are performed. Here, the weight
functions describe the shape and geometrical properties of
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the particles and are explicitly given. In particular, there is a
set of weight functions~and correspondingly weighted den-
sities! for each of the species. The transcription of the
weighted densities to the excess~over ideal gas! free energy
is done, as usual, via a free energydensity. Here this is an
ordinary function~not a functional! of the weighted densities
and is, again, explicitly known~up to a simple numerical
root finding problem!. Finally the total excess free energy of
the inhomogeneous system is obtained as a spatial integral
over the free energy density.

In detail, we express the excess Helmholtz free energy as

Fexc@r i~r !#5kBTE d3x F~$na
( i )~x!%!, ~1!

whereT is the absolute temperature, andkB is Boltzmann’s
constant. The reduced free energy densityF is a yet to be
determined function of a set of weighted densities$na

( i )(x)%,
where i labels the species anda the type of weighted den-
sity. The weighted densities are obtained by convolutions

na
( i )~x!5E d3r r i~r ! wa

( i )~x2r !. ~2!

As all nonvanishing interactions are hard-core, it is sufficient
to take the usual FMT weight functions@12,14#

w3
( i )~r !5u~Ri2r !, w2

( i )~r !5d~Ri2r !, ~3!

wv2
( i )~r !5w2

( i )~r ! r /r , ŵm2
( i ) ~r !5w2

( i )~r !F rr

r 2
21̂/3G , ~4!

wherer 5ur u, u(r ) is the Heaviside step function,d(r ) is the
Dirac distribution, and1̂ is the identity matrix. Further, lin-
early dependent, weights arew1

( i )(r )5w2
( i )(r )/(4pRi),

wv1
( i )(r )5wv2

( i )(r )/(4pRi),w0
( i )(r )5w1

( i )(r )/Ri . The weight
functionswa

( i ) are quantities with dimension of length32a.
They differ in their tensorial rank:w0

( i ) ,w1
( i ) ,w2

( i ) ,w3
( i ) are

scalars;wv1
( i ) ,wv1

( i ) are vectors;ŵm2
( i ) is a~traceless! matrix. The

subscript letters help identifying the rank.
We determine the functional dependence ofF on the

weighted densities by imposing the exact crossover to zero
dimensions ~0D!. This situation is modeled byr i(r )
5h id(r ), where the packing fractionsh i describe the aver-
age occupation numbers of particlesi in a cavity of radiusRi
@13#. The exact grand partition sum for the WR model in this
situation is

J512m1(
i 51

m

exp~zi !, ~5!

wherezi is the fugacity of speciesi. Inverting the thermody-
namical relation h i5zi] ln J/]zi , we obtain the excess
chemical potentialsm0d,i5kBT ln(zi /hi) as a function of the
set of h i . Integrating with respect to density yields the 0D
excess free energyF0D($h i%). We follow recent treatments
of FMT @14# by considering multicavity limits to obtainF
5F11F21F3, with the contributions

F15(
i 51

m

n0
( i ) w i~$n3

( l )%!, ~6!

F25 (
i , j 51

m

~n1
( i )n2

( j )2nv1
( i )
•nv2

( j )! w i j ~$n3
( l )%!, ~7!

F35
1

8p (
i , j ,k51

m

~n2
( i )n2

( j )n2
(k)/32n2

( i ) nv2
( j )
•nv2

(k)

13@nv2
( i )m̂m2

( j ) nv2
(k)2tr~ n̂m2

( i ) n̂m2
( j ) n̂m2

(k) !#/2! w i jk~$n3
( l )%!,

~8!

where tr denotes the trace. Derivatives of the 0D free energy
are w i , . . . ,k($h l%)[]mbF0d($h l%)/]h i . . . ]hk , where b
51/kBT. This completes the prescription for the functional.
Note that the weight functionswa

( i ) are constructed to recover
the Mayer bond for low densities as well as to gain control
over the 0D limit. The thermodynamical input into the DFT
solely stems from the 0D statistics, Eq.~5!.

Let us investigate some of the properties of the functional.
First, the thermodynamics and structural correlations of ho-
mogeneous phases,r i5const, are an output of the theory. In
this case the weighted densities, Eq.~2!, are obtained as
n3

( i )5h i , n2
( i )53h i /Ri , n1

( i )53h i /(4pRi
2), n0

( i )53h i /
(4pRi

3). The nonscalar contributions vanish,nv1
( i )5nv2

( i )

5n̂m2
( i ) 50. Inserting this into Eqs.~6!–~8! gives the bulk free

energy. Furthermore, the~bulk! direct correlation functions
can obtained asci j (r )5(ag]2F/(]na

( i )]ng
( j )) wa

( i )* wg
( j ) ,

where * denotes the convolution.
Second, the excess free energy densityF can be calcu-

lated analytically in the case of equal~inhomogeneous! den-
sity profiles,r i(r )5r j (r ). This is valid for equal sizes,Ri
5Rj , equal chemical potentials,m i5m j , and equal external
potentials acting on speciesi and j. Furthermore the system
is assumed to be in a mixed phase. Then an effective one-
component functional of the total densityr(r )5mr i(r )
is obtained. The weighted densities arena

(total)5mna
( i ) ,

and the expressions for the free energy density
are ]bF0D /]h5 ln@m2(m w/h)#, ]2bF0D /]h25w/
(h2w h), ]3bF0d/]h35w @(w22) w1h#/@(w21)3 h2#,
with w5W@h e2h(12m21)#, where W(z) is product log
function, i.e., the solution ofz5W exp(W). In general, how-
ever, the above assumptions do not hold, andr i(r )Þr j (r ).
Then them0D,i ~andF0D) need to be found numerically.

Third, for large number of components,m→`, and fixed
total densityh, we consider two cases where the WR model
reduces to~simpler! effective one- or two-component sys-
tems, if the partial densities~or chemical potentials! are cho-
sen appropriately. For equal partial densitiesh i5h j , we ex-
pect hard sphere behavior, because each component is at
vanishing concentration, so that the ideality between like
species is negligible, and only the hard cores between unlike
species remain. The 0D statistics@Eq. ~5!# takes care of this
fact and we recoverbF0d5(12h) ln(12h)1h, which is
characteristic of a cavity that can hold at most a single par-
ticle @13# ~of any speciesi ). Hence, the hard sphere FMT
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@12,14# is obtained. Next we consider the case that one of the
components has a large densityh1@h j , j .1, and the others
are at vanishing densityh j→0, so that h* 5( i 52

m h i

5const. Then we expect ideal particles (i 51) with density
h1 mixed with effective one component hard spheres~all i
.1) at densityh* . This is precisely the behavior of the AO
colloid ideal-polymer mixture@20#. Indeed, the WR 0D free
energy reduces tobF0D5(12h* 2h1) ln(12h* )1h* ,
which describes AO behavior, and the recently found DFT
@19# for this model is recovered. The correct reduction of the
WR functional in both limits demonstrates the internal con-
sistency of constructing DFTs from the 0D limit of the un-
derlying model@22#.

Let us turn to the results. As a first test for the ability of
the DFT to describe the WR model, we investigate the struc-
tural correlations in the bulk fluid withm52 components.
To that end, we calculate the pair correlation functionsgi j (r )
from the direct correlation functionsci j (r ) using the
Ornstein-Zernike relation. In order to compare these results,
we have carried out a canonical Monte Carlo simulation with
512 particles and 105 moves per particle. In Fig. 1 we com-
pare both results. One observes that the clustering of like
species, as well as the depletion zone of unlike species near
contact are reproduced nicely by the DFT. The DFT, how-
ever, generally overestimates the correlations and a tiny ar-
tificial jump in gii (r 5s) appears, as well as negative values
of about20.2 in the core region,r ,s. The overall agree-
ment is fair, given that following the OZ route is a severe test
for the functional. In accordance with integral equations@5#
the pair correlation functions do not exhibit oscillations, not
at short nor at long range. The latter behavior may be exam-
ined by an analysis of the poles of the structure factor in the
complex plane@23#. Here this is technically simple, as the
dependence on wave vector is analytically given. It turns out
that the leading contribution always comes from the pole
with vanishing real part, hence purely monotonic asymptotic
decay results.

The phase diagram form52 is depicted in Fig. 2 as a
function of the total densityh and the relative concentration
j5h1 /h. For small h a mixed fluid is stable. Above the

critical point at hcrit50.278 ~and j51/2 due to symmetry
@3#! demixing happens. Upon increasing the density the co-
existence interval rapidly broadens. The critical density is
slightly higher than the results from mean-field (hcrit
50.25) and scaled-particle (hcrit50.228) theories. However,
the simulation values of Ref.@5# is hcrit50.3990, and of Ref.
@7# hcrit50.3919~obtained from a linear fit to the data from
finite systems! are still significantly higher, and to the best of
our knowledge, no theory can account for this value. As
concerns integral equations@5#, Percus-Yevick~PY! theory
giveshcrit50.30~see Fig. 4 in Ref.@5#! from the virial route.
This is slightly better than the current approach. The com-
pressibility route, however, gives a value of about 0.55. It
was found that self-consistent closures, like Rogers-Young,
do not improve much over this result@5#. We note that as the
present approach performs the approximation on the level of
the free energy functional, thermodynamics and structure are
consistent, i.e., the structure factorsSi j (k) diverge for k
→0 at the critical point obtained from the free energy.

FIG. 3. Phase diagram of the WR model at equal concentrations
h i5h j as a function of total densityh and inverse number of
components 1/m.

FIG. 1. Pair distribution functionsgi j (r ) for the m52 compo-
nent WR model as obtained by density-functional theory~DFT!
compared to Monte Carlo simulation~MC! for h15h250.1. The
symmetric,i 5 j , and asymmetric cases,iÞ j , are shown.

FIG. 2. Phase diagram of them52 component WR model as a
function of relative concentrationj and total densityh as obtained
by DFT. The critical points from various approaches are indicated
by symbols: Monte Carlo~MC!, mean-field theory~MFT!, and
scaled-particle theory~SPT!.
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For larger number of components@9#, m.2, a rich vari-
ety of phase transitions is expected, e.g., form53 tricritical
points were found from a mean-field treatment@2#. Here we
restrict ourself to the equimolar case, and calculate the phase
transition between the mixed phase andm demixed phases;
see Fig. 3. In accordance with previous findings the transi-
tions are first order. The coexistence interval in density rap-
idly broadens upon increasingh. Numerically, the mean-
field result@2# for m53 is h50.314620.4789, whereas the
current theory gives lower values ofh50.281520.3333,
and the simulation value of a density within the coexistence
region @7# is 0.4162.

In view of the successful treatment of the bulk properties,
especially the internal consistency, we are confident for fu-
ture applications to inhomogeneous situations. A preliminary
investigation has shown that the DFT accounts for a crystal-
line phase for largem, with multiply occupied lattice sites.

Future investigations may treat the interface between de-
mixed phases, and compare to the MFT results form52 @4#
and m53 @10#, as well as adsorption at walls or in pores.
Furthermore, whether the current approach can be extended
to treat the morphological model@24# constitutes an interest-
ing aspect.

On more general grounds, we conclude that fundamental
measures can be used successfully to construct DFTs. The
first such theory was Rosenfeld’s hard sphere functional
@12,14#, which is by now well established and has been used
for over one decade. Only recently, other models could be
treated in a similar manner, namely, penetrable spheres@17#
and the Asakura-Oosawa model@19#. The present study adds
another member to the family. How large this family can
actually become, still is an open question.

I thank Bob Evans, Joe M. Brader, and Roland Roth for
many useful discussions and comments.
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We present a density functional theory for mixtures of (hard sphere) colloidal particles and ideal
polymers. For this extreme nonadditive system we employ a fundamental measures approach to construct
a functional which incorporates the correct dimensional crossover and the exact low density limit. In bulk
fluid mixtures the functional yields the same free energy and, therefore, the same gas-liquid (demixing)
transition as given by free-volume theory. It generates consistent pair correlation functions; the partial
structure factors Sij�k� diverge, as k ! 0, at the critical point obtained from the free energy. Our results
for the structure agree well with those from simulation and Percus-Yevick theory.

PACS numbers: 82.70.Dd, 61.20.Gy, 64.10.+h, 64.60.Fr

Much of soft condensed matter science is concerned
with simplifying a complex, multicomponent system to its
bare bones so that a tractable theoretical model can be de-
vised which will incorporate the essential physical mecha-
nisms determining the properties of the system. Colloidal
suspensions provide an excellent example of this strategy.
A monodisperse suspension of colloidal particles can of-
ten be treated as a one-component fluid since the details
of the solvent and colloid-solvent interactions are not of
great importance in determining the equilibrium colloid-
colloid structure or the phase behavior. In favorable cir-
cumstances, these properties are close to those of the hard
sphere fluid.

Moving up one degree in complexity, one knows that the
addition of nonadsorbing polymer significantly enriches
the phase behavior of the colloidal system. For sufficiently
large values of the size ratio Rg�Rc, where Rg is the radius
of gyration of the polymer and Rc is the radius of the col-
loid, theory predicts stable colloidal gas, liquid, and solid
phases with the fugacity of the polymer reservoir playing
a role similar to that of inverse temperature for a simple
substance. The theoretical [1–3] and simulation studies
[3] are based on an idealized model introduced by Asakura
and Oosawa (AO) [4] and independently by Vrij [5], which
treats the colloids as hard spheres with radius Rc and the
polymer coils as interpenetrating, noninteracting particles
as regards their mutual interactions. The polymer particles
are excluded from the colloids to a center of mass distance
Rc 1 Rp , where the polymer radius Rp � Rg. This AO
model thus describes an extreme nonadditive binary hard
sphere mixture. The assumption of ideal polymer is, of
course, a gross oversimplification which can be valid only
near the theta point. Nevertheless, the main features of
the bulk phase behavior arising from this simple model are
found in experimental studies [6,7] which confirm the pre-
dicted trends of the phase behavior with increasing size
ratio q � Rp�Rc.

Given the richness of the bulk phase behavior exhibited
by the binary AO model it is somewhat surprising that very
little attention has been paid to the equilibrium properties
of inhomogeneous colloid-polymer mixtures described by
this model. One might expect the same entropic deple-
tion mechanism [4,5] that leads to an effective attraction
between two colloidal particles and that is responsible for
bulk gas-liquid separation [1–3] to yield a wide variety of
interfacial and adsorption phenomena. However, we are
aware of only one systematic treatment of the inhomoge-
neous AO mixture, that of Ref. [8], where it was shown
that for q , 2�

p
3 2 1 � 0.1547 one could derive an ex-

plicit effective Hamiltonian for the colloids by integrating
out the degrees of freedom of the polymer.

The aim of the present Letter is to introduce a density
functional theory (DFT) designed specifically for the bi-
nary AO model that will treat arbitrary inhomogeneities
and size ratios. We are motivated by DFT studies of simple
fluids and their mixtures which have provided much insight
into a wide range of interfacial phenomena such as surface
phase transitions, wetting, and confined fluids [9]. Our
approach has its origins in the fundamental measures the-
ory (FMT) of Rosenfeld [10] which has proved, together
with its recent extensions and modifications [11–13], very
successful for describing the inhomogeneous hard sphere
fluid and additive hard sphere mixtures. FMT has also
been applied successfully to hard cubes [14], penetrable
spheres [15], and has been generalized to soft interactions
[16]. The functional we propose here is exact for zero-
dimensional situations of extreme confinement and reduces
to the functional for pure hard spheres (no polymer) intro-
duced recently by Tarazona [13] in his treatment of freez-
ing. The bulk fluid equation of state which emerges from
the theory is the same as that which results from the free-
volume approach of Ref. [2]. Thus, our functional yields
the same gas-liquid coexistence curve. Moreover, it pro-
vides a means of determining the correlation functions of
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bulk mixtures as well as the density profiles and thermo-
dynamic properties of inhomogeneous systems. Here we
outline the theory and focus on its application to the struc-
ture of the bulk colloid-polymer mixture. Applications
to interfaces and adsorption problems will be given else-
where. We present results for the partial pair correlation
functions gij�r� from the Ornstein-Zernike (OZ) route and
show that these agree well with the results of simulation
and the Percus-Yevick (PY) integral equation theory. Our
theory provides a consistent treatment of the fluid-fluid
transition in that it predicts that all three partial structure
factors diverge, as k ! 0, at the critical point and on the
spinodal given by the bulk mixture equation of state. To
the best of our knowledge this is the first nonperturbative
DFT (other than that for the somewhat artificial parallel
hard cube system [14]) based on purely repulsive interpar-
ticle forces which describes directly fluid-fluid separation.

We first define the AO colloid-polymer model. There
are Nc colloids with radii Rc and Np polymers with radii
Rp within a volume V . The interaction potential between
colloids is hard, i.e., V cc�r� � `, if r # 2Rc, and is zero
otherwise. The interaction between colloids and polymers
is also hard: V cp�r� � `, if r # Rc 1 Rp , and is zero
otherwise, while the interaction between polymers van-
ishes: Vpp�r� � 0. The state of the system is governed by
the packing fractions of colloids, hc � 4pNc�Rc�3��3V �,
and of polymers hp � 4pNp�Rp�3��3V �, and the size ra-
tio q � Rp�Rc. The diameters are denoted by sc � 2Rc

and sp � 2Rp .
In order to derive a density functional for this system, we

follow [10] and express the excess (over ideal) Helmholtz
free energy as a spatial integral

bFexc�rc�r�, rp�r0�� �
Z

d3x F��nc
n�x��, �np

l�x��� , (1)

where b � 1�kBT . We assume that the (reduced) free
energy density F is some function of a set of weighted
densities ni

n , where index i � c, p labels the species, and
n is an index corresponding to the type of weighted den-
sity. The weighted densities are obtained by convolutions
of the actual colloid and polymer densities, rc�r� and
rp�r�: ni

n�x� �
R

d3r ri�r�wi
n�x 2 r�. The weight func-

tions wi
n�r� are independent of the density profiles and are

given by

wi
3�r� � u�Ri 2 r�, wi

2�r� � d�Ri 2 r� , (2)

w i
v2�r� � wi

2�r�r�r , ŵ i
m2�r� � wi

2�r� �rr�r2 2 1̂�3� ,
(3)

where r � jrj, u�r� is the step function, d�r� is the Dirac
distribution, and 1̂ is the identity matrix. Further, linearly
dependent weights are wi

1�r� � wi
2�r���4pRi�, w i

v1�r� �
w i

v2�r���4pRi�, wi
0�r� � wi

1�r��Ri . The weight functions
are quantities with dimension of length32n . They differ
in their tensorial rank: wi

0, wi
1, wi

2, wi
3 are scalars; w i

v1, w i
v2

are vectors; ŵ i
m2 is a traceless matrix.

It remains to determine the free-energy density F. To
this end, we consider the zero-dimensional limit, which
we define as ri�r� � hid�r�, where hi are the average
occupation numbers. These are also the zero-dimensional
packing fractions [11,12]. For the present model this limit
corresponds to a cavity that can hold at most one col-
loid but can hold an arbitrary number of polymers if no
colloid is present. The grand partition sum reduces to
J � zc 1 exp�zp�, where zi is the fugacity of species
i. Following Ref. [11] we obtain the excess free energy
bF0D�hc, hp� � �1 2 hc 2 hp� ln�1 2 hc� 1 hc. We
now follow recent treatments [12,13] of FMT which con-
sider multicavity limits and express the excess free-energy
density as F � F1 1 F2 1 F3, with contributions

F1 �
X

i�c,p

ni
0wi�nc

3, n
p
3 � , (4)

F2 �
X

i,j�c,p

�ni
1n

j
2 2 ni

v1 ? n
j
v2�wij�nc

3, n
p
3 � , (5)

F3 �
1

8p

X
i,j,k�c,p

�ni
2n

j
2nk

2�3 2 ni
2n

j
v2 ? nk

v2

1 3�ni
v2n̂

j
m2nk

v2 2 tr�n̂i
m2n̂

j
m2n̂k

m2���2�
3 wijk�nc

3, n
p
3 � , (6)

where tr denotes the trace. Derivatives of the 0D free en-
ergy are wi···k�hc, hp� � ≠mbF0D�hc, hp��≠hi · · · ≠hk .
This completes the prescription for the functional. Fur-
ther details will be given elsewhere.

We summarize some of the properties of the functional.
Note first that Fexc�rc, rp� reduces to the exact low-
density limit [10]. This feature results from the properties
of the weight functions, Eqs. (2) and (3), which are con-
structed to restore the correct Mayer functions for the mix-
ture. The next observation is that the functional is linear
in the polymer density profile. This originates from the
linearity of F0D and is preserved by the construction of F,
Eqs. (4)–(6), as an equal number of multiplications and
differentiations are applied. Three important consequences
arise. First, an alternative way of obtaining the functional
can be found. We begin by noting that the free-energy
functional for a binary hard sphere mixture is constructed
by the same procedure as that above (the weight functions
wi

n are unchanged) but with F0D replaced by Fbhs
0D , the

0D excess free energy appropriate to a cavity which can
contain one particle of species 1 or species 2, but not
more particles [17]. If Fbhs

0D is expanded in powers of the
occupation of one of the species (which becomes hp)
and the expansion is truncated at first order in hp , Fbhs

0D
reduces to F0D . It follows that the present functional can
be recovered by an appropriate linearization of the hard
sphere mixture functional. This suggests that a colloid-
ideal polymer functional can be derived from any (FMT)
hard sphere mixture functional, including the original
Rosenfeld functional [10], i.e., ŵ i

m2 � 0. Further justi-
fication for the linearization comes from considering the
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pair direct correlation functions of the bulk mixture, given
by c

ij
2 �jr1 2 r2j� � 2bd2Fexc�rc, rp��dri�r1�drj�r2�.

The c
ij
2 generated by the functional are consistent with the

first two terms in the known low density (diagrammatic)
expansion of these functions. Second, by observing that
the one-body direct correlation function of the polymers
c

p
1 �r� � 2bdFexc�rc, rp��drp�r� depends only on the

weighted densities of the colloid density profile rc�r�, it
follows from the Euler-Lagrange equation that the inho-
mogeneous polymer density profile rp�r� is an explicit
functional of rc�r� (and of the external potential coupling
to the polymers). This feature of the theory constitutes
an important simplification for calculations of the equi-
librium properties as only rc�r� needs to be determined
by numerical minimization. The third consequence of
the linearity in rp�r� is that the pair direct correlation
function for the polymers vanishes, i.e., c

pp
2 � 0, as in the

PY approximation. As a further remark, we note that our
functional generates the correct AO depletion potential
between two colloids in a sea of ideal polymer at arbitrary
density [18].

We now apply the functional to the determination of
some properties of the homogeneous (bulk) mixture.
The excess Helmholtz free-energy density is given by
bFexc�rc, rp��V � bfhs�rc� 2 rp lna�rc�, where
fhs�rc� is the excess free-energy density of pure hard
spheres in the scaled-particle (PY compressibility) ap-
proximation and a � �1 2 hc� exp�2Ag 2 Bg2 2

Cg3�, with g � hc��1 2 hc�, A � q3 1 3q2 1 3q,
B � 3q3 1 9q2�2, and C � 3q3. This result is identical
to that of free-volume theory for the AO model [2], which
is known to yield stable gas-liquid coexistence for size
ratios q * 0.32. For smaller q this fluid-fluid transition
becomes metastable with respect to a broad, in hc, fluid-
solid transition [2,3]. Within DFT there are two routes to
the pair correlation functions gij of the homogeneous fluid.
One is the test-particle route whereby a particle of a given
species is fixed at the origin and the one-body density
profiles of the resulting inhomogeneous fluid determine
the gij�r�.

The other route, which we pursue here, is based on the
OZ relations. The pair direct correlation functions ob-
tained by differentiating the functional are given analyti-

cally by c
ij
2 �

P
n,l c

ij
nlwi

n � w
j
l, where � denotes the

convolution and c
ij
nl � ≠2F�≠ni

n≠n
j
l [19]. The OZ re-

lation then yields the partial structure factors Sij�k� and a
numerical Fourier transform gives the gij�r�.

In Fig. 1 we compare our results with those from the PY
approximation for a given state point. The structure factors
almost coincide, except for Spp�k� at small k. Note that
the PY results were obtained numerically [20], as there are
no analytical solutions for the AO model. The gij�r� are
also very close to PY. In the case of gcc�r� the DFT result
violates the core condition, i.e., gcc�r� fi 0 at small r , but
this is numerically small.

Performing simulations for highly asymmetric mixtures
is beset by problems of slow equilibration, as huge num-
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FIG. 1. Partial structure factors Sij�k� at q � 0.15, hc � 0.3,
hp � 0.05, for colloid-colloid (CC), colloid-polymer (CP), and
polymer-polymer (PP) pairs. Solid lines are DFT; dashed lines
are PY results [20]. The inset shows the corresponding partial
pair correlation functions gij�r�.

bers of polymers are required per colloidal particle. How-
ever, one can map the binary AO model onto an effective
one-component system, in which the colloids interact via
the AO pairwise depletion potential and for q , 0.1547
the mapping is exact [3,20]. This enables gcc�r� to be ob-
tained by simulation of the one-component system and in
Fig. 2 we compare such results [3] with those of our DFT.
Although the structure factor Scc�k� is a little out of phase
with the simulation result and the DFT underestimates the
very high contact value gcc�sc�, the overall performance is
reasonable, given that the effective AO depletion potential
is very deep and short ranged for this size ratio. Indeed we
expect the binary mixture PY, and other integral equation
closures, to exhibit similar failings for such state points
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FIG. 2. Colloidal structure factor Scc�k� for q � 0.1, hc �
0.25, and hp � 0.107. The solid line is the DFT result; symbols
are simulation data [3]. The inset shows the corresponding pair
correlation function gcc�r�.
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FIG. 3. Partial structure factors Sij�k� at the critical point for
q � 0.8. The inset is the gas-liquid portion of the phase diagram
obtained from DFT plotted in terms of packing fractions hc, hp .
The binodal (thick line), spinodal (dashed line), tielines between
coexisting gas and liquid phases (thin lines) and the critical point
(dot) are shown.

[21]. It is likely that the test-particle route will improve
the accuracy of the gij�r�, albeit at the expense of more
numerical work.

The main advantage of the present route to structure is
that the free energy of the homogeneous mixture is equiva-
lent to that one would obtain from the compressibility
route, i.e., by integrating the Sij�k � 0�, calculated as
above, with respect to density. For example, this ensures
that the thermodynamic and structural routes to the spi-
nodal and critical point are consistent. We illustrate this in
Fig. 3 for q � 0.8, where gas-liquid coexistence is stable.
The inset shows the gas-liquid portion of the phase diagram
in the hc-hp plane, while the main plot shows the three
partial structure factors calculated at the critical point; all
three diverge as k ! 0 (in particular, Scp ! 2`). For
states slightly removed from criticality we expect OZ be-
havior: Sij�k� � Sij�0� �1 2 j2k2 1 O�k4��, where j is
the common correlation length. As our Sij�k� are given
analytically we can confirm explicitly the OZ behavior.
The common correlation length diverges with the mean-
field exponent n � 1�2 and on a path at fixed hc � h

c
crit

we define the amplitude j0 via j � j0��hp
crit 2 hp�1�2.

j0�sc depends only on the size ratio q. It is roughly
proportional to the mean diameter and is conveniently
expressed as j0 � 1

2 �sc 1 sp��K�q�, where typical
values are K�q� � 3.00, 2.36,

p
5, for q � 0.4, 0.8, `,

respectively.
That our DFT generates very satisfactory pair correla-

tion functions in the bulk mixture provides an excellent
indication [9] that it will yield accurate one-body corre-
lation functions for an inhomogeneous AO mixture, e.g.,
for density profiles at walls or in model pores. Its roots in

fundamental measure theory ensure that short-ranged cor-
relations, arising from packing of colloids, are properly
incorporated. Since the DFT describes the bulk gas-liquid
transition we can employ it for investigations of the “free”
interface between the coexisting fluid phases and of deple-
tion induced wetting phenomena at substrates. Moreover,
the DFT is well suited for studies of bulk freezing and of
“local” freezing of colloid layers at walls [22].
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We summarize the main results of our recent investigations of the interfacial proper- 
ties of the simplest model of a colloid-polymer mixture, namely that introduced by 
Asakura & Oosawa and by Vrij, in which colloidPcolloid and colloid-polymer interac- 
tions are treated as hard sphere-like, while the polymer-polymer interaction is ideal 
(perfectly interpenetrating coils). In spite of its simplicity, we find that the model 
exhibits rich interfacial behaviour which depends on the size ratio q = gp/oc, where 
or, and oc denote the diameters of polymer and colloid, respectively. For highly asym- 
metric mixtures: q < 0.1547, an explicit and exact mapping of the binary mixture 
to an effective one-component Hamiltonian for the colloids allows one to perform 
computer simulations for inhomogeneous mixtures. We investigate a mixture with 
g = 0.1 and find th a t small amounts of polymer give rise to strong depletion effects at 
a hard wall. The colloid density at contact with the wall is several times greater than 
that for pure hard spheres at a hard wall. However, for states removed from the bulk 
fluid-solid coexistence curve we find no evidence of wall-induced crystallization. In 
order to treat less asymmetric cases, where stable fluid-fluid demixing occurs in bulk, 
we have designed a density functional theory specifically for this model mixture. For 
q = 0.6 we find a first order wetting transition from partial to complete wetting by 
the colloid-rich phase at the hard-wall-colloid-poor interface as the packing fraction 
q; of polymer in the reservoir is decreased. At a slightly higher value of $, there is a 
novel single layering transition, characterized by a jump in the densities in the first 
two adsorbed layers, as the bulk colloid packing fraction rlc is increased. The same 
density functional has been used to investigate the surface tension and colloid and 
polymer density profiles at the free interface between the demixed fluid phases. 

Keywords: colloid-polymer mixtures; depletion forces; effective Hamiltonians; 
wetting and layering transitions; surface tension; adsorption 

1. Introduction 

It is well known that the addition of non-adsorbing polymers to a colloidal sus- 
pension gives rise to an attractive interaction between the colloidal particles. The 
physical mechanism for this phenomenon is the depletion effect, i.e. an effective 
attractive interaction is induced by the exclusion of polymer from a depletion zone 
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between colloids; the range of the interaction is set by the diameter of the polymer 
coils and the strength of the attraction is determined by the chemical potential of 
the polymer reservoir (Asakura & Oosawa 1954). The simplest model of the binary 
colloid-polymer mixture treats the colloids as hard spheres, with diameter g,, and 
the polymers as ideal interpenetrating coils, as regards their mutual interactions. It 
requires the polymers to be excluded by a centre of mass distance (oC + a,)/2 from 
the colloids (Asakura & Oosawa 1954; Vrij 1976). The parameter oP is usually taken 
to be 2R,, where R, is the radius of gyration of the polymer. Assuming that the poly- 
mer is ideal is a drastic oversimplification. It is a situation achieved (approximately) 
for dilute solutions of polymer in a theta solvent. Nevertheless, this binary Asakura- 
Oosawa (AO) model does capture the main features of the observed variation of 
the bulk phase behaviour of real colloid-polymer mixtures with increasing size ratio 
g = crPp/gC (Gast et al. 1983; Lekk er er k k er et al. 1992; Ilett et al. 1995). Surprisingly, 
little attention has been paid to inhomogeneous colloid-polymer mixtures where the 
average density profiles of both species are spatially varying. Such situations arise in 
adsorption at a solid substrate, in mixtures confined in narrow pores, at the planar 
interface between two coexisting (colloid-rich and polymer-rich) fluid phases and in 
colloidal crystals. Given the usefulness of the A0 model for bulk phase behaviour, 
where it predicts stable solid, liquid and gas colloid phases for sufficiently large 4, 
it is natural to investigate its properties for interfaces. Such a strategy is common 
in statistical physics. The Ising or lattice gas model provides only a crude descrip- 
tion of a real liquid-gas (bulk condensation) phase transition but yields a wealth of 
predictions for surface transitions, with the substrate modelled as a simple external 
field, most of which have been found in adsorption experiments. Here we show that 
the interfacial properties of the A0 model should be richer than those of the bulk 
and argue that adsorption-type experiments on real colloid-polymer mixtures could 
reveal striking phenomena. The results which emerge from the A0 model are inter- 
esting from a fundamental statistical mechanics viewpoint since the bare interactions 
between the constituent particles are either hard or ideal; surface and bulk transi- 
tions are purely entropically driven. Depletion effects give rise to effective attractive 
interactions between colloidal particles or between colloids and a hard wall. 

This paper describes the two different strategies we have employed in tackling the 
statistical mechanics of the A0 model. The first involves integrating out the polymer 
degrees of freedom to obtain an effective one-component Hamiltonian for the colloids, 
while the second is based on a new density functional theory specifically designed 
for the binary A0 mixture. 

2. Bare and effective Hamitonians 

We consider an extreme non-additive binary hard sphere mixture consisting of NC 
hard spheres, representing colloid, and NP interpenetrable, non-interacting particles, 
representing ideal polymer, in a volume V at temperature T. This is a reasonable 
model of a colloid-polymer mixture, as the interaction between sterically stabilized 
colloidal particles can be made close to that of hard spheres, and dilute solutions 
of polymer in a theta solvent are very weakly interacting. We implicitly assume 
that any solvent molecules which are present in a real suspension can be treated as 
an inert continuum, and thus have no effect on bulk or interfacial properties. The 
colloids interact via the hard sphere potential, with diameter g,, and the polymers 
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are excluded from the colloids to a centre of mass distance (a, + gP)/2. This simple 
model of an idealized colloid-polymer mixture is often called the Asakura-Oosawa 
(AO) model although it was first defined explicitly by Vrij (1976). It is specified by 
the bare pair potentials: 

&J&j) = 
00 for&j <gC, 
0 otherwise, 1 

4pp(rij) = 0, J 
where R and r denote colloid and polymer centre of mass coordinates, respectively, 
with Rij = IRi - RjI and rij = ]ri - ~j I. The Hamiltonian thus consists of (trivial) 
kinetic energy contributions and a sum of interaction terms: H = H,, + HCP + HP,,, 
where 

N, \ 

Hcc = 2 4x(&J, 

HPP = c &q&i) = 0. 
i<j 

Following the treatment of the bulk (Dijkstra et al. 1999a, b), we work in a semi- 
grand-canonical, (N,, zP, I/: T), ensemble in which the fugacity of the polymers, zP = 
“p3 exp(Ppp), is fixed. pi, denotes the chemical potential of the reservoir of polymer 
and ,L3 = l/lcnT. In addition to the pairwise interactions, we add two, in general dif- 
ferent, external fields which couple independently to the colloid and polymer degrees 
of freedom: 

(2.3) 
i=l i=l 

These potentials create inhomogeneous density profiles pC(p) and p,,(y). The quantity 
of interest is the Helmholtz free energy, F(N,, V, .+). Formally, 

exp[-OF] = J dPc exp[-P(H,, + 0 + Vyt)], 

where 

exp[-pfi] = Nco $ / drNP exp[-fi(H,, + VFt)] (2.5) 
P’ 

and Ai is the thermal de Broglie wavelength of species i (i = c, p). 0 is the grand 
potential of the ideal polymer coils in the presence of the applied external field VFt 
and the external field that is generated by a fixed configuration of IV, colloids. If 
one can determine Q explicitly, one has reduced the difficult problem of treating the 
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binary system to a much simpler one-component problem: equation (2.4) describes 
the statistical mechanics of a colloidal system interacting through an effective one- 
component Hamiltonian Heff = H,, + L’ + VceXt. 

For a general binary mixture, ti consists of an infinite series of terms, representing 
zero-, one-, two-, . . . , many-body contributions (Dijkstra et al. 1999a). In the partic- 
ular case of the A0 model, each contribution simplifies because &,P = 0. For a homo- 
geneous (bulk) fluid mixture with VzXt = Vjt = 0, pC(~) and pp(r) are constant and 
the series truncates after the two-body term, provided that q < 2/J3 - 1 = 0.1547 
(Gast et al. 1983; Dijkstra et al. 19993). In this regime of high asymmetry there is 
no triple overlap of excluded volume regions, even when three colloids are contacting 
each other. We showed (Brader et al. 2001a) that similar geometrical considerations 
apply for the A0 mixture in contact with a hard wall defined by 

wc”““(+z) = 0”’ 
z < 44 co z < 42, 

> 2 > 42, 
qF%> = o z > ~ ,2 (2.6) 

P 7 

where z is the coordinate of the centre of the particle measured normal to the wall. 
More precisely, we found that for q < 0.1547 the effective Hamiltonian for the inho- 
mogeneous system reduces to 

Heff = Hc, + &(zi) + .&$(z,) + L?;u1k + 6?F”lk + c +AO(~ij), (2.7) 
i=l i=l i<j 

where $yd’ represents the attractive A0 depletion potential between a colloid and 
the planar hard wall. The depth of this potential is proportional to zP and its range 
is op. The last three terms of equation (2.7) are those which define R for the bulk 
fluid, 

-pflplk = +v, -pflplk = 
-z,Nc+, + ~5,)~/6 = -zprc(l + q)3v, 

where Q = (7r/G)$N,/V is th e colloid packing fraction. +*0(R) is the well-known 
A0 pair potential between two colloids in a sea of ideal polymer. This attractive 
potential also has range gP, is proportional to zP, has a similar shape to that of 
$A0 wa11, but is less deep. 

It is important to recognize that in the regime q < 0.1547 the mapping of the 
binary mixture to an effective one-component fluid with the Hamiltonian specified 
by equation (2.7) is exact within the A0 model. This observation is very significant 
when we recall that direct simulation of the model binary mixture, which constitutes 
a very asymmetric system, is prohibited by slow equilibration since huge numbers of 
polymer are required per colloid particle at state points of interest. It is much easier 
to perform computer simulations or develop a reliable integral equation theory for 
the effective Hamiltonian than for the bare binary mixture. 

In a bulk fluid the equilibrium structure, i.e. the colloid correlation functions (Dijk- 
stra et al. 2000), is determined solely by the effective pair potential, 

d@(R) = &c(R) + $AO(@ 

Moreover since Ogbulk and L’ylk are linear in NC and V, respectively, they have 
no effect on the bulk phase equilibria (Dijkstra et al. 1999a, b). These terms do 
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contribute to the total pressure and total compressibility XT of the mixture, making 
the latter very different from the osmotic compressibility XT,eff. More specifically, we 
find that xi& makes only a small contribution to the total bulk modulus x+l. It is 
a term -k~hf(8x,/W) N,,N, determined by the thermodynamics of the reservoir 
which provides the dominant contribution (Dijkstra et al. 2000). 

Spontaneously generated inhomogeneities where the density profiles of colloid and 
polymer are spatially varying in the absence of external fields warrant special atten- 
tion. Examples are the planar interface between demixed fluid phases, colloidal crys- 
tals where the densities vary periodically and the crystal-fluid interface. In such 
cases Heff reduces to the effective Hamiltonian of the bulk system; there are no 
additional contributions associated with the inhomogeneity. At first sight this may 
seem somewhat surprising, as the distribution of polymer in a colloidal crystal, or 
in the region of the fluid-fluid interface, is clearly very different from that in a bulk 
fluid and one might imagine that different effective interactions might arise. However, 
because we work exclusively with a reservoir of polymer, it is the fugacit,y zP of this 
reservoir which controls the interactions in the system. As zP is constant throughout 
the inhomogeneous fluid, then so too is the effective interaction between the colloids, 
regardless of the local polymer density. This serves to reinforce the fact that the 
species which is integrated out is treated grand-canonically. 

We emphasize that for less asymmetric mixtures, with larger size ratios 4, the 
effective Hamiltonian becomes very complex. For 4 > 0.25, the effective pair potential 
depends on the distance of each colloid centre from the hard wall, not just on their 
separation Rij, and higher-body potentials are present (Brader et al. 2001~). 

As a final remark on the formal procedure of integrating out the polymer degrees 
of freedom we note that it is possible, in principle, to recover information about the 
polymer distribution by performing functional differentiation of the free energy F 
with respect to v?’ (T). The polymer density profile pp(r) can be expressed in terms 
of the n-body correlation functions of the colloids as determined from the effective 
Hamiltonian. In practice, the applicability of this procedure is probably restricted 
to bulk mixtures with 4 < 0.1547, where one can derive (i) an exact and tractable 
formula for the free-volume fraction a(p,; z+,) - pP/pL of polymer in the fluid mixture 
and (ii) an approximation for the inhomogeneous polymer density associated with a 
crystalline array of colloids (Brader et al. 2001~). 

3. Adsorption at a hard wall for size ratio q = 0.1 

In this section we illustrate the use of the effective Hamiltonian for a mixture with 
4 = 0.1. As remarked earlier, the bulk structure is determined solely by pff(R) 
the effective pair potential of equation (2.8), and Monte Carlo results for the radial 
distribution function g,,(R) and structure factor S,,(k) of the colloids at various 
colloid packing fractions qc are given by Dijkstra et al. (19993). The complete phase 
diagram of the bulk mixture was also determined by simulation. In the pb versus qc 
representation there is a very broad, in q,, fluid-solid coexistence curve which lies 
well below a metastable fluid-fluid coexistence. Note that the polymer density in the 
reservoir, pb (- xP for ideal polymer) is equivalent to inverse temperature in simple 
fluids; each term in the effective Hamiltonian is proportional to zP. There is also an 
isostructural (FCC) solid-solid transition which is slightly metastable with respect to 
the fluid-solid transition (Dijkstra et al. 1999b). These simulation result’s provide a 
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benchmark against which approximate theories can be tested. For example, Percus- 
Yevick theory, applied with the same pff (R), yields very accurate colloid radial 
distribution functions and structure factors while a perturbation theory, based on a 
hard-sphere reference system, yields a reasonable fluid-solid coexistence curve but 
the metastable fluid-fluid coexistence is at unphysically high values of vc (Dijkstra 
et al. 1999b). 

In figure 1 we show Monte Carlo results for the colloid density profile ~~(2) in 
the same mixture adsorbed at a hard wall. These were obtained using the effective 
Hamiltonian (2.7) and refer to a fixed bulk colloid packing Q = 7r$pc(co)/6 = 0.4 
and three values of the polymer reservoir packing fraction qt; = 7r$$t;/6. In the 
absence of polymer (figure la), the system reduces to pure hard spheres at a hard 
wall and the profile exhibits the usual pronounced oscillations arising from packing 
effects. On adding a small amount of polymer, $, = 0.05 (figure lb), the depletion 
attraction at the wall leads to a much higher contact density pc(ac/2) than for pure 
hard spheres at a hard wall. The effect is larger for $, = 0.10 (figure lc), where the 
reduced contact density is greater than 20. Plotted alongside the Monte Carlo results 
are the density profiles obtained from a simple one-component density functional 
theory (DFT), which treats the hard sphere contribution by the Rosenfeld (1989) 
fundamental measures theory and the attractive contribution, arising from +*0(R), 
in mean-field fashion. The overall agreement is quite good although differences do 
show up on the expanded scale of the insets. A similar trend in the profiles is obtained 
for Q = 0.3 (Brader et al. 2001~). 

While the addition of polymer gives rise to extremely high contact densities the 
colloid density profiles decay very rapidly to bulk-like values over the small range, 

OP = O.la,, of the wall depletion potential +AO . wa11 Crudely speaking, the colloid is 
behaving as an ideal gas in the deep effective wall potential, with some small enhance- 
ment of the local density due to packing effects. The Gibbs adsorption, 

r = c; 
.I O" dz (PC(~) - PC(~)), 0 

does not increase rapidly with increasing r$, and there is no evidence for any wall- 
induced local crystallization for the states we have investigated, i.e. up to ?$ = 0.1. 
However, this state point is still substantially removed from the bulk fluid-solid phase 
boundary. Whether wall induced crystallization sets in at slightly higher polymer 
packings or whether one must approach very close to the bulk phase boundary in 
order to observe such a phenomenon remains to be ascertained. One might certainly 
expect depletion effects to favour the development of crystalline layers prior to bulk 
crystallization. The main issues are (i) how close to the bulk transition must one 
be before the first adsorbed layer becomes crystalline and (ii) how do subsequent 
crystalline layers develop at the hard wall-fluid interface as vF, is increased (for a fixed 
Q) towards its value at bulk fluid-solid coexistence? Various scenarios are possible. 
There could be an infinite sequence of layering transitions culminating in complete 
wetting of the wall-fluid interface by a nearly close-packed crystal. Alternatively, the 
interface could remain incompletely wetted by crystal. 

We expect similar depletion phenomena for additive binary mixtures of hard 
spheres near a hard wall, provided the size ratio 4 is small enough. DFT calculations 
based on the Rosenfeld (1989) functional for such a binary mixture with 4 = 0.1 
yield big sphere (colloid) density profiles which are very similar to those shown here. 
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Figure 1. Colloid density profiles near a hard wall: the open circles are the Monte Carlo results 
while the solid lines denote the one-component DFT results. In each case the bulk colloid packing 
fraction 71~ = 0.4 and the size ratio q = 0.1. The packing fraction of ideal polymer in the reservoir 
increases from (a) qi = 0 (pure hard spheres) to (b) $, = 0.05 and (c) $, = 0.10. The insets 
show the results on an expanded vertical scale. Note the rapid increase in contact value p,(a,/2) 
as $ is increased. 

Once again there is no sign of crystallization at the wall for the state points which 
were investigated. Detailed comparisons of results for additive hard sphere mixtures 
with those from the A0 model will be presented elsewhere when we shall compare 
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our findings with those from Poon & Warren (1994), who developed an empirical 
approach for the calculation of the onset of wall crystallization in additive binary 
hard sphere mixtures. These authors find hard wall induced crystallization at small 
sphere packing fractions which are far below the bulk fluidsolid transition. Our 
results show no evidence of wall induced crystallization at state points where Poon 
& Warren predict such a transition. 

These findings have relevance for real colloidal mixtures in the presence of walls. 
Several authors have reported evidence for wall induced crystallization well below 
the bulk fluid-solid phase boundary in mixtures of hard sphere-like colloids at a 
planar wall. There are also earlier observations of wall induced crystallization in 
colloid-polymer mixtures (see, for example, Kose & Hachisu 1976; Gast et al. 1986). 
If, as now seems likely, the idealized A0 model of a binary colloid-polymer mixture 
at a planar hard wall predicts that the onset of wall-induced crystallization occurs 
very close to the bulk transition, this means that factors other than depletion must 
be important in the experiments. These may include polydispersity, which could 
play a different role in wall crystallization from that in bulk crystallization, and the 
fact that the actual walllcolloid potential could be different from that of a hard 
wall. Any residual attractive dispersion forces between the substrate and the colloid 
could favour the onset, of wall-induced crystallization. The theoretical framework 
which we have developed allows us to obtain reliable results for the well-defined A0 
model, which although simple, does incorporate the key features of depletion-induced 
colloid-colloid and wall-colloid attraction. As such it provides a valuable means of 
studying the effects of depletion on interfacial properties. The drawback is that the 
procedure is, for most practical purposes, restricted to 4 < 0.1547. 

4. Density functional theory for the binary A0 model 

As emphasized in 5 2, formally integrating out the polymer degrees of freedom yields 
very complicated effective Hamiltonians for the colloids when g > 0.1547. In order 
to tackle less asymmetric mixtures, an alternative strategy is required. Since direct 
simulation of the binary system is not practicable because of the large numbers 
of polymer coils required, we have designed a DFT specifically for the binary A0 
mixture (Schmidt et al. 2000). Here we describe the functional and report some 
results of its application to adsorption at a hard wall and to the properties of the 
free fluid-fluid interface. 

(u) Description of the density functional 

The procedure for constructing the DFT is based on the successful fundamental 
measures theory developed by Rosenfeld (1989) f or additive hard sphere mixtures 
and the excess, over ideal, Helmholtz free energy functional is given by an equivalent 
form: 

The weighted densities are 
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where the weight functions are W;(T) = B(Ri - r), W;(T) = S(Ri - r), W/~(T) = 
wa(r)r/r, and where r = 1~1, Q( r is the step function and b(r) is the Dirac dis- ) 
tribution. Further weights are w:(r) = w5(~)/(47~@), wil(f) = wi2(7=)/(47;Ri), 
w;(r) = w”;(r)/@. There are four scalar and two vector (w,~ and w,~) weight 
functions. Ri denotes the radius of species i, with i = c,p, so that RC = ~7,/2 and 
RP = ~,,/2. In order to obtain the free energy density @ appropriate to the A0 model, 
Schmidt et al. (2000) considered the zero-dimensional limit which corresponds to a 
cavity that can hold at most one colloid but can hold an arbitrary number of ideal 
polymer coils if no colloid is present. We found 

i@ = n~@(nC,, n;) + (nins - n:, . n”,2)(pij(ng, ng) 

+ &(n;n;n$/3-n~n~, . n~,)pijk(n~, ng), (4.2) 

where the Einstein summation convention is used, and 

Here 
PFOd(%, %) = (1 - vc - vp) ln(l - %> + % 

is the excess free energy appropriate to this particular cavity, and Q and qp are the 
packing fractions of the two species. In the original paper, Schmidt et al. included a 
tensor weight function; this is omitted here. The functional can also be regarded as 
a linearization, in the polymer density, of the original Rosenfeld functional. 

For a homogeneous (bulk) fluid mixture our functional yields the excess Helmholtz 
free-energy density PFexc(pc, pp)/V = pfhs (pc) - pp In c&k), where fhsbc) is the 

excess free-energy density of pure hard spheres in the scaled-particle (Percus-Yevick 
compressibility) approximation and CK = (1 - qc) exp(-Ay - By2 - Cy3), with y = 
qc/(l -Q), A = q3 + 3q2 + 3q, B = 3q3 + 9q2/2, and C = 3q3. This result is identical 
to that of the free-volume theory of Lekkerkerker et al. (1992) for the A0 model, 
which is known to yield stable colloidal gas-liquid coexistence for size ratios 4 3 0.32. 
For smaller 4 this fluid-fluid transition becomes metastable with respect to a broad, 
in qc, fluid-solid transition. 

The bulk pair direct correlation functions c$’ obtained by differentiating 
F,,,[p,, pp] are given analytically. The Ornstein-Zernike relations then provide the 
bulk partial structure factors Sij (k). A s a consequence of linearization in the polymer 
density, c&) = 0, as in Percus-Yevick approximation for this model. The other two 
functions CL:’ and cbz are not the same as those from Percus-Yevick theory. Never- 
theless, the resulting analytical Sij (k) are of a similar quality to those obtained from 
numerical solutions of the binary mixture Percus-Yevick integral equations (Schmidt 
et al. 2000). An important advantage of the present DFT over integral equation the- 
ories is that the structure factors and radial distribution functions, obtained from the 
Ornstein-Zernike route, are consistent with the bulk free energy, i.e. thermodynamic 
and structural routes to the fluid-fluid spinodal and critical point are equivalent. 
This property is particularly advantageous when one investigates interfaces at or 
near two-phase coexistence. 

The functional treats colloid and polymer on equal footing. For inhomogeneous 
situations the colloid and polymer density profiles are obtained by minimizing the 
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grand potential functional, 

(4.3) 

where Fjd[&, pp] is the ideal gas free energy functional and pi is the chemical potential 
of species i. Solving the resulting Euler-Lagrange equations is somewhat simpler than 
for a general binary mixture since pp(r) is an explicit functional of p,-(r) and V,“““(T); 
only pc(r) needs to be determined by numerical minimization. 

(b) Wetting and layering transitions at a hard wall 

Since our DFT incorporates bulk fluid-fluid phase separation it can be used to 
investigate fluid wetting phenomena at solid substrates. We choose to consider a 
planar hard wall defined by equation (2.6). For such a model we expect entropic 
depletion effects to favour the adsorption of colloid-rich phase at the wall so we 
might expect to observe complete wetting by this phase at the hard wall-colloid- 
poor interface. 

In order to test the DFT we first calculated density profiles for 4 = 0.1, the 
mixture considered in § 3, for which Monte Carlo results are available for the colloid 
profile; recall that the mapping to the effective Hamiltonian (2.7) is exact in this 
case. Our functional provides a very good description of the Monte Carlo results; the 
agreement is of similar quality to that between the simulation and one-component 
DFT results shown in figure 1. Explicit comparisons of theory and simulation results 
will be presented elsewhere, but we confirmed that the functional does account for 
the depletion attraction between the hard wall and the colloids. 

We focus now on larger size ratios where a stable fluid-fluid transition occurs. 
Figure 2 shows the bulk phase diagram obtained from the present theory for a size 
ratio 4 = 0.6 for which the fluid-fluid demixing transition has a critical point at 

$,crit N 0.495. It should be emphasized that the fluid-fluid and solid-fluid phase 
boundaries presented here are those of the original free-volume theory of Lekkerkerker 
et al. (1992). A full investigation of the freezing propert’ies of the present functional 
is outside the scope of the current study which is restricted to fluid states. Also 
shown in figure 2 is the Fisher-Widom (FW) line which divides the phase diagram 
into regions where the asymptotic decay of bulk pairwise correlations, gij(r), is either 
monotonic or exponentially damped oscillatory (Evans et al. 1994). The FW line was 
determined by calculating the poles of the partial structure factors Sij(lc). Note that 
in a binary mixture the three gij(r) change simultaneously their asymptotic decay 
as the FW line is crossed. 

In det,ermining the adsorption characteristics, we choose to fix $ and approach 
the bulk phase boundary from the colloid-poor side. This is analogous to performing 
a gas adsorption isotherm measurement for a simple fluid. Recall that 7; plays a role 
equivalent to inverse temperature. Depending on the value of $ chosen, the adsorp- 
tion behaviour changes dramatically. We consider size ratio q = 0.6 and describe 
some of the phenomena encountered. We first choose a path just above the critical 
point, with r$, = 0.55; see path I in figure 2. On approaching the phase boundary 
we find that the wall is completely wet by the colloid-rich phase. Figure 3 shows the 
colloid profiles signalling the growth of a thick layer of colloidal liquid against the 
wall. The corresponding polymer profiles are shown in the inset and indicate how 
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Figure 2. The bulk phase diagram calculated from free volume theory for q = 0.6. 7, is the 
packing fraction of the colloid and 7; that of polymer in the reservoir. F denotes fluid and 
S solid. The long-dashed line shows the fluid-fluid spinodal and the short-dashed line shows 
the Fisher-Widom line obtained from DFT. The latter intersects the binodal at r&w = 0.53. 
Horizontal arrows indicate the paths I and II by which the phase boundary is approached for 
the adsorption studies. The point on the binodal at qj;,+. M 0.63 indicates the location of the 
wetting transition. 

polymer becomes more depleted as the colloid-rich layer grows. Strictly speaking, 
macroscopically thick wetting films can only occur on the monotonic side of the FW 
line, i.e. for $j < qk,FW, the point of intersection of the FW line and the binodal, 
since oscillatory binding potentials will stabilize very thick but finite films which 
would otherwise be infinite (Henderson 1994). For $ = 0.55 (path I) we can easily 
obtain films of thickness 20 or 3Og, and in the flat portion of the profiles the densities 
of colloid and polymer are equal to their values in the coexisting colloid-rich phase. 
At large values of $ (> 0.75), we find that the wall is incompletely wetted by colloid; 
the layer thickness increases continuously remaining finite at the phase boundary. 
At lower values (0.6 < $, < 0.75), we find a single, first order layering transition. 
This is illustrated in figure 4, where the colloid profiles are plotted for $, = 0.7, 
following path II in figure 2, along with the Gibbs adsorption r. At the transition 
the densities p,-(z) in the first (contact) layer and in the second layer increase sub- 
stantially and 7 jumps discontinuously. P remains finite at bulk coexistence, i.e. 
there is still partial wetting. The layering transition line ends in a critical point at 

VP r M 0.62; the jump in the adsorption disappears for smaller $. It would appear that 
the layering represents a quasi-two-dimensional gas-liquid condensation transition. 
The layering transition line is quite separate from the prewetting line which emerges 
tangentially from the bulk coexistence curve at r,&, M 0.63 (the wetting transition 
‘temperature’) and ends in the prewetting critical point at $ M 0.60. This pattern 
of surface transitions appears to be quite different from what is usually found for 
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Figure 3. Colloid density profiles for q = 0.6 showing the complete wetting of a hard wall by 
the colloid-rich phase at r$, = 0.55 as the bulk phase boundary is approached along path I in 
figure 2. Bulk colloid fractions are qc = 0.04, 0.06, 0.07, 0.076: 0.0775, 0.0778 and 0.0779 (from 
bottom to top). The inset shows the polymer profiles for the same qc (from top to bottom). 

1.5 

1.0 

0.5 

0 1 
z lo, 

2 

Figure 4. Colloid density profiles for q = 0.6 showing the layering transition at r$ = 0.7 corre- 
sponding to path II in figure 2. Bulk colloid fractions are vc = 0.010, 0.015, 0.018, 0.019 and 
0.020 (from bottom to top); the transition occurs between 0.019 and 0.020. The inset shows the 
corresponding Gibbs adsorption r; this remains finite at bulk coexistence Q. = 0.0203. 
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simple fluids adsorbed at strongly attractive substrates where, for temperatures not 
too far from the triple point, complete wetting often proceeds via a sequence (pos- 
sibly infinite) of layering transitions (see, for example, Ball & Evans 1988). Here we 
have a single transition distinct from prewetting, which occurs well away from the 
triple point; the latter is at 7: M 1.43 in the free-volume theory. It is very likely that 
the occurrence of the layering transition reflects the underlying difference between 
a one-component fluid, described by a simple pairwise fluid-fluid potential and a 
simple one-body wall-fluid potential representing interactions with a substrate, and 
the present binary A0 mixture. As we have seen in 5 2, the effective one-component 
Hamiltonian involves pairwise potentials which depend on the distance of the col- 
loids from the wall as well as complex higher-body interactions for these (large) size 
ratios. 

Although we have yet to determine how the pattern of surface transitions depends 
on the size ratio 4, and there might well be surprises in store, we believe our present 
predictions of entropically driven wetting and layering transitions might encourage 
experimental investigations of adsorption in colloid-polymer mixtures. Real space 
techniques, such as confocal microscopy, may provide a useful tool for observing 
wetting in colloidal suspensions. Measurements of the contact angle 0 formed at 
the contact line between the colloid-rich-colloid-poor (liquid-gas) interface and a 
suitable substrate modelling a hard wall could also be revealing. We are predicting 
that the colloidal liquid phase should incompletely wet the substrate (6’ > 0) for 
‘I; > r7I;,w the wetting transition value, and wet completely (6 = 0) for $ < v;,~. 

(c) The structure and tension of the fluid-fluid in,terface 

We have also calculated the properties of the free liquid-gas interface between 
demixed fluid phases using our new DFT approach. Detailed results are given in 
Brader et al. (2001b); here we merely state the main findings. For CJ = 0.6 and 1.0, 
the two cases investigated in most detail, we find that the width of the interface is 
about one colloid diameter for states near the bulk triple point. This width is similar 
to estimates inferred from recent ellipsometric measurement on a real colloid-polymer 
mixture (de Hoog et al. 1999). The surface tension we calculate agrees reasonably 
well with data obtained from spinning-drop and breaking-thread measurements for 
mixtures of a silica colloid, coated wit#h 1-octadecanol, and polydimethylsiloxane 
(PDMS) in cyclohexane at T = 293 K (de Hoog & Lekkerkerker 1999). The size 
ratio for this mixture is approximately 1.0. In order to compare our DFT results 
with experiment we choose CJ~ = 26 nm, the mean diameter of the particles inves- 
tigated in the experiment; there are no other adjustable parameters in the theory. 
The measured and calculated tensions are 3-4 PN m-l, values which are about 1000 
times smaller than tensions of simple fluids. Such small tensions result from the 
fact that colloids are much larger than atoms or simple molecules; the tension scales 
roughly as kgT$/oz for states well removed from the critical point (Brader & Evans 
2000). The most, striking results which emerge from the DFT are those for the form 
of the density profiles ~~(2) and pi,(z). We find that when qf; is sufficiently high, 
i.e. well removed from the critical point, both pC( z and pi,(~) exhibit oscillations ) 
on the colloid-rich (liquid) side of the free interface. The period, which is about gC, 
and the decay length of the oscillations are identical for both species, in keeping 
with general arguments concerning asymptotic decay of correlation functions in mix- 
tures (Evans et al. 1994). For states with 7;; < $,FW (see figure 2), both ~~(2) and 
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pi,(z) decay monotonically into the bulk liquid. Although similar oscillations with 
a period of about one atomic diameter, are seen in DFT studies of the free liquid- 
gas interface for simple fluids near their triple points (Evans et al. 1993) here the 
amplitude of the oscillations in the colloid profile appears to be larger. Of course 
DFT treatments are mean-field-like in that they ignore the effects of capillary-wave 
fluctuations of the interface. We are presently investigating whether including these 
fluctuation effects will completely erode the oscillations or whether some oscillatory 
structure will remain in the ‘dressed’ colloid profile. From an experimental viewpoint 
it should be more favourable to investigate such structuring in colloidal fluids, where 
the period is of colloidal size, than in simple, atomic fluids. 

5. Concluding remarks 

Two different but complementary strategies for tackling the statistical mechanics of 
the A0 model have been adopted. In the first we performed a formal integrating out 
of the polymer degrees of freedom to obtain an effective Hamiltonian for the colloids. 
Such a strategy is especially valuable for size ratio 4 < 0.1547, where the resultant 
effective Hamiltonian is exact and is sufficiently simple, even for inhomogeneous mix- 
tures, to be investigated using computer simulation methods. The mapping makes 
tractable a difficult binary mixture problem which would not be tractable by direct 
simulation methods. This strategy has also proved valuable for determining the bulk 
phase behaviour of highly asymmetric binary mixtures of additive hard spheres (Dijk- 
stra et al. 1999a). In this case the mapping to an effective one-component system 
of big spheres involves an infinite sum of terms for any value of q. However, if one 
truncates the series after the two-body (depletion potential) contribution, simulation 
results for the effective Hamiltonian capture accurately all the key features of the 
bulk phase equilibria as determined by direct simulation of the binary hard-sphere 
mixture-at least for size ratios up to 4 = 0.2 (Dijkstra et al. 1999a). How far in q 
one can trust an approximate effective Hamiltonian for studies of adsorption remains 
to be ascertained. 

In the second strategy we did not perform any integrating out of the polymer 
degrees of freedom, rather we developed an approximate DFT for the binary A0 
mixture. Since there is no explicit integrating out, the DFT is applicable for all size 
ratios. This permits us to investigate mixtures for which stable fluid-fluid phase sep- 
aration occurs, and allows us to tackle wetting and related adsorption phenomena as 
well as the free fluid-fluid interface. The same DFT could, in principle, be used to 
tackle bulk fluid-solid (freezing) transitions and the corresponding solid-fluid inter- 
face. It could also be used to investigate wall-induced crystallization, although this 
is a very demanding problem in DFT or in simulation. Confined mixtures constitute 
another class of problem which is well suited to investigation by DFT and we have 
observed capillary condensation phenomena when the mixture is confined between 
two parallel planar hard walls. Since the walls prefer the colloid-rich (liquid) phase, 
condensation occurs on the low qc side of the coexistence curve (J. M. Brader 2000, 
unpublished work). We should emphasize that unlike DFT treatments of interfacial 
phenomena in simple fluids, where there is an explicit attractive fluid-fluid poten- 
tial which is usually treated in a perturbative (mean-field) fashion (see, for example, 
Evans 1992), here the effective attractive interactions emerge from the theory and 
they are not treated perturbatively. 
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In summary we have shown that interfacial properties of the simplest model 
colloid-polymer mixture can be extremely rich. That such a diversity of phenom- 
ena should arise in a system where the bare interactions are either hard or ideal is 
remarkable and points to the importance of entropic depletion forces in determining 
surface as well as bulk phase behaviour. 

We thank E. H. A. de Hoog, A. Gonzalez, H. N. W. Lekkerkerker, A. A. Louis, R. P. Sear, M. M. 
Telo da Gama and P. B. Warren for helpful discussions. R. van Roij provided valuable insight 
into matters concerned with integrating out degrees of freedom and understanding the status of 
the resulting effective Hamiltonians. This research was supported by the British-German ARC 
Programme (Project 104b) and by DFG Lo 418/5. 
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We describe two strategies for tackling the equilibrium statistical mechanics of inhomogeneous
colloid–polymer mixtures treated in terms of the simple Asakura–Oosawa–Vrij (AO) model, in
which colloid–colloid and colloid–polymer interactions are hard-sphere like, whereas the
polymer–polymer interaction is zero (perfectly interpenetrating polymer spheres). The first
strategy is based upon integrating out the degrees of freedom of the polymer spheres to obtain
an effective one-component Hamiltonian for the colloids. This is particularly effective for
small size ratios q ¼ �p=�c<0:1547, where �p and �c are the diameters of colloid and polymer
spheres, respectively, since in this regime three and higher body contributions to the effective
Hamiltonian vanish. In the second strategy we employ a geometry based density functional
theory (DFT), specifically designed for the AO model but based on Rosenfeld’s fundamental
measure DFT for additive mixtures of hard-spheres, that treats colloid and polymer on an
equal footing and which accounts for the fluid–fluid phase separation occurring for larger
values of q. Using the DFT we investigate the properties of the ‘free’ interface between colloid-
rich (liquid) and colloid-poor (gas) fluid phases and adsorption phenomena at the interface
between the AO mixture and a hard-wall, for a wide range of size ratios. In particular, for
q ¼ 0:6 to 1.0, we find rich interfacial phenomena, including oscillatory density profiles at the
free interface and novel wetting and layering phase transitions at the hard-wall–colloid
gas interface. Where appropriate we compare our DFT results with those from computer
simulations and experiment. We outline several very recent extensions of the basic AO model
for which geometry based DFTs have also been developed. These include a model in which the
effective polymer sphere–polymer sphere interaction is treated as a repulsive step function
rather than ideal and one in which the depletant is a fluid of infinitely thin rods (needles) with
orientational degrees of freedom rather than (non-interacting) polymer spheres. We comment
on the differences between results obtained from these extensions and those of the basic
AO model. Whilst the interfacial properties of the AO model share features in common
with the those of simple (atomic) fluids, with the polymer reservoir density replacing the
inverse temperature, we emphasize that there are important differences which are related to
the many-body character of the effective one-component Hamiltonian.

1. Introduction

It is well established that certain colloidal suspensions
behave as hard-sphere systems. Pioneering studies by

Pusey, van Megen and co-workers in the 1980s estab-
lished that polymethylmethacrylate (PMMA) particles,
sterically stabilized by chemically grafted poly-12-
hydroxystearic acid (PHSA), dispersed in a solvent
whose refractive index matches that of the particles,
exhibit phase behaviour which mimics closely that of
pure hard spheres [1]. In particular, coexistence of
colloidal fluid and crystal phases was found for colloid
packing (volume) fractions, �c, in the range 0:494 <
�c < 0:545, values consistent with computer simulations
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of hard spheres. For �c < 0:494 there is a single fluid
phase in which the diffusive dynamics of the colloidal
particles, as measured by dynamic light scattering, is
consistent with hard-sphere behaviour [1]. Other colloi-
dal systems also behave as hard spheres. For example,
the equation of state, obtained from X-ray measure-
ments of the colloid density profile in a gravitational
field, for charged polystyrene spheres suspended in
water (with HCl) is in excellent agreement with the
hard-sphere equation of state, on both the fluid and
crystal branches [2]. Of course, the effective pair
potential between colloids cannot be perfectly hard;
this cannot jump discontinuously to infinite repulsion
at some precise diameter. However, as the particles
approach each other the effective potential rises by
many kBT over a separation of one or two nanometres
or so—a distance which is very small compared with the
particle diameter (typically 6–700 nm, in the experiments
mentioned above). Entropically driven freezing is
the only phase transition that can occur in a system of
‘hard-sphere’ colloids.
Suppose now that non-adsorbing polymer is added to

the suspension of colloids. The interactions are, in
general, complicated but one can consider the case of
flexible polymer chains under athermal ‘good’-solvent
conditions, where the interactions between all the
species are hard-core repulsive, i.e. polymer chains are
mutually self-avoiding and are excluded from the hard-
sphere colloids. From a statistical mechanics point of
view, only packing constraints are relevant and the
properties of the system, in particular any phase
transitions, are determined by purely entropic effects.
It then comes as something of a surprise to learn that the
phase behaviour of colloid–polymer mixtures can be
very rich. A series of experiments, performed mainly
by groups in Utrecht, Bristol and Edinburgh in the
1980s and early 1990s, confirmed that adding sufficient
non-adsorbing polymers can cause phase separation
into two fluid phases, one rich in colloid and the other
poor; references to the original papers can be found
in [1, 3–5]. In order for fluid–fluid phase separation
to occur there must be a mechanism that generates
an effective attractive interaction between the colloidal
particles. Moreover, this mechanism must be entropic
in origin since all ‘bare’ interactions between species
are hard-core repulsive. An appropriate mechanism
was described as early as 1954 by Asakura and Oosawa
[6] and this is now termed the depletion effect or
depletion attraction. Asakura and Oosawa considered
two big spherical colloidal particles in a ‘sea’ of rigid
macromolecules. The latter were treated as hard
spheres as regards their interaction with the colloids
whereas macromolecule–macromolecule were set to zero,
so that the solution of macromolecules was treated as an

ideal gas. Such an assumption should be appropriate for
a dilute solution or for theta solvents where the second
virial coefficient for macromolecule–macromolecule
interactions vanishes. The centre of a macromolecule
sphere is excluded from the surface of a colloid by a
distance equal to �p=2, so there is a depletion zone (or
excluded volume region) in which there are no macro-
molecule centres of mass. If two colloids approach each
other, so that the depletion zones overlap, then there is
an increase in free volume for the macromolecule
spheres, i.e. an increase in their translational entropy,
leading to an effective attractive (depletion) interaction
between the two colloids. One can also view the
attraction as arising from an unbalanced osmotic
pressure pushing the colloids together as the macro-
molecules are expelled from the gap between the two
colloids. By calculating the volume of the overlap
between the two depletion zones, Asakura and
Oosawa [6] obtained an explicit expression for the
depletion force between two colloids whose centres are
separated by a distance R, immersed in an ideal solution
of macromolecules of fugacity zp. The depletion poten-
tial �AOðR; zpÞ vanishes when the depletion zones no
longer overlap; the attractive potential has a finite
range equal to �p. Increasing the concentration of the
macromolecule sea increases zp and the depth of the
potential well, whereas increasing �p extends the range
and, hence, the integrated strength of the attraction. It
is clear that depletion attraction is a possible mechanism
for driving phase separation. In a second paper, Asakura
and Oosawa [7] focused on the depletion potential
and discussed the possible aggregation of suspended
colloidal particles. By assuming the polymers can be
treated as spherical macromolecules, internal conforma-
tional degrees of freedom are ignored. Independently,
in 1976 Vrij [8] proposed the same depletion mechanism,
deduced the depletion potential between a pair of
colloidal spheres and the associated second virial coeffi-
cient and went an important step further by writing
down an explicit model Hamiltonian for the binary
mixture of hard-sphere colloids and ideal polymer
(macromolecule) spheres; this is the Asakura–Oosawa–
Vrij or AO model—see section 2. Vrij’s paper provides
the basis for a full statistical mechanical treatment
for an (idealized) model of a colloid–polymer mixture.
Vrij pointed out that his interparticle potentials define
a ‘non-additive’ hard-sphere model in the the theory of
liquids. We return to this aspect in section 2. He also
suggested that the colloid–polymer hard-sphere dia-
meter should be ð�c þ �pÞ=2 with �p=2 � Rg, the radius
of gyration of the polymer. The next important
development in the theory was made by Gast et al. [9]
who calculated the phase behaviour of the AO model
using thermodynamic perturbation theories for an
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approximation that assumes an effective colloid–colloid
pair potential, �eff ðR; zpÞ, consisting of the bare hard-
sphere potential plus the attractive depletion potential
�AOðR; zpÞ. Gast et al. predicted that the effect of adding
polymer depends sensitively on the polymer to colloid
size ratio q ¼ �p=�c. For q9 0:3, adding polymer merely
augments, in �c, the colloidal fluid–crystal coexistence
region above the range found for pure hard spheres,
whereas for larger values of q a stable colloidal liquid
phase can exist. In the (�c, zp) plane there is a triple
point where gas, liquid and crystalline colloidal phases
coexist [9] and for q00:6 the phase diagrams resemble
those of simple atomic fluids, with zp playing the same
role as inverse temperature, 1/T. Thus, entropically
driven depletion attraction can become sufficiently
strong and sufficiently long-ranged to generate a van
der Waals-like scenario for the gas-liquid transition.
As noted by Gast et al., one significant drawback to

their approach is that for size ratios q > 0:1547, the
effective one-component Hamiltonian should contain
three- and higher-body effective interactions between
the colloidal particles—see section 2.1; these interactions
are tedious to evaluate and cumbersome to incorporate
into perturbation theories or computer simulations
of the liquid and crystalline phases and are therefore
usually ignored. However, the effects of many-body
effective interactions are not necessarily small and we
shall argue below that these can play a crucial role
for both bulk and interfacial phase behaviour.
An alternative approach to determining the phase

behaviour of the AO model, which does not rely upon
mapping to an effective one-component Hamiltonian
and which does capture some of the effects of many-
body terms, is the so-called free-volume theory of
Lekkerkerker et al. [4]. Some details of this approach
will be given in section 2.2 but the approximation
consists of replacing the exact (average) free volume
available to the ideal polymers by the corresponding
quantity evaluated in the low-density limit, zp ! 0, for
which an analytical approximation is available. Having
an explicit expression for the free volume fraction,
�ð�cÞ, allows one to transform readily from the reser-
voir representation, where zp or, equivalently, �rp, the
packing fraction of ideal polymer is specified, to the
system representation where �p, the packing fraction in
the actual system is specified: �p ¼ ��rp. Experimental
phase diagrams are plotted in the (�c, �p) plane. The
free-volume theory predicts a stable colloidal gas–liquid
transition for q00:32 and the phase diagrams exhibit
similar trends to those from the approach of Gast et al.,
although there are some significant differences—see [10]
for detailed comparisons and [11] for a discussion
of the connections and distinctions between the two
approaches. Subsequently Meijer and Frenkel [3]

performed pioneering Monte Carlo simulations for
two separate models of colloids dispersed in a dilute
polymer solution. The first was a lattice–polymer model
in which polymers are represented by ideal (non-self-
avoiding) chains confined to a cubic lattice. However,
lattice sites occupied by colloidal hard-spheres are
inaccessible to polymer. The second was the AO model,
but with the polymer spheres restricted to a cubic lattice.
Phase diagrams, calculated in the (�c, zp) plane, for the
two models were rather close to each other and for the
size ratios q ¼ 0:5 and 0.7 considered the simulation
results corresponding to the (lattice–polymer) AO model
were in fair agreement with those from free-volume
theory.

To summarize, by 1994 various theoretical and
simulation studies of idealized models had shown that
for small polymer–colloid size ratios the phase diagram
is of the fluid–solid type, whereas for larger size ratios,
where the depletion potential becomes longer ranged
and many-body interactions become important, stable
colloidal gas–liquid phase separation occurs. This trend
in the phase behaviour was consistent with earlier
experimental observations. Subsequent experiments
[5, 12] provided convincing support for the scenario
suggested by theory. In particular, three-phase coex-
istence was reported at certain size ratios for charged
colloidal polystyrene particles mixed with hydroxyethyl
cellulose [12] and for sterically stabilized PMMA
particles mixed with random coil polystyrene (PS) in a
cis-decalin solvent [5]. An admirable account of the
work of the Edinburgh group on the latter system,
which the author describes as a ‘model colloid–polymer
mixture’, is given in the recent topical review by Poon
[13]. We direct readers wishing to learn more about
phase behaviour, equilibrium structure, phase transi-
tion kinetics, gels and glasses in real mixtures to this
illuminating article. Another well-characterized system,
much studied by the Utrecht group, consists of sterically
stabilized silica particles and polydimethylsiloxane
(PDMS) in cyclohexane. Silica has the advantage over
PMMA that small particles are available (diameters
as small as 20 nm) which is important in studies of
interfaces—see section 3.

The thrust of the present article is quite different from
that of Poon. Having established that the simple AO
model captures the main features of the experimental
bulk phase diagrams, here we enquire what are the
properties of inhomogeneous colloid–polymer mixtures,
as described by the same AO model. Inhomogeneous
situations, where the average density profiles of both
species are spatially varying, occur in the context of
adsorption at a solid substrate, at the planar interface
between two coexisting (colloid-rich and colloid-poor)
phases, for mixtures confined in capillaries or porous
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media or, indeed, in a colloidal crystal. Nucleation
phenomena also require a description of the inhomoge-
neous fluid. Our strategy is not to attempt any realistic
modelling of a colloid–polymer mixture which is, of
course, a highly complex system involving multiple
length and time scales, rather we seek to understand the
basic adsorption and interfacial properties that arise in
the context of the simple model fluids. Moreover, we
restrict consideration to equilibrium aspects.Whether the
predictions from the model are relevant to real mixtures
is a separate issue. In defence of our strategy we remark
(as humble theorists!) that without detailed theoretical
and simulation studies of the Lennard-Jones and other
model fluids, we would have little fundamental under-
standing of the properties of simple, atomic liquids at
interfaces or under confinement—the experimentalists
are certainly catching up but experiments on fluid
interfaces are notoriously difficult. One might go further
and argue that studies of the Ising or lattice gas model,
with the substrate treated as an external field, led to a
wealth of predictions for surface phase transitions most
of which were found in adsorption experiments. Let us
be clear, however. We are not suggesting that the AO
model has the same significance in statistical physics as
the Ising model! Nevertheless, the AO model has much
appeal to the theorist. There is only one parameter, the
size ratio q, and by varying q different types of bulk
phase behaviour emerge. Moreover, we find that the
same model predicts striking interfacial phenomena,
some of which are very different from those found for
simple fluids and which reflect the special character of
the effective interactions in the AO model.
Those readers who are interested in recent develop-

ments in the theory of more realistic models of colloid–
polymer mixtures are referred to the topical review by
Fuchs and Schweizer [14] who describe liquid-state
integral equation theories for tackling structural corre-
lations starting at the polymer segment level. The
polymers are treated as connected chains of segments
which experience excluded-volume forces among them-
selves and with the hard-sphere colloids. Although
the integral equation approaches provide much insight
into the nature of correlations for a wide range of size
ratios (including q � 1) and for a variety of polymer
concentrations, they appear to be restricted to homo-
geneous (bulk) fluids and it is difficult to envisage
extensions to inhomogeneous systems or to crystalline
phases, i.e. to the full phase diagram. Very recently,
Bolhuis and co-workers [15] have performed Monte
Carlo simulations of the bulk phase diagram of a model
in which the colloids are treated as hard spheres and
the polymers as self-avoiding walks that are mapped to
an effective pair potential. We shall make reference
to their work in section 5.2, but for more details of

this powerful ‘polymers as soft colloids’ computational
approach readers should consult the original paper and
references therein.

The present article is organized as follows. In
section 2 we describe the AO model Hamiltonian
and two different strategies for tackling its statistical
mechanics. The first is to integrate out the degrees of
freedom of the polymer spheres, thereby obtaining an
effective one-component Hamiltonian for the colloidal
hard spheres. As mentioned above, this approach is
particularly effective for small size ratios, q < 0:1547,
where the one-component Hamiltonian consists of
zero, one and two-body contributions only; there are
no higher-body effective interactions. The second
strategy is to tackle the binary AO mixture directly;
the two components are treated on equal footing by
means of a geometry-based density functional theory
that is specifically designed for the inhomogeneous
AO mixture [16, 17]. The procedure for constructing
the DFT is based on the fundamental measure theory
developed by Rosenfeld [18] for additive hard-sphere
mixtures. For uniform (bulk) fluids the free energy
obtained from the DFT is identical to that given by
the free-volume theory of Lekkerkerker et al. [4]
alluded to above. Section 3 describes an application of
the DFT to the planar interface between demixed fluid
phases, one rich in colloid, the other poor. We find
that for coexisting states well away from the critical
point, at high polymer fugacity, both the colloid
and polymer density profiles exhibit oscillations on
the colloid-rich (liquid) side of the interface. We also
discuss the behaviour of the surface tension comparing
with experimental results. In section 4 we consider
adsorption of the AO mixture at a planar hard wall.
When a colloidal particle is sufficiently close to a hard
wall, such that the two depletion zones overlap, there
is an effective attractive potential between the two
which is similar to the potential, �AO, between two
colloidal particles, i.e. expulsion of polymer induces an
attractive wall–colloid depletion potential �wall

AO whose
range is equal to �p. For small size ratios q, very large
contact densities are found for the colloid profile �cðzÞ,
reflecting the form of �wall

AO ðz; zpÞ. For larger q fluid–
fluid phase separation can occur and we find novel
entropic wetting and layering transitions using the
DFT—see section 4.2. Results of recent computer
simulations of the AO mixture, with q ¼ 1, adsorbed
at a hard wall are described in section 4.3; these also
predict wetting and layering transitions [19]. Section 5
describes a recent extension of the DFT approach that
incorporates, albeit in a simple way, polymer–polymer
interactions [20]. In the ‘soft colloid’ picture [21] of
polymers, segment–segment repulsion, averaged over
conformations of the chains, leads to an effective
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interaction, �pp, between the polymer centres of mass
that is repulsive, soft and penetrable. By making the
crude approximation that �ppðrÞ is a step-function pair
potential of height �, it is possible to construct a
geometry-based DFT for a model that has as its limit-
ing cases: (i) the AO model (� ¼ 0, non-interacting
polymer) and (ii) the binary hard-sphere mixture
(� ! 1). We present results for fluid–fluid phase
separation, comparing with those for the AO model
and with computer simulations. In section 6 we sum-
marize briefly some other recent applications and
extensions of the DFT for the AO model. Several of
these are concerned with bulk properties only but we
also describe recent work on mixtures of hard-sphere
colloids and hard needles, modelling experimentally
realizable stiff colloidal rods, where interfacial proper-
ties were considered [22–24]. This model system shares
many features in common with the AO model—
the needles act as the depletant. It has the additional
feature of orientational degrees of freedom for the
needles which can introduce orientational ordering at
an interface, even though the bulk fluid is isotropic
(the infinitely thin rods cannot interact). We conclude
in section 7 with some remarks and an outlook on
future work.
What follows is not intended to be a review of what

is a large and rapidly developing literature on the
experimental, theoretical and simulation aspects of
colloid–polymer mixtures; we make no attempt to give
a comprehensive overview or an exhaustive list of
references. For example, we concentrate on the
so-called ‘colloid limit’, q91, rather than the equally
important ‘protein or nanoparticle limit’, q � 1, where
the physics is, arguably, less understood. The choice
of material reflects the personal viewpoints of the
authors on the subject area and the presentation is
based, in part, on the Molecular Physics Lecture given
by R. Evans at the Liblice Conference in June 2002.
Although much of the theoretical background has
been published elsewhere, almost all the results
presented in sections 3 and 4 appear for the first
time: they are from the unpublished thesis of Brader
[25]. Section 5.2 also contains new results. A brief
summary of some of the earlier work can be found in
a conference article [26].

2. The Asakura–Oosawa–Vrij model

We consider a suspension of sterically stabilized
colloidal particles immersed together with non-adsorb-
ing polymers in an organic solvent. The interaction
between two sterically stabilized colloidal particles in an
organic solvent is close to that between hard spheres,
whereas dilute solutions of polymers in a theta-solvent
can be represented by non-interacting or ideal polymers.

A simple idealized model for such a colloid–polymer
mixture is the so-called Asakura–Oosawa–Vrij (AO)
model [6–8]. This is an extreme non-additive binary
hard-sphere model in which the colloids are treated as
hard spheres with diameter �c and the interpenetrable,
non-interacting polymer coils are treated as point
particles but which are excluded from the colloids to a
centre-of-mass distance of ð�c þ �pÞ=2. The diameter of
the polymer sphere is �p ¼ 2Rg with Rg the radius of
gyration of the polymer. The pairwise potentials in this
simple model are given by

�ccðRijÞ ¼
1, for Rij < �c,

0, otherwise ,

�

�cpðjRi � rjjÞ ¼
1, for jRi � rjj <

1
2
ð�c þ �pÞ,

0, otherwise,

(

�ppðrijÞ ¼ 0, ð1Þ

where R and r denote colloid and polymer centre-of-
mass coordinates, respectively, with Rij ¼ jRi � Rjj and
rij ¼ jri � rjj. Note that a general non-additive binary
hard-sphere mixture is described by the ‘diameters’ �11,
�22 and �12, where subscripts 1 and 2 denote species 1
and 2. The cross-term is given by �12 ¼ ð�11 þ �22Þ�
ð1þ�Þ=2, where the non-additivity parameter � is zero
for additive mixtures. The AO model corresponds to
�22 ¼ 0 and � ¼ q, the fixed size ratio �p=�c. The
Hamiltonian of the AO model consists of (trivial)
kinetic contributions and a sum of interaction terms:
H ¼ Hccþ Hcp þHpp, where

Hcc ¼
XNc

i<j

�ccðRijÞ,

Hcp ¼
XNc

i

XNp

j

�cpðjRi � rjjÞ,

Hpp ¼
XNp

i<j

�ppðRijÞ ¼ 0 ð2Þ

and we consider Nc colloids and Np ideal polymers in a
volume V at temperature T. The solvent is regarded as
an inert continuum. See figure 1 (a) for an illustration
of the model.

There are several ways of tackling the statistical
mechanics of the AOmodel. Brute force, direct computer
simulations of this model mixture are not straightfor-
ward since problems of slow equilibration and non-
ergodicity can arise for large size asymmetries, where
huge numbers of polymers are required per colloid
particle. Recently, however, simulation studies have been
carried out for several values of the size ratio q ¼ �p=�c
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and we shall report on these in section 4.3. Here we
describe two alternative approaches which have been
successfully employed. The first is most appropriate
for mixtures where the size ratio q � 1; it depends
upon integrating out the degrees of freedom of the
ideal polymer to obtain an effective one-component
Hamiltonian for the colloids. The second approach
employs a density-functional theory designed specifically
for the AO mixture; this treats both species on an equal
footing.

2.1. The effective one-component Hamiltonian
For a general binary mixture it is possible to construct

an effective one-component Hamiltonian for one of the
components—usually the larger species—by integrating
out the degrees of freedom of the other—usually the
smaller species [27]. As usual it is convenient to work
in the semi-grand ensemble where (Nc, zp,V ,T) are
fixed variables, i.e. the fugacity zp ¼ L� 3

p exp ð��pÞ of
a reservoir of polymer is fixed. �p is the chemical
potential, � ¼ 1=kBT and Lp is the thermal de Broglie
wavelength of the polymer. In order to treat inhomo-
geneous fluids it is also convenient to allow the colloids
and polymer to couple independently to two external
fields. Thus one adds to the Hamiltonian H contribu-
tions

Vext
c ¼

XNc

i¼1

Vext
c ðRiÞ, Vext

p ¼
XNp

i¼1

Vext
p ðriÞ, ð3Þ

which can produce inhomogeneous density profiles. It is
straightforward to show that the semi-grand free energy
FðNc,V , zpÞ is given by

exp ð��FÞ ¼
1

Nc!L3Nc
c

Z
dRNc exp ��ðHcc þ Oþ Vext

c Þ
� �

,

ð4Þ

where Lc is the thermal de Broglie wavelength of the
colloid and

exp ð��OÞ ¼
X1
Np¼0

z
Np
p

Np!

Z
drNp exp ��ðHcp þ Vext

p Þ

� �
:

ð5Þ

O is simply the grand potential of the (ideal) polymer in
the presence of the external field arising from (a) a fixed
configuration fRNcg of Nc colloids and (b) any applied
field Vext

p . Provided one can determine O explicitly, or
at least a good approximation to O, the binary
mixture problem is reduced to a simpler one-component
problem: equation (4) describes a system of colloids
interacting through an effective Hamiltonian: Heff ¼

Hcc þ Oþ Vext
c .

In a general mixture O consists of zero, one, two, . . . ,
many-body contributions [28] and the resulting Heff is
unwieldy. However, for the particular case of the AO
model the contributions simplify [10, 11] because the
polymer is ideal, i.e. �pp ¼ 0. Moreover, for a homo-
geneous fluid, with no external potentials, the series
truncates after the two-body term, provided that
q < 2=31=2 � 1 ¼ 0:1547 [9, 10]. For such high asymme-
try there is no triple overlap of excluded volume regions,
even when three colloids are in simultaneous contact.
Thus, for q < 0:1547, geometrical considerations ensure
that there is an exact mapping from the bulk binary
mixture to an effective Hamiltonian that contains only
two-body interactions plus structure (configuration)
independent contributions. The effective pair potential
is given by [9, 10]

�eff ðR; zpÞ ¼ �ccðRÞ þ �AOðR; zpÞ, ð6Þ

where �AOðR; zpÞ is the well-known AO pair (depletion)
potential between two hard-sphere colloids in a sea of
ideal polymer [6, 7], see figure 1 (b) for an illustration.
�AOðR; zpÞ is attractive and has a finite range equal to �p.
Its strength is proportional to zp and it can be expressed
as a polynomial in s ¼ R=�c:

��AOðR; zpÞ

¼

�
p
6
�3
pzpð1þ q�1Þ

3 1�
3s

2ð1þ qÞ
þ

s3

2ð1þ qÞ3

� �
,

1 < s < 1þ q,

0, s > 1þ q:

8>>><
>>>:

ð7Þ

Figure 1. (a) Sketch of the Asakura–Oosawa–Vrij model of
hard spheres (grey circles) with diameter �c and ideal
polymers (white circles) with diameter �p. (b) Depletion
zones (dashed lines) that are inaccessible to polymer
centres. Overlapping depletion zones (light grey shapes)
are indicated in two cases, that between two colloids and
that between a colloid and a hard wall.
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Perhaps more remarkably, Brader et al. [11] showed
that for the AO mixture in contact with a hard wall
defined by the external potentials

Vext
c ðzÞ ¼

1, z < �c=2,

0, z � �c=2,

(

Vext
p ðzÞ ¼

1, z < �p=2,

0 z � �p=2,

( ð8Þ

where z is the centre of the particle measured normal
to the wall, there is also an exact mapping of the
binary mixture to a simple effective Hamiltonian.
Using geometrical considerations (see figure 2 of [11])
they showed that for q < 0:25 all many-body terms On,
with n� 2, are unaltered from their form in the bulk
(homogeneous) fluid by the presence of the hard wall.
For larger values of q the two-body potential becomes
a complicated function of R1 and R2 and is not simply
a function of the separation jR1 � R2j. Specifically, for
q < 0:1547, the effective Hamiltonian for the inhomo-
geneous fluid at the hard wall reduces to

Heff ¼ Hcc þ
XNc

i¼1

Vext
c ðziÞ þ

XNc

i¼1

�wall
AO ðzi; zpÞ

þ Obulk
0 þ Obulk

1 þ
X
i<j

�AOðRij ; zpÞ: ð9Þ

The additional one-body term �wall
AO represents the

attractive AO depletion potential between the colloid
and the planar hard wall. This potential has the same
range, �p, as �AO and it has similar form [11]. In the
absence of the wall equation (9) reduces to the effective
Hamiltonian of the homogeneous system. The structure-
independent terms are given by

��Obulk
0 ¼ zpV ,

��Obulk
1 ¼ �zpNcp ð�c þ �pÞ

3=6 ¼ �zp�cð1þ qÞ3V , ð10Þ

where �c ¼ ðp=6Þ�3
cNc=V is the colloid packing fraction.

Having such a simple effective Hamiltonian for the
homogeneous fluid means that it is straightforward
to perform computer simulations or to implement
standard one-component integral equation closures.
Recall that integral equation approaches for highly asym-
metric mixtures are especially problematical whereas
Percus–Yevick (PY) and similar closures provide a
reliable description of the pair correlation function
for a one-component fluid whose pair potential consists
of a hard core plus an attractive tail. Of course, the usual
issues of thermodynamic inconsistency remain.
Dijkstra et al. [10] carried out extensive investigations

of the properties of the bulk mixture with q ¼ 0:1 using

the effective Hamiltonian. The equilibrium structure,
i.e. the colloid–colloid radial distribution function gccðRÞ
and the structure factor SccðkÞ, is determined solely by
�eff ðR; zpÞ, equation (6), for this size ratio and Monte
Carlo and PY results at various colloid packing fractions
are presented in [10]. Note that since the terms Obulk

0

and Obulk
1 depend linearly on Nc or V they have no effect

on bulk phase equilibria and the latter is, once again,
determined solely by the pair potential �eff ðR; zpÞ [10, 28].
(These terms do contribute to the total pressure and
total compressibility of the mixture, however [29].) The
complete equilibrium phase diagram of the mixture was
determined by simulation of the effective one-component
system for q ¼ 0:1. It is extremely rich, displaying a very
broad, in �c, fluid–solid coexistence curve which lies
at lower polymer densities than a (metastable) fluid–
fluid coexistence region. There is also an isostructural
(fcc) solid–solid transition which is very slightly meta-
stable with respect to the fluid–solid transition [10, 11].
Note that as each term in the effective Hamiltonian is
proportional to zp (� polymer density in the reservoir,
�rp, for ideal polymer) this variable plays the same role as
inverse temperature in simple atomic fluids. Thus, phase
diagrams plotted in the (�c, zp) plane often display
features similar to those plotted in the (density, 1=T)
plane for simple fluids. The simulation results for the
bulk system provide a valuable benchmark against which
approximate theories, e.g. integral equation, density
functional or perturbation theory approaches, can be
tested [10].

Similar remarks apply to the Monte Carlo simula-
tion results obtained using the effective Hamiltonian
(9) for the mixture at a planar hard wall. Brader et al.
[11] considered the AO mixture, with q ¼ 0:1, for two
fixed values of the colloid packing fraction, �c ¼ 0:3
and 0.4, and increasing amounts of polymer. Adding
polymer (increasing zp) leads to increased depletion
attraction for the colloids at the hard wall which
leads, in turn, to pronounced effects on the density
profile near the wall. We shall comment further on
this phenomenon in section 4.1 where we compare
results from density functional theory with those of
the simulations.

We conclude this subsection by making some remarks
about the form of the effective Hamiltonian to be used
for other types of inhomogeneity. If the wall–fluid
potentials are soft or exhibit attractive portions then
the integrating out of the polymer can lead to more
complex contributions, even for small size ratios q. On
the other hand, for spontaneously generated inhomo-
geneities, where the density profiles of colloid and of
polymer are spatially varying in vanishing external
fields, the appropriate effective Hamiltonian is that of
the bulk, homogeneous system [11]. Relevant examples
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are the planar interface between demixed fluid phases,
colloidal crystals where the densities vary periodically,
and the fluid–crystal interface. Although the distribution
of polymer in a colloidal crystal or in the region of
any interface is very different from that in a bulk fluid
this does not give rise to different effective interactions,
in the sense that the effective Hamiltonian needs to be
modified. Since we work in the semi-grand ensemble,
with a reservoir of polymer, it is solely the fugacity zp
that determines all the effective interactions in the
system. As zp is constant throughout the inhomogeneous
system then so too are the effective interactions between
colloids; these do not depend on the local polymer
distribution. Also we note that although the polymer
degrees of freedom have been integrated out it is still
possible, at least in principle, to recover information
about the polymer distribution from properties that
are determined by the effective Hamiltonian. For
example, the polymer density �pðrÞ can be obtained by
functional differentiation of the free energy F with
respect to Vext

p ðrÞ and expressed in terms of n-body
correlation functions of the colloids, which can be
determined using the effective Hamiltonian [11]. When
q < 0:1547 this procedure yields an exact and tractable
formula for the free-volume fraction �ð�c; zpÞ � �p=�

r
p

(the ratio of polymer density in the mixture to that in
the reservoir) of a bulk fluid mixture [11].
Finally, we should remark that the one-dimensional

version of the AO model, in which the colloids are
modelled by hard rods and the polymer by ideal
particles that are excluded from the colloids by a certain
distance, can be solved exactly by mapping the binary
mixture to an effective one-component Hamiltonian
[30]. The construction of the effective Hamiltonian
proceeds as in three dimensions and the effective pair
potential �eff ðX ; zpÞ ¼ �ccðXÞ þ �1D

AOðX ; zpÞ, where the
depletion potential �1D

AO is now the difference in
accessible length for the polymers when the colloids
are separated by a distance jX j and when their separa-
tion is infinite. This potential is linear in jX j, pro-
portional to zp and vanishes for separations beyond
the length of the polymer. Since the mapping reduces
the binary mixture problem to that of a one-component
fluid in one dimension, in which the particles interact via
a nearest-neighbour potential, the statistical mechanics
can be solved using the standard Laplace transform
techniques. Results for the (osmotic) equation of state
and free-volume fraction �ð�c; zpÞ are given in [30],
where they are compared with the corresponding results
from the approximate free-volume theory.

2.2. Density functional approach
We have recently developed a density functional

theory (DFT) for the binary AO model using the

techniques of fundamental measure theory (FMT). Our
new functional [16, 17] treats arbitrary size ratios q and
is thus able to incorporate the effects of many body
interactions which arise in the effective one-component
description at larger values of q, and which represent an
important feature of the model. Unlike DFT treatments
of interfacial phenomena in simple fluids, where the
attractive portion of the fluid–fluid pair potential is
treated separately from the repulsive part in a perturba-
tive fashion that is equivalent to a mean-field treat-
ment (correlations are ignored) [31], here the effective
attractive interactions emerge naturally from the DFT
and are treated non-perturbatively. Of course, the
present DFT is still mean-field like in that bulk critical
fluctuations or, indeed, interfacial fluctuations are not
incorporated. The excess, over ideal, Helmholtz free
energy functional is given by a spatial integral over a
reduced free energy density F which is a function of
a set of species-dependent weighted densities

�FAO
ex ½�cðrÞ, �pðrÞ� ¼

Z
drFðfnc	g, fn

p

gÞ, ð11Þ

where the function F ¼ F1 þ F2 þ F3 consists of three
terms given by

F1 ¼ nc0 � ln ð1� nc3Þ þ
np3

1� nc3

� �
� np0 ln ð1� nc3Þ,

F2 ¼ ðnc1n
c
2 � nc1 	 n

c
1Þ

1

1� nc3
þ

np3
ð1� nc3Þ

2

" #

þ
np1n

c
2 � n

p
1 	 n

c
2 þ nc1n

p
2 � nc1 	 n

p
2

1� nc3
,

F3 ¼
ðnc2Þ

3
� 3nc2ðn

c
2 	 n

c
2Þ

24p
1

ð1� nc3Þ
2
þ

2np3
ð1� nc3Þ

3

" #

þ
ðnc2Þ

2np2 � np2ðn
c
2 	 n

c
2Þ � 2nc2n

c
2 	 n

p
2

8pð1� nc3Þ
2

: ð12Þ

The species-dependent weighted densities are given by
convolutions of the density profiles �iðrÞ, i ¼ c, p, with
weight functions wi

	ðrÞ

ni	ðrÞ ¼

Z
dr0�iðr

0Þwi
	ðr� r0Þ: ð13Þ

The four scalar and two vector weight functions are
functions characteristic of the geometry of the hard
particles

wi
3ðrÞ ¼ �ðRi � rÞ,

wi
2ðrÞ ¼ �ðr� RiÞ,

wi
1ðrÞ ¼

�ðr� RiÞ

4pRi
,
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wi
0ðrÞ ¼

�ðr� RiÞ

4pR2
i

,

wi
v2ðrÞ ¼

r

r
�ðr� RiÞ,

wi
v1ðrÞ ¼

r

r

�ðr� RiÞ

4pRi
, ð14Þ

where Ri denotes the radius of species i so that Rc ¼ �c=2
and Rp ¼ �p=2. �ðrÞ is the Heaviside step function
and �ðrÞ is the Dirac distribution.
The procedure for constructing the DFT is based on

the successful FMT developed by Rosenfeld [18] for
additive hard-sphere mixtures. In order to obtain the
reduced free energy density F appropriate to the AO
model, Schmidt et al. [16, 17] considered the zero-
dimensional limit which corresponds to a cavity that can
hold at most one hard-sphere colloid but can hold an
arbitrary number of ideal polymers if no colloid is
present. Full details of the derivation of the DFT and its
applications to the determination of bulk fluid thermo-
dynamics and structure are given in [17]. A summary is
provided in section 5.1 of the present article where we
consider an extension of the AO model. Here it suffices
to make some remarks about the status of the theory.
Note that in the original papers [16, 17] a tensor weight
function was included; this contribution is omitted in
the above formulation and in the calculations to be
described later. Inclusion of the tensor (see equation (33)
below), while essential for calculating crystalline pro-
perties, makes negligible difference for inhomogeneous
fluid states and so would only serve to complicate
matters without altering the basic phenomena. It is
important to recognize that the functional can also be
regarded as a linearization, in the polymer density �pðrÞ,
of the original Rosenfeld hard-sphere functional.
For a homogeneous fluid mixture the functional yields

a reduced excess bulk free energy density

�FAO
ex =V ¼ �f AO

ex ð�c, �p; qÞ ¼ �fHS
ex ð�cÞ � �p ln �ð�cÞ,

ð15Þ

where

�ð�cÞ ¼ ð1� �cÞ exp ð�A
 � B
2 � C
3Þ, ð16Þ

with 
 ¼ �c=ð1� �cÞ, A¼ 3qþ 3q2 þ q3, B¼ 9q2=2þ 3q3

and C ¼ 3q3. fHS
ex is the excess free energy density of pure

hard spheres in the scaled particle (PY compressibility)
approximation; an explicit expression is given later in
equation (36). This result can be shown to be identical
to the free-volume theory of Lekkerkerker et al. [4, 10],
where �ð�cÞ is interpreted as the ratio of the free volume
accessible to a single test polymer sphere and the system
volume. It is not immediately obvious that the DFT

approach should be equivalent to free-volume theory.
The starting points for the two theories are quite dif-
ferent and it is usually the semi-grand free energy that is
considered in free-volume theory; connections between
the two approaches are discussed in [17]. Free-volume
theory treats the semi-grand free energy as the sum of a
hard-sphere (colloid) part plus a contribution from an
ideal gas of polymers in the free volume left by the
colloids, which is treated as an expansion in the fugacity
zp truncated at the term linear in zp [4, 10]. This linearity
in zp, or equivalently in �p, is built into the DFT.

The bulk pair direct correlation functions c
ð2Þ
ij ,

obtained by taking two functional derivatives of
FAO

ex ½�c, �p�, are given analytically [17]. The Ornstein–
Zernike relations then provide the partial structure
factors SijðkÞ. Linearization in the polymer density has
the consequence that cð2Þpp ¼ 0, as in the PY approxi-
mation for this AO model. However, the other direct
correlation functions cð2Þcc and cð2Þcp are not the same as
those from PY approximation, even though c

ð2Þ
ij ðrÞ

vanishes for r > Ri þ Rj in both the DFT and the PY
treatments. In an exact treatment we would expect
contributions to c

ð2Þ
ij ðrÞ beyond Ri þ Rj. An important

advantage of the DFT over integral equation theories is
that the partial structure factors and radial distribution
functions gijðrÞ obtained from the Ornstein–Zernike
equations yield a spinodal consistent with that from the
bulk free energy (15), i.e. the free-energy and structural
routes to the fluid–fluid spinodal are consistent. (Note
that the spinodal can be obtained analytically from
the canonical free energy (15)—see [17].) Such a
property is especially advantageous when considering
interfacial properties at or near two-phase coexistence.
Schmidt et al. [17] also investigate the asymptotic decay,
r ! 1, of gijðrÞ in different regions of the bulk phase
diagram. Since the partial structure factors SijðkÞ are
given analytically it is straightforward to determine the
poles of these functions in the complex plane and hence
locate the so-called Fisher–Widom line [32–35] where
the ultimate decay of rgijðrÞ crosses over from oscillatory
to purely monotonic, exponential decay. Examples of
the cross-over lines and of (mean-field) critical point
behaviour of SijðkÞ for various size ratios q are given
in [17].

It is important to emphasize that, within the frame-
work of DFT, the Ornstein–Zernike route is not the
only one to the pair correlation functions. The alter-
native is the test particle route, whereby one fixes a
particle of species i at the origin and determines (by
solving the appropriate Euler–Lagrange equations,
obtained by minimizing the functional) the inhomoge-
neous one-body density profile �jðrÞ arising from the
external potential exerted by the fixed particle i; then
gijðrÞ ¼ �jðrÞ=�jð1Þ. All that is required to solve the
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relevant equations are the one-body direct correlation
functions c

ð1Þ
i ðrÞ, which involve only a first derivative

of FAO
ex . One can show that in the limit �c ! 0, the

test particle route for the DFT yields the exact result
gccðrÞ 
 exp ð���eff ðr; zpÞÞ, where �eff is the effective
depletion potential defined in equation (6) [16, 17]. In
other words, the geometrically based DFT describes
correctly the depletion effect between two hard-sphere
colloids when implemented within the test-particle
procedure. There are other good reasons to believe
that the test-particle route to gijðrÞ should be more
accurate than the Ornstein–Zernike route [17].

3. The fluid–fluid interface

Phase separation in the AO model is a well-studied
problem [4, 8–10]. As remarked earlier, for small size
ratios q, fluid–fluid phase separation is pre-empted by
a fluid–solid transition so the former is, at best, meta-
stable. For larger values of q, however, there is stable,
entropically driven, fluid–fluid phase separation. Free-
volume theory for the AO model predicts stable liquid
(colloid-rich)–gas (colloid-poor) phase coexistence for
q > 0:32. It follows that our present DFT predicts the
same behaviour. Figure 2 shows the bulk phase diagram
obtained from the present theory for a size ratio q ¼ 0:6
for which there is a stable fluid–fluid demixing transi-
tion with a critical point at �rp, crit � 0:495. The polymer
reservoir packing fraction is defined as �rp ¼ ðp=6Þ�3

p�
r
p,

with �rp ¼ zp for ideal polymer. Note that the tie
lines connecting coexisting states are horizontal in this
(reservoir) representation. It should be emphasized
that the fluid–fluid and fluid–solid phase boundaries
presented here are those of the original free-volume
theory [4, 10]y. While the fluid–fluid phase boundary
shown is precisely that given by the functional, the true
solid–fluid boundary from DFT would require a full
minimization of the functional for a solid-like distribu-
tion. This is outside the scope of the present study.
Also shown in figure 2 is the Fisher–Widom (FW) line
which divides the phase diagram into regions where the
asymptotic decay of the three bulk pairwise correla-
tion functions, rgijðrÞ, is either monotonic or exponen-
tially damped oscillatory. The FW line has important
consequences both for our study of the free fluid–fluid
interface and for adsorption at a wall as the asymptotic
behaviour predicted for the bulk pair correlations
applies also to the one-body density profiles [33, 34].

We turn now to the free interface between demixed
fluid phases. The density profiles for colloid and
polymer are obtained by minimizing the grand potential
functional

O½�cðrÞ, �pðrÞ� ¼ F id½�cðrÞ, �pðrÞ� þ FAO
ex ½�cðrÞ, �pðrÞ�

þ
X
i¼c, p

Z
drðVext

i ðrÞ � �iÞ�iðrÞ , ð17Þ

where FAO
ex is the excess Helmholtz free energy func-

tional of the AO mixture given in equation (11), F id

denotes the functional for the ideal mixture, �i is the
chemical potential (fixed by the reservoir) and Vext

i ðrÞ is
the external potential coupling to species i with i ¼ c, p.
In the case of the free interface Vext

i � 0. The fact
that the functional is linear in the polymer density
makes solution of the AO Euler–Lagrange equations
considerably simpler than for the more familiar binary
hard-sphere Rosenfeld functional [18]. In the latter
case, the two minimization conditions �O=��1 ¼ 0 and
�O=��2 ¼ 0 give rise to two coupled equations for �1
and �2 which must be solved self-consistently. The
AO functional can be minimized explicitly with respect
to the polymer density and the level of computational
complexity reduced to that of minimizing a functional
with respect to a single density field [17].

The colloid density profiles and corresponding surface
tensions are shown in figure 3. The surface tension is
plotted here in mNm�1 to facilitate comparison with
the experimental results of [36, 37] which we shall

yNote that in calculations, e.g. [10], based on free volume
theory the Carnahan–Starling approximation is often used for
fHS
ex whereas in DFT the PY compressibility approximation
must be employed.
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Figure 2. The bulk phase diagram calculated from the
functional for q ¼ 0:6. �c is the packing fraction of the
colloid and �rp that of polymer in the reservoir. F denotes
fluid and S solid. The long dashed line shows the
fluid–fluid spinodal and the short dashed line shows the
Fisher–Widom line. The latter intersects the binodal
at �rp,FW ¼ 0:53. The horizontal tie lines (a), (b), (c) and
(d) connect coexisting fluid states. Horizontal arrows
indicate the paths I and II by which the phase boundary
is approached for the adsorption studies in section 4.2.
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return to later but which correspond to size ratio q � 1,
i.e. we take the colloid diameter to be 26 nm in accor-
dance with the experiments. The polymer profiles
are given in figure 4 and demonstrate the polymer
partitioning between the two phases. We show four
profiles for states between the critical and triple points.

The labels (a)–(d) in figure 3 correspond to the tie lines
in figure 2; (d) corresponds to the free interfacial profiles
between coexisting densities near to the critical point
and (a) to a near triple point state. For state (d)
the colloid profile is smooth and reminiscent of the
profiles of [38] calculated using an effective one-com-
ponent Hamiltonian and employing a square gradient
functional. For states approaching the triple point the
interfacial width is found to be approximately �c, similar
to values inferred from ellipsometric measurements on
a colloid–polymer mixture [39] where a tan h function
was fitted to the refractive index profile through the
interface.

While the profiles near the critical point are smooth
and rather unsurprising, for states nearer to the triple
point striking oscillations develop on the colloid-rich
‘liquid’ side of the profiles. Such oscillations have been
found previously in theoretical studies [33] of the free
liquid–vapour interface of the square-well fluid and
in simulation studies of the liquid–liquid interface [40]
in a simple model of a liquid mixture. The presence
of oscillations in one-body density profiles at interfaces
is intimately connected to the asymptotic decay of bulk
pairwise correlations [33, 34]. For the present mixture
oscillatory profiles arise at the free interface when
the colloid density in the coexisting liquid is greater
than the colloid density where the FW (Fisher–Widom)
line intersects the binodal, i.e. for all states with �rp >
�rp,FW ¼ 0:53 for q ¼ 0:6—see figure 2. The general
theory of asymptotic decay of correlations in mixtures
with short-range forces predicts [33, 34] that the longest-
range decay of the density profiles should be

�iðzÞ � �i � �iAi exp ð��0zÞ, z ! 1, ð18Þ

on the monotonic side of the FW line and

�iðzÞ � �i � �i ~AAi exp ð� ~��0zÞ cos ð�1z� �iÞ, z ! 1,

ð19Þ

on the oscillatory side; �i is the bulk density of species i.
Equivalent definitions exist for z ! �1, with appro-
priate bulk densities �i. On the FW line, �0 ¼ ~�0�0.
The decay lengths ��1

0 and ~���1
0 and the wavelength of

oscillatory decay 2p=�1 are common to both species and
are properties of the bulk fluid. These are determined
by the (common) poles of the structure factors SijðkÞ
[34]. The amplitudes Ai, ~AAi and the phase �i are species
dependent and although there is knowledge about the
amplitude ratios in binary mixtures [34], there is no
theory for the absolute amplitude of the oscillations.
We have confirmed that for states where the colloid
profile oscillates, the corresponding polymer profiles
also exhibit oscillations on the same, colloid-rich side
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Figure 3. Colloid density profiles at the free interface
between demixed fluid phases for a size ratio q ¼ 0:6. The
polymer reservoir packing fractions correspond to the tie
lines in figure 2, i.e. �rp ¼ 1:0 (a), 0:8 (b), 0:6 (c) and 0:52
(d) (near critical point). States (a), (b) and (c) lie on the
oscillatory side of the FW line. The inset shows the
surface tension 
 versus the difference in the colloidal
packing fraction in coexisting liquid (l) and gas (g) phases
for q ¼ 0:6 and 1:0. The colloid diameter is taken to be
26 nm to compare with experimental data of [36] (points)
where q ¼ 1:0.
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Figure 4. Polymer density profiles for q ¼ 0:6 corresponding
to the colloid profiles shown in figure 3. The polymer
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oscillatory side of the FW line.
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of the interface, with identical wavelength and decay
length to those of the colloid. As the bulk density of
the polymer is low in the colloid-rich ‘liquid’ phase,
the amplitude of the polymer oscillations is very small;
figure 5 shows an enlargement of the oscillations in
the polymer profile for state (a). For states just above
the FW intersection point, �rp,FW, the amplitude of the
colloid oscillations can also become extremely small
and this is why the profile (c) does not show oscillations
on the scale of figure 3. For state (a), with �rp ¼ 1, which
is not especially close to the estimated triple point, the
amplitude of the oscillations is substantial and appears
to be larger than the corresponding amplitude for a
square-well fluid very near its triple point where the
oscillations have a wavelength of about one atomic
diameter [33]. Our present results resemble closely
those of a recent DFT treatment of binary mixtures of
repulsive Gaussian core particles which exhibit fluid–
fluid phase separation [41], although in that case there
are states for which oscillations occur on both sides of
the interface.
We note that all DFT treatments are mean-field-like

in that they ignore fluctuation effects, both of the bulk
liquid (critical fluctuations) and of the interface.
Thermally induced capillary wave fluctuations of the
interface will act to erode the oscillations in the ‘bare’
(mean-field) density profiles but it is argued that at
least some of the oscillatory structure will remain in
the ‘dressed’ colloid profiles. The standard method of
incorporating capillary wave fluctuations is to assume
that DFT calculations yield a ‘bare’ or ‘intrinsic’ profile
and that interfacial fluctuations can be ‘unfrozen’ by an

appropriate renormalization of the mean-field profile
[31, 33, 34, 42]. Because of the extremely low surface
tensions 
 which occur in colloidal systems one might
expect the oscillations to be completely washed out
by inclusion of these fluctuation effects but we will argue
that this is not necessarily the case. In the simplest
treatment of capillary wave fluctuations the intrinsic
interface is smeared by a Gaussian convolution over the
interfacial thermal roughness ?. For oscillatory profiles
which decay as equation (19) the wavelength and decay
length are unaltered by this convolution but the ampli-
tude is reduced by a factor exp ½�ð�2

1 � ~��2
0Þ

2
?=2� [33, 34,

42]. The roughness ? depends upon both the interfacial
area L2 and the external potential, i.e. the Earth’s
gravitational field. For zero gravitational field, 2? ¼

ð2p�
Þ�1 ln ðLmax=LminÞ, where Lmax and Lmin are upper
and lower cut-off wavenumbers for the capillary wave
fluctuations. If we choose Lmax ¼ 2p= and Lmin ¼

2p=L, where  ¼ ~���1
0 is the correlation length of the bulk

coexisting ‘liquid’ phase, it follows that the amplitude
of the oscillations in the density profile will be reduced
by a factor

� ¼ ðL=Þ�!½ð�1= ~��0Þ
2
�1�, ð20Þ

where we have introduced the dimensionless parameter

! ¼
kBT

4p
2
, ð21Þ

which measures the strength of the capillary wave
fluctuations. Smaller surface tensions give rise to larger
values of ! and, as a result, the amplitude of the
oscillations is damped more severely. Molecular
dynamics simulations of a liquid–liquid interface have
been performed by Toxvaerd and Stecki [40]. These
authors (see also Chacón and co-workers [43, 44] who
performed Monte Carlo simulations of the liquid–gas
interface of a model of a metal) found a decrease in the
amplitude of oscillation with increasing L, consistent
with a Gaussian renormalization of the oscillatory
intrinsic interface. We find for the present model that
! takes values of a similar order of magnitude as those
for simple fluids [38]. This is due to the fact that the
bulk correlation length  scales roughly as �c [16, 17] and
the tension 
 as kBT=�2

c [38, 45]. From our explicit
calculations of 
 and  we find that at state point (a),
for which the profile has pronounced oscillations, see
figure 3, ~��0�c ¼ 0:77, �1�c ¼ 6:74 and the reduced
surface tension 
� ¼ �
�2

c ¼ 1:13 which implies that
! ¼ 0:042 and ð�1= ~��0Þ

2
� 1 ¼ 75:12. We thus find that

� ¼ ðL=Þ�3:23 which suggests that detecting oscillations
of the colloid profile should be no more difficult than
for simple fluids where the exponent is expected to take
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Figure 5. An enlargement of the polymer profile for q ¼ 0:6
and �rp ¼ 1:0, i.e. state (a) shown in figure 4. The
oscillations, although not visible on the scale of figure 4,
are present in the polymer profiles and display the same
period and decay length as the corresponding colloid
profiles (figure 3).
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a similar value. Indeed, from an experimental viewpoint
such oscillations in a colloidal system offer an interest-
ing opportunity for experimental study as it should be
more favourable to investigate such structuring in
systems where the period is of colloidal size than in
atomic fluids, where the period is on the Angström scale.
We conclude this section by returning to the results

for the surface tension. The inset in figure 3 shows the
tension 
 for size ratios q ¼ 0:6 and 1:0. We find that the
tension calculated using the present DFT is consistently
larger than that calculated [38] using the effective one-
component Hamiltonian treated by square gradient
DFT. The level of agreement with the experimentally
measured tension for mixtures of a silica colloid, coated
with 1-octadecanol, and polydimethylsiloxane (PDMS)
in cyclohexane at T ¼ 293K [36] is somewhat better than
in [38]. The size ratio for this mixture is approximately
1:0. As mentioned earlier, in order to compare our DFT
results with experiment we choose �c ¼ 26 nm, the mean
diameter of the particles investigated in [36]; there are
no adjustable parameters in the model [25, 26, 46].
Note that the measured tensions are typically

3–4 mNm�1, values which are about 1000 times smaller
than the tensions measured for simple atomic fluids near
their triple points. Such small values of the tension are
not so surprising when one recalls (i) that the tension
scales roughly as kBT=�2

c , provided the state is well
removed from the critical point and (ii) that �c � 100
atomic diameters [38, 45]. In figure 3 the tension is
plotted against the difference between �c in the coexis-
ting liquid (l) and gas (g) phases. Within the present
mean-field treatment 
 vanishes as ð�lc � �gcÞ

3 on appro-
aching the critical point. Incorporating critical fluctua-
tions should lead to even faster decay; for Ising-like
criticality the exponent 3 should be replaced by
2	=� 
 3:9. The experiments of [36] were not performed
sufficiently close to the critical point to examine scaling
behaviour. However, Chen et al. [47] do report results
for the density difference and surface tension, in a
similar mixture of silica particles and PDMS in
cyclohexane, taken near the critical point. They report
values for 
 < 1�Nm�1 and a good fit to Ising-like
scaling.

4. Adsorption at a hard wall

In this section we consider the AO mixture adsorbed
at a planar hard wall described by the external potentials
(8). Such a model constitutes the simplest framework
in which one can address the statistical mechanics of
colloidal adsorption or, more specifically, the effects
of entropic depletion forces on the distribution of
both colloids and polymer near a (repulsive) substrate.
Of course, other more complex wall–fluid potentials
can be considered which include soft repulsion and/or

attractive interactions. The advantages of the hard-wall
model are (i) it encompasses the key feature of depletion-
induced wall–colloid attraction and (ii) as emphasized in
section 2.1, it can be mapped exactly to a very simple
effective Hamiltonian (9), for q < 0:1547, that can be
used efficiently in simulation studies.

We focus first on the case q ¼ 0:1, for which there are
Monte Carlo results [11] for the colloid density profile
against which we can test the reliability of our DFT.
Afterwards we consider larger size ratios where bulk
fluid–fluid phase separation occurs. This enables us to
investigate entropic wetting phenomena at the hard wall
using the DFT approach.

4.1. Test case: q ¼ 0.1
In order to test the performance of the DFT for

adsorption studies we first calculate density profiles
against a hard wall for q ¼ 0:1. For this small size ratio,
simulation results are available [11] for the colloid
profiles. These make use of the exact mapping to
the effective Hamiltonian (9); only a pairwise additive
fluid–fluid potential (�AO) and an explicit one-body
wall–fluid depletion potential (�wall

AO ) are involved. As
previously, we minimize the functional (17) but now
for a hard wall with external potentials (8). The results
obtained from the present DFT (figure 6) should be
compared and contrasted with those of [11] where
the effective one-component Hamiltonian was treated
by means of a one-component mean-field DFT which
treats the hard-sphere contribution by Rosenfeld’s
FMT and the attractive contribution, arising from
�AOðRÞ, in mean-field fashion. We find that the present
mixture functional provides an equally good description
of the colloid profiles, in particular the dramatic increase
in the wall contact value, �cð�

þ
c =2Þ � �wc, as polymer is

added; the present functional clearly incorporates the
depletion attraction between the wall and the colloids. It
should be noted that the binary mixture AO functional
generates internally all depletion effects between the
colloids and between the colloids and the hard wall,
whereas in the previous one-component treatment these
are essentially put in by hand. We choose polymer
reservoir packing fractions �rp ¼ 0:05 and �rp ¼ 0:1 and a
fixed bulk colloid packing of �c ¼ 0:3, as Monte Carlo
simulation results exist for these state points. We
intentionally stay away from the vicinity of the solid–
fluid phase boundary which is at about �rp ¼ 0:16 [10].

The present functional tends to give significantly more
structured colloid profiles than does the effective
one-component DFT of [11]. In fact it appears that
the binary mixture AO DFT consistently overestimates
the degree of structuring (more pronounced maxima and
minima than in simulation) whereas the one-component
DFT gives an underestimate. When there is no polymer
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in the system, �rp ¼ 0, see figure 6 (a), both functionals
reduce to the Rosenfeld functional for pure hard spheres
and, as is well known, this performs very well for the
full range of bulk packing fractions. The oscillations
arise from packing effects at the hard wall.

On adding a small amount of polymer, �rp ¼ 0:05,
there is a pronounced increase in the contact value,
figure 6 (b), as a result of the wall-induced depletion
which is now implicitly incorporated into the mixture
DFT. We obtain a contact value of �wc�

3
c � 7:56 which

is slightly higher than the value 6:41 obtained from the
effective one-component DFT [11]. For such small size
ratios the wall–colloid depletion potential is strongly
attractive and of short range (0:1�c) and it thus becomes
difficult to achieve good simulation statistics close to the
wall [11]. The simulation results have been extrapolated
to contact and yield a value �wc�

3
c � 4:28. For �rp ¼ 0:1,

see figure 6 (c), the wall–colloid depletion attraction
becomes even stronger and the present DFT gives a
contact value �wc�

3
c � 20:29; again this is larger than the

corresponding result from the one-component func-
tional, which is 15:52. Note that these very high values
of the local density decay to roughly unity over the
range of the wall–colloid depletion potential, i.e. 0:1�c.
The insets in figures 6 (b) and 6 (c) show that the DFT
captures correctly the non-trivial ‘triangular’ structure
of the second peak in the profile but for both �rp ¼ 0:05
and 0:1 the first minimum is deeper than the simula-
tion result and the height of the second maximum is
overestimated. As �rp is increased the oscillations become
damped more rapidly and �cðzÞ is close to the bulk
value after a distance of approximately 4�c. Numerical
results were checked using the hard wall sum rule,
�P ¼ �cð�

þ
c =2Þ þ �pð�

þ
p =2Þ, where P is the total pressure

[11]. Recall that for each colloid profile we present here
we also have the corresponding polymer profile. The
sum rule was satisfied to better than 0:1% in all cases. It
should be noted that comparing the DFT results
with those of simulation for such a highly asymmetric
mixture constitutes a severe test. The fact that the
AO mixture DFT performs well under such difficult
conditions is thus most encouraging. In addition, the
free-volume theory, which gives a bulk free energy
(15) identical to that of the AO functional, becomes
increasingly accurate for larger q values. We might
reasonably expect the performance of the functional
to improve accordingly. Although the bulk free energy
obtained from the functional improves with increasing
q, this does not guarantee that one-body profiles will be
any better. Nevertheless, since the profiles obey the
hard wall sum rule, the contact values should become
closer to those of simulation as q increases, in
accordance with the increasing accuracy of the free-
volume bulk pressure. These considerations are relevant
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Figure 6. The colloid density profiles calculated from the
binary mixture DFT compared with simulation results for
a size ratio q ¼ 0:1 and bulk colloid packing fraction
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the results on an expanded scale. Note the rapid increase
in the density near contact as �rp is increased.
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when we focus on larger size ratios (q > 0:32) where
stable fluid–fluid demixing occurs and investigate
interfacial phase transitions at the hard wall–fluid
interface.
The physical significance of the simulation results for

q ¼ 0:1 were discussed in [11] and we do not dwell upon
this here. Rather we simply emphasize that since
the colloid density profiles decay so rapidly from their
very high contact densities over the short range of the
wall–fluid depletion potential, �wall

AO , the amount of
colloid adsorbed in the contact ‘layer’ is rather small
(fraction of a monolayer). Indeed the Gibbs adsorption
of colloid does not increase rapidly with increasing
�rp [11]. From examination of the one-body profiles
and simulation snapshots there was no evidence of wall-
induced local crystallization at the polymer concentra-
tions we examined. However, the state points we
considered were still well removed from the bulk
fluid–solid phase boundary. The issue of when and
how wall-induced crystallization occurs is an important
one, both conceptually and because there are several
experimental papers reporting evidence for the phenom-
enon (in colloid–colloid as well as in colloid–polymer
mixtures) occurring for state points well below the bulk
phase boundary—see [11] for a summary.

4.2. Entropic wetting and layering: q� 0.6
For these larger size ratios the bulk phase diagram

exhibits three stable phases, as in figure 2. In determin-
ing the adsorption characteristics, we choose to fix �rp
and approach the bulk fluid–fluid phase boundary from
the colloid poor side. This is analogous to performing
a gas adsorption isotherm measurement for a simple
atomic fluid, recalling that �rp plays a role equivalent
to inverse temperature in the AO model. Depending
on the value of �rp chosen, we find the adsorption
behaviour changes dramatically. For the present AO
model one might expect to observe similar behaviour as
that pertaining to simple fluids adsorbed at attractive
substrates; we have a system of colloids interacting
via an effective Hamiltonian which gives rise to fluid–
fluid phase separation in bulk and a depletion induced
attraction acting between the colloids and the wall.
However, in the present case we have effective many-
body colloid–colloid and many-body wall–colloid
potentials for the size ratios of interest, i.e. values of q
large enough to give rise to a stable bulk fluid–fluid
transition. For large size ratios the effective wall–colloid
potential ceases to be a simple one-body potential
acting on individual colloids and becomes a complicated
function of multiple colloid coordinates. We find that
these complex wall potentials do indeed give rise to new
phenomena which are quite distinct from those seen in
simple fluids. As an example we consider size ratio

q ¼ 0:6 and describe some of the phenomena encoun-
tered as we increase �c, for fixed �rp, towards the bulk
phase boundary. We consider, in turn, paths I and II
shown in figure 2.

We first choose a path just above the critical point,
�rp ¼ 0:55, i.e. follow path I in figure 2. The layer of
liquid-like colloid density grows continuously against
the wall and becomes macroscopically thick as the phase
boundary is approached. The colloid density profiles in
figure 7 show the onset of complete wetting by the
colloid-rich phase. We have confirmed that for states
with smaller values of �rp (but above the critical value
�rp, crit) the equilibrium film thickness, teq, or, equiva-
lently, Gc, the adsorption of colloid, grows logarithmi-
cally with the deviation from the bulk phase boundary.
Although a detailed investigation of the amplitude
was not performed this should be the bulk correlation
length of the wetting (colloid-rich) phase, as is appro-
priate to a system where all the interactions are of finite
range—see e.g. [48]. The corresponding polymer profiles
are shown in the inset and indicate how polymer
becomes more depleted as the colloid-rich layer grows;
the polymer can be effectively regarded as a ‘slave’
species with profiles determined by the distribution
of colloid [17]. Strictly speaking, macroscopically
thick wetting films can only occur when the density
of coexisting liquid lies on the monotonic side of the
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Figure 7. Colloid density profiles for q ¼ 0:6 showing the
onset of complete wetting of a hard wall by the colloid-
rich phase at �rp ¼ 0:55 as the bulk phase boundary is
approached along path I in figure 2. Bulk colloid fractions
are �c ¼ 0:04, 0:06, 0:07, 0:076, 0:0775, 0:0778 and 0:0779
(from bottom to top). The coexisting gas density is
�c ¼ 0:078 12. The inset shows the polymer profiles for the
same values of �c (from top to bottom). Note that the
polymer distribution becomes progressively more depleted
as the colloid-rich layer grows in thickness.
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FW line in figure 2, i.e. for �rp < �rp,FW, the point of
intersection of the FW line and the binodal. One
can envisage a coarse grained description of wetting
phenomena whereby the surface excess free energy can
be regarded as an effective wall or binding potential,
FwallðtÞ, acting on a single degree of freedom, the film
thickness t [49]. For �rp, crit < �rp < �rp,wet and �rp < �rp,FW
the potential FwallðtÞ exhibits a single minimum at a
finite equilibrium film thickness teq provided the state
is off bulk coexistence. �rp,wet denotes the polymer
reservoir packing fraction at the wetting transition.
As the value of �c is increased towards coexistence
the position of this minimum, and hence teq, increases
continuously to infinity. If we are in the region where
�rp, crit < �rp < �rp,wet and �rp > �rp,FW the decay of the
density profiles is oscillatory. It can be shown [50] that
in this region the effective binding potential FwallðtÞ
possesses a corresponding oscillatory decay. As a result
the minimum, teq, of the binding potential will always
lie at a finite value. Such oscillatory binding potentials
will stabilize very thick but finite films, which would
otherwise be infinite, even at bulk coexistence. This is
because the global minimum lies at the trough of one
of the oscillations and not at infinity. Such situations
can easily lead to numerical difficulties when using
iterative methods because of the presence of a large
number of metastable minima and care must be taken to
ensure that the global minimum of the excess (over bulk)
free energy is reached. By choosing �rp ¼ 0:55 we avoid
many of these complications and can easily obtain films
of thickness 20 or 30�c. We confirmed that in the flat
portion of the profiles the densities of colloid and polymer
are equal to their values in the coexisting colloid-rich
phase. In order to investigate such thick wetting films
it is necessary to work very close to bulk coexistence
and solving the Euler–Lagrange equations resulting
from minimizing the functional can be very slow.
Very different scenarios arise for other paths

approaching bulk coexistence. As �c is increased along
path II, see figure 2, at fixed �rp ¼ 0:7 the colloids behave
essentially as an ideal gas in the presence of the wall–
colloid depletion potential but with some enhancement
of the contact value due to packing effects. A selec-
tion of profiles calculated along this path is shown
in figure 8. The profiles remain largely unstructured
until �c ¼ 0:0198 where a first-order phase transition
occurs and a second liquid-like layer is adsorbed
against the wall. The inset to figure 8 shows the disconti-
nuous jump in the (reduced) Gibbs adsorption of the
colloids, Gc, at the transition. The Gibbs adsorption is
defined as

Gc ¼ �2
c

Z 1

0

dz �cðzÞ � �cð1Þð Þ, ð22Þ

where �cð1Þ is the density of colloid in the bulk. This
layering transition is most unusual and is quite different
from the transitions between layered liquid-like films
found in DFT studies of simple fluids at attractive
substrates—see e.g. [51] which considers a Yukawa fluid
against an attractive Yukawa wall. The transitions found
in [51] are for temperatures very close to the triple point
and the sequence always leads to complete wetting
at coexistence. In the present case we are far away from
the free volume triple point at �rp � 1:43 (although its
location within a full DFT treatment of the solid is
not known). Moreover the transition is to only a single
extra layer; the adsorption remains finite all the way to
coexistence. Thus the wall is partially wet for this value
of �rp. Since for �

r
p ¼ 0:7 the wall is partially wet, whereas

for �rp ¼ 0:55 the wall is completely wet, we can infer
that there exists an analogue of the wetting transition
temperature, i.e. there is a wetting polymer reservoir
packing fraction �rp,wet, at which along coexistence there
is a transition from partial wetting to complete wetting.
It should be noted that when the second layer is adsorbed
its density is not that of the coexisting liquid, rather it
is at some lower liquid-like density. For values of �c
away from the layering transition, numerical solution
of the Euler–Lagrange equations is extremely rapid
due to the very low bulk density of colloid. As the
transition is approached convergence slows consider-
ably and large numbers of iterations are required to
overcome the free energy barrier separating layered
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Figure 8. Colloid density profiles for size ratio q ¼ 0:6
showing the first layering transition at �rp ¼ 0:7 corre-
sponding to path II in figure 2. Bulk colloid fractions
are �c ¼ 0:010, 0:015, 0:018, 0:019 and 0:020 (from
bottom to top); the transition occurs between 0:019 and
0:020. The inset shows the corresponding jump in the
Gibbs adsorption Gc. Gc remains finite at bulk coexistence
�c ¼ 0:0203, i.e. the interface is partially wet by the
colloid-rich phase.
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and unlayered profiles. In the sequence of layering
transitions calculated in [51] the appearance of layer n
is accompanied by a jump of density in the preceding
layers, primarily effecting the (n� 1)th layer. The jump
in adsorption which occurs at the transition thus receives
a contribution from all layers, not only layer n. A similar
effect can be seen at the present layering transition
where the first contact peak in the colloid profile jumps
as a second layer is adsorbed.
The layering transition which we find from the AO

functional, distinct from the wetting transition, appears
to result from effective many-body wall–fluid and
fluid–fluid potentials acting on the colloids. It does not
appear to have a direct counterpart in the adsorption of
simple fluids—see section 7. In order to test this asser-
tion we have calculated colloid density profiles using the
mean-field DFT employed in [11]. As described in the
previous subsection, we treat the AO pair potential as a
mean-field perturbation to a hard sphere reference
system and apply an external potential consisting of a
hard wall plus the one-body AO wall–colloid potential,
see equation (9). We find that whilst a wetting transition
does exist, there is no sign of the layering which we
obtain from the AO mixture DFT. The phase boundary
was approached for different fixed values of �rp above
�rp,wet. In each case the adsorption was found to increase
smoothly to a finite value at bulk coexistence.
In order to map out the full interfacial diagram and

locate further layering transitions we calculate density
profiles along the coexistence curve starting at large
values of �rp working down towards the critical point,
�rp, crit. Using the transition points (jumps) on the phase
boundary as a guide we then take slices across the phase
diagram, increasing �c for a fixed value of �rp, so we can
locate any lines of first-order transitions which may
extend into the single phase (dilute in colloid) region.
We have determined interfacial phase diagrams for size
ratios q ¼ 0:6, 0:7 and q ¼ 1:0 in order to identify any
variation of the topology with size ratio. Figure 9 shows
the interfacial phase diagram for q ¼ 0:6; it is very rich
and features not only the wetting and first layering
transitions discussed above but also two further layering
transitions. Figure 10 shows the colloid density profiles
calculated along the bulk coexistence curve for a number
of values of �rp and the corresponding adsorption Gc

is shown in figure 11. Since these layering transitions
are rather unusual we give a brief description of how
they are located.
We begin mapping out the phase diagram by calculat-

ing the profiles at coexistence for large �rp, region (a) in
figure 9. In this region the profiles have little structure
outside the contact region and the numerical iteration
scheme used to solve the Euler–Lagrange equations
converges rapidly. Decreasing �rp we encounter the point
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Figure 9. The interfacial phase diagram for a colloid–
polymer mixture adsorbed at a hard wall for size ratio
q ¼ 0:6. The full curve is a portion of the bulk fluid–fluid
coexistence curve shown in figure 2. We find a wetting
transition at �rp,wet ¼ 0:596 and three separate layering
transitions at higher values of �rp. The first layering
transition line extends from coexistence to deep into the
single phase region (dashed line) and, when crossed, gives
rise to a jump in the adsorption as shown in figure 8
for �rp ¼ 0:7; it ends in a surface critical point near
�rp ¼ 0:62. The second and third layering transition lines
and any prewetting line lie very close to the coexistence
curve so the transition lines are simply denoted by circles.
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Figure 10. The colloid density profiles calculated at bulk
coexistence on decreasing �rp (bottom to top) for a size
ratio q ¼ 0:6. The labels (a)–(e) indicate groups of profiles
calculated on the different sections of the coexistence
curve, see figure 9, and show clearly the four different
transitions, e.g. the higher profile of (a) jumps to the lower
profile of (b) at the first layering transition. The first three
jumps are layering transitions and the final one, (d) to (e),
is the wetting transition. As �rp is decreased the adsorption
jumps discontinuously as each layering transition is
encountered. For �rp90:596 the wall is competely wet
by the colloid-rich phase.
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at which the first layering transition line intersects
the phase boundary. Near this point the solution
of the Euler–Lagrange equation becomes unstable; this
instability is reflected in the number of iterations required
to obtain a converged solution. At �rp ¼ 0:722 the
adsorption jumps discontinuously and a new layer is
adsorbed, see figure 11.
Moving further down the coexistence curve, region

(b), the adsorption increases smoothly until a second
layering transition occurs at �rp ¼ 0:642, where there is
again a discontinuous jump in adsorption as a third
layer is adsorbed at the wall. Again the new layer
corresponds to a density lower than the coexisting bulk
liquid density but it is still liquid-like in character.
As the third layer appears the local density in the
second layer also jumps significantly, to a value which
appears to correspond more closely to that of the
coexisting liquid density, i.e. the jump in adsorption
at the second transition is only partially due to the
appearance of the third layer. Similarly, for �rp ¼ 0:608,
we find a third layering transition, (c) to (d), whereby
a fourth adsorbed layer develops, with an accompany-
ing increase in density of layer three, giving rise to
another jump in Gc. As �rp is reduced further Gc remains
finite at bulk coexistence until �rp ¼ 0:596, where the
transition to complete wetting occurs. Having located
the transition points on the phase boundary, we then
take slices at fixed values of �rp to determine whether
the layering transitions extend into the single phase
region. As remarked earlier, the first layering transi-
tion extends away from the phase boundary and ends

at a surface critical point near �rp ¼ 0:62. In determin-
ing the transition line we simply mark the locus of
points where the adsorption jumps discontinuously.
Such an approach will always be subject to some
hysteresis effects, i.e. the actual transition line may be
closer to the phase boundary as, for a given �rp, we may
have to increase �c above its value at the equilibrium
transition in order to move to the next minimum in
the free energy. In order to assess the extent of this
effect we reversed some of the paths across the phase
diagram, starting with a converged solution at coexis-
tence and decreasing �c until the transition is located.
Although hysteresis effects do exist, these are small,
and are not visible on the scale of the line in figure 9.
Unlike the first transition, the second and third transi-
tion lines are extremely short in �rp. As it is very
difficult to determine these accurately we have simply
represented the transitions as large circles in figure 9.
The wetting transition appears to be of first order,
i.e. Gc appears to diverge discontinuously, see figure 11.
However, it is difficult to determine any prewett-
ing line, which should emerge tangentially from the
coexistence curve at the wetting transition [49]. We
can say with certainty that any prewetting line is
extremely short. We repeated the calculations for
q ¼ 0:7 and we find the same pattern of three layering
transitions and a wetting transition as was found for
q ¼ 0:6. The transitions occur at different values of �rp,
see figure 12. Both the layering transitions and the
wetting transition move to larger values of �rp on the
phase boundary but the distance, in �rp, between
the first layering transition and the wetting transition
remains roughly the same. The first layering transition
line is shorter in �rp for q ¼ 0:7 than for q ¼ 0:6 and
lies closer to the phase boundary. Figure 13 shows
the colloid profiles calculated at bulk coexistence
in different regions of the phase diagram, and the
corresponding adsorption is shown in figure 14.

For q ¼ 1 the distance, in �rp, along the bulk phase
boundary between the first layering transition and the
wetting transition increases and a fourth layering
transition appears above the wetting transition—see
figure 15. The sequence of colloid density profiles is
shown in figure 16. It is interesting to note from figure 17
that at subsequent layering transitions the jump in
adsorption is slightly less than that at the preceding
one. Since the profiles shown in figure 16 would indicate
that the amount adsorbed in each new layer is roughly
the same, the difference in adsorption at each transition
is due chiefly to the contribution of jumps in the local
density at the preceding layer. At the first layering
transition the first peak in the colloid profile shows a
clear jump, whereas at the fourth transition the local
density in the third layer shows little change. We find

Figure 11. The Gibbs adsorption of the colloids Gc along
the bulk coexistence curve corresponding to the profiles
shown in figure 10, and the phase diagram of figure 9.
At each of the layering transitions the adsorption changes
discontinuously by a finite amount. At the wetting transi-
tion the adsorption diverges discontinuously as the wall is
wet completely by the colloid-rich phase.
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that the first layering transition line is very short
for q ¼ 1 and lies extremely close to the coexistence
curve so we simply represent this as a circle in figure 15.

4.3. A simulation study for q ¼ 1
All the results we have described so far for wetting

and layering were based on the DFT for the binary AO
mixture. It is important to enquire how much of the
rich behaviour predicted by DFT for this model can
be found in simulation studies. After the completion
of our DFT calculations [25, 26, 46], Dijkstra and
van Roij [19] developed a novel Monte Carlo scheme
for tackling the equilibrium statistical mechanics of

both homogeneous and inhomogeneous model colloid–
polymer (AO) mixtures for arbitrary size ratios q,
including those where effective many-body interactions
between the colloids play an important role. Their
approach is based on the exact effective one-compo-
nent Hamiltonian entering equation (4). Because of the
ideality of polymers, �pp ¼ 0, the grand potential of
polymer in the external potential Vext

p and in the static
configuration fRNcg of the Nc colloidal hard spheres
is given exactly by O ¼ ���1zpVf , where

Vf ¼

Z
dr exp ð��Vext

p ðrÞ�Nc

i¼1½1þ fcpðjr� RijÞ� ð23Þ
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Figure 12. As in figure 9 but for size ratio q ¼ 0:7.
As for q ¼ 0:6, we find three layering transitions but
the first layering transition line is slightly shorter in �rp
and lies closer to the bulk coexistence curve. The wetting
transition occurs at �rp,wet ¼ 0:664.
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Figure 15. As in figure 9 but for size ratio q ¼ 1:0. We
find four layering transitions but now all the transition
lines, including the first, lie extremely close to the bulk
coexistence curve (solid line). The wetting transition
occurs near �rp,wet ¼ 0:845.
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Figure 13. The colloid density profiles at bulk coexistence
on decreasing �rp (bottom to top) for q ¼ 0:7. The labels
(a)–(e) indicate groups of profiles calculated on different
sections of the coexistence curve, see figure 12.
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Figure 14. The Gibbs adsorption of the colloids Gc along the
bulk coexistence curve corresponding to the profiles
shown in figure 13 and the phase diagram in figure 12.
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is the free volume. The integral in equation (23) is over
the total volume V of the system and fcpðrÞ is the colloid–
polymer Mayer bond: fcp ¼ �1 for 0 < r < Rc þ Rp and
zero otherwise. Of course, the shape of the free volume
is, generally, irregular and non-connected but compu-
tationally efficient methods were developed to calculate
this [19]. Bulk simulations were performed for the
case q ¼ 1 where effective many-body interactions are
expected to be crucially important. The semi-grand free
energy was obtained using thermodynamic integration,
at fixed colloid packing fraction �c, with respect to the
polymer fugacity zp (see also [28]).
Phase coexistence was then determined by standard

common tangent constructions at fixed zp. The inset

to figure 18 shows the resulting phase diagram in the
reservoir, �rp versus �c, representation. Three phases are
present; there is colloidal gas–liquid separation, with a
critical point �rp, crit � 0:70, and a liquid–solid transition
which is almost independent of �rp. The triple point is
at �rp, t � 6:0, i.e. there is a very large stable gas–liquid
coexistence region, much larger than the corresponding
(inverse) temperature region for simple atomic fluids.
Also plotted in this figure is the phase diagram obtained
from the free-volume theory of [4]. Note that the latter
can be viewed as a first-order perturbation theory that
approximates Vf by its average in the pure hard-sphere
fluid [10, 11]; it sets Vf ¼ �ð�cÞV , where �ð�cÞ is the
free-volume fraction in equation (16). On the scale of the
inset, the free-volume theory, and therefore our DFT
approach which yields the same free energy, provides
an accurate description of the simulation data. There
are significant deviations, as indicated on the expanded
scale of the main figure where the gas branch of the
coexistence curve is plotted, but the overall agreement
is quite remarkable. As emphasized by Dijkstra and
van Roij [19], it is important to compare the ‘exact’
simulation phase diagram for q ¼ 1 with that obtained
in [10] from simulations in which solely the pairwise
effective potential�eff ðR; zpÞ, equation (6), was employed.
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Figure 18. Simulation results (adapted from [19]) for bulk
and surface phase diagram of the AO model (size ratio
q ¼ 1) as a function of the colloid packing fraction �c and
the polymer reservoir packing fraction �rp. The main figure
is a blow-up of the saturated bulk gas branch, separated
into a regime of complete wetting (thick curve, open
circles), and partial wetting by colloidal liquid (thin curve)
at a planar hard wall. The first (filled triangles), second
(filled squares), and third (filled circles) layering transition
lines extend from bulk coexistence into the single phase
(gas) region. The inset shows the gas–liquid and fluid–
solid bulk coexistence (open squares) to full scale. The
dashed curves denote the bulk binodals obtained from
free-volume theory.
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Figure 16. The colloid density profiles at bulk coexistence
on decreasing �rp (bottom to top) for a size ratio q ¼ 1:0.
The labels (a)–(f) indicate groups of profiles calculated in
different sections of the coexistence curve, see figure 15.
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Figure 17. The Gibbs adsorption of the colloids Gc along the
coexistence curve corresponding to the profiles shown in
figure 16 and the phase diagram of figure 15.
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For the latter, �rp, crit � 0:5 and �rp, t � 0:8. In other
words, the effective many-body interactions extend
greatly the region in �rp over which stable gas–liquid
coexistence can occur. Moreover, these many-body
contributions appear to be incorporated into the free-
volume/DFT approximation. For completeness we
should also note that Bolhuis et al. [15] have investigated
the bulk phase behaviour of the AO binary mixture
using Gibbs ensemble Monte Carlo simulations for size
ratios q ¼ 0:34, 0.67 and 1.05. They find that for
q ¼ 0:34 the fluid–fluid binodal is (weakly) metastable,
consistent with the prediction of the free-volume theory.
For q ¼ 0:67 and 1.05 their simulation results for
the gas–liquid coexistence curves are in good overall
agreement with those of the free-volume theory. These
authors also performed simulations which incorporate
excluded-volume interactions between polymers but we
shall return to this aspect later.
The main part of figure 18 displays the surface phase

diagram obtained in [19] for the q ¼ 1 AO mixture
adsorbed at a planar hard wall. Once again Vf (now
given by equation (23) with Vext

p corresponding to the
hard-wall potential) is calculated within the simulation
so that all many-body interactions are incorporated,
including the modification of pair and higher-body
interactions that occurs when two colloids are close to
the wall—see section 2.1 and [11].
For small polymer reservoir packings �rp, crit < �rp <

1:05 there is strong evidence for complete wetting, i.e.
formation of a thick film of colloidal liquid at the hard
wall–colloidal gas interface with the adsorption Gc

increasing continuously (logarithmically) as bulk coex-
istence is approached. In this regime the colloid density
profiles (see figure 2 (a) of [19]) are reminiscent of the
DFT results in figure 7. By contrast, for about �rp > 1:1,
there is partial wetting, i.e. Gc remains finite at bulk
coexistence. The authors conclude that there is a wetting
transition at some value of �rp,wet in the range 1:05 <
�rp,wet < 1:1. They find no evidence for an accompanying
prewetting transition out of bulk coexistence, i.e. there
appears to be no thin–thick transition in the same range
of values of �rp. For about �

r
p > 1:1, however, they find

jumps in the adsorption which they attribute to layering
transitions of the type we found in the DFT calculations
described in section 4.2. Indeed the colloid density
profiles near the layering transitions (see figure 2 (b)
of [19]) are very similar in form to those shown in
figures 10, 13 and 16. Note that the latter refer to
transitions encountered on reducing �rp at bulk coex-
istence, whereas the simulation data is for a path at fixed
�rp, increasing �c towards bulk coexistence. Figure 18
describes three separate layering transition lines, each
of them rather short, lying close to bulk coexistence
and very far from the bulk triple point. A reasonable

person would conclude that the wetting and layering
phenomena found in the simulations for q ¼ 1 mimic
those found in the DFT calculations. There is not
perfect agreement. The sequence of layering transitions
gleaned from the simulations for q ¼ 1, is arguably
closer to that observed in DFT for q ¼ 0:6 and 0.7 than
for q ¼ 1; the layering transitions extend very little
out of bulk coexistence in the last case (see figure 15).
But one should not expect an approximate DFT to
provide a completely accurate account of what are
very subtle interfacial phase transitions, resulting from
a complicated competition between wall–fluid and fluid–
fluid interactions. Given that the bulk gas–liquid
coexistence curves obtained from DFT and simulation
differ significantly on the scale relevant to the surface
phase diagram it is not surprising that there are differ-
ences in the surface phase behaviour. What is more
important is to establish that it is the many-body inter-
actions entering the effective interfacial Hamiltonian
for the colloids which give rise to the pattern of inter-
facial transitions that is observed. We shall return to this
issue later.

5. Treating polymer–polymer interactions within

a geometry-based DFT

So far in this paper we have treated the polymers
as mutually non-interacting: �ppðrÞ ¼ 0. Real polymers,
when dissolved in a good solvent, experience repulsive
monomer–monomer interactions. As described in the
introduction, when averaged over polymer conforma-
tions this repulsion at the polymer segment level gives
rise to a soft, penetrable and repulsive interaction
between polymer centres of mass. The range of this
effective pair potential is 0 the polymer radius of
gyration and its strength (at zero separation between
the two centres of mass) is of the order of the thermal
energy, kBT . Within this ‘soft colloid’ picture the
effective polymer–polymer potential can be well repre-
sented by a Gaussian pair potential [52]. In the following
we do not attempt to model this interaction realistically,
rather we summarize the approach of [20] where a
minimal model was considered that displays the essential
features of polymer–polymer repulsion. With a simple
geometric picture in mind, the interactions between
polymers are represented by a repulsive step-function
pair potential

�ppðrÞ ¼
�, for r < 2Rp,

0, otherwise,

�
ð24Þ

whilst the colloid–colloid and colloid–polymer poten-
tials remain hard-sphere-like. Note that in the limit
�=kBT ! 0 we recover the AO model with non-
interacting polymers, equation (1) with �p � 2Rp,
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whereas for �=kBT ! 1 the model reduces to that of an
additive binary hard-sphere mixture. A similar treat-
ment of polymer interactions was introduced by Warren
et al. [53], although in that work �ppðrÞ was assumed to
have a range of Rp, the polymer radius of gyration. Our
current (longer-ranged) choice is more consistent with
the effective (Gaussian) potentials of Louis et al. [52],
which extend even beyond 2Rp. Our aim is to develop a
DFT which retains most of the features of the DFT for
the original AO model but which incorporates, albeit
crudely, polymer–polymer interactions. We briefly
review how the DFT of section 2.2 can be extended to
the current case, following [20], and then describe the
bulk fluid–fluid phase separation which arises in this
theory.

5.1. Construction of the functional
In constructing functionals for hard-sphere fluids it

has been shown [54, 55] that requiring an approximate
functional to recover the properties of the system in
the zero-dimensional (0d) limit, where the partition
sum can be calculated exactly, is a powerful constraint
which has guided the development of DFTs for other
models, such as the AO model. Thus we first consider
the current model in the 0d limit, in which particle
centres are confined to a volume v0d whose dimensions
are smaller than all relevant length scales in the system.
The microstates accessible are then completely speci-
fied by the occupation numbers of particles of both
species and each microstate is assigned a statistical
weight according to the grand ensemble. The grand
partition sum for an arbitrary binary mixture in this
limit is

X ¼
X1
Np¼0

z
Np
p

Np!

X1
Nc¼0

zNc
c

Nc!
exp ð���totalÞ, ð25Þ

where the (reduced) fugacities are zi ¼ ðv0d=L3
i Þ �

exp ð��iÞ,Li is the thermal wavelength, �i is the chemical
potential of species i and �total is the total potential
energy in the situation where all particles have vanishing
separation. Note that for hard-core interactions, the
Boltzmann factor vanishes for forbidden configurations,
which then limits the upper bounds in the summations
in equation (25). For the present case, where �cc and �cp

are hard-body interactions, we obtain

X ¼ zc þ
X1
Np¼0

z
Np
p

Np!
exp ���NpðNp � 1Þ=2

� �
, ð26Þ

where the Np dependence in the Boltzmann factor stems
from the counting of pairs of polymers. There are
two important limiting cases. For zc ¼ 0 (no colloids),

the limit of one-component penetrable spheres [56] is
recovered, whereas for �� ¼ 0, equation (26) reduces
to the AO result [16, 17], X ¼ zc þ exp ðzpÞ. In order to
obtain the Helmholtz free energy, a Legendre transform
must be performed, and the dependence on the fugaci-
ties replaced with the dependence on the mean (occupa-
tion) numbers of particles, �i ¼ zi@ ln X=@zi, i ¼ c,p.
Taking the particle volume of species i as the reference
volume, �i is also the 0d packing fraction of species i.
Subtracting the ideal contribution, one calculates
the excess Helmholtz free energy, �F0d ¼ � ln XþP

i¼c, p �i ln ðziÞ �
P

i¼c,p �i½ln ð�iÞ � 1�. In the present
case (as for pure penetrable spheres [56]), this cannot
be expressed analytically. As we are interested in the
case of small � (small deviations from the AO model),
we perform an expansion in powers of ��, and obtain

�F0d
ð1Þ ¼ ð1� �c � �pÞ ln ð1� �cÞ þ �c þ

��

2

�p
2

1� �c
,

ð27Þ

which is exact up to lowest (linear) order in ��. In the
limit �� ! 0, equation (27) reduces to the AO result
[16, 17], which is �F0d,AO ¼ ð1� �c � �pÞ ln ð1� �cÞ þ �c.
In the absence of colloids, �c ! 0, we obtain a mean-
field-like expression, F0d,MF ¼ ��p

2=2.
Since some terms of higher than first order can be

obtained analytically, we write the free energy as
F
ð1Þ
0d þ�F0d, and we find that up to cubic order in ��

��F0d ¼ �
�p

2ð��Þ2

4ð1� �cÞ
þ

�p
2

1� �c
þ

2�p
3

ð1� �cÞ
2

� �
ð��Þ3

12
: ð28Þ

For large ��, the 0d free energy must be calculated
numerically. This is straightforward [20].

Returning to three dimensions, we write the excess
Helmholtz free energy functional of an inhomogeneous
system as

�F ex½�cðrÞ, �pðrÞ� ¼

Z
drF fnc	g, fn

p

g

� �
, ð29Þ

which is the same as in the ideal polymer case,
equation (11). The weighted densities fni	g are defined
as convolutions with the bare density profiles through
equation (13). In addition to the weights (14) we also
introduce Tarazona’s [57] tensor weight function
ŵw
i
m2ðrÞ ¼ wi

2ðrÞ½rr=r
2 � 1̂1=3�, where 1̂1 is the identity

matrix.
The free energy density is composed of three parts

F ¼ F1 þ F2 þ F3 , ð30Þ
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which are defined as

F1 ¼
X
i¼c, p

n0i ’i n
c
3, n

p
3

� �
, ð31Þ

F2 ¼
X

i, j¼c, p

ni1n
j
2 � niv1 	 n

j
v2

� �
’ij n

c
3, n

p
3

� �
, ð32Þ

F3 ¼
1

8p

X
i, j, k¼c, p

1

3
ni2n

j
2n

k
2 � ni2n

j
v2 	 n

k
v2

�

þ
3

2
niv2n

j
m2n

k
v2 � tr nim2n

j
m2n

k
m2

� �	 
�
’ijk nc3, n

p
3

� �
,

ð33Þ

where tr denotes the trace. The quantities ’i, ’ij etc. are
derivatives of the 0d excess free energy

’i...kð�c, �pÞ �
@m

@�i . . . @�k
�F0dð�c, �pÞ: ð34Þ

In the absence of polymer, F1 and F2 are equivalent to
the free energy densities for hard spheres introduced
in [18] and F3 is equivalent to the tensor treatment
for pure hard spheres in [57]. Equations (31)–(33) are
generalizations of these earlier treatments that include
summations over species. If we set �� ¼ 0, ideal poly-
mer, and take the derivatives of �F0d,AO we recover the
explicit expressions given in equation (12) for the AO
model.

5.2. Fluid–fluid phase separation
In bulk, the one-body densities of both species are

spatially uniform: �iðrÞ ¼ const: This leads to simple
analytic expressions for the weighted densities. The
excess free energy density, equations (30)–(33), is easily
evaluated provided the analytic approximations (27),
(28) are employed for F0d. If we retain only the linear
term in ��, i.e. employ equation (27), then

�fexð�c, �pÞ ¼
�F exð�c, �pÞ

V
¼ �fHS

ex ð�cÞ � �p ln �1ð�cÞ

þ
� ~��ppð0Þ

2
�p

2½1� ln �2ð�cÞ� , ð35Þ

where the integrated potential is ~��ppð0Þ ¼
4p

R
dr r2�ppðrÞ ¼ 4p��3

p=3. fHS
ex is the scaled-particle

(Percus-Yevick compressibility) approximation, and is
given by

�fHS
ex ¼

3�c½3�cð2� �cÞ � 2ð1� �cÞ
2 ln ð1� �cÞ�

8pR3
cð1� �cÞ

2
; ð36Þ

and is the same quantity that enters equation (15).
The quantities �1 and �2, which depend solely on �c and
the size ratio q ¼ �p=�c, are given by

ln �1 ¼ ln ð1� �cÞ �
X3
m¼1

Cð1Þ
m 
m, ð37Þ

ln �2 ¼ �
1

8

X4
m¼1

Cð2Þ
m 
m, ð38Þ

where the dependence on colloid density is through

 ¼ �c=ð1� �cÞ, and the coefficients are polynomials
in the size ratio, given as C

ð1Þ
1 ¼ 3qþ 3q2 þ q3,

C
ð1Þ
2 ¼ ð9q2=2Þ þ 3q3, C

ð1Þ
3 ¼ 3q3 and C

ð2Þ
1 ¼ 8þ 15qþ

6q2 þ q3, C
ð2Þ
2 ¼ 15qþ 24q2 þ 7q3, C

ð2Þ
3 ¼ 18q2 þ 15q3

and C
ð2Þ
4 ¼ 9q3.

For �� ¼ 0, ideal polymer, our result is identical to
that of free-volume theory for the AO model—see
equations (15) and (16). The quantity �1 in equation (37)
is identical to a, the free-volume fraction of a single
polymer sphere in the AO model. �2 can be interpreted
[20] as the free-volume ratio for pairs of overlapping
polymers. �1 and �2 both decrease monotonically with
increasing �c due to the increasing excluded volume.
However, �2 > �1 over the whole density range, which
may be due to correlations between polymer pairs [20].
At fixed �c, both �1 and �2 decrease monotonically with
increasing size ratio.

The total canonical free energy is given by F=V ¼

fex þ kBT
P

i¼c, p �i ½ln ð�iL
3
i Þ � 1�. It is convenient to

transform to the semi-grand ensemble, where the
polymer chemical potential �p is prescribed instead of
the system density �p. The appropriate thermodynamic
potential is the semi-grand free energy Osemi, related to
F via a Legendre transform: Osemi=V ¼ F=V � �p�p,
where �p is given as

��p ¼ @ð�F=VÞ=@�p

¼ ln ð�pL3
pÞ � ln �1ð�cÞ � � ~��ppð0Þ�p½1� ln �2ð�cÞ�,

ð39Þ

which is a transcendental equation to be solved for �p
once �p is prescribed. This result is a generalization of
the standard free-volume expression ��p ¼ ln ðL3

p�p=�Þ
pertaining to the original AO model [4].

As usual, phase coexistence is determined by requiring
equality of the total pressure, of the chemical potentials
�i, and of the temperatures in the coexisting phases.
This can be carried out in the system representation
(�c, �p) [20] or, using common tangent constructions on
Osemi, in the polymer reservoir representation (�c,�p).

Stable fluid–fluid phase separation (with respect to
the fluid–solid transition) is observed in experiments
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on colloid–polymer mixtures only at sufficiently large
polymer-to-colloid size ratios. We consider the size ratio
q ¼ 0:57, for which experimental data are available for
PMMA colloid and polystyrene (PS) in cis-decalin [5].
Figure 19 shows the calculated phase diagrams with and
without polymer interactions. For non-interacting poly-
mers (�� ¼ 0), our result is identical to that from free
volume theory for the AO model. In order to apply our
theory to the experimental situation, we have prescribed
the potential energy barrier to be �� ¼ 0:5. This is based
on considerations of the second virial coefficient of a
pure polymer solution [20]. In order to achieve higher
accuracy than is provided by the linear expansion of
the 0d free energy, equation (27), we use the cubic order
expression, equation (28), to determine the excess free
energy. Figure 19 shows a comparison of the calculated
theoretical binodal with the experimental data of [5]
in the system representation.
Although the measured single-phase (fluid) state

point at high colloid packing fraction lies inside the
theoretical two-phase region, it is clear that our theory
predicts a shift in the correct direction compared
with the non-interacting (ideal) binodal. The theory
also predicts that the coexisting colloidal gas phase is
more strongly dilute in colloids, as compared with the
non-interacting case.
In figure 20 the phase diagram is shown in polymer

reservoir representation: a reservoir of interacting pure
polymer is considered that is in chemical (osmotic)
equilibrium with the system with respect to exchange
of polymers. The tie lines are horizontal in this
representation. Away from the critical point a gas,

dilute in colloids, coexists with a liquid that has very
high packing fraction of colloids, much higher than in
the ideal case. We consider next the case of equally-sized
species, q ¼ 1. Phase diagrams are shown in the system
representation (figure 21) and in the reservoir represen-
tation (figure 22). Again a marked shift of the critical
point towards higher �c is found and the single phase
region is larger (in the system representation) compared
to the case of ideal polymer. Figure 22 shows that the
packing fraction of coexisting liquid increases quite
rapidly with increasing �rp, which has repercussions for
the location of the triple point. All these results can be
understood in terms of a free energy penalty arising
from polymer–polymer interactions. These manifest
themselves primarily in the colloidal gas phase as only
a small penalty arises in the colloidal liquid phase, where
polymers are strongly diluted.

It is instructive to make some comparisons between
the present results and the recent extensive Monte Carlo
simulation results of Bolhuis et al. [15] mentioned in
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Figure 19. Fluid demixing binodals in the system represen-
tation, i.e. as a function of the colloid (�c) and polymer
(�p) packing fractions for size ratio q ¼ 0:57. Results are
shown for the case of non-interacting polymer (dashed
line) and for interacting polymer (solid line) with strength
�� ¼ 0:5. The crosses denote the critical points. The
symbols refer to the experimental state points taken
from [5]. The open circles denote single-phase (fluid) states
and the filled rhombuses two-phase (liquid–gas) states.
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Figure 20. Same as figure 19 (q ¼ 0:57), but in the reservoir
representation, i.e. as a function of �c and the packing
fraction of polymer (�rp) in a reservoir of pure polymer
in osmotic equilibrium with the system.

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5

η P

ηC

βε=0.5
ideal polymer

Figure 21. Same as figure 19, but for size ratio q ¼ 1.
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section 4.3. These authors consider hard-sphere colloids
but obtain effective potentials for the polymer–polymer
interaction from simulations of a bulk system of self-
avoiding walks (SAW) at various concentrations—a
procedure known to be reliable for polymers in a good
solvent. The effective pair potentials �pp correspond
to tracing out the monomer degrees of freedom and
treating the polymer as ‘soft colloid’; �pp depends
on the volume fraction of the polymer and is calculated
by inversion of the centre-of-mass radial distribution
function gppðrÞ. The colloid–polymer effective potential
also depends on the volume fraction of polymer. It is
obtained from simulations of a single hard sphere in
a solution of SAW polymers by inverting the centre-of-
mass concentration profile using the HNC equation—
details are given in [15]. Phase diagrams are determined
by Gibbs ensemble simulations of the binary mixture
described by these effective pair potentials and results
are presented for q ¼ 0:34, 0.67 and 1:05. We focus
here on size ratios q ¼ 0:67 and 1.05 where gas–liquid
(fluid–fluid) phase separation is stable with respect to
fluid–solid.
In the (�c, �

r
p) representation including polymer–

polymer interactions increases the critical point value
of the packing fraction of colloids very slightly but
increases the critical polymer reservoir fraction �rp, crit by
about 0.25 for q ¼ 0:67. More significantly, the gas–
liquid two-phase region is broadened significantly in �c
and the triple point �rp, t is lowered considerably from
what is found in the ideal polymer (AO) case—see
figure 1 of [15]. The upshot is that there is a very narrow,
in �rp, region of stable fluid–fluid phase coexistence when
interactions are included. This is not totally different
from what we find in figure 20, for q ¼ 0:57, from the
DFT; as freezing is expected to occur when �c � 0:5, this
permits only a small separation between �rp, t and �rp, crit
when interactions are incorporated. However, our DFT
does not predict the substantial increase in �rp, crit which

is found in simulations when interactions are included.
This is reflected clearly in the (�c, �p) representation
where the binodal calculated with interactions appears
to be more separated from the non-interacting case (see
figure 2 of [15]) giving a larger single-phase region than
in the corresponding DFT results, although the latter
are for a smaller value of q. The situation is exaggerated
for q ¼ 1:05. Now the critical point is shifted from
�c, crit � 0:11, �rp, crit � 0:75 to �c, crit � 0:18, �rp, crit � 1:12
and the triple point is lowered from what is a very high
number �rp, t � 6 to �rp, t � 1:65 when interactions are
included. Again the range in �rp over which stable fluid–
fluid phase coexistence occurs is narrowed considerably.
A similar trend is found in the DFT results of figure 22
for q ¼ 1 but the latter predict a small decrease in �rp, crit
rather than the substantial increase found in simulation.
Moreover, the DFT does not predict the very strong
shift of the binodal in the (�c, �p) representation
found in simulations (figure 3 of [15]) which results in
a much larger single-phase region when interactions
are included.

In summary, the DFT introduced in [20] and descri-
bed above captures several, but not all, of the effects of
polymer–polymer excluded volume interactions that are
found in the computer simulations of bulk phase behav-
iour. (Note, however, that the freezing transition was
not considered explicitly in the DFT calculations.) This
should encourage applications of the theory to inhomo-
geneous situations—the primary purpose of DFT.
Such problems are not easily tackled by simulations.

Of course, this model of polymer–polymer interac-
tions is highly idealized and a detailed critique is given
in [20]. The main limitations are: (i) �ppðrÞ is assumed to
be a step function rather than a Gaussian-type function,
(ii) the range of the step function is set equal to 2Rp,
twice the polymer radius of gyration, in order to derive a
geometry-based DFT meeting ‘additive’ restrictions and
(iii) the strength � and range of �pp are assumed to be
independent of the concentrations of polymer and
colloids, whereas simulation studies of SAW [15, 52]
indicate that the effective polymer–polymer potential
should depend on the volume fraction of polymer.

We conclude this section by emphasizing [20] that the
present DFT approach is not a perturbative treatment of
polymer–polymer interactions. One might attempt to
construct a DFT which starts with the AO functional
for the AO reference model and then simply adds a
(perturbative) contribution to account for polymer–
polymer interactions. The latter could be the type of
mean-field functional used recently to describe a pure
polymer system [21], namely

FMF½�pðrÞ� ¼
1

2

Z
dr

Z
dr0�pðrÞ�pðr

0Þ�ppðjr� r0jÞ: ð40Þ
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Figure 22. Same as figure 20, but for size ratio q ¼ 1.
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This functional generates the pair direct correlation
function which corresponds to the random phase
approximation: cð2Þppðr, r

0Þ ¼ cð2Þppðjr� r0jÞ ¼ ���ppðjr� r0jÞ,
known to be a good approximation at high densities
for penetrable potentials [21]. It has been used to good
effect in investigations of repulsive Gaussian core
particles adsorbed at a hard wall [58]. The generalization
of equation (40) to binary Gaussian core mixtures was
used in studies of fluid–fluid interfaces [41] and of
wetting phenomena [48]. At first sight the functional
FAO

ex þFMF would appear to provide a reasonable
description of the excess free energy of the AO mixture;
note that the hard-body interactions between colloids
and polymers are already included in FAO

ex . However, as
shown in [20], this is not the case for the model described
above. The perturbative contribution FMF depends
solely on the polymer density �pðrÞ and therefore
neglects exclusion of polymer from the volume occupied
by the colloids. By contrast the geometry-based DFT
builds in excluded volume effects. One can understand
this by returning to the 0d free energy, equation (27).
The final (polymer) contribution is enhanced over the
corresponding mean-field expression ���2p=2 by a factor
ð1� �cÞ

�1. The perturbative DFT exhibits some severe
failings when applied to the calculation of phase
behaviour and similar failings are to be expected [20]
if the same approach, i.e. simply adding FMF to FAO

ex ,
were adopted for other models, e.g. mixtures of hard-
core and Gaussian particles. Note that the approach of
Warren et al. [53] for the bulk free energy can be viewed
as a perturbative treatment in which �ppðrÞ is regarded as
a perturbation about the AO reference system. Schmidt
et al. [20] rederive the theory of [53] in a framework
that allows them to understand relationships between
the various approaches. They argue that the geometry-
based DFT provides a more realistic account of the
binodal than does the theory of [53].

6. Further developments

During the last two years several applications and
extensions of the DFT for the AO model have been
reported. We summarize some of them in this section.
An overview of geometry-based DFT, which lists a
wider range of developments, is given by Schmidt [59].
We mention first two direct applications of the DFT

for the AO mixture described in section 2.2. As a planar
hard wall prefers the colloid-rich (liquid) phase to the
colloid-poor (gas) phase, the hard wall–liquid surface
tension is lower than the hard wall–gas tension. General
arguments [60] then imply that for the colloid–polymer
mixture confined between two, parallel, planar hard
walls, capillary condensation of the liquid phase should
occur when the reservoir fluid is in the gas phase, i.e.
for a given �rp the value of �c is lower than the bulk

coexistence value. Brader observed this phenomenon
in his PhD studies [25] using the DFT. Systematic
investigations were carried out recently [61] using both
DFT and computer simulation. Lines of capillary con-
densation were determined for size ratio q ¼ 1. These
are most easily represented in the (�c, �

r
p) plane, where

�c is the colloid chemical potential. Upon decreasing the
(scaled) wall separation distance H=�c from ten to two a
pronounced shift of the capillary binodal towards
smaller values of �c occurs. The critical point shifts to
larger �rp, corresponding to lower temperature in the
case of a simple atomic fluid, and to larger �c upon
reducing H. This latter trend seems to be much more
pronounced in the simulation results than in those from
DFT. Preliminary investigations demonstrated that the
shift of the binodal could be described reasonably well
using the generalized (to binary mixtures) Kelvin
equation for capillary condensation [62]. The practical
importance of this investigation lies in possible experi-
mental realizations by strongly confining (between glass
substrates) real colloid–polymer mixtures [63]. From a
theoretical viewpoint one sees that since all the bare
interactions in this system are either hard or ideal, this
is an important example of shifting a bulk phase
transition, via confinement, by means of purely entropic
(depletion) forces.

The second application refers to the AO model
colloid–polymer mixture exposed to a standing laser
field that is modelled as an external potential acting on
the colloids. This has a sinusoidal variation as a function
of the space coordinate in the direction of the beam
[64]. DFT results indicate that the external potential
may stabilize a ‘stacked’ fluid phase which is a periodic
succession of liquid and gas slabs. The regions of large
laser intensity (where the external potential is small)
are filled with colloidal liquid whereas the regions with
small laser intensity are gas-like.

Several extensions of the AO model have been made
and the bulk phase behaviour compared with the
original. In order to take into account the effect of
poor solvent quality on colloid–polymer mixtures, the
solvent was modelled as a distinct component. Speci-
fically it was taken to be a binary mixture of a primary
solvent that is treated (as usual) as a homogeneous,
inert background and a secondary cosolvent that is
treated as an ideal gas of point particles [65]. These
cosolvent particles are assumed to penetrate neither
the polymers nor the colloids. In the absence of colloids,
the polymer–cosolvent subsystem is the Widom–
Rowlinson model [66] of a binary mixture in which
particles of like species are non-interacting while unlike
species interact with hard cores. Thus the cosolvent
induces an effective many-body attraction between
the polymers, reminiscent of that caused by poor solvent.
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It was found that worsening the solvent quality, by
increasing the cosolvent concentration, increases greatly
the tendency to demix, i.e. this shifts the corresponding
binodal to smaller colloid and polymer packing fractions
[65].
The shape and size of real polymers will be affected by

confinement effects, generated by the presence of the
colloidal particles in a colloid–polymer mixture. In order
to model the effect on the polymer size distribution,
an AO model with polydisperse polymer spheres was
considered [67]. The polymer spheres are mutually
non-interacting but are excluded from the colloids;
their radii are free to adjust to allow for colloid-induced
compression. The size (radius of gyration) probability
distribution in the polymer reservoir was taken to be
that of ideal chains. It was found that the presence of the
colloids reduces considerably the average polymer size.
As a consequence, the bulk demixing binodal is shifted
towards higher polymer densities, stabilizing the single,
mixed phase as compared with the incompressible
AO case.
For very large polymer-to-colloid size ratios the

assumption that colloids cannot penetrate polymers
is no longer valid. A small colloidal sphere may well
penetrate the open coil structure of a big polymer. In
order to incorporate this effect on the level of an effective
sphere model a penetrable AO model was introduced
[68]. The colloid–polymer interaction is assumed to be a
step-function of finite height, in contrast to the hard-
core repulsion of the conventional AO case. The range
of this interaction is still taken to be Rc þ Rp, and the
strength is taken from the known immersion free energy
of a single sphere in a dilute solution of polymer coils
or in a theta solvent. The colloid–colloid interaction
remains hard-sphere-like and �pp ¼ 0. For large size
ratios, q03, there is a significant increase in the extent
of the mixed region in the phase diagram compared to
the free-volume result for impenetrable polymer, i.e. for
the AO model [68]. These findings are in keeping with
results from more microscopic approaches which treat
excluded volume at the segment level [14].
A system that is closely related to the AO model is a

mixture of spherical hard-sphere colloids and hard,
needle-like particles. The latter may represent either
stretched polymers or stiff colloidal rods. In the simplest
model [69] the thickness of the rods is set to zero such
that rod–rod interactions can be ignored but there
remains an excluded volume interaction between a rod
and a hard sphere. For this model there is no liquid
crystalline order, because of the absence of rod–rod
interactions. However, simulation studies found iso-
tropic gas and liquid phases as well as a solid phase
[69]. The rods act as a depletant, in a similar fashion
to the non-interacting polymer spheres in the AO

model, and give rise to an effective attraction between
the hard-sphere colloids. Bolhuis and Frenkel [69] also
determined the phase behaviour using a free-volume
approximation for the free energy, similar to that of
Lekkerkerker et al. [4] for the AO model, i.e. a first-
order perturbation theory that sets the free-volume
fraction for the needles equal to its average value in the
pure hard-sphere fluid. A DFT was constructed [22]
for this model and applied subsequently [23] to the
planar (free) interface between demixed fluid phases, one
of which, the liquid, is rich in spheres (and poor in
needles) and the other, the gas, is dilute in spheres (and
rich in needles). Note that in constructing the DFT it
was necessary to introduce a weight function wSN

2 ðr,:Þ,
where : refers to the orientation of the needles, which
contains information about both species, the spheres
and the needles, in order to generate the sphere-needle
Mayer bond. The corresponding sphere-needle weighted
density, nSN2 ðr,:Þ, is a convolution of the sphere density
�sðrÞ and wSN

2 ðr,:Þ, whereas all the remaining weighted
densities involve only variables of an individual species.
For uniform fluids the DFT yields the following
expression for the excess free energy density:

�fexð�S, �NÞ ¼ �fHS
ex ð�SÞ � �N ln �ð�SÞ, ð41Þ

where �S and �N refer to the number densities of spheres
and needles, respectively. fHS

ex is, as usual, the excess
free energy density of pure hard spheres (36) and �ð�SÞ
is the free-volume fraction for a single, test needle of
length L in the hard-sphere fluid:

�ð�SÞ ¼ ð1� �Þ exp ½�ð3=2ÞðL=�Þ�=ð1� �Þ�, ð42Þ

with � ¼ p�S�3=6, the packing fraction of spheres of
diameter �. Equation (41) is identical to the free-volume
result [69] and can also be obtained by applying scaled-
particle theory for non-spherical bodies [70] to the
current model. It has the same form as the excess free
energy for the AO model—see equation (15). The fluid–
fluid binodal resulting from equation (41) was found to
be rather close to that obtained by simulations for the
case L=� ¼ 1 [69]. Brader et al. [23] chose the same size
ratio for their DFT studies of the planar fluid–fluid
interface. The bulk phase diagram, plotted in the
reservoir representation, i.e. �r� ¼ �rNL

2� versus �, has
a similar form to figure 2 with � ¼ �c and �r�, the
reduced needle density in the reservoir, replacing the
polymer reservoir packing fraction �rp. The critical point
is located at �crit ¼ 0:158 and �r�, crit ¼ 14:64 whilst the
triple point, estimated from first-order perturbation
theory [69], is at �r�, t ¼ 24. As in figure 2, there is a
Fisher–Widom (FW) line intersecting the liquid branch
of the binodal near �r�,FW ¼ 17, see figure 2 of [23].
For coexisting states with higher values of �r�, on the
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oscillatory side of the FW line, Brader et al. find sphere
density profiles �SðzÞ that are oscillatory on the sphere-
rich (liquid) side of the planar interface. However, the
amplitude of the oscillations is considerably smaller
than what was described in section 3 for the AO model.
As expected, on the needle-rich (gas) side the density
profile of the spheres decays monotonically into bulk for
all states. The important new feature which arises in this
study concerns the nature of the needle density profiles.
Within DFT one can determine the one-body density
�Nðz, �Þ, where z is the perpendicular distance from
the interface and � is the angle between the needle
orientation and the interface normal, and hence both the
orientation averaged needle density profile, ���NðzÞ, and
the orientational order parameter profile hP2ðcos �Þi.
For states above the FW line, ���NðzÞ displays very weak
oscillations on the liquid side of the interface arising
from the influence of the packing of the spheres on the
distribution of the needles. From the result for
hP2ðcos �Þi, Brader et al. conclude that needles order
parallel to the interface on the needle-rich side. This
appears to be similar to the biaxial ordering of needles
that occurs at a planar hard wall; in the present case
the densely packed hard-sphere fluid acts as a ‘wall’ for
the needles. On the sphere-rich side the needles prefer
to orient themselves perpendicular to the interface and
this is interpreted as the needles protruding through the
voids in the first layers of the hard-sphere fluid. These
general features of the orientational order are indepen-
dent of the size ratio L=�. As an optimal compromise
between manageable needle particle numbers and
simulation box size, Bolhuis et al. [71] chose to
perform Monte Carlo simulations with ratio L=� ¼ 3.
The different preferential alignment of needles on either
side of the interface is confirmed by the simulation
results. Moreover, there is remarkable quantitative
agreement between simulation and DFT results for the
density profiles �SðzÞ, ���NðzÞ and the orientational order
parameter profile [71]. Brader et al. [23] also describe
results for the liquid–gas surface tension and discuss
what might be appropriate scaling factors to bring
about data collapse for different size ratios L=�.
In a related study Roth et al. [24] considered the same

sphere–needle mixture, with L=� ¼ 1, adsorbed at a
planar hard wall—the same type of situation as that
described in section 4. Density profiles calculated from
the DFT for the binary mixture of spheres and needles
show that complete wetting of the hard wall–gas
interface by the sphere-rich, liquid phase occurs upon
approaching the binodal on a path at fixed �r� ¼ 16; the
profiles are reminiscent of those in figure 7. There
appears to be complete wetting for all the values of �r�
considered. An effective one-component description of
the same system was also investigated in [24]. This

follows the approach of section 2.1 in that a sphere–
sphere and a wall–sphere depletion potential can be
obtained by integrating out the degrees of freedom of
the needles (rods) [72]. Since the needles are mutually
non-interacting the depletion potentials depend linearly
on �rN. Geometrical arguments, similar to those for the
AO model, show that the effective one-component
Hamiltonian corresponding to equation (9) should be
exact for L=� < 1� ð2ð31=2Þ � 3Þ1=2 ¼ 0:31875, which
should be compared with the corresponding size ratio
q ¼ �p=�c ¼ 0:1547 for the AO model. Thus, for the
system under consideration, with L=� ¼ 1, there are
many-body effective interactions which are not included
in the analogue of equation (9). Ignoring these, Roth
et al. [24] employed a one-component DFT, equivalent
to that used in [11] for adsorption studies of the AO
model with q ¼ 0:1; this treats the hard-sphere con-
tribution by the Rosenfeld FMT and the depletion
attraction between pairs of spheres by means of a mean-
field approximation. The resulting fluid–fluid binodal is
in fair agreement with that from the free-volume theory,
equivalent to the result of the binary mixture DFT.
The effective one-component treatment also predicts
complete wetting. However, there is also a partial
wetting regime, at high �r�, followed by a sequence of
five layering transitions and then a transition to the
completely wet state as �r� is reduced following the gas
branch of the binodal. The pattern of surface phase
transitions (see figure 5 of [24]) is very similar to that
seen in figures 9 and 12 for the AO model, i.e. the first
layering transition is quite extended in �r� and the
layering critical point, near �r� ¼ 20, is well removed
from the binodal. Subsequent transition lines are
reduced in extent and lie close to the binodal. Thus, it
is tempting to argue that this effective one-component
treatment of the adsorbed sphere–needle mixture mimics
what we found for the AO model. But there we argued
that it was the incorporation of effective many-body
interactions between the colloids that was responsible
for the rich layering behaviour; our effective one-
component treatment did not yield layering transitions
in the case of the AO model. A full understanding of
the results for the sphere–needle model is yet to emerge.
The precise location of the triple point is important.
Indeed a preliminary simulation study of the bulk
system [73], using the same effective sphere–sphere
potential as in [24], finds that �r�, crit 
 17:5 and
�r�, t 
 22:7, i.e. gas–liquid coexistence is stable over a
rather narrow region of �r�. More significantly, the triple
point lies below the onset of the first layering transition
found in [24], suggesting that the layering could be
occurring in a region where the gas–liquid transition is
metastable with respect to gas–solid. This is not the case
in the AO model where in both the DFT calculations of
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section 4.2 and in the simulation studies of section 4.3,
the onset of layering occurs well below the triple point.
A further study [74] was devoted to developing a

geometry-based DFT for a ternary mixture of hard-
sphere colloids, ideal polymer spheres and vanishingly
thin hard needles. The model combines those of AO and
of Bolhuis–Frenkel. Both the mutually non-interacting
polymers and mutually non-interacting needles act as
depletion agents so that rich fluid phase separation
can arise. As usual, colloid–colloid, colloid–polymer
and colloid–needle interactions are hard. Schmidt and
Denton [74] consider two cases: (i) the polymer–needle
interaction �PNðrÞ vanishes for all distances r and (ii) it is
hard, i.e. �PN ¼ 1 if polymer and needle overlap, and
zero otherwise. Constructing the DFT for the second
case requires a generalization to needles of an earlier
DFT treatment [75] of the Widom–Rowlinson model
[66] since in the absence of colloids the polymer–needle
mixture is of the Widom–Rowlinson type: interactions
between like species vanish while unlike particles interact
via hard-core repulsion. For case (i), two-phase coex-
istence between colloid-rich and colloid-poor fluid
phases is found. For case (ii), there is the possibility
of de-mixing between the polymers and the needles.
Moreover, there can be a competition between the
depleting effects of (interacting) polymers and needles;
the two species compete to generate the attraction
between the colloid spheres. Striking demixing fluid
phase behaviour is found, with various critical points
and a three-phase coexistence region [74]. It would be
of considerable interest to investigate structural correla-
tions in the various bulk fluid phases and to consider
inhomogeneous situations, such as fluid–fluid or wall–
fluid interfaces, in this model system.
A very different kind of confinement from that

considered so far is present for fluids adsorbed in
porous media. Rather than the well-defined geometries
which occur at a planar wall or at fluid–fluid interfaces,
irregular and random confinement acts on the adsorbed
fluid. In order to model porous media one introduces the
so-called quenched–annealed fluid, where the quenched
components represent the porous medium in terms of
immobilized fluid configurations. Since the quenched
components act as an external potential on the annealed
(equilibrated) components constituting the adsorbate,
the one-body density distribution of the latter can be
obtained using standard DFT methods. However, such
an approach is computationally demanding since the
spatial distribution of the adsorbate is extremely com-
plicated. An alternative approach, termed quenched–
annealed DFT, was proposed recently. This treats the
quenched components on the level of their one-body
density distributions [76]. The minimization condition
differs from that of equilibrium (fully annealed)

mixtures, as the quenched components are treated as
fixed input quantities in the grand potential functional.
For the AO model adsorbed in different types of
matrices the results of this DFT approach were com-
pared to those from liquid integral equation theory
(replica OZ using the optimized random-phase approx-
imation) for the corresponding effective one-component
model, where the polymers are integrated out and only
the pairwise contributions to the effective Hamiltonian
of section 2.1 are taken into account [77]. Thus, the
effective interaction between colloids is given by �eff

AOðRÞ
while the colloid and matrix particles interact via either
a hard-sphere potential or �eff

AOðRÞ. Both approaches
predict, consistently, capillary condensation or evapora-
tion, depending on the nature of the matrix–polymer
interaction. If a matrix particle excludes both colloid
and polymer, condensation occurs, whereas if the matrix
excludes only colloid (there is vanishing matrix–polymer
interaction) capillary evaporation occurs. The latter
refers to the situation where phase separation occurs in
the fluid adsorbed in the matrix at chemical potentials
for which the reservoir would remain in a single, colloid-
rich, liquid phase. The bulk pair correlation functions
from DFT are in good agreement with computer
simulation results [77]. A very recent study is devoted
to demixing and the planar fluid–fluid interface of the
AO mixture adsorbed in a matrix of homogeneously
distributed hard-sphere particles [78]. Two cases are
considered: (i) colloid-sized matrix particles at low
packing fractions and (ii) large matrix particles at high
packing fractions. The two cases exhibit very different
behaviour; for details see [78].

7. Discussion

We have outlined two strategies for tackling the
statistical mechanics of inhomogeneous colloid–polymer
mixtures described by the simplest model that captures
the effects of depletion attraction, namely the Asakura–
Oosawa–Vrij (AO) model. The first of these, based on
the well-trodden ‘integrating out’ route of McMillan–
Mayer theory, is most useful for highly asymmetric
mixtures with small size ratio q < 0:1547, where there
are no three- or higher-body contributions to the
effective one-component Hamiltonian for the colloids.
The second employs a geometry-based DFT for the
mixture that treats the two species on equal footing.
Since there is no explicit integrating out of the polymer
degrees of freedom, depletion effects are generated
internally by the geometrical structure of the functional.
This DFT approach has the advantage that it applies to
arbitrary size ratios, including those where many-body
contributions are known to be important. The main
results of our investigations of interfacial properties
are presented in sections 3 and 4 where we describe the

Statistical mechanics of inhomogeneous model colloid–polymer mixtures 3377

Interfacial properties 143



density profiles and surface tensions for the free fluid–
fluid interface and the properties of the AO mixture
adsorbed at a hard wall calculated using the functional
derived in [16, 17]. For the free interface we find
oscillatory structure in the density profiles on the
colloid-rich (liquid) side of the interface for state points
where the coexisting liquid density lies on the oscillatory
side of the Fisher–Widom line and surface tensions
which are in reasonable agreement with experiment.
We find that for a highly asymmetric mixture, q ¼ 0:1,
at state points away from any phase boundary, the AO
functional gives a good account of the simulation data
for density profiles at a hard wall. For larger size ratios,
where fluid–fluid coexistence occurs, the DFT predicts
very rich interfacial phase diagrams which display both
a wetting transition and several novel layering transi-
tions. The interfacial phase diagram was determined for
size ratios q ¼ 0:6, 0:7 and 1:0 and we find the topology
changes significantly with q. We make a comparison
with recent Monte Carlo simulation results for the
interfacial phase diagram for size ratio q ¼ 1.
Here we discuss further some features of our results.

The oscillations we observe in the free interface colloid
density profiles are dramatic. They appear to have an
amplitude larger than oscillations which have been
calculated for simple liquids at state points near the
triple point. We argue in section 3 that despite the very
low interfacial tension of the colloid–polymer system,
the capillary wave fluctuation erosion of the oscilla-
tions should not be greater than for a simple liquid. This
suggests that colloid–polymer mixtures might provide
an excellent opportunity to investigate oscillatory
structure at fluid–fluid interfaces, as the large size of
colloidal particles makes them well suited to ellipso-
metric measurements [39, 79]. Oscillations at a free
fluid–fluid interface arise when that interface is ‘stiff’, i.e.
for high values of the appropriate reduced surface
tension 
�, and when the density difference between the
two coexisting bulk phases is large. Under these
conditions the free interface (treated at mean-field
level) behaves as a ‘wall’ and layered structure can
develop due to packing effects. These effects are most
pronounced near the triple point where both the reduced
surface tension and the density difference are largest.
Considering the phase diagram for q ¼ 0:6, shown in
figure 2, and identifying �rp with T�1, it is clear that the
separation between the critical and triple points is much
larger in the present case than for a simple fluid such as
argon. It is primarily for this reason that we can obtain
such pronounced oscillations in the colloidal density
profiles for states near the triple point. By contrast, as
the temperature is reduced in simple liquids the
oscillations can only grow slightly before the liquid–
vapour coexistence region runs out and the triple point,

i.e. the crystalline phase, intervenes. One could argue
that oscillatory liquid–gas interfaces would be a
common feature in simple fluids at sufficiently low
temperatures were it not for the onset of crystallization.
The AO model can generate oscillations of even larger
amplitude than those shown in figure 3. As the size ratio
is increased the separation in �rp between the critical and
triple points grows, e.g. for q ¼ 1, �rp, t=�

r
p, crit � 8, see

figure 18, and 
� can become rather large—see figure 3.
A similar scenario arises for binary mixtures of repulsive
Gaussian core particles. There liquid–liquid coexistence
can occur over a very large range of total density, since
there is no crystalline phase present, and the resulting
interfaces can be very ‘stiff’ leading to predictions of
very weak erosion of the oscillations: the exponent
in equation (20) is calculated to be about �0:1 [41].
Pronounced oscillatory structure is also well known in
the study of liquid metals where there is a large
separation between the triple and critical points and
the reduced liquid–gas surface tensions are very large.
Simulations of the liquid–gas interface of alkali metals
[80] and of Ga [81] and X-ray reflectivity experiments on
both Ga [82] and Hg [83, 84] all indicate stratification
of the ion-density profile, with a spacing of about one
atomic diameter, on the liquid side of the interface.

The recent Monte Carlo studies of Chacón and
co-workers [43, 44] are significant in this context. These
authors constructed classical pair potential (no explicit
treatment of the electrons) models of a metal so that
the melting temperature Tm was deliberately suppres-
sed relative to the critical temperature Tc, typically
Tm=Tc90:2. At low temperatures they find high surface
tensions and thus a ‘stiff’ interface which seems to be the
origin of the strongly stratified density profiles which
they observe. Chacón and co-workers [44] also make
the important point that for models of the type they
consider, strong stratification can occur over a few
atomic layers in the interface even when the bulk liquid
is on the monotonic side of the FW line. However, we
know the ultimate asymptotic decay into bulk of the
density profile must be governed by the behaviour of the
bulk pair correlation functions. At very low tempera-
tures T � Tm, they estimate the erosion of the oscilla-
tions to be weak, with the exponent in equation (20)
about �0:4. The calculated exponent increases with T
to a value of about �1, near the FW line. Monte Carlo
results for the density profiles calculated for increasing
interfacial area are consistent with the power-law
prediction of equation (20) [44]. There are, of course,
important differences between the liquid metal models,
where the large ratio Tc=Tm arises from the inclusion,
albeit empirically, of electronic effects into the pair
potential, and the AO model, where the large value of
�rp, t=�

r
p, crit arises from the presence of effective many-
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body interactions between the colloids—recall that the
latter are responsible for separating the triple and
critical points at large size ratios—see the discussion of
figure 18.
We turn now to the layering transitions we find in

section 4.2. These are a very specific prediction of the
AO functional and since they are found in simulation,
appear to be a genuine feature of the AO model, rather
than an artefact of the DFT.
Although the pattern of the layering transitions

observed for q ¼ 1 in the simulations of [19] is not
identical to that from DFT, the shapes of the density
profiles near the transitions are very close to those found
in the theory so the layering phenomena are certainly
the same. We argued in section 4.3 that the occurrence
of such transitions, far from �rp, t, requires the effective
many-body interactions that are incorporated into
the DFT and into the simulations. Without these contri-
butions the triple and critical points lie much closer
together and there is less scope for the layering
(and wetting) transitions to manifest themselves at the
(stable) gas–hard wall interface. We emphasize, once
again, that simulations employing only the effective pair
potential �eff ðR; zpÞ yield a very narrow range, in �rp, of
stable liquid–gas coexistence. The form of the wall-
induced effective interactions must also be important
for the occurrence of layering transitions. The effective
pair interaction between colloids �eff ðRi;Rj ; zpÞ is a
complicated function of the coordinates Ri and Rj when
the colloids are close to the wall [11]; the strength of the
attraction is lowered compared with that of �eff

AOðRij ; zpÞ,
which pertains to the homogeneous fluid. It is possible
that this reduction in pairwise attraction, caused by
the wall reducing the overlap volume of the depletion
zones around each colloid, competes with the attractive
one-body potential �wall

AO ðz; zpÞ and that this situation
favours layering [19, 25]. However, it is fair to say that
we do not, as yet, have a full understanding of what
gives rise to these curious transitionsy. The issues are
compounded by the fact that layering transitions were
found in an effective one-component DFT calculation
for the analogous case of the sphere–needle mixture
[24]. Although in this case, see section 6, there remain

questions as to how well the one-component theory
accounts for the extent of stable liquid–gas coexistence.

Whether the layering transitions remain in models
which treat the wall and/or the polymer more realisti-
cally remains to be seen. It would be of considerable
interest to investigate adsorption at a hard wall for the
simple model described in section 5. Incorporating
polymer–polymer interactions is expected to reduce
substantially the separation between �rp, t and �rp, crit
(this is also what is found in the simulation studies for
SAW models of the polymer [15]) which might make it
difficult to observe any layering transitions and indeed
the pronounced oscillations found in the colloid density
profiles at the free interface for the AO model. Direct
simulation studies for colloids and interacting polymers
near a wall would be valuable, but extremely demand-
ing! It seems unlikely that such layering transitions
could be observed in adsorption experiments as the
transition lines lie so close to the bulk coexistence curve
that remarkable experimental accuracy would be
required to resolve these. Moreover, polydispersity in
both colloid and polymer sizes, roughness of the
substrate etc. would tend to eliminate what are probably
rather subtle and specific features of the AO mixture
adsorbed at a hard wall.

We conclude this discussion of layering transitions by
returning to the difference between the type of transi-
tions found in the AO model and those found in DFT
[51] and in simulation [87] studies of the adsorption
of simple gases at strongly attractive substrates. In
the latter case the transitions always occur close to the
triple point where the density profiles are more highly
structured than those shown in section 4.2, i.e. the
individual layers are much sharper. When a transition
occurs (at fixed T, increasing �) the jump in the Gibbs
adsorption corresponds to the addition of (roughly)
one dense ‘liquid’ layer. As the sequence of transitions
progresses the magnitude of the jump in adsorption
increases, reflecting the broadening of the outer peaks
in the profile and the fact that the local density in
one or two of the previous layers also increases at
the transition. There can be a very large number of
transitions—nine or ten could be discerned in DFT
calculations [51]—but their critical points all lie quite
close to the triple point Tt. Indeed, within a mean-field
treatment the number of transitions can be infinite,
i.e. complete wetting of the gas–substrate interface
by liquid, which is expected to occur for all T > Tt for
strongly attractive substrates, can occur by an infinite
sequence of layering transitions out of coexistence.
When capillary wave fluctuations in the wetting film are
included the number of transitions must be finite, since
the liquid–gas interface is always rough (in the statistical
mechanics sense). By contrast, for the AO mixture

yIt is well known that wetting transitions can depend
sensitively on the details of the wall-fluid interactions. For
example, in a Landau treatment which includes a surface term
of third order in the surface magnetization m1, which is of
opposite sign to the usual linear �h1m1 term, Indekeu [85]
found a single thin–thick transition, followed by a continuous
wetting transition on increasing T along the bulk coexistence
curve. An equivalent scenario was found by Piasecki and
Hauge [86] in a simple DFT treatment of a Yukawa fluid
adsorbed at a wall exerting both an attractive exponential and
a square-well wall-fluid potential.
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adsorbed at a hard wall the onset of layering transitions
occurs far below �rp, t where the density profiles of the
colloid are not as highly structured (see figure 8) and the
jump in the adsorption, Gc, does not necessarily increase
as the sequence increases (but note that the results in
section 4.2 refer to a path following the bulk coexistence
curve rather than following paths at fixed �rp, equivalent
to fixed T.) It is feasible, nevertheless, that within our
DFT treatment of the AO mixture there could be
an infinite sequence of layering transitions leading
to complete wetting of the ‘gas’–hard wall interface.
Our numerical results do not rule out this scenario.
Given that the layering transition lines get shorter
and shorter as this sequence progresses it is difficult
to ascertain the precise sequence. If this is the correct
interpretation, then, as observed, we would not expect
to find a substantial pre-wetting line emerging from the
wetting point. The simulation results [19] cannot shed
much light on this issue; there one expects a finite but
large number of transitions before the onset of complete
wetting if the attractive one-body wall–fluid potential
�wall
AO ðz; zpÞ is driving the wetting transition. Note that

layering transitions at temperatures above the bulk
triple point have been found recently in Gibbs ensemble
Monte Carlo simulations of TIP4P water in cylindrical
pores [88].
We complete this discussion of layering transitions

between distinct adsorbed fluid phases by pointing out
that there is much experimental evidence for such
interfacial behaviour in molecular fluids adsorbed on a
graphite substrate under near triple point conditions—
see references in [51]. Ellipsometric studies of various
liquids adsorbed on Pyrex glass [89] and on mica [90] at
low temperatures also provide evidence for layering, i.e.
steps in the adsorption isotherms. Steps in the relative
adsorption of 2.5-dimethylpyridine in the liquid mixture
with water, in contact with solid silica have also been
identified as layering transitions [91]. Bonn et al. [92, 93]
have argued on the basis of ellipsometric measurements,
that a series of first-order layering transitions occurs at a
fluid substrate, i.e. at the liquid–gas interface in a binary
methanol–cyclohexane mixture at high temperatures.
The wetting transition in colloid–polymer mixtures

is a much more promising candidate for experimental
investigation and the basic phenomenon of wetting
of a ‘hard’ substrate by the colloid-rich phase should,
in principle, be experimentally observable. Although
experiments with colloidal particles have an advantage
over those using rare gases or fluids composed of small
molecules in that they can be performed at room
temperature, issues such as polydispersity obviously
complicate matters. Nevertheless, systematic measure-
ments of the contact angle for the liquid–gas meniscus
of phase-separated colloid–polymer mixtures, at various

compositions and size ratios, in contact with glass walls
would be most interesting. Indeed, there are already
indications, from contact angle measurements [94, 95],
of a transition from partial to complete wetting for a
mixture of silica particles and PDMS, with size ratio
� 0:93, in a solvent of cyclohexane at a glass substrate
coated with the same organophilic material as the silica
particles (on which PDMS does not adsorb). The
transition appears to take place further from the critical
point, measured in terms of �lc � �gc , the difference in
colloid packing fractions of the liquid and gas, than is
found in simulations or in DFT for the AO model—see
section 4. Measuring the contact angle for these systems
is not straightforward, however. Although the static
interfacial profile (shape of the meniscus) can be
measured using an optical microscope and the capillary
length extracted, thereby yielding the liquid–gas surface
tension 
, the contact angle depends very sensitively on
the precise location of the wall and studies by the
Utrecht group [96] were unable to ascertain whether or
not a wetting transition occurred for a silica–PDMS
mixture. The values of 
 which they obtained were close
to those measured by the independent spinning drop
technique [36, 79], given in figure 3. More recent results
from confocal scanning laser microscopy demonstrate
the presence of a thick colloidal liquid layer at the glass
wall, consistent with complete wetting [63].

As mentioned in section 6, it should also be possible
to design experiments which investigate, quantitatively,
capillary condensation in simple confining geometries.
Such experiments are difficult to perform for atomic
fluids but for colloidal systems, where the particle sizes,
and hence the confining length scales, are much larger,
this is feasible and there are already some observations
of the phenomenon in a colloid–polymer mixture [63].
One might also envisage studying some of the more
subtle capillary phenomena, such as those associated
with interfacial transitions in wedge geometry [97, 98].

Turning now to small size ratios, where the only
equilibrium phase transition is the fluid–solid transition,
we would encourage further theoretical and simulation
studies of adsorption at a hard wall. As mentioned in
section 4.1, we did not [11] make any effort to approach
closely the fluid–solid phase boundary so we could not
address the important issue of how crystalline layers
develop prior to bulk crystallization. Various scenarios
are possible [11], but given that the wall–colloid deple-
tion potential �wall

AO ðz; zpÞ is strongly attractive, for say
q ¼ 0:1, this might favour an infinite sequence of
(crystalline) layering transitions, culminating in com-
plete wetting of the hard wall–fluid interface by a nearly
close-packed crystal. However, it is not known how
close to the phase boundary the bulk (reservoir) fluid
must be before the first adsorbed layer becomes
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crystalline. Of course, understanding wall-induced crys-
tallization is not an easy problem. For pure hard spheres
at a planar hard wall it is not fully established whether
or not there is complete wetting by hard-sphere
crystal—although recent simulation studies [73, 99]
suggest that this is the case. The nature of the wetting
behaviour has important repercussions for heteroge-
neous nucleation of the crystal [99].
In sections 5 and 6 we considered several extensions

of the basic AO model that were designed to incorpo-
rate additional physical features pertaining to a real
colloid–polymer mixture or to introduce entirely new
ingredients, such as orientational degrees of freedom in
the case of the sphere–needle mixture. All of these
extensions make use of geometry-based DFT; indeed
they were constructed with this purpose. Just how
accurate the DFT proves to be for the various models
remains to be seen for the most part. Where the DFT
has been tested in detail for an inhomogeneous situa-
tion, it performs very well [71]. We envisage many
applications of these extensions to various types of
inhomogeneity.
We began this article by praising the virtues of simple

models so it is appropriate to ask what other physical
problems might be tackled within the context of the basic
AO model. In particular, are there situations where
depletion attraction is expected to play an important
role and where our DFT might prove effective? Recall
once more that entropic depletion effects are generated
internally—unlike the case of DFT for simple fluids
where van der Waals attraction is treated explicitly,
usually in a perturbative or mean-field fashion [31]—in
our geometry-based approach the attraction between
colloids, or between a colloid and a hard wall, arises
solely from the geometrical structure of the functional.
The solvation of a single (big) hard sphere in a binary AO
mixture is of particular interest. Since the planar hard
wall can be wet completely by the colloid-rich liquid
phase it follows that a liquid film will develop around a
big hard sphere immersed in a colloid-poor gas that is
very close to bulk coexistence. This circumstance leads
to pronounced effects in the solvation free energy or
excess chemical potential, measured as a function of the
radius of the big sphere, Rb, and of the packing fraction
of colloid, say. Indeed the situation mimics that of a
simple liquid (solvent) adsorbed at a big solvophobic
particle (hard sphere), except there drying always
occurs, so that a film of gas develops on the sphere
when the solvent is close to coexistence [100]. A new
feature arising in the AO case is the presence of the
layering and the wetting transitions. For sufficiently
large Rb, these transitions are still present at the sphere,
albeit rounded by finite-size effects, and lead to very
striking features in the adsorption, density profiles at

contact with the sphere and in the solvation free energy of
the sphere [101]. A single hard sphere in the AO mixture
serves as an excellent model for investigating subtle
effects of curvature on interfacial properties, especially
when complete wetting occurs.

One can easily construct the DFT for a ternary
mixture consisting of (big) hard spheres, colloidal hard
spheres plus mutually non-interacting polymer spheres,
i.e. a solution of big hard spheres in the AO solvent.
For such a mixture one can determine the solvent-
mediated potential between two big spheres or between
a big sphere and a wall using a general DFT particle
insertion approach [102]. Since the solvent exhibits
fluid–fluid phase separation one can investigate the
effects of layering, wetting and solvent criticality on the
solvent-mediated potentials [101]. In order to implement
the DFT particle insertion procedure one requires a
density functional that can describe reliably a mixture of
the solvent and the big particles in the limit of vanishing
density of the big particles [102]. Such functionals are
hard to come by (perturbative approaches are generally
not appropriate) but the geometry-based DFT for this
particular ternary mixture fits the billy.

Finally we should mention briefly some of the topics
that we have not covered in this article. There is a
rapidly expanding body of work on glass transitions in
colloid–polymer mixtures. Strong evidence is emerging
for two types of glass; one is repulsion dominated (as in
pure hard spheres) and the other is attraction dominated
(as occurs when the addition of polymers gives rise
to very deep depletion potentials). For an ‘Edinburgh
model mixture’, i.e. PMMA and PS with q ¼ 0:08,
adding a little polymer (PS) to the hard-sphere colloidal
glass, at fixed �c � 0:6, disrupts the caging structure
and brings about crystallization. Adding more polymer
results in non-crystallization, there appears to be a re-
entrant glass transition [13]. Simulations and mode
coupling theory, based on an effective one-component
depletion potential, have been used to investigate this
behaviour [104, 105]. We have not considered in any
detail the situation where q � 1, i.e. the so-called
‘protein limit’, where small particles such as proteins
or micelles replace the colloids. There is much interest-
ing physics in this limit but it is quite different from
the depletion-driven phenomena we have described
in this article. Interested readers should consult the
recent articles [14, 106, 107] to obtain some overview of
this regime. During the course of completing our paper

ySolvent-mediated potentials in the presence of wetting
have also been investigated for big Gaussian core particles
immersed in a binary mixture of smaller Gaussian particles
using the mixture generalization of the mean-field functional
(40). See [103].
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we were alerted to the work of Forsman et al. [108]
who extended a DFT developed for polymer solutions
to the situation where solvent and monomer particles
have different diameters. These authors consider capil-
lary-induced phase transitions when the confining
planar surfaces are hard.
The Urbana group [109] have investigated phase

diagrams and osmotic compressibilities for silica parti-
cles and polystyrene in decalin comparing their results
with the PRISM integral equation theory developed by
Fuchs and Schweizer [14] and with the free-volume
theory of [4]. These authors argue that PRISM accounts
for all experimental trends whereas the free-volume
approach appears to miss certain aspects of the experi-
mental behaviour, even for theta solvent conditions.
Chen et al. [110] also present a critique of the AO model
for treating real colloid–polymer mixtures. We were
also made aware of the work of Paricaud et al. [111]
who consider bulk fluid–fluid phase separation in a
model in which the polymer–polymer and polymer–
colloid excluded volume interactions are treated at the
same level of the monomeric segments making up the
polymer chain, using the Wertheim thermodynamic
perturbation theory. Once again we direct interested
readers to these papers.

Much of the work described in this article would
not have come to fruition without the substantial input
of our co-workers, A. R. Denton, A. Esztermann,
A. Fortini, M. Fuchs, I. O. Götze, G. Kahl, J. Köfinger,
R. Roth, E. Schöll-Paschinger and P. P. F. Wessels.
H. Löwen was instrumental in bringing the Bristol and
Düsseldorf groups together and provided much stimulus
for the research. We are grateful to our experimental
colleagues in Utrecht, D. G. A. L. Aarts, E. H. A.
de Hoog and, especially, H. N. W. Lekkerkerker, who
shared with us their love and knowledge of real colloid–
polymer mixtures (and free-volume theory!y). We thank
R. Roth for many inspiring discussions about depletion
forces, barmaids and nurses and for valuable comments
on the manuscript. P. G. Bolhuis, J.-P. Hansen and A. A.
Louis kept us busy with a steady supply of pre-prints; we
admire their industry and regret that we cannot do more
justice to their work in the present article. R. van Roij
provided much illuminating insight into matters of
integrating out and constructing effective Hamiltonians.
We would not have embarked upon the research
described here were it not for Marjolein Dijkstra.
She introduced us to the subject, explained why it was
interesting, carried out the key simulation studies
and motivated many of the DFT studies. Marjolein

also provided healthy criticism of most of the results.
She must share some of the responsibility for the length
of this article! The early stages of this research were
supported by the British–German ARC Programme
(Project 104b) and by EPSRC. RE is grateful to
S. Dietrich and his colleagues for their kind hospitality
and to the Alexander von Humboldt Foundation for
their support under GRO/1072637 during his stay at the
MPI in Stuttgart. He also wishes to thank the editors
of Molecular Physics for their patience in waiting for the
article to be delivered.
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Direct Visual Observation of
Thermal Capillary Waves

Dirk G. A. L. Aarts,1* Matthias Schmidt,2†
Henk N. W. Lekkerkerker1

We studied the free fluid-fluid interface in a phase-separated colloid-polymer
dispersion with laser scanning confocal microscopy and directly observed ther-
mally induced capillarywaves at the interface in real space. Experimental results
for static and dynamic correlation functions validate the capillary wave model
down to almost the particle level. The ultralow interfacial tension, the capillary
length, and the capillary time are found to be in agreement with independent
measurements. Furthermore, we show that capillary waves induce the spon-
taneous breakup of thin liquid films and thus are of key importance in the
process of droplet coalescence.

At rest, the free interface between any two
fluids, like that between a liquid and its
vapor, appears to be smooth. Yet thermal
motion inevitably gives rise to statistical
fluctuations of the local interface position,
leading to a rough interface. This phenom-
enon was first predicted by von Smolu-
chowski in 1908 (1); 5 years later, Mandel-
stam quantitatively described the interface
roughness in terms of thermally excited
capillary waves (2). These capillary waves
have been studied with light (3) and x-ray
scattering (4–8). They play an important
role in modern theories of interfaces (9–11)
and have been argued to be essential in the
rupture of thin liquid films (12, 13), as
occurs in droplet coalescence. We show
how to tune length and time scales with the
use of colloidal suspensions, such that the
fluctuating fluid-fluid interfaces can be
seen directly in real space with a resolution
comparable to the particle size. Moreover,
the droplet coalescence event can be ob-
served down to the scale of capillary fluc-
tuations in quasi slow motion.

In the capillary wave spectrum, each Fou-
rier component hk of the interface displace-
ment contributes according to the equiparti-
tion theorem

��hk�2 � �
kBT

�L2

1

k2 � ��2 (1)

leading to an interface roughness proportion-
al to �kBT/�. Here, � is the interfacial ten-
sion between the two fluids, kB is the Boltz-
mann constant, T is absolute temperature, L is
the lateral system size, k is the absolute value
of the wave vector k, the angle brackets
denote a thermal average, and � is the lateral
correlation length (capillary length), defined as

� � ��/(g	
) (2)

where g is Earth’s acceleration and 	
 is the
mass density difference between the two
phases. In molecular fluids, � is on the order
of 10 to 100 mN/m and 	
 is about 102 to 103

kg/m3. Therefore, the interface roughness is
�0.3 nm, whereas the correlation length is
�3 mm, resulting in extreme roughness–cor-
relation length ratios of 10–7; such ratios are
only accessible through scattering tech-
niques. Here we exploit the scaling up of
lengths when going from molecules to meso-
scopic colloidal particles (diameter �100
nm) to directly observe capillary waves in
real space.

Adding polymer to a colloidal suspen-
sion may induce a fluid-fluid demixing
transition that is widely accepted to be the
mesoscopic analog of the liquid-gas phase
transition in atomic substances (14 ). The
coexisting phases are a colloidal liquid
(rich in colloid and poor in polymer) and a
colloidal gas (poor in colloid and rich in
polymer). The origin of the phase separa-
tion lies in the entropy-driven attraction
between the colloids, which is mediated by
the polymers (15, 16). It is known from
experiment (17–19) and theory (20–22) that
in such systems the interfacial tension
scales as � � kBT/d 2, where d is the par-
ticle size, leading to ultralow values for �
(�1 �N/m and below). This in turn implies
that using colloidal suspensions scales up
the interface roughness and simultaneously

scales down the correlation length. With
the current system (see below), we success-
fully bring both into the �m regime. In
addition, the interplay between ultralow in-
terfacial tension and relatively large viscos-
ity, , sets the capillary velocity �/ [see,
e.g., (23)] in the range of �m/s, as opposed
to typical velocities on the order of 10 m/s
in molecular fluids. The associated charac-
teristic time for the decay of interfacial
fluctuations, which we refer to as the cap-
illary time

� � �/� (3)

becomes on the order of seconds in the case
of colloids. The capillary velocity also sets
the time in droplet coalescence (24). Thus,
through the appropriate choice of the col-
loid diameter, we can trace both the statics
and dynamics of the capillary waves at a
free interface and fully explore the coales-
cence events with optical microscopy.

We used fluorescently labeled poly(meth-
ylmethacrylate) (PMMA) colloidal spheres
(25) with radius Rc � 71 nm (obtained from
static light scattering) and size polydispersity
of less than 10%. The polymer was commer-
cially available polystyrene (Fluka) with mo-
lecular weight Mw � 2 � 106 g mol–1 (Mw/
Mn � 1.2, where Mn is number-average mo-
lecular weight) and radius of gyration Rg �
44 nm [estimated from data in the literature
(26)]. Thus, the size ratio, Rg/Rc � 0.6, was
sufficiently large to obtain stable fluid-fluid
demixing (27). Both species were dispersed
in cis/trans-decalin, and because all densities
were known, mass fractions could be directly
converted to packing fractions of colloids,
�c � 4/3�Rc

3nc, and polymers, �p �
4/3�Rg

3np, where nc and np are the number
densities of colloids and polymers, respec-
tively. Samples were prepared by mixing
colloid and polymer stock dispersions and
diluting with decalin to control the overall
packing fractions �c and �p. Large glass
cuvettes (volume �1 cm3) with very thin
cover glass walls (0.17 mm) were used. A
confocal scanning laser head (Nikon C1)
was mounted on a horizontally placed light
microscope (Nikon Eclipse E400). Each
measurement was done after 1 day of equil-
ibration. We checked that the system was
well equilibrated by following the recovery
of intensity after bleaching a space region
in the gas and/or liquid phase. The recovery
appeared to be governed solely through
diffusion of particles without any indica-
tions of drift (e.g., through convection).
Data sets were acquired at many different
state points following several dilution lines.
The underlying phase diagram is shown
in Fig. 1.
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Pictures such as those in Fig. 2 represent
an intensity distribution of fluorescent
light, I(x, z, t) at a certain time t, with x the
horizontal (along the interface) and z the
vertical (opposite to gravity) components
of the space vector. The microscope
records the fluorescence of excited dye
within the colloids, hence the colloid-rich
(liquid) phase appears bright and the col-
loid-poor (gas) phase appears dark. I(x, z, t)
is a direct measure of the local and instan-
taneous distribution of colloidal particles
and provides the starting point for a statis-
tical analysis. Because of the finite resolu-
tion (28), we can access length scales of
�2Rc; we neglect effects induced by the
finite time needed to scan each frame, and
we take I as an instantaneous snapshot
(justified by comparing the colloid self-
diffusion time with the scanning time).
Thus, the real-space pictures in Fig. 2 show
the structure of a gas-liquid interface prac-
tically at the particle scale. We rely on the
concept of a local interface between both
phases. In the spirit of a Gibbs dividing
surface, we define an interface position h(x,
t) such that in one column of vertical length
Lz the total intensity can be written as

�
0

Lz

dzI(x, z, t) � Iliq(x)h(x, t) �

Igas(x)[Lz � h(x, t)] (4)

where Igas(x) and Iliq(x) are the average bulk
intensities in the gas and liquid phase, respec-
tively, and are taken to be functions of x to
account for the microscope objective proper-
ties. In practice, integrals in the notation are
sums over pixels, and we have checked that
the results of the subsequent analysis do not
depend sensitively on the precise definitions
of Igas and Iliq. The resulting “height” func-
tion h(x) (yellow line in Fig. 2) describes the
interface position quite accurately. From top
to bottom in Fig. 2 we approach the critical
point, and both the capillary waves and den-
sity fluctuations increase while the density
(intensity) difference between the two phases
decreases.

For each frame the average interface po-
sition is h̄(t) � �h(x�, t)�, in which the angle
brackets denote averages over primed quan-
tities. The time-dependent height-height cor-
relation function is constructed as

gh(x, t) � �[h(x�, t�) � h̄�t�)][h(x�� x, t�

� t) � h̄(t�� t)]� (5)

The corresponding static correlation function,
gh(x) � gh(x, t � 0), is obtained (5) by
Fourier-transforming Eq. 1 as

g
h
(x) �

kBT

2��
K0(x/�) (6)

where K0 is the modified Bessel function of
the second kind as a function of x/�. Equation
6 holds for distances x larger than a small-
distance cutoff on the order of the particle
size. Capillary wave theory in the overdamped
regime (29, 30) predicts modes with wave vec-
tor k to decay according to exp[–t(�k � g	
/
k)/]. Introducing k̄ � �k, the dynamical cor-

relation function at fixed position, gh(t) �
gh(x � 0, t), can be expressed as

g
h
(t) �

kBT

2���
0

�

d k̄ k̄
exp[�( k̄ � k̄�1)t/�]

1 � k̄2

(7)

where � is as given in Eq. 3 with  � liq �
gas, the sum of the viscosities of the (colloi-
dal) liquid and gas phase (29, 30).

Fig. 1. Phase diagram in (�p, �c)
representation. Indicated are state
points where gas-liquid phase sepa-
ration occurs (open and solid circles)
and state points in the one-phase
region (crosses). The line is an esti-
mate of the binodal and is drawn to
guide the eye. State points I to V
(solid circles) are indicated.

Fig. 2. Capillary waves at the free liquid-gas interface in a phase-separated colloid-polymer mixture
imaged with laser scanning confocal microscopy (LSCM) at four different state points approaching
the critical point (from top to bottom: state points I, III, IV, and V; see Fig. 1). The focal (viewing)
plane is perpendicular to the interface, and only a very thin slice (thickness �0.6 �m) is imaged
(see inset). Gravity points downward; each image is 17.5 �m by 85 �m. Thermally excited capillary
waves corrugate the interface and their amplitude increases upon approaching the critical point.
The yellow lines indicate the surface location h(x) obtained with our method. See also movies S1
and S2 of the rough interfaces of state points III and IV.
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Equations 6 and 7 describe the experi-
mental data points very well, as can be
clearly seen in Fig. 3, A and B, for various
state points with only two physical param-
eters (�, � in the static case and �, � in the

dynamic case). Results for the interfacial
tension, capillary length, and capillary time
are displayed in Fig. 3, C to E, respectively.
The relation of these quantities through Eq.
3 allows for an independent check of the

consistency of our measurements. For ex-
ample, for state point I, � � 100 nN/m, � � 15
�m, and liq � gas � (30 � 12.6) mPa�s,
leading via Eq. 3 to a capillary time of 6 s. From
the dynamical correlation function we find

A

C

.

B

D

E

h
h

Fig. 3. Correlation functions characterizing the free (colloid) liquid-gas
interface as obtained from quantitative analysis of LSCM pictures. (A)
Static height-height correlation function gh(x) as a function of the
(lateral) distance x for state points I, II, III, and IV (from bottom to top)
approaching the critical point. Experimental results (symbols) are com-
pared with predictions from the capillary wave model (lines). (B) Dy-
namical height-height correlation function at fixed position, gh(t), as a

function of time t again for state points I to IV (from bottom to top). (C)
Interfacial tension � as a function of the overall colloid packing fraction
�c obtained from gh(x) (crosses, slow frame rate; pluses, fast frame rate)
and gh(t) (circles). (D) Capillary length � as a function of �c obtained
from gh(x). (E) Capillary time � as a function of �c obtained from gh(t).
Results displayed in (C) to (E) stem from state points on the same
dilution line as state points I to V.

Fig. 4. Coalescence of colloidal liquid droplets with the
bulk liquid phase. Occasionally, droplets that have con-
densed in the upper gas phase (during the final stages of
phase separation) sediment toward the interface. The
viewing setup is as shown in the inset of Fig. 2; scale bar,
5 �m. Top row, coalescence of a droplet of diameter
�16.5 �m for state point I (far away from the critical
point); bottom row, coalescence of a droplet of diameter
�21.8 �m for state point IV (close to the critical point).
The droplet surface is fluctuating and can be analyzed in
a similar fashion as the planar interface. The three
consecutive steps of the coalescence event can be fol-
lowed in time (as indicated, where t � 0 corresponds to
the instant of film breakup). Clearly, the capillary waves
at both interfaces induce the breakup of the confined
gas layer. In the series in the bottom row, the arrow
denotes the place of film breakup. In this case, a second
connection is made and the gas phase is being trapped in
the liquid phase. See also movies S3 (corresponding to
the top row) and S4 (corresponding to the bottom row)
of these coalescence events.
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� � 7 s. The quality of the fits and the internal
agreement validate the capillary wave model
down to the particle level.

The role of thermal capillary waves in
droplet coalescence has long been a topic
of speculation (12, 13). The coalescence
event is known to follow three steps: (i)
film drainage of the continuous phase be-
tween the droplet and the free interface, (ii)
breakup of the film, and (iii) extrusion of
the droplet material into its bulk phase.
Figure 4 displays these steps on the time
and length scale of capillary fluctuations.
We show two cases: that of a droplet far
away from the critical point (top row of
Fig. 4) and that of a droplet close to the
critical point (bottom row of Fig. 4). In
each row, the first and second panels show
the drainage step, the third panel the film
breakup, and the fourth panel the growth of
the neck of the liquid bridge. The well-
known Reynolds equation (31) describes
the rate of thinning of the film (step 1) and
the film drainage becomes very slow at
small film thicknesses. The actual breakup
of the film (step 2) is elusive in molecular
fluids; here it is evident that capillary
waves induce the spontaneous breakup,
which occurs when two opposite bulges at
the two interfaces meet. The probability for
such an event depends on the interface
roughness and on the interface correlation
length and time. Typically, the connection
is made at film thicknesses of �1 �m. A
rough estimate shows that a fluctuation of
0.5 �m occurs in a couple of seconds.
Hence, the breakup itself is a stochastic
process dominated by capillary waves, but
before and after the breakup, hydrodynam-
ics apply. We observe that the neck of the
liquid bridge (step 3) initially grows linear-
ly with time. This initial regime is driven
by the interfacial tension (24) and is ex-
tremely short in the case of molecular flu-
ids because of the large capillary velocity,
but in the present case the typical velocity
is many orders of magnitude smaller. We
thus see that the extremely low interfacial
tension not only reveals the role of capil-
lary waves in coalescence events, but also
permits us to probe hydrodynamic regimes
that were previously difficult to access in
the laboratory.
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RNA-Mediated Metal-Metal Bond
Formation in the Synthesis of

Hexagonal Palladium Nanoparticles
Lina A. Gugliotti, Daniel L. Feldheim,* Bruce E. Eaton*

RNA sequences have been discovered that mediate the growth of hexagonal
palladium nanoparticles. In vitro selection techniques were used to evolve
an initial library of �1014 unique RNA sequences through eight cycles of
selection to yield several active sequence families. Of the five families, all
representative members could form crystalline hexagonal palladium plate-
lets. The palladium particle growth occurred in aqueous solution at ambient
temperature, without any endogenous reducing agent, and at low concen-
trations of metal precursor (100 micromolar). Relative to metal precursor,
the RNA concentration was significantly lower (1 micromolar), yet mi-
crometer-size crystalline hexagonal palladium particles were formed rapidly
(7.5 to 1 minutes).

Biomineralization achieves exquisite control
over crystal type and hierarchical materials
self-assembly with protein biopolymer tem-
plates. RNA molecules are also highly struc-
tured biopolymers. Given the landmark dis-
covery of in vitro selection (1, 2) and the use
of these techniques to discover RNA catalysts
that mediate a variety of organic reactions
(3–10), we sought to determine whether RNA
could serve as a template for inorganic–
particle growth. Here we report examples of
individual RNA sequences that mediate
metal-metal bond formation to create novel
inorganic materials.

Conventional methods for controlling
metal-metal bond formation and crystal

growth primarily use synthetic polymers. Ar-
chetypical examples are the formation of
cubic silver and palladium particles using
poly(acrylate) (11) or poly(vinylpyrollidone)
templates (12). Smaller multidentate ligands
such as trisodium citrate can be used to con-
trol crystal shape as well—for example, in the
photoinduced conversion of silver nano-
spheres to triangular prisms (13).

In attempts to mimic natural biominer-
alization, proteins and polypeptides have
been studied extensively as templates for
materials synthesis (14–17 ). Belcher et al.
have used phage display techniques to mine
for peptides that can bind selectively to
various semiconductor crystal faces (18).
Knowledge of peptide-surface binding af-
finity was then used to engineer a virus that
could bind and organize semiconductor
nanocrystals into well-ordered thin-film as-
semblies (19). Much less research has fo-
cused on the interactions between materials
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Laser-induced condensation in colloid–polymer mixtures
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We study a mixture of hard sphere colloidal particles and non-adsorbing polymers exposed to
a plane wave external potential which represents a three-dimensional standing laser field. With
computer simulations and density functional theory we investigate the structure and phase
behaviour using the simple Asakura–Oosawa model. For varying laser wavelength � we
monitor the emergence of structure in response to the external field, as measured by the
amplitude of the oscillations in the one-body density distribution. Between the ideal gas
limit for small � and the bulk limit of large � there is a non-monotonic crossover that is
governed by commensurability of � and the colloid diameter. The theoretical curves are in
good agreement with simulation results. Furthermore, the effect of the periodic field on the
liquid–vapour transition is studied, a situation that we refer to as laser-induced condensation.
Above a threshold value for � the theoretical phase diagram indicates the stability of a
‘stacked’ fluid phase, which is a periodic succession (in the beam direction) of liquid and
vapour slabs. This partially condensed phase causes a splitting of the liquid–vapour binodal
leading to two critical and a triple point. All our predictions should be experimentally obser-
vable for colloid–polymer mixtures in an optical resonator.

1. Introduction

When a non-adsorbing polymer is added to a steri-

cally-stabilized colloidal dispersion of spherical parti-

cles, an effective attraction between the colloids is

generated via the depletion mechanism. This mechanism

can be understood qualitatively as follows. Each col-

loidal particle is surrounded by a polymer depletion

zone due to the repulsion between the colloidal surface

and the polymer. Close to colloidal contact, two deple-

tion zones overlap, such that the polymers have more

accessible volume, i.e. their entropy increases. As a

consequence, two colloidal particles effectively attract.

The depletion attraction was first studied and explained

in a simple model of non-interacting polymers by Asa-

kura and Oosawa (AO) in 1958 [1], and later indepen-

dently by Vrij [2]. In their model, the colloid–polymer

interaction is hard-sphere like with a range Rc þ Rp
larger than the colloidal radius Rc, where Rp is the
radius of gyration of the polymer coils [3]. By inte-

grating out the polymeric degrees of freedom [4–6], an

analytical form of the attraction is obtained. One lesson

to be learned from this expression is that both the range

and the depth of the attraction can be tuned by changing

the molecular weight and the concentration of the poly-

mers [7, 8].

The effective attraction causes fluid–fluid demixing of

the colloids into a colloid-rich (liquid) and colloid-poor

(vapour) phase above a critical polymer concentration.

A full quantitative understanding of the demixing tran-

sition is meanwhile available and experimental data for

fluid–fluid phase coexistence are well understood by

theory and simulation. What is less clear in the bulk

are kinetics from metastable states as well as the gel

and glass transition (for a recent review see [9]).

If colloidal dispersions are exposed to an external

field, a wealth of new phenomena occur both in equi-

librium and non-equilibrium (for a recent review see

[10]). One simple possibility for an external field is a

hard planar system wall where the AO model of col-

loid–polymer mixtures was investigated recently.

Building on Rosenfeld’s ideas [11] a density-functional

theory (DFT) for the AO model [12, 13] was proposed

and near fluid–fluid coexistence, a novel scenario of

entropic wetting and a finite sequence of layering transi-

tions was found [14, 15]. This scenario was recently con-
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firmed by computer simulations [16], and there exists
also experimental indications [17, 18].
In this paper we study a different kind of external field

which can be easily realized in experiments, namely a
laser-optical field. This establishes a periodic external
potential acting on the colloids of the form

UextðzÞ ¼ U0 cos ð2pz=�Þ; ð1Þ

where U0 is the amplitude, � is the wavelength and z is
the spatial coordinate in the beam direction. Research is
very active for the freezing transition in similar periodi-
cally modulated external potentials (so-called laser-
induced freezing). Most of the studies have been done
in two dimensions and with mutually repelling colloidal
particles. Simultaneously, experiments [19–22], com-
puter simulations [23–25] and theories such as density
functional approaches of freezing [26–28] and phenom-
enological elastic theory [29, 30] have been developed
recently. The most striking results are re-entrant melting
transitions for increasing U0 and novel hexatic-type
intermediate phases.
However, to the best of our knowledge, a system with

attractive interactions—such as the effective attraction
generated in a colloid–polymer mixture—has not yet
been studied in an external periodic field. This is the
aim of the present paper, where we consider a fluid
colloid–polymer mixture in an oscillatory potential.
We investigate the density profiles caused by the
external field, both far away and close to the bulk
fluid–fluid phase separation and study them, in particu-
lar, as a function of the wavelength � of the external
field (equation (1)) for fixed average densities of both
species. Since � and the particle radii, Rc and Rp, are
competing length scales of the problem, interesting be-
haviour can be expected as one of these variables is
changed. For fixed size ratio Rp=Rc we find that there
are marked oscillations of the density peak heights as a
function of � provided � is smaller than about twice the
colloid diameter �c. These oscillations reflect possible
commensurability of � and �c. For � larger than
about 2�c, on the other hand, the colloidal density
peak height increases monotonically with increasing �.
This is in contrast to a polymer-free colloidal system
(hard spheres) where the density peak height decreases
with increasing �. As explained in detail below these
results stem from computer simulations and a recent
DFT. In general, we find good agreement between
both approaches, hence we trust the theory to correctly
describe the system.
Furthermore, we study the bulk liquid–vapour transi-

tion in the presence of the external potential (1). It is
expected that the presence of the external field will
change the phase diagram qualitatively, an effect that
we anticipate as laser-induced condensation, in analogy

with laser-induced freezing in the case of the liquid–solid
transition in a periodic field. The theoretical results
for the phase diagram show a splitting of the
colloid liquid–vapour binodal. In the colloid chemical
potential versus polymer reservoir density representa-
tion, an unusual (for fluid states) shaped coexistence
curve results, resembling an inverted letter y. It features
two critical points, one between colloid vapour and a
novel phase, the stacked fluid; the other is between
stacked fluid and colloid liquid. Naturally, we find a
triple point where colloid vapour, colloid liquid and
the stacked fluid coexist. It is argued that upon
decreasing � the two critical points merge into a bicri-
tical point. Below the corresponding finite value of � the
stacked phase ceases to exist and a single liquid–vapour
binodal is recovered.
The paper is organized as follows: in } 2 we describe

the AO model in an external laser field. The simulation
method and the density functional technique are
described in } 3 and } 4, respectively. Results for the
density profiles and the phase behaviour are presented
and discussed in } 5. We conclude in } 6.

2. The model

The AO model is a simple idealized model for colloid–
polymer mixtures, where the colloids are treated as hard
spheres with a diameter �c ¼ 2Rc, and the polymers as
interpenetrating, non-interacting particles. The poly-
mers are excluded by a centre-of-mass distance of
ð�c þ �pÞ=2 from the colloids, where �p ¼ 2Rp with Rp
the radius of gyration of the polymer. The number of
colloids is denoted byNc, the number of polymers byNp
and the total volume of the sample by V.
In detail, the pair interaction potentials UijðrÞ between

species i; j ¼ c; p as a function of the centre-to-centre
distance r are given by

UccðrÞ ¼
1; for r < �c;

0; otherwise,

(
ð2Þ

UcpðrÞ ¼
1; for r < Rc þ Rp;

0 otherwise,

(
ð3Þ

UppðrÞ ¼ 0: ð4Þ

Furthermore we consider the external potential UextðzÞ
given in equation (1) acting only on the colloids. No
external potential is applied directly to the polymers.
Thermodynamic parameters are the packing fractions

�i ¼ pNi�
3
i =ð6VÞ ¼ p�3i �i=6 of species i ¼ c; p, and we

also use the packing fraction �rp in an ideal reservoir of
polymers that is in chemical equilibrium with the
system. The size ratios q ¼ �p=�c and �=�c and the
strength (relative to the thermal energy) of the external
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potential 	U0 are control parameters, where
	 ¼ 1=ðkBTÞ, kB is the Boltzmann constant and T is
absolute temperature.
By integrating out the polymer degrees of freedom the

binary AO model can be mapped onto a one-component
model with effective interactions [4]. Truncating at the
two-body level one arrives at the familiar AO potential.
If the distance r of two colloids is smaller than �c þ �p,
the polymers are excluded from a region between them,
so that the osmotic pressure of the polymers on the
opposite sides of the colloids is not compensated, and
an effective depletion attraction between colloids is
induced. The effective potential UAOðrÞ between colloids
is proportional to the overlap-volume of the excluded
volumes [1]:

UAOðrÞ ¼
1; for r4 �c;
�PpVoverlapðrÞ; for �c < r4 �c þ �p;
0; otherwise,

8<
:

ð5Þ
where Pp ¼ �rpkBT is the osmotic pressure of the poly-
mers, where �rp is the number density in the polymer
reservoir. The pairwise overlap-volume Voverlap for
�c < r4�c þ �p is given by

VoverlapðrÞ

¼ 1� 3r
2�cð1þ qÞ

þ 1
2

r
�cð1þ qÞ

� �3 !
p
6
�3cð1þ qÞ3: ð6Þ

The effective potential (5) with (6) can be used to treat
the mixture as a one-component system with pairwise
interactions. This mapping is exact for
q < ð2=31=2 � 1Þ ¼ 0:1547 . . ., where for geometrical
reasons only pairwise overlaps occur. When q is
above this threshold, there occur higher-body terms,
and using only the pairwise contribution is an
approximation.

3. Computer simulation method

In order to treat the full model we perform direct
Monte Carlo (MC) simulations of the binary mixture,
i.e. besides the colloids, we also simulate the polymers
explicitly. This is potentially difficult due to the typically
large number of polymers, but still possible as the poly-
mers are non-interacting. Using Nc colloids and Np
polymers, the simulation time scales with N2c and
NcNp (not with N

2
p due to polymer ideality). Of

course, an advantage of the hard interactions is that it
is not necessary to calculate the energy; one only needs
to check for overlap of particles. If the moved particles
overlap with one other, the configuration is rejected, so
the search for further overlaps can be aborted. As the
colloid–colloid interaction and the colloid–polymer

interaction have different ranges, we employ two

Verlet neighbour lists with different Verlet radii in

order to optimize the number of particles in each list.

We use straightforward canonical simulations, hence fix

the numbers of colloids and polymers explicitly. This is

easier than (semi-)grandcanonical methods, because

inserting additional colloids is prohibited by the poly-

mers, filling the space between the colloids. As we fix �p
in the system, �rp is not known a priori . This is deter-

mined during the simulation by the acceptance prob-

ability of inserting (homogeneously distributed) test

polymers.

We also perform MC simulations of the effective one-

component system of colloids employing only two-body

interactions (equations (5) and (6)). These are much

faster than the direct simulations of the binary system.

As we are interested in q > 0:1547, where many-body
terms arise in the effective potential, we can quantita-

tively assess the effect of the higher-order terms by

comparing with the direct simulation. The strength

of the attraction in the AO pair potential (equation (5))

is ruled by �rp. In order to compare with the results
from the direct simulation we need to prescribe this

value. We do this using the accurate free-volume

expression [31].

In more detail, for a given state point we chose corre-

sponding particle numbers of colloids and polymers,

Nc ¼ 300 and Np ¼ 0, 1500, 3000, respectively, as well
as the system volume V ¼ 1500�3c . We match the box
length Lz to be an integer multiple of the wavelength
�, and set the box volume to V ¼ Lx � Ly � Lz, where
L� are the box lengths in space direction �, and Lx ¼ Ly.
Periodic boundary conditions are used in all three space

directions. In the range �c4 �4 7:5�c we use Lz ¼ 4�.
For 0:25�c4�4 1:25�c we set Lz ¼ 12�, in order to
avoid finite size effects in the z direction for these smaller
� values.
In the direct simulation we use 5� 106 MC cycles to

equilibrate the system, and typically 2:5N5� 107 cycles
to gather statistics, where one MC cycle consists of one

trial move per particle. In the simulation of the effective

one-component system the maximum displacement per

move can be chosen larger than in the direct simulation,

so that less MC cycles are necessary. Here we use 106

MC cycles to equilibrate the system, and 107 cycles to

gather statistics.

4. Density functional theory

In order to study the AO model in an external poten-

tial in the framework of DFT one considers the grand

potential O as a functional of the one-particle density
fields �cðrÞ; �pðrÞ. This is given as
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	O½�cðrÞ; �pðrÞ	 ¼
X
i¼c;p

ð
d3r�iðrÞ½ln ð�iðrÞL3i Þ � 1� 	�i	

þ 	Fexc½�cðrÞ; �pðrÞ	

þ
ð
d3r�cðrÞ	UextðrÞ; ð7Þ

where Li is the (irrelevant) thermal wavelength and �i is
the chemical potential of species i. The excess (over ideal
gas) Helmholtz free energy Fexc arises from interactions
between particles and is in general (and in the present
case of the AO model) unknown. The crucial benefit of
DFT is that Fexc is expressed as a functional only of the
density profile(s), and that it does not explicitly depend
on the external potential(s). This allows one to study
different external potentials using the same prescription
for the excess free energy functional.
Relying on an approximation, we use in the following

the fundamental measure DFT for the binary AO model
developed in [12, 13]. Here we do not report the details
of the approximation; the interested reader is referred
directly to [12, 13]. The theory was shown to give the
same bulk fluid free energy and hence the same fluid
demixing curve as free-volume theory [31], which was
recently shown by computer simulations to be remark-
ably accurate for the AO model [32]. Concerning inho-
mogeneous situations, both fluid–fluid interfaces and
wall adsorption have been considered [14, 15].{

5. Results

5.1. Structure
Fluid–fluid demixing is stable with respect to fluid–

solid for size ratios of (about) q5 0:35 [33]. As we are
interested primarily in fluid states we stay above this
threshold and consider in the following q ¼ 0:6. As a
typical value for the strength of the external field we

chose 	U0 ¼ 1=2, hence the difference between minima
and maxima of the potential energy is kBT.
The prominent effect of the plane wave external

potential UextðzÞ (equation (1)) on the structure is to
generate wave-like (non-decaying) one-body distribu-

tions �iðzÞ of both species. To exemplify this (rather
straightforward) effect, we show in figure 1 a snapshot

and in figure 2 typical results from our computer simula-

tions. The simulation box accommodates four wave-

lengths of the external potential UextðzÞ (upper panel
in figure 2). In response to this influence the colloid

profile �cðzÞ exhibits an ‘out-of-phase’ behaviour, i.e.
its maxima coincide with the minima of UextðzÞ and
vice versa (see the clustering of particles in figure 1).

Of course, this effect occurs already without polymers,

i.e. in the pure hard sphere case. The density distribution

of added polymers, however, is again in-phase with

UextðzÞ. This is expected as the external potential does
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{As we only deal with z-dependent fluid density profiles in
the present study we follow [14, 15] and use the non-tensorial
form of the DFT [12].

Figure 1. Snapshot of a colloid particle configuration from computer simulation. The polymers are not shown for clarity. The laser
beam is along the horizontal direction in the paper plane. Four wavelengths � are shown, corresponding to figure 2.

Figure 2. External potential UextðzÞ as a function of z=�c
(upper panel) and corresponding density profiles �iðzÞ
(lower panel) of colloids (solid lines) and polymers
(dashed line) for � ¼ 7:5�c. Average densities are
�c�

3
c ¼ 0:2 and increasing �p�

3
c ¼ 0, 1, 2 (indicated by

arrow); the polymer profile is only shown for �p�
3
c ¼ 2

for clarity.
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not affect directly the polymers, which merely pack in
the free space between the colloids. Increasing the
polymer concentration leads to an increase of the ampli-
tude of the oscillation in �cðzÞ. Clearly, the minimum
and maximum values, defined as

�minc ¼ min
z

�cðzÞ; �maxc ¼ max
z

�cðzÞ; ð8Þ

are characteristic measures and we will monitor these
below, in particular as a function of �=�c.
Before doing so, we reconsider the bulk phase dia-

gram. In figure 3 we plot the liquid–vapour binodal
both as a function of �c; �

r
p (left panel) and as a function

of 	�c; �
r
p (right panel). (In order to fix an arbitrary

additive constant to �c we use the convention Lc ¼ �c
in equation (7).) We also indicate the state points where
we will carry out detailed structural analysis. In the limit
of �=�c ! 1, a local density approximation is
becoming asymptotically exact [34], and hence one can
think of locally varying the (bulk) colloid chemical
potential. The corresponding variations in �c are indi-
cated in figure 3 as horizontal lines. We first examine the
(three) cases that are completely inside the one-phase
fluid region (hence do not cross the liquid–vapour
binodal) and consider the variation with � while all
other parameters (amplitude of the potential, colloid
and polymer density and diameters) are kept fixed.
First we consider a pure hard sphere system (i.e.

�p ¼ 0) with colloid density �c�
3
c ¼ 0:2. In figure 4,

results for �minc and �maxc are plotted as a function of
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Figure 3. Bulk phase diagram of the AO model for size ratio
q ¼ 0:6 as a function of polymer reservoir packing frac-
tion �rp and colloid packing fraction �c (left panel) and
colloid chemical potential 	�c (right panel). The
vapour–liquid binodal (thin line) and critical point (dot)
is shown. Crosses denote the state points where we inves-
tigate density profiles. The horizontal bars centred at
these state points indicate the variation of the chemical
potential along one period of the external field. The
dashed bar corresponds to the stacked fluid phase.

Figure 4. DFT (solid lines) and MC results for the full (filled
circles) and effective model (open circles) for the minimum
(�minc �3c) and maximum (�

max
c �3c) colloid density as a func-

tion of the wavelength � of the external potential for
�c�

3
c ¼ 0:2 and different values of �p. The dotted lines

represent the result for an ideal gas. (a) �p�
3
c ¼ 0 (i.e.

pure hard spheres); (b) �p�
3
c ¼ 1; (c) �p�3c ¼ 2.
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the (scaled) wavelength �=�c. The DFT results match
perfectly those from simulations demonstrating the
excellent accuracy of the theory, which equals, in the
absence of polymers, Rosenfeld’s hard sphere func-
tional.
For � � �c the amplitude of the density oscillation

reaches a maximum. This is the case when two colloids
at contact can be placed in neighbouring minima of
the external potential. This leads to very efficient
packing of the particles in the valleys of UextðzÞ. For
� < �c oscillations appear that become smaller in
amplitude and in wavelength as � ! 0. We attribute
this behaviour to the competition of the length scales
�c and �. In the limit of very small wavelength, i.e.
�=�c ! 0, an exactly solvable case is recovered. Since
there are no hard sphere interactions when a particle
moves over a length �, mainly single-particle motion
in an external field occurs. The corresponding density
profile in this limit is

�cðzÞ ¼ L�3
c exp ð�	½UextðzÞ � �c	Þ: ð9Þ

Hence �minc ¼ L�3
c exp ð�	U0 � �cÞ and �maxc ¼

L�3
c exp ð	U0 � �cÞ. This limit is shown in figure 4 as a
dotted line.
For long wavelengths, on the other hand, the maxi-

mum density is lower than in the ideal gas case due to
the repulsion of the hard spheres. It is decreasing, in
general, with increasing �. This can be understood intui-
tively as follows. A hard sphere system reacts with
marked density oscillations to the presence of an
external potential. The amplitude of the density
response depends on the range of the external potential;
if it is of the order of �c the density oscillations are most
pronounced while for smooth and longer ranged
external potentials the oscillations are weaker. For
large �=�c the above mentioned local density approxi-
mation holds, and �minc , �maxc correspond to the end
points of the paths indicated in figure 3.
In figure 4 (b), the minimum and maximum colloid

densities are plotted as a function of the wavelength
for �p�

3
c ¼ 1. Adding polymers, the effective attraction

causes a higher maximum density in the potential val-
leys. As the total density is constant, the minimum den-
sity decreases. We show results from the direct
simulation of the binary mixture and from the simula-
tion of the one-component model. From the binary
simulation we determine �rp ¼ 0:184 65, which we use
in equation (5). This value for �rp is slightly smaller
than the free-volume bulk result �rp ¼ 0:187 376. We
have also checked that �rp does not change significantly
as �=�c varies. From �=�c ¼ 1–7.5 only a small decrease
�rp ¼ 0:185–0:1845 is found, and we are confident that
keeping �rp fixed is a good approximation. As is apparent
in figure 4 (b), the differences between the binary and

the effective models are very small, and we conclude

that the higher-body terms neglected in the one-com-

ponent model do not contribute significantly. Again

the DFT gives a very good account of the observed

behaviour.

In figure 4 (c), the results for an even higher polymer
concentration, �p�

3
c ¼ 2, are presented. At � � 2�c, a

minimum in the amplitude occurs and �maxc increases

with increasing � in striking contrast to the pure hard
sphere case. This can be understood in terms of the

strong effective attraction which prefers locally higher

density and acts oppositely to the correlation effect

discussed above for pure hard spheres. Figure 4 (b) is
an intermediate case where the effective attraction is

not strong enough to lead to increasing �maxc with

increasing �.
For the simulation of the effective one-component

system we use the simulated value �rp ¼ 0:365. This
was determined for small wavelengths (the free-volume

result in bulk is �rp ¼ 0:374 735). In reality �rp decreases,
but only very little with increasing �=�c; we estimate
�rp ¼ 0:363 for �=�c ¼ 7:5. From figure 4 (c), one sees
that in the effective model the effect of the polymers is

overestimated. We attribute this mainly to the fact that

the (repulsive) three-body forces are neglected. The DFT

still describes the simulation results quite well, although

the agreement is slighlty inferior to the above cases.

Finally, we show results for 0:25 < �=�c < 1:25 on an
expanded scale in figure 5. The damping and increasing

of wavelength of oscillations as �=�c decreases is
apparent. The presence of the polymers shifts the abso-

lute maximum (minimum) of �maxc (�minc ) to smaller

�c=�c. Having gained confidence in the theory, in the
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Figure 5. Same as figure 4, but for 0:25 < �=�c < 1:25. Lines
are DFT results, symbols denote computer simulation
results. The hard sphere case for �p ¼ 0 (dashed line
and crosses) and �p�c ¼ 2 (solid line and open circles)
are shown; results for �c�

3
p ¼ 1 are omitted for clarity.

184 Colloid-polymer mixtures



following we investigate the effect of increased polymer
density so that demixing occurs.

5.2. Phase behaviour
In order to study the fluid demixing phase behaviour

we use the same parameters as before, i.e. q ¼ 0:6 and
	U0 ¼ 0:5. We restrict ourselves to � ¼ 8:192�c, where
we show detailed results, but we have also considered
smaller � to assess the principal scenario. In figure 6 the
phase diagram as obtained from DFT is shown. For
large �rp the presence of the plane wave potential shifts
the bulk transition slightly to higher colloid chemical
potentials 	�c. Strikingly however, at lower �

r
p values a

bifurcation of the binodal occurs. It appears that the
two bifurcated critical points lie at the same �rp value
as the bulk critical point but numerically we could not
determine whether they are exactly the same. Three state
points are indicated where we plot the density profiles in
figure 7, one in each region. The three state points are all
at �rp ¼ 0:65 and (i) modulated gas, 	�c ¼ 8:7, (ii)
stacked fluid, 	�c ¼ 9:2 and (iii) modulated liquid,
	�c ¼ 9:7. The stacked fluid phase is a novel phase
which is absent in the bulk but is stabilized by the
external field. It consists of periodic slabs of vapour
centred around the maxima of the external potential
and of slabs of liquid centred around the minima of
the external potential. The relative width of the vapour
and liquid portion do vary with the thermodynamic par-
ameters. The occurrence of the stacked fluid phase is
most directly understood in the limit �=�c ! 1 where

a local density approximation is valid. When the combi-
nation �c �UextðzÞ equals the chemical potential at
liquid–vapour coexistence (see the dashed bar in the
right panel of figure 3) a liquid–vapour interface is
built up [34].
For smaller values of �=�c we have confirmed that the

stacked fluid ceases to exist and the usual type of
vapour–liquid phase diagram is recovered. The disap-
pearance is due to the increasing contribution of surface
free energy between liquid and vapour slabs in the
stacked phase as � is decreased. We have checked that
eventually, at a finite value of �=�c, the stacked fluid is
no longer stable. Upon decreasing �=�c the triple point
moves toward both critical points eventually merging in
a bicritical point. We leave a more thorough study of the
details of this scenario to possible future work.

6. Conclusions

We have considered a model colloid–polymer mixture
exposed to a three-dimensional plane wave external
potential representing an optical standing wave. By
tuning the size and concentration of the polymers, one
can influence the range and strength of an effective
depletion attraction, and this can be adjusted so that
stable colloid vapour–liquid coexistence is observed.
We have demonstrated that a recent DFT quantita-

tively predicts the inhomogeneous density profiles when
compared to simulation results. As a function of the
wavelength of the external potential we find interesting,
non-monotonic behaviour of the amplitude of the oscil-
lations in the one-body density distributions. Further-
more we demonstrate the stability of a stacked liquid
phase. All our predictions can in principle be verified
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Figure 6. Fluid demixing phase diagram of the AO model as
a function of colloid chemical potential 	�c and polymer
reservoir packing fraction �rp for size ratio q ¼ 0:6 for the
cases without external potential (solid line) and with
external potential of strength 	U0 ¼ 0:5 and wavelength
� ¼ 8:192�c. In the latter case three phases (vapour,
stacked fluid, liquid) are observed. Solid symbols denote
critical points. Open symbols denote state points where we
display density profiles in figure 6.

Figure 7. Colloid density profiles for 	U0 ¼ 0:5,
� ¼ 8:192�c, q ¼ 0:6 and �rp ¼ 0:65 in three different
phases corresponding to different chemical potentials:
modulated vapour for 	�c ¼ 8:7 (solid line), stacked
fluid for 	�c ¼ 9:2 (dashed line) and modulated liquid
for 	�c ¼ 9:7 (dot-dashed line).
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in experiments of colloid–polymer mixtures. We believe
that the trends and the appearance of the stacked fluid
phase are very general phenomena which should also be
present for more realistic polymer–polymer and colloid–
polymer interactions [35].
Motivated by the experimental situation, in our study

the external potential acts only on the colloids. It might,
however, also be interesting to study external potentials
that act solely or differently on the polymers. In the
depletion picture this would lead to spatially varying
pair potentials—an interesting issue.
In order to realize small �=�c one needs to use core-

shell colloidal particles, where the laser only couples to
the particle core.
The principal physical mechanism that underlies the

stability of the stacked fluid should also apply to two-
dimensional systems; these might be easier to access
experimentally.
Finally we note that an analogue of the stacked fluid

phase was found before in parallel slit pores where the
confining walls are periodically structured. The familiar
capillary condensation from gas to liquid is enriched in
this case by a phase that consists of liquid bridges
between both walls [36, 37]. This phase was also
obtained within a lattice model between decorated
walls [38]. We emphasize, however, that our external
potential is simpler as it has only two additional control
parameters such that in our situation the occurrence of
the intermediate fluid phase is more direct.
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Floating Liquid Phase in Sedimenting Colloid-Polymer Mixtures
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Density functional theory and computer simulation are used to investigate sedimentation equilibria of
colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal
polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences
in density of the coexisting bulk (colloid) gas and liquid phases, a stable ‘‘floating liquid’’ phase is
found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase
diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas
phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point.
This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.

DOI: 10.1103/PhysRevLett.93.088303 PACS numbers: 83.80.Hj, 64.70.Fx, 82.70.Dd

Equilibrium sedimentation profiles of colloidal disper-
sions or biomolecular solutions have been extensively
measured since the pioneering experiments of Jean
Perrin [1], and yield a wealth of information, in particular
the osmotic equation of state of the suspension over a
wide range of concentrations [2]. Sedimentation equilib-
ria of suspensions involving two or more components
often show highly nontrivial behavior, as in the case,
e.g., of binary hard sphere colloid mixtures [3], of
charged colloidal particles in the presence of a low ionic
strength electrolyte [4–6] or of mixtures of colloidal
platelets and nonadsorbing polymer [7]. Such multicom-
ponent systems generally undergo a demixing transition
in the bulk. Under gravity the density profiles may then
cross phase boundaries at well-defined altitudes z, so that
the suspension may be expected to segregate into hori-
zontal slabs of different chemical compositions. In this
Letter, we demonstrate that two-phase bulk coexistence
of any asymmetric binary mixture can give rise to ap-
parent three-phase coexistence in sedimentation equilib-
rium. A necessary condition is that the mass densities of
both phases are equal for at least one single statepoint at
bulk coexistence, which can (in principle) be always
fulfilled by choosing the mass ratio of both components
appropriately. Before arguing that the phenomenon is
general, we investigate in detail the particular case of
binary mixtures of hard sphere colloids (of diameter �c),
and of ideal polymer coils (of diameter �p). Within the
familiar Asakura-Oosawa-Vrij (AOV) [8] model, the lat-
ter may freely interpenetrate while their centers are ex-
cluded from spheres of radius ��c � �p�=2 around each
colloidal particle. Such highly nonadditive hard core
interactions are known to drive a separation into a low
colloid concentration ‘‘gas’’ phase and a high concentra-
tion colloidal ‘‘liquid’’ phase in the bulk, for size ratios
�p=�c above a threshold value of the order of 1=3 [9,10].

We consider explicitly the case �c � �p. If mi (i � c
or p) denotes the buoyant mass of particles of species i,

the potential energy of the latter in the gravitational field
is Vext

i �z� � migz for z > �i=2 (the base of the vertical
recipient of overall height L is taken to be z � 0), where g
is the acceleration of gravity. The gravitational lengths
associated with the two species are �i � kBT=�mig�,
where kB is Boltzmann’s constant and T is the absolute
temperature. The equilibrium sedimentation profiles of
the two species, �c�z� and �p�z�, are determined, within
density functional theory (DFT), by minimizing the
grand potential ���c; �p� of the inhomogeneous suspen-
sion with respect to the profiles �i�z�. The functional � is
conventionally split into ideal, excess and external parts:

���c; �p� � Fid��c� � Fid��p� � Fexc��c; �p�

�
X

i�c;p

Z L

0
�i�z��V

ext
i �z� ��i�dz; (1)

where the ideal gas free energy functional is Fid��i� �
kBT

R
L
0 �i�z�fln��i�z��

3
i � � 1gdz: �i is an irrelevant

length scale (which will be set equal to �i for conve-
nience); �i is the chemical potential of species i � c or p.
The excess part, Fexc, arises from the interactions be-
tween the particles in the suspension. If the sedimentation
lengths, �i, are appreciably larger than the particle diam-
eters �i, i.e., for slowly varying inhomogeneities, the
local density approximation (LDA) for Fexc is expected
to be accurate, except at the bottom of the suspension
where layering occurs [11]. Within LDA: Fexc��c; �p� �R

L
0 ���c�z�; �p�z��dz; where � is the bulk Helmholtz free

energy density, which is accurately given by free-volume
theory for the AOV model [9]. The LDA neglects nonlocal
correlations, which are approximately included within
the fundamental measure theory (FMT) [12], as adapted
to the AOV model [13]. This theory leads back to the free-
volume free energy in the homogeneous bulk limit, so that
the two DFT treatments that we apply are consistent in
this respect.

As a check of the predictions of the DFT calculations,
we have also carried out extensive Monte Carlo (MC)
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simulations of the same model under identical physical
conditions. The simulation cell is of total height L �
220�c and its square basis of edge length l � 5�c is
periodically repeated in the x and y directions; we
checked system size dependence with simulations using
l � 25�c and we found that the sedimentation equilibria
are similar within the statistical accuracy.

It is straightforward to show that the slope of the bulk
liquid-gas binodal obeys

d�p

d�c

��������coex
� �

��c

��p
; (2)

where ��i � �l
i � �g

i , and �g
i (�l

i) is the density of spe-
cies i � c; p in the gas (liquid) phase. In the LDA spirit
we define a ‘‘local’’ chemical potential �i�z� �
�i �migz which describes a linear path, parametrized
by z, in the (�c;�p) representation of the bulk phase
diagram. The slope of the path is d�p=d�c � mp=mc,
and one might hence anticipate interesting behavior when
this ratio is of the order of the typical slope of the
(generally curved [14]) binodal, which implies mc��c 


�mp��p. Indeed for a size ratio q � �p=�c � 1, the
DFT calculations predict a striking stacking of gas, liquid
and gas phases within a limited window of (buoyant)
mass ratios mp=mc. The density profiles calculated within
the FMT version of DFT for mp=mc � 0:235 are shown in
Fig. 1 for four values of the ratio �c=�c, and keeping
��z0� � const at an (arbitrary) reference height, chosen
as z0 � L=4 � 55�c. For the largest value of �c=�c, the
system is in a colloidal gas phase. As the colloids are
about 4 times heavier than the polymer, one would
naively expect them to be at the bottom of the container;
yet they rather accumulate at high altitudes. For decreas-
ing values of �c=�c, we find a novel layered structure of
sedimentation profiles: a ‘‘floating’’ liquid slab, contain-
ing practically only colloidal particles, is seen to be
sandwiched between two polymer rich slabs of gas. The
lower slab is practically free of colloids, while the con-
centration of the latter remains significant in the upper
slab. The absence of colloids in the lower slab is again
counter intuitive. The interfaces between these three
phases are very sharp, particularly at the lower liquid-
gas interface, where the colloid density profiles are seen
to exhibit some low-amplitude oscillations on the liquid
side, representative of weak layering. The width of the
floating liquid layer is of the order of 40 colloid diame-
ters, so that it may be regarded as practically bulklike.
The corresponding density profiles calculated within the
LDA are very similar, but the lower liquid-gas interface is
shifted to slightly lower altitudes and the small structure
in the colloid profiles is of course suppressed. The inset in
Fig. 1 shows that the thermodynamic path followed with
increasing altitude indeed crosses the bulk liquid-gas
coexistence curve twice, thus leading to the two observed
interfaces. Upon increasing z, the sedimentation path
crosses first the bulk binodal at large �p and �c, where

a very dilute colloidal gas coexists with a rather dense
colloidal liquid phase, and then crosses the bulk binodal
closer to the critical point, where the colloid densities
become comparable in the two coexisting phases. This
explains why the lower slab is very dilute in colloids,
while the upper slab contains more colloids, despite their
larger mass. For significantly smaller or larger mass ratios
mp=mc no, or only one intersection occurs corresponding
to a single phase throughout the inhomogeneous colloid-
polymer mixture, or to a single interface separating liquid
and gas phases, as will be discussed in more detail below.

Three of the corresponding MC-generated profiles are
shown in Fig. 2, together with snapshots of typical con-
figurations of the equilibrated binary system. The agree-
ment between DFT results shown in Fig. 1 and simulation
results is seen to be quantitative. The mass density profiles
(not shown) �m � mc�c �mp�p decrease monotoni-
cally, except for some oscillations at the lower liquid-
gas interface and to a much lesser extent at the upper
interface, with z. The rate of decrease is much smaller in
the liquid slab, as expected from the lower osmotic com-
pressibility of that phase.

In order to establish a tentative phase diagram for the
observed stacked sedimentation, we carried out a semi-
macroscopic, modified LDA calculation in the spirit of
Kelvin’s theory of capillary condensation. Depending on

FIG. 1. Scaled density profiles of colloids �c�z� (solid lines)
and polymers �p�z�=10 (dashed lines) versus scaled height
z=�c for size ratio q � �p=�c � 1 and mass ratio mp=mc �

0:235. Shown are DFT results for statepoint ��c � 4:4794�
�mcgz0; ��p � 0:8294� �mpgz0, where z0 � 55�c, and for
increasing gravitational strength �c=�c � 0:06; 0:08; 0:1; 0:2
(indicated by arrows). Also shown are the LDA predictions
for the density jumps of colloids (filled circles) and polymers
(open circles). The inset shows the fluid part of the bulk phase
diagram as a function of the chemical potentials ��c and ��p.
The full line is the liquid-gas binodal terminating at a critical
point (full circle). The sedimentation path (dashed line)
for increasing z (indicated by the arrow) crosses the binodal
twice. Also shown is the statepoint (open circle) corresponding
to z � z0.
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the chemical potentials �c and �p, the three competing
phases are a high �p gas phase (G), a phase containing a
liquid slab at the bottom and a gas phase on top (LG), and
finally the stacked gas-liquid-gas (GLG) phase. The grand
potentials of these various phases have bulk contributions
from the slabs, and different interfacial contributions
involving the various interfacial tensions associated
with the wall-fluid interface (�wf) at the bottom as well
as with the liquid-gas interface(s) (�lg). In the GLG case
let z1 and z2 denote the altitudes of the lower and upper
liquid-gas interfaces; let ���z� � ����c�z�; �p�z�� de-
note the free energy per unit volume of the bulk liquid
and gas phases (� � l or g), as calculated for each altitude
from the LDA density profiles (these free energy densities
contain now both Fexc and Fid). The grand potential per
unit (horizontal) area is then written as the sum of bulk
and surface contributions

� �
Z z1

0
�g�z�dz�

Z z2

z1
�l�z�dz�

Z L

z2
�g�z�dz

� �wf��c�0�; �p�0�� � �lg��l
c�z1� � �g

c�z1��

� �lg��
l
c�z2� � �g

c�z2��: (3)

The three interfacial tensions appearing in Eq. (3) are
calculated for the colloid and polymer densities at the
three interfaces. The values of the interfacial tension for
the liquid-gas interface are taken from the results of the
nonlocal DFT [15], which have been shown to be very
accurate for the AOV model [16]. For the wall-fluid inter-
facial tension �wf , we used the scaled-particle result [17].
The grand potential functional (3) was evaluated with the
LDA solutions for �c and �p. Calculations, based on

expressions similar to (3), but involving only one or
two interfaces, were carried out for the G and GL phases.
The resulting grand potentials were then compared to
determine the stable phase as a function of �c and �p.
The resulting phase diagram for a mass ratio mp=mc �

0:235 is shown in Fig. 3. The floating liquid (GLG) phase
is seen to be stable in a triangular region sandwiched
between the G and LG phases. The three phases coexist at
a triple point, below which the G and LG phases coexist
along a line which terminates at a critical point.
Compared to the bulk coexistence curve (i.e., in the
absence of gravity) in the (�c;�p) plane, the phase dia-
gram is seen to be shifted to larger values of �p, due to
the action of gravity. The floating liquid phase arises from
a delicate balance between gravity and interfacial ten-
sions. The stability region of the GLG phase shrinks when
the mass ratio decreases (in particular, it would be totally
absent if polymer sedimentation were neglected alto-
gether). In the limit of weak gravity, the interfacial con-
tributions to the grand potential become negligible
compared to the bulk contributions in Eq. (3). Yet the
topology of the phase diagram remains unchanged, as
illustrated by the inset in Fig. 3.

We have investigated the influence of polymer non-
ideality using a stepfunction repulsion between polymers
with range �p and height � [18]. Already relatively small
values of �� (e.g., � 0:25) have a pronounced effect on

FIG. 3. The phase diagram of the AOV model under gravity as
a function of the chemical potentials �c and �p, calculated
within the LDA for mp=mc � 0:235, q � 1, and �c=�c � 0:06.
Three phases are stable: gas, floating liquid, and liquid-gas;
these are sketched as cuvettes where liquid appears dark and
gas appears light. Shown are the binodals (full lines), the triple
point (open circle), and the liquid-gas critical point (full circle).
Also shown is (part of) the bulk liquid-gas binodal (dashed
line). Note that at phase coexistence the system will phase-
separate laterally, i.e., build a vertical (curved) interface. The
inset shows the result for the phase diagram for the same
parameters, but in the limit of small gravity �c=�c ! 0 and
large container height L=�c ! 1. The LG phase boundary is
identical to the bulk binodal.

FIG. 2 (color online). Same as Fig. 1, but obtained from MC
simulations, and interchanged axes. The (intermediate) case
�c=�c � 0:08 is omitted for clarity. Shown are colloid profile,
�c�z� (solid lines), polymer profiles �p�z�, (�c=�c � 0:06,
dotted line; 0.1, long dashed line; 0.2, short dashed line) as a
function of height z=�c. The snapshots display particle con-
figurations of colloids (light green) and polymers (dark red) for
�c=�c � 0:06; 0:1; 0:2 (from left to right).
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the location of the gas-liquid binodal [19]. Despite quan-
titative changes, we find the floating liquid phase to
remain stable, as illustrated by the density profiles in
Fig. 4. Using colloidal rods rather than polymer coils as
depletant agents offers additional freedom to tune particle
masses in experiments. We model such a system with
colloidal hard spheres and stiff colloidal rods of length
lr and vanishing thickness [20]. Density profiles (not
shown) obtained from LDA for the size ratio lr=�c � 1
and a mass ratio of mr=mc � 0:048 point to the existence
of the floating liquid phase.

In conclusion, DFT and MC simulations show the ex-
istence of a novel layered structure of sedimentation
profiles in colloid-polymer and related mixtures. This
structure demonstrates the existence, over a limited range
of polymer-to-depletant mass ratios, of a floating liquid
phase sandwiched between two gas slabs, the lower of
which has almost vanishing colloid concentration, de-
spite the fact that the colloidal particles are heavier
than the (equal-sized) depletant particles. The required
(buoyant) mass ratios might be achievable by density
matching the colloidal particles to the solvent. In the
case of polymer depletant, the required mass ratios are
large, in view of the fact that the fractal polymer coils
have a much lower bare mass than the compact colloidal
particles. Using colloidal rods as depletants should render
this problem less severe. The origin of the floating liquid
is very different from that found in a one-component
system with reentrant bulk phase behavior [21]. In the
present case, the bulk phase diagram is fairly standard;
nevertheless, there is the possibility that a sedimentation
path crosses the binodal twice (see inset of Fig. 1). The
stability region of the resulting floating liquid phase in the
phase diagram is then determined by the balance between

bulk, gravitational, and interfacial contributions to the
free energy. This scenario is generic for a wider range of
binary mixtures undergoing phase separation in the bulk.
Provided mass densities of both phases involved (not
necessarily fluids) can be tuned to coincide at one state-
point, the phase towards which the binodal bends in the
phase diagram spanned by both chemical potentials will
float between slabs of the other phase.
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FIG. 4. Scaled density profiles of colloids (full line) �c�z� and
polymers (dashed line) �p�z� versus altitude, z=�c, as obtained
from FMT for hard spheres and nonideal polymers with �� �
0:25, mass ratio mp=mc � 0:375, size ratio q � 1, and inverse
gravitational length �c=�c � 0:08. Also indicated are the
density jumps according to LDA for colloids (full symbols)
and polymers (open symbols). The inset shows the correspond-
ing results from MC simulation.
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We consider a binary mixture of hard colloidal spheres and nonadsorbing polymer coils. The
polymers are regarded as effective spheres that interact with one another via a repulsive
step-function pair potential and with colloids solely via excluded volume. The system is treated with
a geometry-based density functional theory based on the exact zero-dimensional limit of the model.
For bulk fluid phases, we calculate demixing binodals and find that with increasing strength of
polymer–polymer interaction the coexisting colloidal liquid~vapor! phase becomes more
concentrated~dilute! in polymer. In contrast to a simple mean-fieldlike perturbative density
functional, our approach yields good agreement with an experimental demixing phase diagram.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1528191#

I. INTRODUCTION

Colloid–polymer mixtures are experimentally acces-
sible, well-characterized systems, that serve as models for
studying emergence of structure in condensed matter. In par-
ticular, phase transitions between colloidal vapor, liquid, and
crystalline phases have attracted much experimental and the-
oretical interest. For mixtures of colloids and nonadsorbing
polymer, the Asakura–Oosawa~AO! model1,2 treats the
polymer chains as effective spheres that are mutually ideal
~noninteracting! but that have excluded-volume interactions
with the colloids. Within the AO model, perturbation theory3

and free-volume theory4 predict bulk fluid demixing, the lat-
ter theory qualitatively describing experimental trends of the
phase behavior.5,6

Recent work has been devoted to integrating out poly-
mer degrees of freedom to obtain an effective~many-body!
Hamiltonian for the colloids.7 A pairwise approximation to
the effective Hamiltonian can then be input to standard bulk
perturbation theory in order to calculate thermodynamic and
structural properties.7 This principle approach was also used
for investigation of interfacial properties8,9 in the framework
of density-functional theory~DFT!.10

An alternative approach is to explicitly treat the full bi-
nary mixture and hence effective many-body colloidal inter-
actions. Following previous work on hard sphere
mixtures,11–15a DFT approach to the AO model was recently
proposed.16,17 The bulk fluid free energy, and hence the
fluid–fluid demixing phase diagram, that arise from this DFT
are identical to the predictions of free volume theory.4 How-
ever, as the theory is constructed to deal with inhomoge-
neous systems, it also can be applied to~entropic! wetting at
a hard wall and layering phenomena in the interface between
demixed fluids.18

All of these approaches neglect direct polymer–polymer
interactions, an assumption that is most valid at the theta
temperature, where the second virial coefficient of the
monomer–monomer interaction vanishes. In order to treat
interactions between polymers, Warrenet al.19 proposed a
perturbation theory around the AO model as a reference sys-
tem ~which, again, is described with free-volume theory!. A
more microscopic picture that works on the segment level of
the polymers is provided by the macromolecular approach of
Fuchs and co-workers.20,21 In their theory, interactions be-
tween segments~and hence polymers! are intrinsically built
in. However, both approaches seem to be limited primarily to
bulk considerations.

Although a description on the segment level is desirable,
we note that for pure polymer solutions, recent studies have
suggested a ‘‘soft colloid’’ picture.22 In this picture, upon
averaging over the monomer degrees of freedom, effective
polymer interactions can be well represented by a Gaussian
pair potential. Such penetrable potentials have been shown to
be well described by a simple mean-fieldlike density func-
tional, which in bulk is equivalent to the random phase ap-
proximation ~RPA!.22 In the same spirit, a recent study ex-
amined thebinary Gaussian core mixture in inhomogeneous
situations.23,24 In the context of colloid–polymer interac-
tions, structural correlation functions were obtained from the
Percus–Yevick theory applied to the AO model and also a
~Gaussian! repulsion between polymers was taken into
account.25

In the present work, we aim at a DFT for a more realistic
description of colloid–polymer mixtures than provided by
the AO model, one that takes polymer–polymer interactions
into account. Specifically, we consider a model in which the
polymers, although still treated as effective spheres, interact
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via a repulsive step-function pair potential. This model
bridges recent studies by interpolating between the AO
model for ideal polymers and the binary hard-sphere~HS!
mixture. Note that while the AO model system displays
stable fluid–fluid coexistence,3,4,7binary HS mixtures do not,
as freezing preempts fluid demixing.26

In Sec. II, the model mixture of colloids and interacting
polymers is defined. In Sec. III, we develop the nonperturba-
tive geometry-based DFT. The explicit construction of the
functional is guided by the exact solution of the model in the
special zero-dimensional case. For comparison, we also dis-
cuss two mean-fieldlike perturbative theories. In Sec. IV, we
derive the bulk free energy, which allows us to calculate
phase behavior. We conclude in Sec. V.

II. THE MODEL

We consider a binary mixture of hard colloidal spheres
~speciesC) of radiusRC and polymer coils~speciesP) with
radius of gyrationRP . The colloid–colloid pair interaction
potential as a function of the center–center interparticle dis-
tance,r, is V(r )5`, if r ,2RC , and zero otherwise. We
assume that the polymer–colloid interaction is also hard:
VCP(r )5`, if r ,RC1RP , and zero otherwise. The interac-
tions between polymers are represented by a step-function
pair potential:VPP(r )5e, if r ,2RP , and zero otherwise.
Apart from trivial kinetic energy terms and external poten-
tials, the resulting Hamiltonian is

H~$Ri%,$r j%!5(
i , j

NC

VCC~ uRi2Rj u!1(
i

NC

(
j

NP

VCP~ uRi2r j u!

1(
i , j

NP

VPP~ ur i2r j u!, ~1!

where $Ri% denotes colloid and$r j% polymer coordinates.
Note that in the limite/kBT→0 we recover the AO model,
and fore/kBT→` binary hard spheres. Although in Ref. 19
VPP(r ) is assumed to have a range ofRP , our ~longer-
ranged! choice is more consistent with the effective~Gauss-
ian! potentials of Louiset al.,22 which extend out even be-
yond 2RP . We do not use the Gaussian potential as our aim
is at a minimal model that displays the essential features.

As bulk thermodynamic parameters, we use the packing
fractions h i54pRi

3r i /3, i 5C,P, where r i is the number
density of speciesi. The control parameters are the size ratio,
q5RP /RC , of colloid and polymer radii and the reduced
strength,e/(kBT), of polymer–polymer interactions, where
kB is the Boltzmann constant andT absolute temperature.

III. THEORY

A. Zero-dimensional limit

In the original context of hard spheres,14 it was shown
that an idealized zero-dimensional~0D! limit can motivate
the construction of density functionals for 3D systems. The
benefit of zero dimensions is that the partition sum can be
calculated exactly, as the configurational integral over the
spatial degrees of freedom is trivial. Choosing an explicit
~approximate! form for the free energy functional, one im-

poses that it correctly recovers the 0D properties, when ap-
plied to an appropriate~d-functionlike! density profile. This
constraint has guided the development of DFTs for models
such as penetrable spheres27 and the AO model.16,17

Let us consider the current model in the 0D limit, in
which particle centers are confined to a volumev0D whose
dimensions are smaller than all relevant length scales in the
system. The microstates accessible in that limit are com-
pletely specified by the occupation numbers of particles of
both species. Each microstate is assigned a statistical weight
according to the grand ensemble. In general, the grand par-
tition sum for a binary mixture is

J5 (
NP50

` zP
NP

NP!
(

NC50

` zC
NC

NC!
exp~2bVtotal!, ~2!

where the~reduced! fugacities arezi5(v0D /L i
3)exp(bmi),

L i is the thermal wavelength,m i is the chemical potential of
speciesi, b5(kBT)21, andVtotal is the total potential energy
in the situation where all particles have vanishing separation.
Note that for hard-core interactions, the Boltzmann factor
vanishes for forbidden configurations, which practically lim-
its the upper bounds in the summations in Eq.~2!. For the
present case, whereVCC andVCP are hard-body interactions,
we obtain

J5zC1 (
NP50

` zP
NP

NP!
exp@2beNP~NP21!/2#, ~3!

where theNP dependence in the Boltzmann factor stems
from combinatorial counting of pairs of polymers. Clearly,
for zC50, we recover the limit of one-component penetrable
spheres;27 for be50, Eq. ~3! reduces to the AO result,16,17

J5zC1exp(zP). In order to obtain the Helmholtz free en-
ergy, a Legendre transform is to be performed, and the de-
pendence on the fugacities is to be replaced with dependence
on the mean numbers of particles,h i5zi] lnJ/]zi . Taking
the particle volume of speciesi as the reference volume,h i is
also the 0D packing fraction of speciesi. Subtracting the
ideal contribution, one calculates the excess free energy,
bF0D52 lnJ1(i5C,Philn(zi)2(i5C,Phi@ln(hi)21#. In the
present case~as for pure penetrable spheres!, this cannot be
achieved analytically. As we are interested in the case of
smalle ~close to the AO behavior!, we perform an expansion
in powers ofbe, and obtain

bF0D5~12hC2hP!ln~12hC!1hC1
be

2

hP
2

12hC

, ~4!

which is exact up to lowest~linear! order inbe. In the limit
be→0, we recover the AO result,16,17 which is bF0D,AO

5(12hC2hP)ln(12hC)1hC . In the absence of colloids,
hC→0, we obtain a mean-fieldlike expression,F0D,MF

5ehP
2 /2.

Some terms of higher than first order can be obtained
analytically. We write the free energy asF0D1DF0D , where
F0D is the linear contribution given by Eq.~4! andDF0D up
to cubic order inbe is obtained as

1542 J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Schmidt, Denton, and Brader

Downloaded 07 Jan 2003 to 134.99.64.157. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

222 Colloid-polymer mixtures



bDF0D52
hP

2 ~be!2

4~12hC!
1F hP

2

12hC

1
2hP

3

~12hC!2G ~be!3

12
.

~5!

In the case of largebe, the 0D free energy has to be calcu-
lated numerically, which is an easy task.

B. Geometry-based density functional

Returning to three dimensions, the total Helmholtz free
energy of an inhomogeneous system may be written asF
5F id1Fexc, where F id5( i 5C,P*drr i(r )$ ln@ri(r )L i

3#21%
is the ideal-gas free energy functional~for two species!,
and Fexc is the excess contribution arising from inter-
actions between particles. Following previous work on
mixtures,11–13,16,17we express the Helmholtz excess free en-
ergy as a functional of colloid and polymer density fields as
a spatial integral

Fexc@rC~r !,rP~r !#5kBTE d3xF„$nn
C~x!%,$ng

P~x!%…,

~6!

where the weighted densities

nn
i ~x!5E d3rr i~r !wn

i ~x2r !, i 5C,P ~7!

are defined as convolutions of weight functions,wn
i , with the

actual density profiles, andn denotes the type of weight
function.

In previous work on HS,11 F is a function of species-
independent weighted densities. Here we use the generalized
form introduced in Ref. 16, whereF is a function of species-
dependent weighted densities. This form was shown to be
necessary to capture the distinct properties of colloids and
polymers. The weight functionswn

i are independent of the
density profiles and are given by

w3
i ~r !5u~Ri2r !, w2

i ~r !5d~Ri2r !, ~8!

wv2
i ~r !5w2

i ~r !r /r , ŵm2
i ~r !5w2

i ~r !@rr /r 221̂/3#, ~9!

where r 5ur u, u(r ) is the step function,d(r ) is the Dirac
distribution, and1̂ is the identity matrix. Further, linearly
dependent, weights arew1

i (r )5w2
i (r )/(4pRi), wv1

i (r )
5wv2

i (r )/(4pRi), w0
i (r )5w1

i (r )/Ri . The weight functions
are quantities with dimension (length)n23. They differ in
their tensorial rank:w0

i , w1
i , w2

i , w3
i are scalars;wv1

i , wv2
i

are vectors~subscript v!; and ŵm2
i is a ~traceless! matrix

~subscript m!. The scalar and vectorial weights are borrowed
from Ref. 11, whereas the tensor weight is equivalent to the
formulation in Ref. 15.

The free energy density is composed of three parts,

F5F11F21F3 , ~10!

which are defined as

F15 (
i 5C,P

n0
i w i~n3

C ,n3
P!, ~11!

F25 (
i , j 5C,P

~n1
i n2

j 2nv1
i
•nv2

j !w i j ~n3
C ,n3

P!, ~12!

F35
1

8p (
i , j ,k5C,P

S 1

3
n2

i n2
j n2

k2n2
i nv2

j
•nv2

k

1
3

2
@nv2

i n̂m2
jnv2

k 2tr~ n̂m2
i n̂m2

j n̂m2
k!# D

3w i jk~n3
C ,n3

P!, ~13!

where tr denotes the trace, and derivatives of the 0D excess
free energy@Eq. ~4!# are

w i¯k~hC ,hP![
]m

]h i¯]hk

F0D~hC ,hP!. ~14!

In the absence of polymer,F1 andF2 are treated as in Ref.
11 andF3 as in Ref. 15. Equations~11!–~13! are generali-
zations of expressions in Refs. 11 and 15 that include sum-
mations over species.16,17

C. Perturbative density functional

It is instructive to relate the above approach to a pertur-
bative treatment, where the AO model is used as a reference
system, and the polymer–polymer interactions are regarded
as a perturbation. Apparently, perturbed and reference sys-
tems are very similar. Aside from sharing the sameVCC , the
cross interactionsVCP are the same~namely hard-core inter-
actions!. Only the remaining polymer–polymer interaction
differs ~and vanishes in the reference system!. The reference
system may be well described by the AO functional,16,17

which is recovered by usingF0D5(12hC2hP)ln(12hC)
1hC as a generator in the above geometrical recipe. What
remains to be treated is the perturbative contribution to the
free energy due to polymer–polymer interactions. To obtain
that, a minimal requirement is that the pure polymer system
~free of colloids! is described reasonably. As was recently
discovered28 for penetrable interactions, this is the case for a
mean-field~excess! functional

FMF@rP~r !#5 1
2E dr dr 8rP~r !VPP~ ur2r 8u!rP~r 8!.

~15!

This DFT was utilized to investigate Gaussian core particles
adsorbed at a hard wall.28 The generalization of Eq.~15! to
binary mixtures was used in Ref. 23 to study interfacial
properties23 and wetting24 of the binary Gaussian core model.
Note that in bulk Eq.~15! is equivalent to using the RPA,
which is a reasonable approximation for penetrable
interactions.29,30

It might at first appear thatF85FAO1FMF would give a
good description of the excess free energy of the mixture, as
the hard-body interactions between polymers and colloids
are already accounted for inFAO . Hence the perturbative
contribution dependssolely on the polymer density profile.
This reasoning is independent of the precise model under
consideration, and should hold also for soft repulsive inter-
actions. For the present model, we can show, in contrast, that
F8 is ~apart from trivial limits! never a good approximation
to treat the mixture, and nonsensical trends in phase behavior
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arise~see Sec. IV C!. We expect similar failings when apply-
ing this approach to other models consisting of mixtures of
hard-core and penetrable particles.

Within our framework,F8 can be derived fromF0D

5F0D
AO1ehP

2 /2 and applying the recipe outlined in Sec. III B.
By comparing with the exact linear-order result@Eq. ~4!#,
F0D5F0D

AO1 1
2ehP

2 /(12hC), one immediately observes that
already the linear term inhC differs. This discrepancy per-
sists throughout the construction of the DFT, and henceF8
displays a similar failing. The predictions of phase behavior
from this approach are shown at the end of Sec. IV C below.

Evidently, the mean-field functional neglects exclusion
of polymer from the volume occupied by the colloid. In con-
trast, the geometry-based functional naturally accounts for
excluded volume: A given polymer interacts with polymer in
the available volume whose density is higher than the density
of polymer in the system.

D. Perturbative bulk theory

Warrenet al.19 proposed a perturbative approach for the
free energy of bulk colloid–polymer mixtures in which poly-
mers interact with a penetrable repulsive interactionVPP(r ).
This can be viewed as a perturbative treatment where in the
reference systemVPP(r )50, andVPP(r ) is regarded as the
perturbation. As input, the bulk void–void correlation
function31 of the pure hard sphere system is required, and
Ref. 19 proposes an empirical analytical form that interpo-
lates between the known limits of vanishingly and infinitely
separated polymers. In the following, we rederive this theory
in a general framework. This will allow us to relate the ap-
proach of Warrenet al. to the oversimplistic bulk theory that
arises from the perturbative DFT. Moreover, we can quanti-
tatively compare this approach against the bulk predictions
of the geometry-based DFT.

We consider the fully interacting binary mixture with
fixed colloid particle numberNC and polymer fugacityzP .
The semigrand partition function is given by

Jsemi5TrCe2bHCCF (
NP50

` zP
NP

NP!
E drNPe2b~HCP1lHPP!G ,

~16!

wherel is a charging parameter which is equal to unity in
the fully interacting system, and the canonical trace over
colloid coordinates is

TrC5
1

LC
3NCNC!

E dRNC. ~17!

By expanding the integrand in Eq.~16! in a Taylor series
aboutl50, we obtain a perturbation theory

bVsemi5bVsemi,01E
0

1

dlS ]bVsemi

]l
D

'bVsemi,01S ]bVsemi

]l
D

0

, ~18!

wherebVsemi52 lnJsemi. The first term on the right is the
semigrand free energy of the AO model, given by

bVsemi,0

52 lnS TrCe2bHCC (
NP50

` zP
NP

NP!
E drNPe2bHCPD ~19!

52 lnS TrCe2bHCC (
NP50

`
@zPVa~$RNC%!#NP

NP!
D ~20!

52 ln$TrCe2bHCCexp@zPVa~$RNC%!#%, ~21!

wherea($RNC%) is the ratio of the free volume of a single
polymer sphere, in the presence of the colloids, to the system
volume,V. By replacing the exacta($RNC%), which depends
on all coordinates of the colloids, by its average for hard
spheres,Vsemi,0becomes identical to the result from the free-
volume theory of Lekkerkerkeret al.4 The second term on
the right side of Eq.~18! is given by

S ]bVsemi

]l
D

0

5Jsemi,0
21 TrCe2bHCC (

NP50

` zP
NP

NP!
E drNP

3(
i , j

bVPP~ ur2r 8u!e2bHCP ~22!

5Jsemi,0
21 TrCe2bHCC (

NP50

` zP
NP

NP!

3E drNP22
NP

2
~NP21!a~$RNC%!NP22

3E drE dr 8bVPP

3~ ur2r 8u!a~r ;$RNC%!a~r 8;$RNC%! ~23!

5Jsemi,0
21 TrCe2bHCCE drE dr 8bVPP

3~ ur2r 8u!a~r ;$RNC%!a~r 8;$RNC%!

3
zP

2

2
(

NP50

`
@zPVa~$RNC%!#NP22

~NP22!!
, ~24!

whereJsemi,0 is the term inside the logarithm in Eq.~21!.
The final result is thus

S ]bVsemi

]l
D

0

5Jsemi,0
21 TrCe2bHCCexp@zPVa~$RNC%!#

3
zP

2

2
E drE dr 8bVPP~ ur2r 8u!

3a~r ;$RNC%!a~r 8;$RNC%!. ~25!

Equations~21! and ~25! give the exact free energy to linear
order in bVPP(r ). We now proceed by making the mean-
field approximations and replacing quantities by their aver-
age values in the unperturbed~AO! system
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a~$RNC%!→a~hC ,zP!, ~26!

a~r ;$RNC%!a~r 8;$RNC%!→gvv~ ur2r 8u;hC ,zP!, ~27!

wherea(hC ,zP) is the exact free volume fraction for the AO
model ~noninteracting polymers! and gvv(ur2r 8u;hC ,zP)
[^a(r ;$RNC%)a(r 8;$RNC%)&AO is the void–void correlation
function of the AO model. The voids are the spaces between
the colloids that can be occupied by the polymer. Insertion of
Eq. ~26! into Eq. ~21! clearly yields the exact AO free en-
ergy. The final result is thus

bVsemi5bVsemi,AO1
zP

2

2
VE dr bVPP~r !

3gvv~ ur2r 8u;hC ,zP!. ~28!

If we now further approximate the relevant quantities by
their HS values,a(hC ,zP)→a(hC)[a(hC ,zP50) and
gvv(ur2r 8u;hC ,zP)→gvv

HS(ur2r 8u;hC)[gvv(ur2r 8u;hC ,zP

50), then the first term reduces to the free-volume theory of
Lekkerkerkeret al. and we obtain

bVsemi5bFHS2zPa~hC!V1
zP

2

2
VE dr bVPP~r !

3gvv
HS~ ur2r 8u;hC!, ~29!

whereFHS is the Helmholtz free energy of pure HS. We give
the explicit ~approximative! expression fora(hC) below in
Sec. IV A. The original result of Warrenet al. for the semi-
grand free energy, Eq.~27! in Ref. 19, is identical to Eq.
~29!, if bVPP(r ) in ~29! is replaced by its corresponding
Mayer function, 12exp@2bVPP(r)#. The difference arises
from the fact that in the original version a virial expansion in
polymer density is performed, while we apply thermody-
namic perturbation theory. However, for smallbe the differ-
ences are negligible.

An equivalent perturbation theory can be derived di-
rectly in the canonical ensemble. The result for the canonical
excess free energy is

bFexc
pert~rC ,rP!

V
5bfHS~rC!2rPlna~rC!

1
b

2 S rP

a~rC!
D 2E drVPP~r !

3gvv
HS~ ur2r 8u;rC!, ~30!

wherefHS(rC) is the excess free energy per unit volume of
pure HS. While the same level of approximation is employed
in both derivations, Eqs.~29! and ~30! are inequivalent, in
general, when related by a Legendre transform. They can be
shown, however, to be equivalent to linear order inVPP(r ).

IV. RESULTS

A. Bulk fluid phases

In bulk, the one-body densities of both species are spa-
tially uniform: r i(r )5const. This leads to analytic expres-
sions for the weighted densities, Eq.~7!, and therefore for the

excess free energy density, Eqs.~10!–~13!. The integration in
Eq. ~6! becomes trivial and gives a factorV. Explicitly, the
result is

bFexc~rC ,rP!

V
5bfHS~rC!2rPlna1~rC!

1
bṼPP~0!

2
rP

2 @12 lna2~rC!#, ~31!

where the integrated potential is ṼPP(0)
54p*dr r 2VPP(r )54pesP

3 /3 and fHS, in the scaled-
particle ~Percus–Yevick compressibility! approximation, is
given by

bfHS5
3hC@3hC~22hC!22~12hC!2ln~12hC!#

8pRC
3 ~12hC!2

.

~32!

In Eq. ~31!, the a i , which depend solely onhC and q, are
given through

lna15 ln~12hC!2 (
m51

3

Cm
~1!gm, ~33!

lna252 1
8 (

m51

4

Cm
~2!gm, ~34!

where the dependence on density is throughg5hC /(1
2hC), and the coefficients are polynomials in the size ratio,
given as C1

(1)53q13q21q3, C2
(1)5(9q2/2)13q3, C3

(1)

53q3, and C1
(2)58115q16q21q3, C2

(2)515q124q2

17q3, C3
(2)518q2115q3, C4

(2)59q3.
For be50, our result is identical to that of free-volume

theory for the AO model.4 Central to that approach is the free
volume ratio,a ~defined in Sec. III D!, which we find to be
identical toa1 . Hence the DFT recovers free-volume theory
in bulk; a discussion of relations between the two approaches
can be found in Ref. 17. According to the physical meaning
of a1 , we interpreta2 as the ratio of two six-dimensional
volumes, namely, the volume that is accessible to a pair of
two overlapping polymer spheres and the same quantity in
the absence of colloids, the latter being just 4psP

3V/3. In
Fig. 1 we plot both free volume fractions as a function ofhC

for size ratiosq50.57 and 1. Qualitatively,a1 anda2 both
monotonically decrease with increasinghC due to the ex-
cluded volume occupied by colloidal particles. Note, how-
ever, thata2.a1 over the whole density range. This may be
due to correlations between polymer pairs. At fixedhC , both
free-volume fractions decrease monotonically with increas-
ing size ratio.

The total canonical free energy is given byF/V
5Fexc/V1kBT( i 5C,Pr i@ ln(riLi

3)21#. It is convenient to
transform to the semigrand ensemble, where the polymer
chemical potential instead of the system density is pre-
scribed. The appropriate thermodynamic potential is a semi-
grand free energyVsemi, related toF via Legendre transform
Vsemi/V5F/V2mPrP , wheremP is the chemical potential
of polymers, given as

1545J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Fluid demixing in colloid–polymer mixtures

Downloaded 07 Jan 2003 to 134.99.64.157. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Beyond the Asakura-Oosawa-Vrij model 225



bmP5]~bF/V!/]rP

5 ln~rPLP
3 !2 lna1~rC!2bṼPP~0!rP@12 lna2~rC!#.

~35!

Equation~35! is a transcendental equation to be solved for
rC oncemP is prescribed, which is a trivial numerical task.

B. Comparison between DF and perturbative
approaches

Comparing the density-functional and perturbative ex-
pressions for the bulk excess free energy@Eqs.~31! and~30!,
respectively#, it is clear that they differ only in the
interacting-polymer terms. Thus, focusing on these terms, we
define the additional contributionFP[F2Fue50 to the free
energy per volume due to polymer interactions, and find

FP
DF

V
[

ṼPP~0!

2
rP

2 @12 lna2~rC!# ~36!

and

FP
pert

V
[

1

2 S rP

a1~rC!
D 2E drVPP~r !gvv~r ;rC!. ~37!

As r→`, two voids become uncorrelated and the void–void
correlation function reduces togvv(r )5a1

2. Substituting this
form for gvv(r ) in Eq. ~37! yields the mean-field~MF! result

FP
MF

V
5

ṼPP~0!

2
rP

2 , ~38!

which is independent of colloid volume fraction. Similarly,
as r→0, the two voids become perfectly correlated,gvv(r )
5a1 . An approximate interpolation between these two ex-
tremes was proposed in Ref. 19:

gvv~r !5a1
21a1~12a1!exp~2r /RC!. ~39!

Substituting Eq.~39! into Eq. ~37! and integrating over the
step-function polymer–polymer pair potential, we obtain

FP
pert5FP

MFF11
3

4 S 1

a1

21D q23
„12~2q212q11!e22q

…G .

~40!

We can now numerically compare the predictions of the
different approximations for the interacting-polymer free en-
ergy. As the mean-field contribution is a constant~with re-
spect tohC), we take it as a reference and consider the
fractional excess (FP2FP

MF)/FP
MF as a function ofhC . Fig-

ure 2 compares the DF and perturbative results, computed
from Eqs.~36! and ~40!. At lower colloid volume fractions
(hC,0.2) both approaches give similar results. With in-
creasinghC , however, there is a crossover, beyond which
the approaches deviate rapidly. In fact, beyondhC.0.2, the
DF prediction increases much more gradually than the per-
turbative. The deviations in the free energy evident in Fig. 2
suggest a significant difference in the predicted phase behav-
ior, which is confirmed upon explicit calculation of phase
diagrams in the next section.

C. Phase diagrams

The general conditions for phase coexistence are equal-
ity of the total pressuresptot , of the chemical potentialsm i ,
and of the temperatures in the coexisting phases. For phase
equilibrium between phases I and II,

ptot
I 5ptot

II , ~41!

m i
I5m i

II , i 5C,P. ~42!

These are three equations for four unknowns~two state
points each characterized by two densities!. Hence two-phase
coexistence regions depend parametrically on one free pa-
rameter. In our caseptot /kBT52F tot1( i 5C,Pr i]F tot /]r i ,
and m i5kBT]F tot /]r i , where f tot5F/V, yield analytical
expressions. We solve the resulting sets of equations numeri-
cally, which is straightforward.

In order to compare the results from the different theo-
retical approaches, we consider the case of equal sizes,q
51, and moderately weak polymer–polymer interactions,
namelybe50.25. Our aim is to compare the fluid–fluid bin-

FIG. 1. Free-volume ratios of single polymers (a1) and pairs of overlapping
polymers (a2) as a function of colloid packing fraction for polymer–colloid
size ratiosq50.57 ~top curves, thick! andq51 ~bottom curves, thin!.

FIG. 2. Fractional excess over mean field~MF! of the free energy predicted
by the density-functional~DF! and perturbative approaches@Eqs. ~36! and
~40!# vs colloid volume fractionhC , for polymer–colloid size ratioq
50.57.
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odals from the various approaches: the perturbative~Sec.
III C ! and geometry-based~Sec. III B! DFTs, and the pertur-
bative bulk theory of Warrenet al. ~Sec. III D!. We find that
the semigrand version of the latter@Eq. ~29!#, when applied
to our model, does not give fluid–fluid demixing forbe
50.25. Rather, the stability of demixing is restricted to a
narrow range of interactions, wherebe is smaller than about
0.1. We believe that this is more a failure of the theory than
of the model. As shown in Fig. 3, the binodals from the
perturbative DFT and from the canonical version of the
theory of Warrenet al. @Eq. ~30!# predict stabilization of the
colloidal vapor phase when compared to the case of nonin-
teracting polymers. This is at odds with the physical expec-
tation that the polymer–polymer repulsion shoulddestabilize
the polymer-rich phase. In contrast, the binodal from our
geometry-based DFT does capture this trend.

Stable fluid–fluid phase separation~with respect to
freezing! in colloid–polymer mixtures is observed in experi-
ments only at sufficiently large polymer-to-colloid size ra-
tios. We consider the size ratioq50.57, for which experi-
mental data are available for poly~methyl methacrylate!
~PMMA! colloid and polystyrene incis-decalin.6 Figure 4
shows the predicted phase diagrams with and without poly-
mer interactions. For noninteracting polymers@be50 in Fig.
4~a!#, our result is identical to that from free-volume theory.
Although the predicted phase diagram may appear to capture
the main experimental trends, closer inspection reveals dis-
crepancies. Experimentally, the colloidal liquid phase con-
tains a significant concentration of polymer, whereas the the-
oretical binodal for ideal polymer suggests strong dilution in
polymer. In order to apply our theory to this situation, we
must first prescribe the potential energy barrier.

The potential energy barrier,e, can be obtained by esti-
mating the second virial coefficient,B2 , of a pure polymer
solution. For our repulsive step-function potential,B2 is
trivially related toe via

B25
2psP

3

3
~12e2be!. ~43!

The second virial coefficient also can be expressed as19,32

B2

4p3/2RP
3

5z24.8z21O~z3!, ~44!

accurate up toz.0.1, wherez is the Fixman parameter. The
Fixman parameter32 is a measure of polymer nonideality (z
50 corresponding to ideal polymers! that depends on tem-
perature, radius of gyration, and molecular mass (M ). An
empirical relation forz was established by Berry32 for poly-
styrene in a range of hydrocarbon solvents:

z50.00975AM S 12
Tu

T
D , ~45!

valid over a wide range of temperatures around the theta
temperature,Tu .

Now, for the polymer–solvent system considered in Ref.
6, polystyrene in cis-decalin, M514.43106 and Tu

512.5 °C, while the experimental phase diagrams were
measured significantly aboveTu , at T523 °C. From Eq.
~45!, this temperature corresponds toz51.3, well beyond the
range of validity of Eq.~44!. However, Berry32 has measured
B2 over a considerable range ofz, up toz55. Thus, we can
apply Eq.~44! to obtainB2 for a small departure from ide-
ality and then appeal to Berry’s data. If we consider, for
example, only a one-degree departure fromTu , T
513.5 °C, then Eq.~45! givesz50.129, for which Eqs.~43!

FIG. 3. Demixing phase diagram of a model colloid–polymer mixture for
q51 as a function of packing fractions of colloid and polymer,hC andhP .
Shown are the theoretical binodals~lines! and critical points~dots! for ideal
polymer (be50) as a reference case, along with the results forbe50.25
from the geometry-based DFT, the perturbative DFT of Sec. III C, and the
perturbative bulk theory of Sec. III D@Eq. ~30!#.

FIG. 4. Demixing phase diagram of a model colloid–polymer mixture for
q50.57 as a function of packing fractions of colloid and polymer,hC and
hP . Shown are the theoretical binodal and critical point together with the
experimental data of Ref. 6.~a! be50, equivalent to the result from free-
volume theory~Ref. 4!, ~b! be50.5.
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and ~44! in turn yield be50.068. From Berry’s measure-
ments, asz increases from 0.13 to 1.3,B2 increases by a
factor of about 5, which, from Eq.~43!, corresponds roughly
to be.0.5 atT523 °C.

A second, independent, estimate ofe can be drawn from
simulations of interacting polymer coils~in the absence of
colloids!.22 At zero separation between two coils, the effec-
tive pair potential was determined to be about (1 – 2)kBT.
Hence, as a plausible value, we choosebe50.5. To achieve
higher accuracy than provided by the linear expansion of the
0D free energy, Eq.~4!, we use the cubic order expression,
Eq. ~5!, in Eqs.~10!–~13!. Figure 4 shows a comparison of
the calculated theoretical binodal with the experimental data
of Ref. 6.

Although the measured one-phase state point at high col-
loid packing fraction lies inside the theoretical two-phase
region, it is obvious that our theory predicts a shift into the
correct direction. We also predict that the coexisting colloidal
vapor phase is more strongly diluted in colloids, as compared
to the noninteracting case. All these results can be under-
stood in terms of a free energy penalty due to polymer–
polymer interactions. This primarily applies to the colloidal
vapor phase. Only a small penalty arises in the colloidal
liquid phase, where polymers are strongly diluted.

V. CONCLUSIONS

We have investigated a model of a colloid–polymer mix-
ture in a good solvent, where excluded volume of monomers
gives rise to a soft, penetrable repulsion between centers of
masses of polymer coils. The model interpolates between the
AO colloid–ideal-polymer model and binary hard spheres,
through a repulsive step-function polymer–polymer interac-
tion, whose height is a control parameter. We have derived a
density-functional theory for the full crossover between both
limits and have focused on the physically relevant case of
weakly interacting polymers. Our theory predicts that with
increasing strength of polymer–polymer interaction the co-
existing colloidal liquid~vapor! phase becomes more con-
centrated~dilute! in polymer.

We stress that calculating bulk phase diagrams from the
present theory is not more difficult than application of the
original free volume theory.4 The only additional task is to
convert from the polymer fugacity to the polymer density in
the system. While this can be done analytically in the free-
volume theory, here we need to solve Eq.~35! numerically.
In order to compare to experiment, the strength of polymer–
polymer interactions must be prescribed. This quantity and
the polymer-to-colloid size ratio are adjustable parameters in
our model.

We have shown that a simple perturbative DFT, in which
the free energy is approximated by that of an AO reference
system and an additive mean-field contribution is an inappro-
priate approach. We believe that this failure may hold also
for other binary mixtures, where an additional interaction
between particles of the same species is treated as a pertur-
bation, neglecting the presence of the other component.

A recent assessment21 of the performance of free volume
theory for the AO model in describing colloid–polymer mix-
tures in a good solvent~where polymers repel! found the AO

model to be seriously in error, particularly for long polymer
chains with a radius of gyration greater than the radius of the
colloids. Here we restrict ourselves to shorter chains, where
we expect an effective sphere model to be reasonable.

We emphasize that our model of polymer–polymer in-
teractions is idealized in~at least! four ways:~i! The shape of
the pair interaction is assumed to be a step function rather
than a more realistic smooth, Gaussian-type function. This
has a prominent effect on the structural correlation~in par-
ticular on the polymer–polymer pair distribution function!.
We expect, however, that predictions of the phase behavior
are reasonable provided appropriate values for both model
parameters, step height and range are chosen.~ii ! In order to
be able to derive a geometrical DFT, we set the range of the
step function equal to twice the polymer radius of gyration;
the latter also sets the thickness of the depletion zones
around colloids. This is an ‘‘additive’’ restriction, leading to
well-defined particle shapes, that can be exploited to derive
the theory. In general, however, a more realistic description
would be provided by a freely adjustable range of polymer–
polymer interaction. This would, however, include nonaddi-
tivity as an additional complication, which we have avoided
in the present study.~iii ! We assume that the strength and
range of the interaction are independent of the concentrations
of both colloids and polymers~in general, independent of the
respective one-body profiles!. It is, however, known22 that
the effective polymer–polymer interaction~as obtained from
simulations on the segment level! is density-dependent, al-
though this effect appears to be quantitatively small. In prin-
ciple, given some prescription of how the step height de-
pends on the state point, this effect could be treated within
the current approach.~iv! We neglect the effect of colloidal
confinement on the polymer radius of gyration, and hence on
the range of polymer–polymer interaction. Recently, we
have modeled the influence of colloid-induced polymer com-
pression, on demixing albeit only for the case of ideal
polymer.33 A similar model could, in principle, be applied to
the case of interacting polymer.

Concerning future work, it is desirable to test our phase
diagrams against simulation and more detailed experimental
data for phase coexistence. It would be interesting to look at
the depletion potential between colloids that is generated by
the presence of nonideal polymer. The concept of integrating
out degrees of freedom provides the necessary machinery,
which already has been applied to limits of the present
model, namely the AO7 and HS26 cases. Of course, more
realistic polymer–polymer interactions, such as a repulsive
Gaussian pair potential, are worthy of investigation. Finally,
we emphasize that because our theory is intrinsically con-
structed to deal with inhomogeneous situations, influence of
polymer interactions on the properties of interfaces and be-
havior near walls, such as wetting and layering phenomena18

are problems open to investigation.
Note added. After completion of this work we became

aware of a simulation study of colloid–polymer mixtures,34

where similar phase behavior to that reported here was
found.

1548 J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Schmidt, Denton, and Brader

Downloaded 07 Jan 2003 to 134.99.64.157. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

228 Colloid-polymer mixtures



ACKNOWLEDGMENTS

The work of one of the authors~J.M.B.! was supported
by the National Science Foundation~through Grant No.
CHE9800074 and the NSF Materials Research Science and
Engineering Center at the University of Chicago!.

1S. Asakura and F. Oosawa, J. Chem. Phys.22, 1255~1954!.
2A. Vrij, Pure Appl. Chem.48, 471 ~1976!.
3A. P. Gast, C. K. Hall, and W. B. Russell, J. Colloid Interface Sci.96, 251
~1983!.

4H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P.
B. Warren, Europhys. Lett.20, 559 ~1992!.

5W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pririe, and
P. N. Pusey, J. Phys. II3, 1075~1993!.

6S. M. Ilett, A. Orrock, W. C. K. Poon, and P. N. Pusey, Phys. Rev. E51,
1344 ~1995!.

7M. Dijkstra, J. M. Brader, and R. Evans, J. Phys.: Condens. Matter11,
10079~1999!.

8J. M. Brader and R. Evans, Europhys. Lett.49, 678 ~2000!.
9J. M. Brader, M. Dijkstra, and R. Evans, Phys. Rev. E63, 041405~2001!.

10R. Evans, inFundamentals of Inhomogeneous Fluids, edited by D. Hend-
erson~Dekker, New York, 1992!, p. 85.

11Y. Rosenfeld, Phys. Rev. Lett.63, 980 ~1989!.
12Y. Rosenfeld, M. Schmidt, H. Lo¨wen, and P. Tarazona, J. Phys.: Condens.

Matter 8, L577 ~1996!.
13Y. Rosenfeld, M. Schmidt, H. Lo¨wen, and P. Tarazona, Phys. Rev. E55,

4245 ~1997!.
14P. Tarazona and Y. Rosenfeld, Phys. Rev. E55, R4873~1997!.
15P. Tarazona, Phys. Rev. Lett.84, 694 ~2000!.
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Demixing of colloid-polymer mixtures in poor solvents

Matthias Schmidt* and Alan R. Denton
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The influence of poor solvent quality on fluid demixing of a model mixture of colloids and nonadsorbing
polymers is investigated using density functional theory. The colloidal particles are modeled as hard spheres
and the polymer coils as effective interpenetrating spheres that have hard interactions with the colloids. The
solvent is modeled as a two-component mixture of a primary solvent, regarded as a background theta solvent
for the polymer, and a cosolvent of point particles that are excluded from both colloids and polymers. Cosol-
vent exclusion favors overlap of polymers, mimicking the effect of a poor solvent by inducing an effective
attraction between polymers. For this model, a geometry-based density functional theory is derived and applied
to bulk fluid phase behavior. With increasing cosolvent concentration~worsening solvent quality!, the predicted
colloid-polymer demixing binodal shifts to lower colloid concentrations, promoting demixing. For sufficiently
poor solvent, a reentrant demixing transition is predicted at low colloid concentrations.

DOI: 10.1103/PhysRevE.65.061410 PACS number~s!: 82.70.Dd, 61.20.Gy, 64.10.1h, 64.60.Fr

I. INTRODUCTION

Solvents play a crucial role in the thermodynamic behav-
ior of macromolecular solutions. Over the past half a century,
effects of solvent quality on the physical properties of poly-
mer solutions have been extensively studied@1,2#. Polymer-
solvent and solvent-solvent interactions were first incorpo-
rated into the classic Flory-Huggins mean-field theory of
polymer solutions@3#. Subsequently, excluded-volume inter-
actions between polymer segments were identified as the key
determinants of solvent quality. Polymer segments sterically
repel one another in a good solvent, attract in a poor solvent,
and behave as though nearly ideal~noninteracting! in a theta
solvent. Interactions between polymer segments strongly in-
fluence chain conformations and, in turn, phase separation
and other macroscopic phenomena.

Compared to solvent effects in pure polymer solutions,
much less is known about the role of solvent quality in
colloid-polymer mixtures. The simplest and most widely
studied theoretical model of colloid-polymer mixtures is the
Asakura-Oosawa~AO! model @4,5#. This treats the colloids
as hard spheres and the polymers as effective spheres that are
mutually noninteracting but have hard interactions with the
colloids. The thermodynamic phase diagram of the AO
model has been mapped out by thermodynamic perturbation
theory @6#, free volume theory@7#, density functional~DF!
theory @8#, and Monte Carlo simulation@9#. By assuming
ideal polymers, however, the AO model is implicitly limited
to theta solvents. Recently, by incorporating polymer-
polymer repulsion into the AO model, the influence of a
good solvent on phase behavior has been explored via per-
turbation theory@10# and DF theory@11#. All of these studies
assume an effective penetrable-sphere model for the polymer
coils, which is supported by explicit Monte Carlo simula-
tions of interacting segmented-chain polymers@12–14#. An

alternative, more microscopic, theoretical approach is the
PRISM integral-equation theory@15#, which models poly-
mers on the segment level.

The purpose of the present paper is to investigate the ef-
fect of apoor solvent on the bulk phase behavior of colloid-
polymer mixtures. To this end, we consider a variation of the
AO model that explicitly includes the solvent as a distinct
component. Specifically, the solvent is treated as a binary
mixture of a primary solvent, which alone acts as a theta
solvent for the polymer, and a cosolvent, which acts as a
poor solvent for the polymer. The primary solvent is re-
garded as a homogeneous background that freely penetrates
the polymer, but is excluded by the colloids. The cosolvent is
modeled simply as an ideal gas of pointlike particles that
penetrate neither colloids nor polymers.

In the absence of colloids, the polymer-cosolvent sub-
system is the Widom-Rowlinson~WR! model of a binary
mixture @16,17#, in which particles of unlike species interact
with hard cores and particles of like species are noninteract-
ing. The WR model can be shown to be equivalent to a
one-component system of penetrable spheres that interact via
a many-body interaction potential, proportional to the cosol-
vent pressure and the volume covered by the spheres~with
overlapping portions counted only once!. Hence, in the
polymer-cosolvent subsystem, the volume occupied by the
polymer spheres costs interaction energy, inducing an effec-
tive attraction between polymers reminiscent of that caused
by a poor solvent. By varying cosolvent concentration, the
solvent quality can be tuned. Here we investigate whether
and how added hard colloidal spheres mix with such effec-
tively interacting polymers.

In Sec. II, we define more explicitly the model colloid-
polymer-cosolvent mixture. In Sec. III, we develop a general
geometry-based DF theory, which may be applied to both
homogeneous and inhomogeneous states of the model sys-
tem. The general theory provides the foundation for an ap-
plication to bulk phase behavior in Sec. IV. Readers who are
interested only in bulk properties may wish to skip Sec. III
and turn directly to Sec. IV. We finish with concluding re-
marks in Sec. V.
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II. THE MODEL

We consider a ternary mixture of colloidal hard spheres
~speciesC) of radiusRC , globular polymers~speciesP! of
radiusRP , and pointlike cosolvent particles~speciesS!, as
illustrated in Fig. 1. The respective number densities are
rC(r ), rP(r ), andrS(r ), wherer is the spatial coordinate.
The primary solvent is regarded as a homogeneous back-
ground for the polymer and is not explicitly included. All
particles experience only pairwise interactions,
Vi j (r ), i , j 5C,P,S, wherer is the separation distance be-
tween particle centers. Colloids behave as hard spheres:
VCC(r )5`, if r ,2RC , and zero otherwise. Colloids and
polymers interact as hard bodies viaVCP(r )5`, if r ,RC
1RP , and zero otherwise, and both exclude cosolvent par-
ticles:VCS(r )5`, if r ,RC , VPS(r )5`, if r ,RP , and zero
otherwise. The polymers and cosolvent particles behave as
ideal gases:VPP(r )50, VSS(r )50, for all r. In essence, this
is the AO model with additional point particles that cannot
penetrate either colloids or polymers.

We denote the sphere diameters bysC52RC and sP

52RP , the bulk packing fractions byhC54pRC
3 rC/3 and

hP54pRP
3rP/3, and define a dimensionless solvent bulk

density rS* 5rSsP
3 . The polymer-colloid size ratioq

5sP /sC is regarded as a control parameter.

III. DENSITY FUNCTIONAL THEORY

We develop a geometry-based DF theory for the excess
Helmholtz free energy of the model system, expressed as an
integral over an excess free energy density,

Fexc@rC ,rP ,rS#5kBTE d3xF~$nn
i %!, ~1!

wherekB is Boltzmann’s constant,T is absolute temperature,
and the~local! reduced excess free energy densityF is a
simple function~not a functional! of weighted densitiesnn

i .
The weighted densities are smoothed averages of the possi-
bly highly inhomogeneous density profilesr i(r ) expressed
as convolutions,

nn
i ~r !5r i~r !* wn

i ~r !5E dr 8r i~r 8!wn
i ~r2r 8!, ~2!

with respect to weight functionswn
i (r ) wherei 5C,P,S and

n50,1,2,3,v1,v2,m2. The usual weight functions@18,19# are

w2
i ~r !5d~Ri2r !, w3

i ~r !5Q~Ri2r !, ~3!

wv2
i ~r !5w2

i ~r !
r

r
, ŵm2

i ~r !5w2
i ~r !S rr

r 2
2

1̂

3D , ~4!

where r 5ur u, d(r ) is the Dirac distribution,Q(r ) is the
step function, and1̂ is the identity matrix. Further linearly
dependent weight functions arew1

i (r )5w2
i (r )/(4pR),

wv1
i (r )5wv2

i (r )/(4pR), and w0
i (r )5w1

i (r )/R. The weight
functions for n53,2,1,0 represent geometrical measures of
the particles in terms of volume, surface area, integral mean
curvature, and Euler characteristic, respectively@18#. Note
that the weight functions differ in tensorial rank:w0

i , w1
i ,

w2
i , andw3

i are scalars,wv1
i andwv2

i are vectors, andŵm2
i is

a ~traceless! matrix.
The excess free energy density can be expressed in the

general form

F5FC1FCP1FCS1FCPS, ~5!

where the four contributions have forms motivated by con-
sideration of the appropriate exact zero-dimensional limits.
The colloid contributionFC is the same as that for the pure
hard-sphere~HS! system@18,19#,

FC52n0
C ln~12n3

C!1
n1

Cn2
C2nv1

C
•nv2

C

12n3
C

1F1

3
~n2

C!32n2
C~nv2

C !21
3

2
~nv2

C
•n̂m2

C
•nv2

C 23detn̂m2
C!G Y @8p~12n3

C!2#. ~6!

The colloid-polymer interaction contributionFCP is the
same as in the pure AO case@8#,

FCP5(
n

]FC

]nn
C

nn
P , ~7!

while the colloid-solvent interaction contribution@20# is

FCS52n0
S ln~12n3

C!. ~8!

Finally, in order to model the WR-type interaction between

FIG. 1. Model ternary mixture of colloidal hard spheres of di-
ametersC , polymer effective spheres of diametersP , and point-
like solvent particles.
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polymers and cosolvent particles in the presence of the col-
loidal spheres, we assume

FCPS5
n0

Sn3
P

12n3
C

, ~9!

which takes into account the volume excluded to the polymer
and cosolvent by the colloids.

It is instructive to compare the current theory to
geometry-based DF theories previously formulated for two
related ternary model systems. One starting point is a ternary
AO model that combines a binary HS mixture and one poly-
mer species@21#. Letting the radius of the smaller HS com-
ponent go to zero, one obtains the cosolvent species. The
other starting point is a recently introduced model@22# for a
ternary mixture of colloids, polymers, and hard vanishingly
thin needles of lengthL, where the needles are ideal amongst
themselves but cannot penetrate the polymers~hard-core in-
teraction!. In the limit L→0, the needles become identical to
the cosolvent particles. We have explicitly checked that the
DF theories for both systems reduce to the theory described
above, demonstrating the internal consistency of the
geometry-based approach.

IV. RESULTS AND DISCUSSION

A. Bulk limit

For bulk fluid phases the density profiles are homoge-
neous:r i(r )5const. In this case, the integrations in Eq.~2!
are trivial, and simple expressions for the weighted densities
can be obtained. Inserting these expressions into the excess
free energy density@Eqs.~6!–~9!# yields the bulk excess free
energy in analytic form. The HS contribution, which is equal
to the Percus-Yevick compressibility~and scaled-particle! re-
sult, is given as

FC5
3hC@3hC~22hC!22~12hC!2 ln~12hC!#

8pRC
3 ~12hC!2

.

~10!

The colloid-polymer contribution is equal to that predicted
by free volume theory@7#, and subsequently rederived by
DFT @8#,

FCP5
hP /~8pRP

3 !

~12hC!3
$3qhC@6~12hC!213q~22hC2hC

2 !

12q2~11hC1hC
2 !#26~12hC!3 ln~12hC!%.

~11!

This contribution is linear in the polymer density and has a
form that arises, as in the original free volume theory@7#,
from treating the polymers as an ideal gas occupying the free
volume between the colloids. The colloid-cosolvent contri-
bution is given by

FCS52rS ln~12hC!. ~12!

This contribution can be similarly interpreted as the free en-
ergy of an ideal gas in the free volume of the colloids. In this
case, however, the ideal gas consists of pointlike cosolvent
particles, considerably simplifying the analytical form of the
free volume. In fact, by lettingq→0 in Eq. ~11!, and iden-
tifying speciesP andS, FCP reduces toFCS. The remain-
ing contribution couples the densities of all three species,
and is given by

FCPS5
rShP

12hC
. ~13!

In the absence of colloids (hC50), this is equivalent to the
mean-field free energy of the WR model. Equation~13! is a
nontrivial generalization thereof to the case of nonvanishing
hC . For completeness, the reduced ideal-gas free energy is

F id5 (
i 5C,P,S

r i@ ln~r iL i
3!21#, ~14!

where theL i are~irrelevant! thermal wavelengths of species
i. This puts us in a position to obtain the reduced total free
energy densityF tot5F id1F, of any given fluid state char-
acterized by the bulk densities of the three components and
the size ratioq.

B. Phase diagrams

The conditions for phase coexistence are equality of the
total pressuresptot and of the chemical potentialsm i in the
coexisting phases. For phase equilibrium between phases I
and II, ptot

I 5ptot
II andm i

I5m i
II ,i 5C,P,S, yielding four equa-

tions for six unknowns~two state points, each characterized
by three densities!. In our case, a set of analytical expres-
sions is obtained from

ptot

kBT
52F tot1 (

i 5C,P,S
r i

]F tot

]r i
~15!

and

m i5kBT
]F tot

]r i
, ~16!

the numerical solution of which is straightforward.
In order to graphically represent the ternary phase dia-

grams, we choose the system reduced densities,hC ,hP , and
rS* as basic variables. For givenq, these span a three-
dimensional~3D! phase space. Each point in this space cor-
responds to a possible bulk state. Two-phase coexistence is
indicated by a pair of points joined by a straight tie line. We
imagine controlling the system directly withhC andhP , but
indirectly via coupling to a cosolvent reservoir, whose
chemical potentialmS tunes the solvent quality. Note that,
because the cosolvent is treated as an ideal gas, the reser-
voir’s density is simply proportional to its activity. Thus, the
reduced densityrS*

r5exp(mS/kBT) may be equivalently
taken as a control parameter, which is equal in coexisting
phases. To make contact with Flory-Huggins theory, we are
implicitly considering here the case in which the Flory inter-

DEMIXING OF COLLOID-POLYMER MIXTURES IN . . . PHYSICAL REVIEW E65 061410

061410-3

244 Colloid-polymer mixtures



action parameterx falls in the range 0.5,x,1, correspond-
ing to a negative excluded-volume parameter,v}(122x).

We initially consider colloids and polymers of equal size
(sC5sP). For this case, Fig. 2 shows projections of
constant-rS*

r surfaces onto the three sides of the coordinate
system, namely thehC-rS* , hC-hP , and hP-rS* planes, as
well as a perspective 3D view. For reference, the phase dia-
gram without cosolvent is shown in Fig. 2~a!. This is identi-
cal to the common free volume demixing curve of the AO
model @7,8#. For rS*

r50, in which caserS* 50, the hC-rS*
andhP-rS* planes are inaccessible, i.e., all accessible states
lie completely within thehC-hP plane. Upon increasing the
cosolvent reservoir density torS*

r50.5, and thus worsening
the solvent quality, the demixed region grows, as seen in Fig.
2~b!. The critical point shifts towards lowerhC and higher
hP , the tie lines become steeper, and the area beneath the
colloid-polymer binodal in thehC-hP plane ~a measure of
miscibility! decreases.

As a physical interpretation of the results, one can imag-
ine the polymer spheres as tending to merge~overlap! to
avoid contact with the solvent. The resulting polymer
‘‘dimers,’’ ‘‘trimers,’’ etc., act as larger depleting agents, in-
creasing the range of the effective depletion potential be-

tween colloids. At the same time, the lower effective concen-
tration of depletants reduces the osmotic pressure and thus
the depth of the potential. Comparing the phase diagrams for
different cosolvent reservoir densities, we can conclude that
the net effect of merging polymers is to increase the inte-
grated strength of the depletion potential and thus to promote
demixing.

Eventually, atrS*
r50.648 94, the colloid-polymer critical

point meets thehP-rS* plane~wherehC50), as seen in Figs.
2~c! and ~on a larger scale! 2~d!. Polymers and cosolvent
here begin to demix already in the absence of colloids~the
critical point of the WR model!. For still higher cosolvent
reservoir densities~beyond the WR critical point!, the critical
point vanishes from the phase diagram and a polymer-
cosolvent miscibility gap opens up athC50. It is tempting
to interpret this demixing as aggregation of the polymer
spheres, although it must be emphasized that the WR model
can only crudely describe polymer aggregation.

Another intriguing prediction is the reentrant colloid-
polymer mixing evident in Fig. 2~d!. For sufficiently low
colloid concentrations and high cosolvent reservoir densities
~poor solvent!, colloids and polymers initially demix with
increasing hP . Upon increasinghP further, miscibility

FIG. 2. Demixing phase diagram of the model ternary colloid-polymer-solvent mixture forsC5sP andrS*
r50 ~a!, 0.5 ~b!, and 0.648 94

~c!. The latter case is shown also on a finer scale~d!.

MATTHIAS SCHMIDT AND ALAN R. DENTON PHYSICAL REVIEW E 65 061410

061410-4

Beyond the Asakura-Oosawa-Vrij model 245



returns over a small range before demixing again occurs at
higher hP . Such a phenomenon could conceivably result
from the complex interplay between range and depth of the
depletion potential arising from solvent-induced overlap of
polymers.

For smaller polymer-to-colloid size ratios, the above sce-
nario persists. Figure 3 shows qualitatively similar results for
q50.5 and cosolvent reservoir densitiesrS*

r50 @Fig. 3~a!#
and 0.5@Fig. 3~b!#.

V. CONCLUSIONS

In summary, we have investigated the bulk fluid demixing
behavior of model mixtures of colloids and nonadsorbing
polymers in poor solvents. Our model combines the Asakura-
Oosawa model of hard-sphere colloids plus ideal penetrable-
sphere polymers with a binary solvent model. The solvent
comprises a primary theta solvent and a cosolvent of point
particles that are excluded from both colloids and polymers.
Cosolvent exclusion energetically favors overlapping con-
figurations of polymers. Although somewhat idealized, the
model exhibits the essential feature of solvent-induced effec-
tive attraction between polymers, mimicking the effect of a
poor solvent.

To study the equilibrium phase behavior of this model, we
have derived a geometry-based density functional theory that
combines elements of previous theories for the AO and
Widom-Rowlinson models. Applying the theory to bulk fluid
phases, we have calculated phase diagrams for cosolvent
densities spanning a range from theta solvent to poor solvent.
With increasing cosolvent concentration~worsening solvent
quality!, the predicted colloid-polymer binodal shifts to
lower colloid concentrations, destabilizing the mixed phase.
Beyond a threshold cosolvent concentration, a reentrant
colloid-polymer demixing transition is predicted at low col-
loid concentrations.

Predictions of the theory could be tested by comparison
with simulations of the model. Qualitative comparison with
experiment also may be possible, but would require a rela-
tion between the cosolvent concentration~as a measure of
solvent quality! and the Flory interaction parameter. In prin-
ciple, such a relation could be established by calculating the
effective second virial coefficient of the polymer in the
polymer-cosolvent subsystem.

Although here we have approximated the polymers as
mutually noninteracting, their effective attractions being
driven only by cosolvent exclusion, future work should in-
clude non-ideality between polymers, arising fundamentally
from excluded-volume repulsion between polymer segments.
For this purpose, a reasonable model is an effective-sphere
description based on a repulsive, penetrable pair interaction
~finite at the origin!, e.g., of step function or Gaussian shape
@12#. The competition between such intrinsic repulsion and
the solvent-induced attraction considered in this work is
likely to produce rich phase behavior. As a further outlook,
our approach also could be applied to effects of solvent qual-
ity on polymer brushes adsorbed onto surfaces of colloidal
particles.
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In order to study the effects of penetrability in mixtures of dissimilar particles we consider hard
~colloidal! spheres and penetrable spheres. The latter may be taken to represent ideal, noninteracting
polymer coils. Polymers and colloids interact by means of a repulsive step-function pair potential,
which allows for insertion of colloids into the polymer coil. The potential strength is obtained from
scaling arguments for the cross virial coefficient of true colloid–polymer systems. For this model we
construct a geometry-based density functional and apply it to bulk fluid demixing. We find that
taking into account penetrability leads to a significant stabilization of the mixed phase for large
polymer-to-colloid size ratio. ©2002 American Institute of Physics.@DOI: 10.1063/1.1503303#

I. INTRODUCTION

Different levels of description have been used to study
the emergence of structure and phase behavior in colloid–
polymer mixtures. Such systems are experimentally well
characterized and the phase behavior typically displays~col-
loid! gas, liquid and crystalline phases. A coarse-grained
level of description relies on effective spheres to model
globular nonadsorbing polymers and goes back to Asakura
and Oosawa~AO! ~Ref. 1! and Vrij.2 Perturbation theory,3

free volume theory,4,5 and simulations5,6 have been success-
fully employed to study the bulk properties of this model.

A deeper, more microscopic level of description is the
basis for theories that operate on the blob7 or segment8–11

level of the polymers. It has also been the basis for computer
simulations of colloidal spheres and lattice polymers.12–14

While these approaches consider translationalandconforma-
tional ~internal! contributions to the entropy, a reduction of
the degrees of freedom to the center-of-mass translations of
both species would among other advantages for example
greatly speed up computer simulations of these complex
mixtures. This aim has recently been pursued using soft
sphere approaches to polymers15,16 and also motivates our
study.

Density functional theory~DFT! ~Ref. 17! is more pow-
erful than the above bulk theories, as it is capable of dealing
with inhomogeneoussituations. In the context of effective
sphere models previous hard sphere theories18,19 could be
extended to a range of models, including the AO model
without20,21 and with polymer–polymer interactions.22 Inter-
esting inhomogeneous situations are realized in interfaces
between demixed fluid states and near walls, where wetting
and layering phenomena were found.23

In this work we use effective polymer spheres and do
one step towards a more realistic description by allowing

colloids to penetrate the polymer spheres. On the segment
level ~disregarded within our model!, this leads to a restric-
tion of allowed polymer configurations, hence a free energy
penalty emerges. We calculate its strength from the cross
virial coefficient and use this as an input for the effective
sphere model, by setting the free energy penalty equal to an
internal energy contribution to the Hamiltonian, both for a
theta solvent and for a good solvent. As an approximation,
we disregard polymer-polymer interactions, as would be jus-
tified for dilute polymers and at the theta temperature. We
derive a DFT for the model and apply it to bulk fluid demix-
ing. For small polymer-to-colloid size ratios the demixing
binodal approaches the free volume result for impenetrable
polymer.4 In the opposite regime of large polymer-to-colloid
size ratios, our theory predicts a significant stabilization of
the mixed fluid phase, the effect being stronger in the case of
a good solvent.

We specify the model of hard colloids and penetrable
polymer in Sec. II, and develop the theory in Sec. III. Bulk
fluid–fluid demixing is calculated in Sec. IV and we finish
with concluding remarks in Sec. V.

II. THE MODEL

We consider a mixture of colloidal particles~speciesC)
and effective polymer spheres~speciesP) interacting by
means of pair potentialsVi j (r ), wherei , j 5C,P, see Fig. 1
for a sketch of the model. The interactions between particles
of the same species are

VCC~r !5H ` if r ,2RC

0 else,
~1!

VPP~r !50. ~2!

The interaction between colloids and polymers is

VCP~r !5H eCP if r ,RC1RP

0 else.
~3!

a!Permanent address: Physik Department, Technische Universita¨t München,
D-85747 Garching, Germany.
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In essence, this is the AO model where the the colloid–
polymer interaction is assumed to be penetrable rather than
hard. Hence we refer to this model as the penetrable
Asakura–Ooasawa~PAO! model. The PAO model reduces in
the limit beCP→` to the classic AO model,1,2 where b
51/kBT, kB is the Boltzmann constant, andT is absolute
temperature. Another~albeit trivial! limit is obtained for
beCP→0 ~and finite radiiRP , RC), where the mixture de-
couples into a hard sphere colloid fluid and an ideal gas of
polymers; these subsystems do not interact with each other.

As bulk thermodynamic parameters we use the packing
fractions hC54pRC

3 rC/3, hP54pRP
3rP/3, whererC , rP

are the number densities of colloids and polymers, respec-
tively. The system volume is denoted byV. The size ratio
q5RP /RC and the~reduced! strengthbeCP act as control
parameters.

III. THEORY

A. Zero-dimensional limit

In order to work out a density functional theory for the
PAO model we follow the lines suggested in Refs. 18 and 19
for hard spheres and in Refs. 20–22, 24, and 25 for a broader
class of models and determine the excess Helmholtz free
energy from dimensional crossover starting with the zero-
dimensional~0D! limit. The 0D limit corresponds to the
problem of packing particles into cavities such that all par-
ticles overlap. This is an idealized situation and allows for an
exact solution of the many-body problem. To obtain the 0D
grand partition sum,J, we count the possible states charac-
terized by the particle numbers of colloids and polymers
~which can be regarded as occupancy numbers of the 0D
cavity!. As we deal with a thermal system, wherebeCP is a
control parameter, we need to consider the appropriate sta-
tistical weight, given by the Boltzmann factor, in the grand
ensemble. Summing-up the possible states, we have~i! all
states with an arbitrary number of polymers but without col-
loids. This includes the empty state with vanishing particle
numbers, and essentially constitutes the partition sum of an
ideal gas of polymers. Furthermore, we need to consider~ii !
a single colloidal particle and an arbitrary number of poly-
mers. All remaining states are characterized by at least two
colloidal particles. Due to the hard core potential between

colloids, these states carry vanishing statistical weight.
Hence we obtain the 0D grand partition sum,

J5exp ~zP!1zC exp ~zP exp ~2beCP!!, ~4!

where the first~second! term corresponds to case i~ii ! above,
and zi is the fugacity of speciesi 5C,P. From the grand
partition sumJ, Eq. ~4!, the ~canonical! Helmholtz free en-
ergy can be obtained by a~double! Legendre transform from
the fugacities zi to the mean numbers of particlesh̄ i

5zi] ln J/]zi . Hence the excess~over ideal gas! free energy
F0D is obtained frombF0D1h̄P@ ln(h̄P)21#1h̄C@ln(h̄C)21#
52J1h̄P ln(zP)1h̄C ln(zC). The straightforward calculation
gives

bF0D5~12h̄C!ln~12h̄C!

1h̄C2h̄P ln~12h̄C@12exp~2beCP!# !. ~5!

It is instructive to consider the limit of weak colloid–
polymer interactions,beCP→0. By Taylor expanding Eq.~5!
one obtains

bF0D5~12h̄C!ln~12h̄C!1h̄C2beCPh̄Ph̄C

1O~b2eCP
2 !. ~6!

The sum of the first two terms in Eq.~6! equals the 0D free
energy of hard spheres.26,27 The next term is bilinear in the
densities involved—a typical mean-field contribution. This
might be expected on physical grounds. We stress, however,
that Eq.~6! is anexactexpansion. We further note that in the
limit of hard colloid–polymer interaction,beCP→`, the 0D
free energy isbF0D5(12h̄C2h̄P)ln(12h̄C)1h̄C , equal to
the result for the AO model.20,21

B. Density functional theory

The total Helmholtz free energy of an inhomogeneous
system may be written asF5F id1Fexc, where F id

5( i 5C,P*drr i(r )@ ln(ri(r )L i
3)21# is the ideal-gas free en-

ergy functional~for two species!, with L i being the~irrel-
evant! thermal wavelength of speciesi , andFexc is the ex-
cess contribution arising from interactions between particles.
Following previous work on mixtures,18,20,21,26,27we express
the Helmholtz excess free energy as a functional of colloid
and polymer density fields as a spatial integral

Fexc@rC~r !,rP~r !#5kBTE d3xF~$nn
C~x!%,$ng

P~x!%!,

~7!

where the weighted densities

nn
i ~x!5E d3rr i~r !wn

i ~x2r !, i 5C,P ~8!

are defined as convolutions of weight functions,wn
i , with the

actual density profiles, andn50,1,2,3,v1,v2,m2 denotes the
type of weight function.

The weight functionswn
i are independent of the density

profiles and are given by

w3
i ~r !5Q~Ri2r !, w2

i ~r !5d~Ri2r !, ~9!

wv2
i ~r !5w2

i ~r !r /r , ŵm2
i ~r !5w2

i ~r !@rr /r 221̂/3#, ~10!

FIG. 1. Sketch of the model with hard colloidal spheres of diametersC

52RC and effective polymer spheres with diametersP52RC . Penetration
of colloids into polymers is accompanied by an energy costeCP .
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where r 5ur u, Q(r ) is the step function,d(r ) is the Dirac
distribution, and1̂ is the 333 identity matrix, and matrices
are denoted by a hat. Further, linearly dependent, weights are
w1

i (r )5w2
i (r )/(4pRi), wv1

i (r )5wv2
i (r )/(4pRi), w0

i (r )
5w1

i (r )/Ri . The weight functions are quantities with dimen-
sion (length)32n. They differ in their tensorial rank:w0

i , w1
i ,

w2
i , w3

i are scalars;wv1
i , wv2

i are vectors;ŵm2
i is a ~traceless!

matrix.
The free energy densityF is composed of three parts18,19

that arise from consideration of one, two and three cavities,28

F5F11F21F3 . ~11!

They are defined as

F15 (
i 5C,P

n0
i w i~n3

C ,n3
P!, ~12!

F25 (
i , j 5C,P

~n1
i n2

j 2nv1
i
•nv2

j !w i j ~n3
C ,n3

P!, ~13!

F35
1

8p (
i , j ,k5C,P

~ 1
3 n2

i n2
j n2

k2n2
i nv2

j
•nv2

k

1 3
2 @nv2

i n̂m2
j nv2

k 2tr~ n̂m2
i n̂m2

j n̂m2
k !# !w i jk~n3

C ,n3
P!,

~14!

where tr denotes the trace, andmth order derivatives of the
0D excess free energy@Eq. ~5!# are

w i¯k~ h̄C ,h̄P![
]m

]h̄ i¯]h̄k
F0D~ h̄C ,h̄P!. ~15!

This completes the prescription for the functional.

C. Penetrable colloid–polymer interactions

The theory we have presented so far is applicable to
arbitrary~constant! colloid–polymer interaction strengtheCP

and polymer-to-colloid size ratiosq. As our aim is a study of
the effects of particle–coil penetration in real colloid–
polymer mixtures, we seek to find a relation betweeneCP

andq to match our effective sphere system with the behavior
of true polymers. In the following this is carried out for the
case of low density of polymer and a single sphere, where we
consider the excess chemical potential or insertion free en-
ergy. In lowest order, it is determined by the cross virial
coefficient between colloid and polymer. We consider two
cases, namely a theta solvent and a poor solvent, in order to
also learn about the effect of excluded volume swelling of
the coil structure. The excess insertion free energies for add-
ing VrC independent spheres to a dilute solution of poly-
mers, or to a solution of noninteracting polymers at arbitrary
density, are known from field-theoretic considerations and
satisfy scaling limits for largeq,29,30

bdFexc/~V%C!

→H 4prPRP
3 /q for n5 1

2 ~ theta solvent!

18.461rPRP
3q1/n2d for n50.588 ~good solvent!,

~16!

where d53 is the space dimension. Particle insertion into

the polymer coil is manifest in the decrease ofbdFexc for
large q where the open polymer structure becomes impor-
tant. Using the potential given in Eq.~3!, the virial expansion
is in the limit of small interactionsbeCP given by
bdFexc/(V%C)→ 4

3pRP
3rPbeCP . Requiring this to agree

with Eq. ~16! in the limit of large polymers, we find for the
theta solvent,

beCP~q!5
3

q
, ~17!

and in a good solvent

beCP~q!5
4.40724

q321/n 5
4.40724

q1.29932, ~18!

wheren50.588.
There is a crossover between both functional forms for

eCP(q). For smaller~larger! values thanq53.615, the inter-
action strengtheCP is weaker in the case of a theta~good!
solvent.

IV. RESULTS

A. Thermodynamics

To obtain the thermodynamics of homogeneous fluid
states, we apply the density functional described in Sec. III B
to constant density fields,rC(r )5const, rP(r )5const. In
this case the scalar weighted densitiesnn

i , n53,2,1,0 be-
come proportional to the bulk densities,nn

i 5jn
i r i , where the

proportionality constantsjn
i are so-called fundamental mea-

sures obtained asjn
i 5*d3rwn

i (r ) @see Eq.~8!#. Explicitly the
fundamental measures are given asj3

i 54pRi
3/3, j2

i

54pRi
2 , j1

i 5Ri , j0
i 51, corresponding to the volume, sur-

face, integral mean curvature, and Euler characteristic of the
spheres of speciesi . The vectorial and tensorial weighted
densities,nv2

i , nv1
i , n̂m2

i vanish for constant density fields,
due to the symmetry of the corresponding weight functions
@Eq. ~10!#. Inserting the obtained expressions for thenn

i into
Eqs. ~12!–~14!, and carrying out the derivatives in Eq.~15!
yields the excess free energy densityF @Eq. ~11!#. As F is
also constant in space, the integration in Eq.~7! becomes
trivial, and the bulk excess Helmholtz free energy density is
obtained as

bFexc/V5bfHS~rC!2rP ln aPAO~rC!, ~19!

wherefHS(rC) is the excess free energy per unit volume of
pure HS in the scaled-particle~and Percus–Yevick com-
pressibility! approximation, given as

bfHS~rC!5
3hC@3hC~22hC!22~12hC!2 ln~12hC!#

8pRC
3 ~12hC!2 ,

~20!

and

aPAO~rC!5~12hC8 !exp~2Ag2Bg22Cg3!, ~21!

where g5hC8 /(12hC8 ), hC8 5@12exp(2beCP)#hC , and the
coefficients depend only on the size ratio and are given as
A5q313q213q, B53q319q2/2, andC53q3.
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As pointed out in Sec. II, the PAO model reduces to the
AO case forbeCP→`. In this limit, hC8 5hC , and aPAO

5aAO . As our DFT reduces to the corresponding functional
for the AO model,20,21, we recover the sameaAO , which was
strikingly shown to be equal to the expression for the free-
volume fraction from the approach of Lekkerkerkeret al.4

Hence ouraPAO generalizes the common free volume frac-
tion to the case of penetrable colloid–polymer interactions.

Quantitatively,aPAO significantly deviates from the free
volume result, provided the size ratioq is large enough. We
plot both quantities in Fig. 2 as a function ofhC for q53,
using the relation between size ratio and interaction strength
in a theta solvent,beCP53/q. Except for the limiting value
at hC50, significant deviations exist over the whole density
range. These differences suggest significant deviations in the
predicted phase behavior of both approaches—an issue that
we will turn to in the next section.

In order to assess how well oura compares to the free
volume fraction in real colloid–polymer mixtures, we con-
sider the microscopic m-PY PRISM approach of Refs. 8–10.
This theory was used to derivea from a description of poly-
mers on the segment level@Eqs.~5! and ~6! in Ref. 10#. We
find that the free volume fractions from both approaches are
similar, with am2PY being slightly larger. The deviations can
be traced back to the fact that for largeq and smallhC

different expansions hold, namelyaPAO5123hC /q2 and
am2PY5122.427 05hC /q2.

B. Fluid demixing phase behavior

The conditions for phase equilibrium are equality of the
chemical potentials of both species and of the total pressure
in both phases. This is equivalent to performing a double
tangent construction on the semigrand free energy where the
polymer chemical potential is kept constant, see, e.g., Ref. 4
for further details.

We calculated binodals for the PAO model for size ratios
q50.5,1,3,10 and display results in Fig. 3. For comparison
we also show the binodals obtained from free volume theory
for the AO model. Note that this predicts stable liquid–gas
coexistence in the AO model forq.0.32; for smaller values
of q this transition becomes metastable with respect to the
fluid–solid transition.4,5 Within our model both size ratio and
colloid–polymer interaction strength are intimately coupled,
hence by varyingq, the interaction strength isbeCP varies.
For the above sequence ofq values, the colloid–polymer
interaction strength in a theta solvent@given in Eq. ~17!#
takes on the valuesbeCP56,3,1,0.3, and the corresponding
Boltzmann factor varies over a considerable range, namely
exp(2beCP)50.00248,0.0498,0.368,0.741.

For q50.5 @Fig. 3~a!# our binodals for both cases, theta
solvent and good solvent, practically coincide~on the scale
of the plot! with those for the AO model. This is due to the

FIG. 2. Comparison of the free volume fractiona as a function of colloid
packing fractionhC and for size ratioq53 for different models and ap-
proximations: Free volume theory for the AO model~solid line!, present
theory for the penetrable AO model~dotted line!, m-PY PRISM approach
~long-dashed line!.

FIG. 3. Fluid–fluid demixing phase
diagrams as a function of packing
fractions hC and hP of colloids and
polymers, respectively. Shown is the
free volume result for the AO model
with impenetrable polymer, along with
the result of the present theory applied
to the penetrable AO model for the
cases of a theta solvent and a good sol-
vent; the colloid–polymer interaction
strengthbeCP is prescribed by using
Eq. ~17! in the case of the theta sol-
vent and by using Eq.~18! in the case
of the good solvent. Dots represent the
critical point. Different polymer-to-
colloid size ratiosq are shown:q
50.5 (a), 1~b!, 3 ~c!, 10 ~d!.
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fact that the Boltzmann factor for the cross interaction be-
tween colloids and polymers is tiny, hence penetrability is
negligible. We conclude that both model and theory reduce
to the correct limits. Forq51 @Fig. 3~b!# deviations begin to
emerge. The binodal in the PAO cases is shifted upward to
higher ~polymer! fraction, leading to a stabilization of the
mixed phase. Physically this is reasonable because the two
different species repel each other weaker than in the AO case
as the colloidal particles can now penetrate into the noncom-
pact polymer coils. Stabilization of the mixed phase grows
stronger upon increasing size ratio@see Figs. 3~c! and 3~d!
for q53,10#. For q510 significant enhancement of the
mixed phase is predicted. In the limitq→` for a theta sol-
vent, we find that the critical point is athC51/(3q2)
21/(2q3), hP5q/321/2 similarly as in Sear’s recent blob-
scaling extension of the free volume approximation of the
AO model.7

V. CONCLUSIONS

Previous models of colloid–polymer mixtures employed
interactions between polymer and colloid with a hard core,
prohibiting overlap between colloids and polymers. This is a
deficiency of these models, because in real systems, colloids
may penetrate polymer coils, especially if the polymer radius
of gyration is larger than the colloid size. In this work, we
remedied this drawback by introducing a penetrable~finite
for all distances! pair interaction between colloid and poly-
mer. As a model, this was chosen to be a step-function and
we have derived a geometry-based DFT and applied it to
bulk fluid demixing. The free energy density is derived from
the DFT by applying the functional to constant density pro-
files. The resulting analytical expression has a similar struc-
ture as the well-known free volume result.4 However, due to
the penetrability, in the expression for the polymer free vol-
ume the bare colloid packing fractionhC is replaced by a
scaled packing fractionhC8 5@12exp(2beCP)#hC @see Eq.
~21!#, wherebeCP is the strength of colloid–polymer repul-
sion. We determine the latter via virial coefficient arguments
for the cases of a theta and a good solvent. When the size
ratio q.1, i.e., for long polymersbeCP&1, and hencehC8
differs markedly fromhC . As a consequence the free vol-
ume fraction is considerably larger than the classic result for
impenetrable polymer4 and agrees reasonably well with the
result from the microscopic m-PY PRISM approach.8–10 Our
model is still effective in the sense that details on the seg-
ment level of the polymers are ignoreda priori, and thus its
phase boundaries become less reliable for large polymer-to-
colloid size ratios where they shift deep into the semidilute
polymer concentration range. Here, presumably our neglect
of polymer–polymer interactions is not reliable anymore
when applied to experimental systems. Nevertheless the

model’s prediction that, for large polymers, particle penetra-
tion into the polymer coils becomes important compared to
the classical AO picture should prove robust and agrees with
more microscopic approaches8,11 where excluded volume is
taken into account on the segment level. Our model also
captures changes in miscibility resulting from excluded vol-
ume swelling of the polymer coils when varying the solvent
quality, as has been seen experimentally,10 albeit for some-
what different parameters.
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Density functional theory for colloidal rod-sphere mixtures
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We present a density functional theory for a model colloidal mixture of hard spheres and infinitely thin hard
rods. For these freely rotating particles, we use a fundamental measures approach to obtain a functional that
features the correct dimensional crossover and the exact low density limit. For isotropic bulk fluid mixtures, the
free energy, and hence the demixing phase diagram, are identical to that obtained from free volume theory.
Results for the partial pair correlation functions of the bulk mixture are in good agreement with those of our
simulations.

DOI: 10.1103/PhysRevE.63.050201 PACS number~s!: 61.20.Gy, 61.30.Cz, 64.70.Ja, 82.70.Dd

Colloidal mixtures of differently shaped or sized particles
serve as well-defined model systems for the study of a wide
range of phenomena in condensed matter. These include
structural correlations, demixing phase transitions, and freez-
ing. Such systems can be prepared so that they possess pri-
marily hard body pair interactions; hence, entropy plays the
dominant role. Creating binary mixtures by adding a second
component to monodisperse colloidal hard spheres~HS! pro-
vides the work horse in the field. Among the various differ-
ent second components are smaller-sized spherical particles,
leading to binary hard sphere mixtures@1#, globular nonad-
sorbing polymers@2#, and rodlike colloids@3,4# or polymers.
In these situations, the additive is often regarded as an agent
that mediates an effective interaction between the spheres by
means of the depletion mechanism. For rods considerable
recent work was done to reveal the nature of the depletion
@5,6#. The benefit of this approach is the analogy to simple
substances possessing an attractive pair potential. However,
the depletant’s degrees of freedom are no longer accessible,
and, in general, effective many-body interactions between
the spheres occur, which are difficult to treat. Both draw-
backs can be circumvented by treating the full binary mix-
ture, without any explicit integrating-out procedure.

A simple rod-sphere model was introduced by Bolhuis
and Frenkel~BF! @7#. It consists of a mixture of hard spheres
and hard, infinitely thin rods~needles!. The needle volume,
and hence the interaction between needles, vanishes in this
limit. Clearly, this is a gross simplification. However, rod
aspect ratios can be as high as 25 in experiments with silica
coated boehmite rods@4# mixed with silica spheres, and the
rod densities are typically well below the Onsager nematic-
isotropic transition@4#. BF’s model can be thought of as the
simplest in the present context, playing a role similar to the
Asakura-Oosawa~AO! model @2# for the case of spherical
colloids and added polymer. BF’s computer simulations
showed that the model undergoes a demixing transition into
sphere-rich~rod-poor! and sphere-poor~rod-rich! phases.
They also extended Lekkerkerker’s free volume theory@8#
for the AO model to their case. Comparing with simulation
results for the binodals, they found that ‘‘ . . . the accuracy
of the theoretical curves is surprising’’@7#. Subsequently,
finite rod thickness could also be treated@3#. Little attention,
however, has been payed to the model’s bulk structural cor-

relations, to its behavior in inhomogeneous situations, as, for
example, induced by walls, or to the free interface between
demixed phases.

In this work, we present a density-functional theory
~DFT! @9# for the binary needle-sphere mixture that allows us
to study correlations in bulk as well as in arbitrary inhomo-
geneous situations. It is based on Rosenfeld’s fundamental
measures theory@10,11# and Tarazona’s latest extension to
this @12#, ensuring that local packing effects are correctly
included. The free energy of the homogeneous fluid, and
hence, the demixing curve, are the same as in BF’s free
volume theory. Our DFT features the correct virial expan-
sion. In the literature it has been stated by several authors
@11,13,14#, that an impossibility of deconvolution of the
Mayer function forarbitrary convex bodies prohibits this
sort of geometrically based DFT. Here we give an explicit
counterexample; albeit dealing with a model where interac-
tions between rods are absent, we present the first such
theory for freely rotating anisotropic particles. Our func-
tional has the correct dimensional crossover to situations of
reduced spatial dimensionality, an important property that
only recently was achieved for one-component hard spheres
@12#. As an application, we reconsider the phase diagram and
then focus on the bulk pair correlations in the sphere-needle
mixture where we find good agreement between the DFT
results and our computer simulations.

Let us first describe the needle-sphere model. We con-
sider a mixture of hard spheres~speciesS) with radii R, and
infinitely thin needles~speciesN) with lengthL, and number
densitiesrS and rN , respectively. The pair interaction be-
tween spheres isVSS5` if the separation between sphere
centers is less than 2R, and zero otherwise; the pair interac-
tion between a sphere and a needle isVSN5`, if both over-
lap, and zero else; the interaction between needles vanishes
for all separations,VNN50. We denote the sphere diameter
by s52R, and the sphere packing fraction byh
54pR3rS/3. In Fig. 1 a snapshot from computer simulation
~described below! is shown to illustrate the model.

In order to construct the DFT, we start with a geometrical
representation of the particles in terms of weight functions
wm

i , wherei labels the species, andm53,2,1, and 0 corre-
sponds to the particles’ volume, surface, integral mean cur-
vature, and Euler characteristic, respectively@11#. The
weight functions are determined to give the Mayer bonds
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f i j 5exp(Vij)21 by a linear combination of terms
wg

i (r 8)sw32g
j (r 9), where g(r 8)sh(r 9)5*d3x g(x)h(r

2x). For needles, we follow Ref.@11# to obtain

w1
N~r ,V!5 1

4 E
2L/2

L/2

dl d~r1Vl !, ~1!

w0
N~r ,V!5

1

2
@d~r1VL/2!1d~r2VL/2!#, ~2!

whered(r ) is the Dirac distribution,V is a unit vector point-
ing along the needle axis, andr is the spatial coordinate. The
function w1

N describes the linear extent of a needle@15#,
whereasw0

N is characteristic of its endpoints. For infinitely
thin needles, both surface and volume vanish, and so should
the corresponding weights,w2

N5w3
N50. Indeed, as will be

seena posteriori, such terms are not needed to construct the
DFT. For spheres, the usual weight functions@10,12# are

w3
S~r !5u~R2r !, w2

S~r !5d~R2r !, ~3!

wv2
S ~r !5w2

S~r !r /r , ŵm2
S ~r !5w2

S~r !@rr /r 221̂/3#, ~4!

wherer 5ur u, u(r ) is the step function, and1̂ is the identity
matrix. Further, linearly dependent, weights arew1

S(r )
5w2

S(r )/(4pR),wv1
S (r )5wv2

S (r )/(4pR),w0
S(r )5w1

S(r )/R.
The weight functions for spheres have different tensorial
rank: w0

S , w1
S , w2

S , and w3
S are scalars;wv1

S and wv2
S are

vectors; andŵm2
S is a~traceless! matrix. These functions give

the Mayer bond between pairs of spheres@10# through
2 f SS/25w3

S+w0
S1w2

SZ+w1
S2wv2

S +wv1
S . However, they are

not sufficient to recover the sphere-needle Mayer bond@11#.
This is achieved through

w2
SN~r ,V!52uwv2

S ~r !•Vu, ~5!

which contains information aboutbothspecies: it is nonvan-
ishing on the surface of a sphere with radiusR, but this
surface is ‘‘decorated’’ with anV-dependence. Loosely

speaking, w2
SN describes how a sphere looks from the

viewpoint of a rod. Technically, it generates the
Mayer bond through 2 f SN(r ,V)5w3

S(r 8)sw0
N(r 9,V)

1w2
SN(r 8,V)sw1

N(r 9,V), wherer is the difference vector
between sphere and needle position. The weight functions
are used to smooth the possibly highly inhomogeneous den-
sity profiles by convolutions,

nn
N~r ,V!5rN~r 8,V!swn

N~r 9,V!, ~6!

nn
S~r !5rS~r 8!swn

S~r 9!, ~7!

n2
SN~r ,V!5rS~r 8!sw2

SN~r 9,V!, ~8!

whererS(r 8), andrN(r 8,V) are the one-body density distri-
butions of spheres and needles, respectively. Note thatnn

N

and nn
S are ‘‘pure’’ weighted densities, involving only vari-

ables of either species@10,11#. In contrast, ourn2
SN is a con-

volution of the sphere density with an orientation-dependent
weight function; hence, it combines characteristics of both
species.

Finally, the~Helmholtz! excess free energy is obtained by
integrating over a free energy density,

Fexc@rS ,rN#5kBTE d3xE d2V

4p
F~$ng

i %!, ~9!

wherekB is Boltzmann’s constant,T is temperature, and the
~local! reduced free energy densityF is a simple function
~not a functional! of the weighted densitiesng

i . The variable
x runs over space, as usual@10,11#. Here we allowF to
depend on orientation, and hence integrateV over the unit
sphere. The functional form ofF is obtained by consider-
ation of the exact zero-dimensional (0D) excess free energy.
For the present model this is identical to the AO case@17#,
namely, the statistics ofh hard andh8 ideal particles, and is
given by F0D /kBT5(12h2h8)ln(12h)1h @17#. Consid-
ering multicavity distributions @12#, we obtain F5FS
1FSN with

FS52n0
S ln~12n3

S!1~n1
Sn2

S2nv1
S
•nv2

S !/~12n3
S!

1@~n2
S!3/32n2

S~nv2
S !213~nv2

S n̂m2
S nv2

S

23 detn̂m2
S !/2#/@8p~12n3

S!2#, ~10!

which is equal to the pure HS case@10,12#. The contribution
due to the presence of the needles is

FSN52n0
N ln~12n3

S!1
n1

Nn2
SN

12n3
S

, ~11!

where the arguments are suppressed in the notation; see Eqs.
~6!–~8!. This completes the prescription for the functional.

We investigate some of the properties of the homoge-
neous, isotropic bulk mixture. In this case the weighted den-
sities become proportional to the respective bulk densities,
nn

i 5jn
i r i , where the proportionality constants are fundamen-

tal measures given byjn
i 5*d3x wn

i . For spheresj3
S

FIG. 1. Snapshot from simulation of the rod-sphere mixture at
L5s, h50.3, rN58rS ~statepoint II in Fig. 2!. The rods are ren-
dered with a finite diameter of 0.02s.
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54pR3/3,j2
S54pR2,j1

S5R,j0
S51, whereas for needlesj1

N

5L/4,j0
N51, and, there is also a combined fundamental

measurej2
SN54pR2(5j2

S). Then the excess Helmholtz free
energy per volumeV is given byFexc(rS ,rN)/V5 f HS(rS)
2rNkBT ln a(rS), where f HS(rS) is the excess free energy
density of pure hard spheres in the scaled-particle@Percus-
Yevick ~PY! compressibility# approximation anda5(1
2h)exp@2(3/2)(L/s)h/(12h)#, which is identical to that
of Ref. @7#, leading to~sphere! gas-liquid phase separation
@7,18#. As an explanatory case, we chooseL/s51, and dis-
play the gas-liquid portion of the phase diagram as a function
of h andrNL2s in Fig. 2. We find that in this representation
the spinodals for all size ratioss5L/s collapse onto each
other and are given analytically byrN

spinL2s58(1
12h)2/(3ph). The critical point moves along this curve as
a function ofs ~see Fig. 2 fors50,1,2,4, and 8! and is given
by @7# hcrit5(1013s23A4112s1s2)/(16212s). The
Fisher-Widom line@19# divides the phase diagram into re-
gions of different asymptotic decay of the free bulk pair cor-
relations. Here the decay is damped oscillatory for small
needle densities, where the packing of spheres dominates. It
becomes monotonic upon increasing needle density; the ide-
ality between needles washes out the oscillations. In the inset
of Fig. 2 the dependence on the actual needle density in the
system is replaced by that in a needle reservoir, in chemical
equilibrium with the system, which is given here byrN

r

5arN . The reservoir density plays a role similar to that of
inverse temperature in simple systems, and the topology of
the phase diagram resembles that of a simple substance. De-
mixing is preempted by freezing fors&0.3, as shown by BF.
However, if we trace the critical point inside the metastable

region, we find that it smoothly approachesh51/4, rNL2s
524/p, rN

r L2s532/p for s→0. This is in contrast to free
volume theory for the AO model, where demixing is pre-
empted by freezing at a similar size ratio@16#, but with the
~metastable! critical point shifting to high density, thereby
crossing hard sphere fluid-solid coexistence. Whether this
difference has implications for the existence of an isostruc-
tural solid-solid transition in the present model constitutes an
interesting aspect.

Next we investigate the bulk pair structure. The pair direct
correlation functions are obtained as ci j 5
2(kBT)21d2Fexc/dr idr j . Due to their geometric represen-
tation as convolutions of single particle functions, theci j
vanish beyond the range of interaction, similar to what is
found in PY. The Ornstein-Zernike~OZ! relations then yield
partial structure factors and pair correlation functions. In or-

FIG. 3. Pair structure for spheres as obtained from DFT at
L/s51, h50.3, rN50 ~statepoint I! andrN54.58 366/L2s ~state-
point II!. ~a! Partial sphere-sphere pair correlation function com-
pared to MC simulation. Results for statepoint I are shifted upwards
by one unit for clarity. The inset shows the DFT result inside the
core for statepoint II.~b! Corresponding partial structure factor at
statepoints I and II, as well as at the gas-liquid critical point.

FIG. 2. Phase diagram of the rod-sphere mixture as a function of
sphere densityh and scaled needle densityrNL2s. Shown is the
universal spinodal~dashed line!. For L/s51 the binodal~thick
line!, tie lines~thin straight lines!, Fisher-Widom line~dotted line!,
and statepoints I and II~crosses! are indicated. Circles represent the
critical points forL/s50,1,2,4, and 8. The thin line is the meta-
stable binodal forL/s50. Inset shows corresponding plots as a
function of needle reservoir densityrN

r L2s. Note that there are now
separate spinodals~dashed lines!.
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der to test the accuracy of the theoretical results, we have
carried out canonical Monte Carlo~MC! computer simula-
tions with 256 spheres and up to 2048 needles; for the pair
correlations, 105 moves per particle were performed. Here
we focus on the correlationsgSS(r ) between spheres. Figure
3~a! shows results forL/s51, h50.3, and two different
needle densities,rN50 ~statepoint I, depicted in the phase
diagram Fig. 2!, andrN58rS54.58 366/L2s ~statepoint II!.
In the absence of needles~statepoint I! the DFT result repro-
duces the rather accurate PY solution for hard spheres. In-
creasing the needle density~statepoint II, where the snap-
shot, Fig. 1, is taken! leads to an increase of the contact
value; the period of oscillations becomes shorter, hence the
spheres tend to be at smaller separation. The DFT provides a
good description of the MC results, except for an underesti-
mation of the contact value and nonzero values inside the
core. This could be remedied by using the test-particle limit,
i.e. minimizing the grand potential in the presence of a
sphere fixed at the origin. The corresponding structure fac-
tors SSS(k) are shown in Fig. 3~b!. Adding needles~state-
point II! leads to a small shift towards largerk-values, as
well as to an increase inSSS(0). In addition, we plotSSS(k)
at the critical point obtained from the free energy;SSS(k
→0) divergesconsistently.

Let us conclude with two remarks. First, in view of the
successful treatment of the bulk, the present theory offers
direct access to a wide range of interesting interfacial and
confined situations, such as wetting, layering transitions, and
capillary condensation, as well as the study of the free inter-
face between demixed fluid phases. Especially appealing is
the perspective to investigate the degree of universality of
the entropic wetting scenario in the AO model@20#, found
recently by a similar DFT treatment@17#. For the current
model, interesting orientational behavior of the rods may be
anticipated: For example, at the free~gas-liquid! interface
between demixed phases, the rod orientations will in general
show a tendency to order, although the distributions are iso-
tropic in both bulk phases. Second, the crucial extensions of
geometry-based DFT done in this work are the integration
over director space@Eq. ~9!#, and the introduction of double-
indexed weight functions@Eq. ~5!#. Whether these technical
tools permit the treatment of other rotating hard bodies con-
stitutes an important point for future investigations.

I thank Bob Evans and Holger Harreis for valuable re-
marks, and Gerrit Vliegenthart and Arjun Yodh for stimulat-
ing discussions.
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Using a geometry-based density functional theory we investigate the free interface between demixed bulk
fluid phases of a colloidal mixture of hard spheres and vanishingly thin needles. Results are presented for the
spatial and orientational density distributions of the particles, as well as for the interface tension. Density
profiles display oscillations on the sphere-rich side of the interface provided the sphere liquid phase is on the
oscillatory side of the Fisher-Widom line in the bulk phase diagram. Needles tend to align parallel~perpen-
dicular! to the interface on the needle-rich~sphere-rich! side displaying biaxial~uniaxial! order. Furthermore,
we generalize the theory to the Onsager limit for interacting rods, and give explicit expressions for the
functional in simple geometries.
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I. INTRODUCTION

Mixtures of spherical and rodlike particles provide soft
matter systems that display astonishingly rich phase behavior
@1#. When a second component is added as a depletant agent
to a suspension of colloidal spheres, the spheres may exhibit
colloidal vapor, liquid, and crystalline phases. Rodlike de-
pletants alone, however, already have rich liquid-crystalline
phase behavior. The possible combinations of both types of
ordering are vast. Experimental examples of rod-sphere mix-
tures are dispersions of silica spheres and silica coated bohe-
mite rods@2,3#, silica beads immersed in suspensions of rod-
like f d bacteriophage virus@4#, and, in the biological
domain, microtubules inside vesicles modeling the eukary-
otic cell @5,6#. Experimental work has also been devoted to
self-diffusion and sedimentation of spheres in dispersions of
rods@7#. Depletion-induced crystallization was found in mix-
tures of colloidal silica spheres and colloidal silica rods with
light microscopy and confocal scanning laser microscopy
@3#. Fluid-fluid phase separation was observed experimen-
tally in a mixture of silica spheres and semiflexible poly-
meric rods@poly~g-benzyl-a,L-glutamate! ~PBLG! with mo-
lecular weight 105 000# @8#. The free interface between
demixed fluid phases is one topic that we address in the
present work.

As a simple theoretical model of a rod-sphere mixture
Bolhuis and Frenkel proposed a binary system of hard
spheres and vanishingly thin hard needles@9#. Due to the
vanishing needle thickness, and hence the absence of inter-
actions between needles, this system does not display liquid
crystalline order, but exhibits~sphere! vapor, liquid, and
solid states, as was found in Ref.@9# with simulation and a
perturbation theory. The theory is similar to the free volume
treatment of the Asakura-Oosawa~AO! model@10,11# of col-
loidal spheres and noninteracting polymer spheres by Lek-
kerkerkeret al. @12#. The depletion potential exerted on a
pair of spheres due to the presence of the rods was studied
theoretically@13#, and experimentally using optical tweezers
@4#. Considerable work was done to understand the nature of

the depletion force due to rod-like polymers in the Onsager
limit @14#, and the interactions between flat plates and be-
tween two large spheres via the Derjaguin approximation
@15#. Theoretical phase behavior of mixtures of spheres and
rods with finite diameter were studied in Ref.@2# and com-
pared to experiment@3#, and in a mixture of parallel hard
spherocylinders and hard spheres layered phases were inves-
tigated@16#.

Density-functional theory~DFT! @17,18# is a powerful
tool to study equilibrium properties of inhomogeneous
many-particle systems. For realistic systems, one usually has
to rely on approximations for the central quantity of DFT, the
excess free energy functional. One particularly successful ex-
ample of such an approximation is Rosenfeld’s density func-
tional for hard sphere~HS! fluids @19#, that also describes the
HS solid @20–23#. An early extension of this theory to treat
hard convex bodies was proposed@24#, and used to derive
bulk direct correlation functions for molecular fluids@25#,
two-dimensional anisotropic fluids@26#, and hard sphere
chain fluids@27#. The theory of Ref.@24# suffered from an
incomplete deconvolution of the Mayer bond leading to an
incorrect virial expansion, and an extension to remedy this
deficiency was made for the model of hard spheres and hard,
vanishingly thin needles@28#. Subsequently, this was also
generalized to a hard body amphiphilic mixture@29# and to
mixtures of colloidal spheres, rods and polymer spheres@30#.
Recently, the entropic torque exerted on a single spherocyl-
inder immersed in a hard sphere fluid at a hard wall was
calculated with a similar approach@31#.

In contrast to the case of simple fluids, interfaces in such
complex systems are genuinely characterized by positional
and orientational order. Interfaces between phases with dif-
ferent liquid crystalline ordering, like isotropic-nematic in-
terfaces, have attracted considerable interest, see Ref.@32#
for a recent study of the hard-rod fluid. In this work, we
investigate the free interface between demixed~isotropic!
fluid phases in a rod-sphere mixture, an issue that has not
been addressed so far. We use the simplest nontrivial model
in the context, namely, Bolhuis and Frenkel’s mixture of hard
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spheres and vanishingly thin needles, and investigate it by
means of the geometry-based DFT proposed earlier@28#. As
this theory reproduces the bulk fluid free energy and hence
the accurate fluid demixing binodal of perturbation theory
@9#, and was also shown to yield bulk~sphere! pair correla-
tion functions in good agreement with computer simulation
results@28#, we are confident to apply it to inhomogeneous
situations. We find that, driven by packing effects of the
spheres, orientational order of the needles occurs at the free
fluid-fluid interface, and that the density profiles are oscilla-
tory provided the sphere-rich fluid is on the oscillatory side
of the Fisher-Widom line in the bulk phase diagram@33–36#.
The interface tension is found to be of the order of the ther-
mal energy per molecular area, and we investigate its scaling
with needle length and sphere diameter in detail. Further-
more, we extend the DFT to the case of nonvanishing rod-
rod interactions in the Onsager limit and give explicit expres-
sions for the functional in simple geometries.

Similar interface studies using density-functional ap-
proaches were recently carried out@37,38# for the AO model
@10,11# of colloid-polymer mixtures. Our present model,
however, allows us to go beyond those studies through the
investigation of orientational order at the interface. Clearly,
such ordering is absent in the AO model of spherical bodies.

The paper is organized as follows. In Sec. II we define in
more detail the hard sphere-needle mixture for vanishingly
thin needles as well as for needles in the Onsager limit. Then
we present our DFT approach in Sec. III, generalize it to the
Onsager limit and give explicit expressions for the relevant
quantities in simple geometries. In Sec. IV, after revisiting
the bulk fluid phase behavior, we present results for density
and order parameter profiles across the free interface be-
tween demixed phases, as well as for the interface tension.
We finish with concluding remarks in Sec. V.

II. MODEL

We consider a mixture of hard spheres~speciesS) with
radii R and straight hard needles~speciesN) with length L
and diameterD, see Fig. 1 for a sketch. The spheres interact
with a hard core potentialVSS(r ) as a function of their center
separation distancer, which is given byVSS(r )5` if r
,2R and zero otherwise. Spheres and needles interact with a
hard body interaction that depends, due to the particle

shapes, on the difference vectorr between sphere and needle
center, as well as on the needle orientation given by a unit
vector V pointing along the needle shape.~Hence the
needles possess an inflection symmetry,V→2V.! The
sphere-needle interaction is given byVSN(r ,V)5` if both
shapes overlap, and zero otherwise. In the following, we con-
sider two cases of interactions between needles.

In the first, simpler, case we setD50. Then the needles
are noninteracting andVNN50, for all possible distances and
orientations. Although these ‘‘line’’ particles would nontrivi-
ally collide in a dynamical description, their excluded vol-
ume vanishes due to the vanishing particle volume. Hence,
configurations of overlapping needles carry vanishing statis-
tical weight. As we are interested in static quantities only, the
needles can be regarded as an ideal gas of rotators, solely due
to their geometrical properties. As an aside, no such scaling
holds in the somewhat similar AO model of hard sphere
colloids and ideal~polymer! spheres. There the interactions
between the particles of the second component are regarded
as being ideal from the outset.

In our second case, the needles are treated in the Onsager
limit @39#, where for thin rods a residual excluded volume
persists, leading to nontrivial interaction already in the pure
needle system. Again, the pair potential is that of hard bodies
and is given, for the difference vectorr between the centers
of two needles with orientationsV and V8, as
VNN(r ,V,V8)5` if both rods overlap, and zero otherwise.
Note that the Onsager limit is obtained by lettingL/D→`
while keeping the combinationrNDL2 constant, whererN is
the number density of needles. Here we furthermore restrict
ourselves to size ratios that fulfillLD!R2, hence the sphere
surface is assumed to be large compared to the needle sur-
face. This additional restriction is similar in spirit to the On-
sager limit for pure needles and constitutes the simplest scal-
ing regime of the three lengthsR,L,D. Note that due to the
large aspect ratio, there is no need to specify the precise
shape of the needle ends, whether, e.g., hemispherical or cy-
lindrical.

We denote the number densities of spheres and needles by
rS(r ) and rN(r ,V), respectively. As bulk thermodynamic
parameters, we use the packing fraction of spheresh
54pR3rS/3 and the scaled needle densityr* 5rNL2s,
wheres52R denotes the sphere diameter. Furthermore, we
denote the density in a reservoir of pure needles that is in
chemical equilibrium with the system asrN

r and use a scaled
versionr

*
r 5rN

r L2s. The ratio of needle length and sphere
diameter,L/s, and, in our second model, the ratio of needle
diameter and length,D/L, are control parameters. As only
hard core interactions are present, temperatureT is an irrel-
evant variable that only sets the energy scale throughkBT,
wherekB is Boltzmann’s constant.

III. DENSITY FUNCTIONAL THEORY

A. Spheres and vanishingly thin needles

In this section, we review briefly the DFT proposed in
Ref. @28#. The starting point is a geometrical representation
of the particles in terms of weight functionswm

i , where i

FIG. 1. Model of hard spheres with diameters52R and
needles with lengthL. In planar geometry, thez direction is perpen-
dicular to the interface between needle-rich (z,0) and sphere-rich
(z.0) phases. The needle orientation is denoted byV, and the
angle betweenV and thez axis isu.
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labels the species, andm53,2,1,0 corresponds to the par-
ticles’ volume, surface, integral mean curvature, and Euler
characteristic, respectively@24#. The weight functions are de-
termined to give the Mayer bondsf i j 5exp(2bVij)21, where
b51/kBT, by a linear combination of termswg

i (r )* w32g
j (r ),

where the asterisk denotes the spatial convolution,
g(r )* h(r )5*d3xg(x)h(r2x). For needles, following Ref.
@24# yields

w1
N~r ,V!5

1

4E2L/2

L/2

dld~r1Vl !, ~1!

w0
N~r ,V!5

1

2
@d~r1VL/2!1d~r2VL/2!#, ~2!

where d(x) is the Dirac distribution. The functionw1
N de-

scribes the linear shape of a needle, whereasw0
N is only

nonvanishing at the needle endpoints.
For spheres the weight functions@19,23# are

w3
S~r !5Q~R2r !, w2

S~r !5d~R2r !, ~3!

wv2
S ~r !5w2

S~r !r /r , ŵm2
S ~r !5w2

S~r !@rr /r 221̂/3#, ~4!

wherer 5ur u, Q(x) is the step function,1̂ is the 333 iden-
tity matrix, andrr is a dyadic product. Further, linearly de-
pendent, weights are w1

S(r )5w2
S(r )/(4pR),wv1

S (r )
5wv2

S (r )/(4pR),w0
S(r )5w1

S(r )/R. The weight functions for
spheres have different tensorial rank:w0

S , w1
S , w2

S , w3
S are

scalars;wv1
S , wv2

S are vectors;ŵm2
S is a ~traceless! second-

rank tensor. The Mayer bond between pairs of spheres is
obtained through2 f SS/25w3

S* w0
S1w2

S* w1
S2wv2

S * wv1
S @19#.

In order to recover the sphere-needle Mayer bond one uses
@28#

w2
SN~r ,V!52uwv2

S ~r !•Vu, ~5!

which contains information about both species: it is nonvan-
ishing on the surface of a sphere with radiusR, but also
posseses~needle! orientation dependence. This function al-
lows us to generate the Mayer bond through2 f SN(r ,V)
5w3

S(r )* w0
N(r ,V)1w2

SN(r ,V)* w1
N(r ,V), see Appendix

A 1 for an explicit calculation. All weight functions are used
to obtain weighted densitiesnn

i by smoothing the actual den-
sity profiles through spatial convolutions,

nn
N~r ,V!5rN~r ,V!* wn

N~r ,V!, n51,0, ~6!

nn
S~r !5rS~r !* wn

S~r !, n53,2,1,0,v2,v1,m2, ~7!

n2
SN~r ,V!5rS~r !* w2

SN~r ,V!. ~8!

Note thatnn
N andnn

S are ‘‘pure’’ weighted densities, involving
only variables of either species@19,23,24#. The functionn2

SN

is obtained as a convolution of the sphere density with an
orientation-dependent weight function; hence it combines
characteristics of both species and couples the orientational
degrees of freedom of the needles to the sphere distribution.

The ~Helmholtz! excess free energy is obtained by inte-
grating over a free energy density,

Fexc@rS ,rN#5kBTE d3r E d2V

4p
F~$nn

i %!, ~9!

where the reduced free energy densityF is a simple function
~not a functional! of the weighted densitiesnn

i . The variable
r runs over space, and asF depends also on orientation,V
runs over the unit sphere. The functional form ofF is ob-
tained by consideration of the exact zero-dimensional excess
free energy@28#, and is given by

F5FS1FSN, ~10!

FS52n0
Sln~12n3

S!1~n1
S n2

S2nv1
S
•nv2

S !/~12n3
S!

1@~n2
S!3/32n2

S~nv2
S !213~nv2

S n̂m2
S nv2

S

2 3detn̂m2
S !/2#/@8p~12n3

S!2#, ~11!

FSN52n0
Nln~12n3

S!1
n1

Nn2
SN

12n3
S

. ~12!

The contributionFS is equal to the pure HS case@19,23#,
and FSN arises from needle-sphere interactions@28#. The
arguments of the weighted densities are suppressed in the
notation in Eqs.~11, 12!; see Eqs.~6–8! for the explicit
dependence. This completes the prescription for the excess
free energy functional for the case of vanishingly thin
needles. For completeness, the ideal free energy is

F id@rS ,rN#5E d3rrS~r !$ ln@rS~r !LS
3#21%

1E d3r E d2V

4p
rN~r ,V!

3$ ln@rN~r ,V!LN
3 #21%, ~13!

whereL i is the ~irrelevant! thermal wavelength of species
i 5S,N.

B. Spheres and rods in the Onsager limit

In order to deal with rod-rod interactions, we first express
the Mayer bond between rods in the Onsager limit through
f NN(r ,V,V8)/252w2

NN(r ,V;V8)* w1
N(r ,V8), wherew1

N is
defined in Eq.~1!, and we introduce

w2
NN~r ,V;V8!516DA12~V•V8!2w1

N~r ,V!. ~14!

As a geometrical interpretation, the functionw2
NN describes

the residual rod surface in the limit of large aspect ratio, see
Appendix A 2 for details how the Mayer bond is obtained.
We construct an associated weighted density

n2
NN~r ,V8!5E d2V

4p
rN~r ,V!* w2

NN~r ,V;V8!, ~15!
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where, besides the spatial convolution, an angular convolu-
tion is required. This turns out to be necessary for the present
case of interacting anisotropic particles. As an aside, we can
immediately reformulate the Onsager excess free energy
functional for a pure system of rods, being precisely a second
order virial expansion, by settingF5FNN in Eq. ~9!, with

FNN5n1
Nn2

NN, ~16!

where the weighted densityn1
N is given through Eqs.~6! and

~1!.
For the case of the actual sphere-rod mixture, we insert

F5FS1FSN1FSNN into Eq.~9!, where the first two terms
are equal to the case of vanishingly thin needles and are
given by Eqs.~11! and~12!, respectively. The additional con-
tribution due to interactions between rods is found to be

FSNN5
n1

Nn2
NN

12n3
S

, ~17!

where~as before! the arguments of the weighted densities are
suppressed in the notation. This completes the extension of
the needle-sphere DFT to interacting rods.

C. Planar geometry

In order to facilitate the application of the theory to situ-
ations like the free interface considered below in Secs. IV B,
IV C and to planar wall problems, we give explicit expres-
sions for the weight functions in situations depending on a
single spatial coordinatez and possessing translational in-
variance in thex and y directions, wherer5(x,y,z) is a
Cartesian coordinate system. Additionally, we assume invari-
ance with respect to rotations around thez axis by an angle
w. The remaining relevant angleu is that between an orien-
tationV and thez axis, see Fig. 1. HencerS(r )5rS(z), and
rN(r ,V)5rN(z,u). ConsideringuP@0,p/2# is sufficient,
due to the inflection symmetry of the needles. In thisplanar
geometrythe weighted densities, Eqs.~6!–~8! and ~15!, can
be expressed as

nn
N~z,u!5E dz8rN~z8,u!wn

N~z2z8,u!, ~18!

nn
S~z!5E dz8rS~z8!wn

S~z2z8!, ~19!

n2
SN~z,u!5E dz8rS~z8!w2

SN~z2z8,u!, ~20!

n2
NN~z,u!5E dz8E

0

p

du8rN~z8,u8!w2
NN~z2z8,u8;u!,

~21!

where the effective weight functionswn
N(z,u), wn

S(z),
w2

SN(z,u) are obtained by carrying out the integrations in
Eqs.~6!–~8! and~15! over coordinatesx,y, see Appendix B
for the details. Explicitly, for the needles one obtains

w1
N~z,u!5~4 cosu!21QS L

2
cosu2uzu D , ~22!

w0
N~z,u!5

1

2
dS L

2
cosu2uzu D . ~23!

For the spheres

w3
S~z!5p~R22z2!Q~R2uzu!, ~24!

w2
S~z!52pRQ~R2uzu!, ~25!

wv2
S ~z!52pzQ~R2uzu!ez , ~26!

ŵm2
S ~z!5pS z2

R
2

R

3 DQ~R2uzu!diag~21,21,2!, ~27!

where ez is the unit vector pointing along thez axis and
diag(•) denotes a 333 diagonal matrix. The linearly depen-
dent weight functions arew1

S(z)5Q(R2uzu)/2, w0
S(z)

5Q(R2uzu)/(2R), wv1
S (z)5zQ(R2uzu)ez /(2R). The

mixed weight function is obtained as

w2
SN~z,u!55

8AR2sin2u2z2

18z cosu

3arcsinS z cot~u!

AR22z2D if uzu,R sinu,

4puzucosu if R sinu<uzu<R,

0 otherwise.
~28!

For the case of nonvanishing rod-rod interactions~Sec.
III B !, the additional weight function can be obtained up to a
quadrature as

w2
NN~z,u;u8!5

D tanu

p
QS L cosu

2
2uzu D E

0

2p

dw

3A12~sinu8sinu cosw1cosu8cosu!2.

~29!

This fully specifies the DFT in planar geometry. We note that
the tensorial weight function, Eq.~27!, is included for rea-
sons of completeness. Albeit being crucial for a reliable de-
scription of the solid@23#, it is known to yield a small con-
tribution to the free energy in planar geometry, and may be
neglected to a good approximation. Below in Sec. IV we will
adopt this strategy.

D. Spherical geometry

Here we focus on situations that only depend on the dis-
tance to the origin,r, and that remain invariant under rota-
tions around the origin. This is realized, e.g., in the important
test-particle limit that allows us to obtain pair distribution
functions by minimizing the functional in the presence of a
test sphere fixed at the origin. In spherical geometry, only the
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angleu between needle orientationV and positionr remains
relevant, andrS(r )5rS(r ), andrN(r ,V)5rN(r ,u). Again,
we can restrict to 0<u<p/2. The pure weighted densities,
Eqs.~6!–~8! can be expressed as

nn
N~r ,u!5E

0

`

dr8rN~r 8,u!wn
N~r ,r 8,u!, ~30!

nn
S~r !5E

0

`

dr8rS~r 8!wn
S~r ,r 8!, ~31!

where the reduced weight functions are

w1
N~r ,r 8,u!5

r 8

4Ar 822r 2sin2u

3(
6

QS L

2
2ur cosu6Ar 822r 2sin2uu D ,

~32!

w0
N~r ,r 8,u!5

1

2 (
6

dS r 82AS r 6
L

2
cosu D 2

1
L2

4
sin2u D ,

~33!

w3
S~r ,r 8!5

pr 8

r
@R22~r 2r 8!2#Q~R2ur 2r 8u!, ~34!

w2
S~r ,r 8!5

2pRr8

r
@Q~R2ur 2r 8u!2Q~R2r 2r 8!#,

~35!

wv2
S ~r ,r 8!5

R21r 22r 82

2Rr
w2

S~r ,r 8!
r

r
, ~36!

ŵm2
S ~r ,r 8!5

1

2 F S R21r 22r 82

2Rr D 2

2
1

3Gw2
S~r ,r 8!S 3

rr

r 2
21̂D .

~37!

In Eqs. ~36!, ~37! only the dependence on the scalar argu-
ment r is important; the dependence onr /r is trivial due to
the structure ofF, Eq. ~11!. The linearly dependent weight
functions arew1

S(r ,r 8)5r 8/(2r )@Q(R2ur 2r 8u)2Q(R2r
2r 8)#, wv1

S (r ,r 8)5(r 22r 821R2)/(2Rr)w1
S(r ,r 8),

w0
S(r ,r 8)5r 8/(2Rr)@Q(R2ur 2r 8u)2Q(R2r 2r 8)#. The

mixed weight function is

w2
SN~r ,r 8,u!55

8r 8

r FAr 82(12u2)2R2cos2u

1(r 2r 8u)cos(u)

3arcsinS (r 2r 8u)cotu

r 8A12u2 D G
if ur 2r 8uu,r 8A12u2tanu,

4p(r 8/r )ur 2r 8uucosu if ur 2r 8uu>r 8A12u2tanu,
0 if uuu>1,

~38!

where u5(r 821r 22R2)/(2rr 8). For the remaining needle
weightw2

NN we could not obtain simple analytic expressions;
a full numerical calculation is required to obtainn2

NN .
We note that for a test-particle limit calculation, where a

hard sphere is fixed at the origin, the above expression can
be simplified, as the density distributions vanish inside the
test particle. This allows us to omit the second step function
in Eq. ~35! and rewrite the convolution kernels for spheres as
a function of the differencer 2r 8 only. The expressions
given above are completely general, hence apply also to
cases of nonvanishing densities in the immediate vicinity of
the origin.

IV. RESULTS

A. Bulk phase diagram

As a prerequisite for our interface study, we reconsider
the bulk fluid demixing phase diagram of hard spheres and

vanishingly thin needles. Within our approach, this is ob-
tained from the bulk Helmholtz free energy, which in turn is
obtained by applying the density functional~outlined in Sec.
III A ! to constant density fields of spheres and needles. Then,
the weighted densities become proportional to the respective
bulk densities,nn

i 5jn
i r i , where the proportionality constants

are fundamental measures given byjn
i 5*d3xwn

i . For
spheresj3

S54pR3/3,j2
S5j2

SN54pR2,j1
S5R,j0

S51, whereas
for needlesj1

N5L/4,j0
N51. Then the excess Helmholtz free

energy per volumeV is given byFexc(rS ,rN)/V5fHS(rS)
2rNkBTln a(rS), wherefHS(rS) is the excess free energy
density of pure hard spheres in the scaled-particle~and
Percus-Yevick compressibility! approximation anda5(1
2h)exp@2(3/2)(L/s)h/(12h)#. This expression for the
free energy is identical to the result from the perturbation
theory of Bolhuis and Frenkel@9#. We note that this is also
equivalent to a straightforward application of scaled-particle
theory for nonspherical bodies@40# to the current model.
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From the free energy all thermodynamic quantities can be
calculated, and equating the total pressure and the chemical
potentials of both species in both phases yields the coexisting
densities. The resulting binodal was found to be in remark-
able agreement with simulation results@9#.

Here we consider the case of equal sphere diameter and
needle length,s5L, where fluid-fluid phase separation is
stable with respect to freezing@9# and display the phase dia-
gram in system representation~as a function ofh andr* ) in
Fig. 2. Shown is the binodal for coexisting states, where a
sphere-rich and needle-poor fluid~sphere liquid! coexists
with a sphere-poor and needle-rich fluid~sphere gas!. For
low densities, the density discontinuity vanishes at a critical
point. We also display the Fisher-Widom~FW! line, which
separates regimes in the phase diagram where the ultimate
decay of pair correlation functions~and inhomogeneous one-
body density profiles! at large separation is either damped
oscillatory or monotonic@33–36#. The FW line was calcu-
lated for the present model in Ref.@28# by considering the
poles of the partial structure factors in the plane of complex
wave vectors@34,35#. Furthermore, we display four tielines
between coexisting fluid states. These belong to reservoir
densities of needlesr

*
r 516,18,20,22, and indicate the states

where we will carry out detailed structural studies below.
Tielines are horizontal in the phase diagram in needle reser-
voir representation~as a function ofh andr

*
r ), see the inset

in Fig. 2. The smallest reservoir density,r
*
r 516, is close to

the critical point ~which is located ath50.15 767, r*
59.3141,r

*
r 514.642). Forr

*
r 516 the liquid density is lo-

cated well on the monotonic side of the FW line, hence we
expect one-body interface profiles to decay monotonically
into both bulk phases. The set of the three higher reservoir
densities (r

*
r 518,20,22) covers the region up to the triple

point, which was located with perturbation theory atr
*
r

'24 @9#. For these states we expect damped oscillatory pro-
files on the sphere-rich side of the interface.

Before turning to the fluid-fluid interface, we summarize
the bulk properties of spheres and rods in the Onsager limit
in bulk given in Sec. III B. In an isotropic state, we find that
n2

NN5jn
NNrN , wherejn

NN5pLD equals the leading contri-
bution to the surface of a rod in the limitL/D→`. It follows
that the additional contribution to the free energy density due
to rod-rod interactions is (p/4) rN

2 L2D/(12h), which is
identical to the result from scaled-particle theory@40#. We
leave a more detailed investigation of the phase behavior to
possible future work.

B. Structure of the fluid-fluid interface

Here and in the following we restrict ourselves to the
simple case of spheres mixed with vanishingly thin needles,
and aim at an understanding of the free interface between
demixed fluid states, see Fig. 1 for a schematic sketch of the
following situation: Two demixed bulk fluids are in equilib-
rium in contact; the coordinate perpendicular to their~planar!
interface is denoted byz, and the sphere-poor~-rich! phase is
present for negative~positive! z values. The coordinate ori-
gin ~in z) is set to the position of the Gibbs dividing surface,
hence the z-coordinate fulfills *2`

0 dz@rS(z)2rS(2`)#
1*0

`dz@rS(z)2rS(`)#50. Note that as we deal with iso-
tropic states forz→6`, the planar geometry considered in
Sec. III C applies.

The numerical minimization of the density functional of
Sec. III A is done by an iteration technique, see, e.g.,@41#.
We discretizerS(z) andrN(z,u) in z direction with a reso-
lution of 0.01s, and we find that angular discretization in
20–50 steps is sufficient to get reliable results for density
profiles. For the calculation of interface tensions between
demixed fluids~Sec. IV C!, we use 120 steps. Note that
when, say, 20 needle orientations are considered, we are
dealing in effect~due to the additional sphere profile! with a
21 component mixture.

We chose the size ratios/L51 for our interface study.
This is of the same order as realized in the experiments@8#
with silica spheres of 78 nm diameter and polymer rods
~PBLG! with L570 nm. However, we disregard effects aris-
ing from rod flexibility and finite rod thickness and hence
consider onlyD50 ~note thatD51.6 nm for the polymer in
@8#!. We first turn to the sphere density profiles,rS(z), dis-
played in Fig. 3 as a function of the scaled distancez/s for
scaled needle reservoir densitiesr

*
r 516,18,20,22. These

statepoints are indicated by tielines in Fig. 2. The asymptotic
densities forz→6` in Fig. 3 correspond~up to the factor
p/6) to the sphere packing fractions at both ends of the
tielines. With increasingr

*
r , and hence increasing distance

to the critical point, the interface becomes sharper, i.e., it
crosses over from one to the other limiting~bulk! value over
a shorter distance. For the highest needle reservoir density
considered,r* 522, clear oscillations emerge on the liquid
side of the interface, see the inset in Fig. 3. The amplitude of
the oscillations, however, is considerably smaller than that
typically found at interfaces in the AO model~where the

FIG. 2. Fluid-fluid demixing phase diagram of the mixture of
hard spheres and vanishingly thin needles with size ratioL/s51
obtained from DFT. Shown are the binodal~solid line! and the
Fisher-Widom line~dashed! dividing states where the ultimate de-
cay of correlation functions is either monotonic or damped oscilla-
tory. Tielines ~short-dashed! between coexisting states are shown
for r

*
r 516,18,20,22. The main plot uses system representation with

h andr* ; the inset is in reservoir representation withh andr
*
r .
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depletants are ideal spheres rather than needles! @37#. From
the general theory of asymptotic decay of correlation func-
tions @34,35#, we expect that all statepoints where the liquid
density is inside the oscillatory region of the phase diagram
~separated by the FW line! will display similar behavior, and
indeed we find oscillations on the liquid side of the interface
also for r

*
r 518, 20. The liquid state at densityr

*
r 516 is

inside the monotonic region, and no oscillations emerge
upon magnifying the corresponding density profile in Fig. 3.

In the present geometry, the needle density profile de-
pends on two variables, namely, the perpendicular distancez
from the interface and the angleu of needle orientation and
interface normal. The DFT yieldsrN(z,u) fully dependent
on both variables. In order to demonstrate this, we chose
r
*
r 522 as an example and display in Fig. 4r* (z,u)sinu as

a function ofz/s. The factor sinu is the spherical volume
element, hence the density distribution at a given angleu is
weighted according to the actual probability thatu is at-
tained. This weight is maximal foru5p/2 ~parallel to the
interface! and vanishes foru50 ~perpendicular to the inter-
face!. In order to graphically represent the density profile, we
display a set of curves parametrized byu; each curve then
depends on the single variablez, see Fig. 4. As expected, the
needles show a clear tendency to aggregate on the sphere-
poor side of the interface. In order to assess the orientational
distribution we also plot the barer* (z,u) in the inset of Fig.
4. We observe that for fixedz on the needle-rich side of the
profiles the density increases with increasingu. This means
that large angles are favored, hence the needles tend to ar-
range parallel to the surface, corresponding to biaxial order.
On the needle rich side of the interface, however, the oppo-
site trend is manifest. Upon increasingu at fixedz the den-
sity decreases. Hence small angles are more favorable;
needles arrange perpendicular to the interface displaying
uniaxial order.

In order to investigate the needle behavior in more detail,
we obtain two characteristic distributions from the full
needle density profiler* (z,u). One is the orientation aver-
aged needle density profile, defined as

r̄N~z!5E d2V

4p
rN~r ,V!, ~39!

5
1

2E0

p/2

du sin~u!rN~z,u!, ~40!

which measures the density of needle midpoints regardless
of their orientation. The other is an orientational order pa-
rameter profile defined as

^P2~cosu!&5 r̄N~z!21E d2V

4p
rN~r ,V!P2~cosu!, ~41!

5@2r̄N~z!#21E du sin~u!rN~z,u!P2~cosu!,

~42!

where P2(x)5(3x221)/2 is the second Legendre polyno-
mial. Negative values of̂P2(cosu)& indicate biaxial order-
ing, the extreme value being21/2 for full parallel alignment
to the interface~needles withu5p/2 lying in a plane!. Posi-
tive values^P2(cosu)& indicate uniaxial ordering, the ex-
treme value~unity! is attained for perpendicular alignment to
the interface (u50). Finally,^P2(cosu)&50 indicates isotro-
pic states. Note that this order parameter has the same inflec-
tion symmetry as the needles.

In Fig. 5 we showr̄N(z) for the four statepoints consid-
ered. A crossover from high values for negativez to low
values for positivez is manifest; hence, as observed before,
the needles are depleted in the space occupied by the col-
loids. The inset in Fig. 5 shows a magnified view of the
profile for r

*
r 522 on the sphere-rich side of the interface.

FIG. 3. Scaled sphere density profiless3rS(z) at the free inter-
face between sphere-poor (z,0) and sphere-rich (z.0) phases as
a function of the scaled distancez/s perpendicular to the interface
for r

*
r 516,18,20,22 corresponding to the tielines in the phase dia-

gram, Fig. 2. The inset shows a magnified view of the~oscillatory!
profile s3r(z) as a function ofz/s at the sphere-rich side forr

*
r

522.

FIG. 4. Scaled needle density multiplied by the spherical vol-
ume element,r* (z,u)sinu, as a function ofz/s at the interface
between sphere-poor (z,0) and sphere-rich (z.0) fluids for r

*
r

522. Each curve is for fixed angleu to the interface normal; from
bottom to topu increases from 0~direction normal to the interface!
to p/2 ~direction parallel to the interface! in steps ofp/24. The inset
shows the barer* (z,u) without the volume element sinu.
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Clear oscillations can be observed. These arise from the
packing effects of thespheres, and are ‘‘imprinted’’ on the
needle distribution.

We next turn to the order parameter profile^P2(cosu)&,
see Fig. 6. On the needle-rich side (z,0) of the interface we
find that ^P2(cosu)&,0. This indicates needle ordering par-
allel to the interface, and can be understood in terms of pack-
ing effect, similar to those of rods near a hard wall. On the
sphere-rich side (z.0) we find that^P2(cosu)&.0, hence
the needles are oriented preferentially perpendicular to the
interface. We attribute the ordering to needles that stick
through the voids in the first sphere layer.

C. Interface tension

The interface tensiong between demixed fluids is defined
as the difference per unit area in grand potentials in the in-
homogeneous situation and in bulk. It is given by

gA5V̄1PV, ~43!

whereA is the interface area,V̄ is the grand potential in the
inhomogeneous situation, andP is the total pressure. Within
our DFT approch it is obtained from

g5E dz@v~z!1P#, ~44!

v~z!52mSrS~z!2mNr̄N~z!1bE d2V

4p
F~$nn

i ~z,u!%!,

~45!

where F is the excess free energy density@given through
Eqs.~10–12!# dependent on the weighted densitiesnn

i @Eqs.
~18–20!#, and m i is the chemical potential of speciesi
5S,N. From dimensional analysis, it is clear that the typical
scale ofg should be the thermal energy,kBT, divided by an
area that is related to molecular length scales. However, as
we deal with a binary mixture it is not obvious which power
b in Lbs22b gives the correct scaling with varying size ratio
L/s. We restrict ourselves to the casesL/s51,1.5,2, where
we find thatb51/3 gives an almost complete data collapse,
see Fig. 7 for a plot ofbgs5/3L1/3 as a function of the scaled
distance to the critical value of the needle reservoir density,
(r

*
r 2r

* crit
r )/r

* crit
r . For states close to the critical point, we

find mean-field scaling of the surface tension,g}(r
*
r

2r
* crit
r )3/2. For (r

*
r 2r

* crit
r )/r

* ,crit
r .0.4 a linear relation is

found that extends up to the triple point, forL5s this is
from the perturbation theory of Ref.@9# roughly at the right
end of the horizontal axis in Fig. 7.

FIG. 5. Orientation averaged needle density profilesr̄* (z) as a
function of the scaled distancez/s for r

*
r 516,18,20,22 corre-

sponding to Fig. 3. The inset showsr̄* (z) as a function ofz/s on
the sphere-rich side (z.0) of the interface forr

*
r 522. Damped

oscillations are visible.

FIG. 6. Orientational order parameter profiles^P2(cosu)& as a
function of the scaled distancez/s for r

*
r 516,18,20,22 across the

interface between sphere-poor (z,0) and sphere-rich (z.0) fluids.
Negative values indicate parallel, positive values indicate normal
alignment of needles relative to the interface. The inset shows the
~scaled! integrand of the interface tension,@v(z)1P#bs3 as a
function of z/s for r

*
r 522.

FIG. 7. Scaled interface tensionbgs5/3L1/3 as a function of the
scaled distance from the critical point (r

*
r 2r

* crit
r )/r

* crit
r for size

ratiosL/s51,1.5,2. All curves practically collapse onto each other.
The inset shows the scaled interface tensionbgs3L21 as a function
of the difference between liquid and vapor sphere packing fractions,
h l2hv , for the same size ratiosL/s51,1.5,2.
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The magnitude of the interface tension is mainly governed
by the difference in bulk densities of both phases. Hence a
relevant variable is the differenceh l2hv , whereh l (hv) is
the sphere packing fraction in the coexisting liquid~vapor!
phase. In the same spirit as above, we seek a combination of
length scales to scalebg, in order to obtain data collapse for
differentL/s. It turns out that this is the case forbgs3L21,
see the inset in Fig. 7. Clearly, the different exponent to the
case above arises from the relation betweenh andr* given
through the binodals for differentL/s. Although we only
present results fors<L<2s, we expect the scaling rela-
tions to hold beyond that range. However, forL@s there
might well be a crossover to a different scaling regime, and
preliminary results show deviations already forL55s.

As a final issue, we seek to elucidate further the origin of
the surface tension. A recent study by Archer and Evans ad-
dressed this issue in a binary mixture of Gaussian core par-
ticles @42# ~see Figs. 11 and 12 therein!. They consider two
different regimes for their model:~a! where demixing is
driven by nonadditivity and~b! where it is driven by ener-
getics, and constuct two new variables, namely the total den-
sity and a local concentration. In order to calculate the sur-
face tension one must perform the integral Eq.~22! in Ref.
@42# @corresponding to our Eq.~44!#. If the integrand is plot-
ted they find that in regime~a! it closely resembles the local
concentration and in regime~b! the total density. Their con-
clusion is that, in one regime,g is dominated by concentra-
tion fluctuations and, in the other, by fluctuations in the total
density.

Applying this analysis to our model, we find that neither
local concentration nor total density resembles the integrand
of the surface tension in Eq.~44!. However, the integrand
closely resembles the~negative! of the orientational order
parameter, see the inset in Fig. 6 for a plot of@w(z)
1P#bs3 as a function ofz/s for the largest reservoir den-
sity considered,r

*
r 522. As interpretation of the similarity,

negative values of̂P2(cosu)& indicate a loss of rotational
entropy, and hence a positive constribution tog. Positive
values of ^P2(cosu)& indicate a relaxation of the needles
sticking through the first sphere layer and hence lowering the
tension. From this analysis, it it tempting to argue that in the
present model the surface tension is determined byorienta-
tion fluctuations.

V. CONCLUSIONS

In conclusion, we have considered the free~planar! inter-
face between demixed fluid phases in a model mixture of
spherical and needle-shaped colloidal particles. We focused
on the case of vanishingly thin needles, which constitutes a
minimal model for orientational order at fluid interfaces.
Both sphere and needle density profiles show either mono-
tonic or damped oscillatory behavior on the sphere-rich~and
needle-poor! side of the interface, depending on which side
of the Fisher-Widom line in the bulk phase diagram the
sphere liquid state resides. The amplitude of the oscillations,
however, is considerably smaller than in the related AO
model of spherical~polymer! depletants, and will be further
reduced by capillary fluctuations that are not taken into ac-

count in the present treatment. It is tempting to interpret the
smaller amplitude in the current model by a washing out of
oscillations due to the depletants’ rotator degrees of freedom,
which are absent in the AO case. On the needle-rich~and
sphere-poor! side of the interface both density profiles decay
monotonically towards the respective bulk densities. Needles
possess biaxial order on the needle-rich side, i.e., they lie
preferentially parallel to the interface plane. This can be un-
derstood in terms of simple packing of needles against the
dense hard sphere fluid. On the sphere-rich side uniaxial or-
der of needles occurs, i.e., needles tend to be oriented normal
to the interface. This is somewhat surpising, and we interpret
this effect as being caused by the void structure of the hard
sphere fluid, into which the needles stick to maximize their
entropy.

We have furthermore shown that the geometry-based DFT
can be consistently extended to the case of hard spheres
mixed with interacting rods in the Onsager limit. The exten-
sions of geometry-based DFT in Ref.@28# are the integration
over director space@Eq. ~9!#, and the introduction of double-
indexed weight functions@Eq. ~5!# are supplemented in this
work by the introduction of angular convolutions@Eq. ~15!#
to obtain weighted densities. The consistent treatment of
nontrivial rod-rod interactions provides an important step-
ping stone towards the treatment of more general hard body
systems. We have given explicit expressions for the present
density functional for the important cases of planar and
spherical symmetries, facilitating future studies.

We emphasize that testing our predictions for the fluid-
fluid interface constitutes a demanding task for computer
simulations due to the large numbers of needles involved at
state points of interest, and due to the difficulty of stabilizing
the free fluid-fluid interface in a finite simulation box. An
alternative to circumvent the first problem could be to study
an effective one-component system of spheres that interacts
by means of the needle-depletion potential@13#, although,
such an approach would prevent study of the orientational
distribution of the needles.
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APPENDIX A: DECONVOLUTION OF MAYER BONDS

1. The sphere-needle Mayer bond

We take the difference vector between the centers of mass
of needle and sphere to lie in the equatorial plane:r
5(r sinw,r cosw,0). Due to the rotational symmetry, we can
choose the needle to be aligned parallel to they axis: V
5(0,1,0). Then
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w3
S~r !* w0

N~r ,V!5
1

2E0

`

dr8E
0

2p

dw8E
0

p

du8r 82sinu8Q~R2r 8!(
6

d~r sinw2r 8sinu8sinw8!

3dS r cosw2r 8sinu8cosw86
L

2D d~2r 8cosu8! ~A1!

5
1

2 (
6

QS R22r 22
L2

4
6Lr cosw D , ~A2!

and

w2
SN~r ,V!* w1

N~r ,V!5
1

2E0

`

dr8E
0

2p

dw8E
0

p

du8r 82sinuUS sinu8sinw8

sinu8cosw8

cosu8
D •S 0

1

0
D Ud~R2r 8!

3E
2L/2

L/2

dld~r sinw2r 8sinu8sinw8!d~r cosw2r 8sinu8cosw81 l !d~2r 8cosu8! ~A3!

5
1

2 (
6

Q~R2ursinwu!QS L

2
2Ur cosw6AR22r 2sin2wU D , ~A4!

where the integrals overu8, r 8, andl in Eqs.~A1!, ~A3! are straightforward. The integral overw is split into two domains: for
0,w,p, sinw is positive, while forp,w,2p it is negative. The sum of Eqs.~A2!, ~A4! represents the~negative! Mayer
bond between sphere and needle, hence2 f SN5w3

S* w0
N1w2

SN* w1
N . This can be seen by considering the cases where the above

expressions are nonvanishing: In Eq.~A2!, the step function counts the number of needle endpoints that lie in the sphere. In
Eq. ~A4! the first step function is nonzero only if the needle axis intersects the sphere. If it does, the second step function
counts how often the needle intersects the surface of the sphere. This covers all cases of sphere-needle overlap.

2. The rod-rod Mayer bond in the Onsager limit

Since only the relative orientation of both rods is relevant, we takeV85(0,0,1), V5(0,sinu,cosu); the difference vector
between both particle positions is (x,y,z). We then perform the spatial convolution of the weight functions given in Eqs.~1!,
~14! as

22w2
NN~r ,V;V8!* w1

N~r ,V8! ~A5!

522DE
2`

`

dz8E
2`

`

dy8E
2`

`

dx8sinuE
2L/2

L/2

dld~x8!d~y81 l sinu!d~z81 l cosu!

3E
2L/2

L/2

dl8d~x2x8!d~y2y8!d~z2z81 l 8! ~A6!

522DE
2`

`

dz8E
2`

`

dy8E
2`

`

dx8tanud~x8!QS L

2
2U y8

sinuU D dS z82
y8

tanu D
3E

2L/2

L/2

dl8d~x2x8!d~y2y8!d~z2z81 l 8! ~A7!

522D d~x!QS L

2
2U y

tanu
1zU DQS L

2
2U y

sinuU D ~A8!

5 f NN~r ,V;V8!. ~A9!

BRADER, ESZTERMANN, AND SCHMIDT PHYSICAL REVIEW E66, 031401 ~2002!

031401-10

266 Rod-sphere mixtures



From Eq. ~A6! to ~A7!, we solve the integral overl as an
explanatory case; the other integrals can be done analo-
gously. In order to recognize that Eq.~A8! is indeed the
rod-rod Mayer bond, we compare with the expressions given
in Ref. @43#, and observe that the step-functions in Eq.~A8!
correspond to Eqs.~A1!, ~A2! in the Appendix of Ref.@43#.
Since limD→0Q(D2uxu)/(2D)5d(x), the term 2D d(x)
corresponds to Eq.~A3! in Ref. @43# in the limit of small
values ofD, hence Eq.~A9! constitutes a valid equality.

APPENDIX B: WEIGHT FUNCTIONS IN PLANAR
GEOMETRY

The reduced weight functions in planar geometry appear-
ing in Eqs.~18!–~20! are obtained as

wn
N~z,u!5E

2`

`

dxE
2`

`

dywn
N~r ,V!, ~B1!

wn
S~z!5E

2`

`

dxE
2`

`

dywn
S~r !, ~B2!

w2
SN~z,u!5E

2`

`

dxE
2`

`

dyw2
SN~r ,V!, ~B3!

wherer5(x,y,z), and in the following we employ cylindri-
cal coordinatesr5(r cosw,r sinw,z). For the scalar and vec-
torial sphere weight functions@Eqs. ~3!, ~4!# as well as for
the pure needle weight functions@Eqs. ~1!, ~2!# the integra-
tions in Eqs.~B1!, ~B2! are straightforward and yield the
results given in Eqs.~22!–~26!. The calculations forŵm2

S (z)
and w2

SN(z,u) @defined through Eqs.~4!, ~5!, respectively#
are slightly more involved, and are given explicitly in the
following sections.

1. Tensor sphere weight function

We insert the definition of the tensor weight@Eq. ~4!# into
Eq. ~B2!,

ŵm2
S ~z!5E

2`

`

dxE
2`

`

dyd~R2ur u!S rr

r 2
2

1̂

3D ~B4!

5E
0

2p

dwE
0

`

drrd~R2Ar 21z2!F ~r 21z2!21S r 2 sin2w r 2 sinw cosw r sinwz

r 2 sinw cosw r 2cos2w r coswz

r sinwz r coswz z2
D 2

1̂

3G ~B5!

5E
0

`

drrd~R2Ar 21z2!S ~r 21z2!21diag~pr 2,pr 2,2z2!2
2p

3
1̂D ~B6!

5S p

R
diag~R22z2,R22z2,2z2!2

2pR

3
1̂DQ~R22z2!, ~B7!

from which Eq.~27! can be readily obtained. The off-diagonal elements in Eq.~B5! vanish due to thew integration over a
complete wavelength, and to obtain Eq.~B7! we have usedd@ f (x)#5u f 8(x0)u21d(x2x0), wherex0 is the zero off (x), hence
f (x0)50.

2. Mixed sphere-needle weight function

Due to the rotational symmetry around thez axis, we can takeV5(sinu,0,cosu), and due to the inflection symmetry of the
needles, we can restrict to 0<u<p/2. By inserting the definition of the mixed weight function@Eq. ~5!# into Eq. ~B3! we
obtain

w2
SN~z,u!52E dxE dyUd~R2ur u!

1

Ar 21z2 S r cosw

r sinw

z
D •S sinu

0

cosu
D U ~B8!

52E
0

2p

dwE
0

`

drrUd~R2Ar 21z2!
z cosu1rcosw sinu

Ar 21z2 U ~B9!
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3arcsinS z cosu

AR22z2sinu
D GQS 12U z cosu

AR22z2sinu
U D 14puz cosuuQS U z cosu

AR22z2sinu
U21D J Q~R2uzu! ~B10!

55 8AR2sin2u2z218z cosu arcsinS z cotu

AR22z2D if uzu,R sinu,

4puzu cosu if R sinu<uzu<R,

0 otherwise.

~B11!

In Eq. ~B9!, we have used the same representation for thed
function as before. The nontrivial part is the integral overw,
which we discuss in the following. It is of the form

E
0

2p

ua1b coswudw ~B12!

with constants~with respect tow) a,b. Due to the symmetry
of the cosine function, the integration from 0 top gives the
same result as that fromp to 2p. We consider two cases:
The argument ofu•u changes its sign once ifua/bu,1, and
we have

E
0

p

ua1b coswudw ~B13!

5sgn~a1b!~@aw1b sinw#0
x1@2aw2b sinw#x

p!
~B14!

5sgn~b!~2b sinx12ax2ap! ~B15!

5sgn~b!S 2b sin arccos
2a

b
12a arccos

2a

b
2ap D

~B16!

52Ab22a212a sgn~b!arcsin
a

b
, ~B17!

wherex5arccos(2a/b). If, on the other hand,ua/bu.1, the
argument does not change its sign. Then,ua1b coswu5(a
1bcosw)sgn(a),

E
0

p

ua1b coswudw5uaup. ~B18!

Note that in Eq. ~B10!, sgn(•)511 holds, since 0<u
<p/2.

@1# M. Adams, Z. Dogic, S.L. Keller, and S. Fraden, Nature~Lon-
don! 393, 349 ~1998!.

@2# G.A. Vliegenthart and H.N.W. Lekkerkerker, J. Chem. Phys.
111, 4153~1999!.

@3# G.H. Koenderink, G.A. Vliegenthart, S.G.J.M. Kluijtmans, A.
van Blaaderen, A.P. Philipse, and H.N.W. Lekkerkerker, Lang-
muir 15, 4693~2000!.

@4# K. Lin, J.C. Crocker, A.C. Zeri, and A.G. Yodh, Phys. Rev.
Lett. 87, 088301~2001!.

@5# M. Elbaum, D.K. Fygenson, and A. Libchaber, Phys. Rev. Lett.
76, 4078~1996!.

@6# D.K. Fygenson, M. Elbaum, B. Shraiman, and A. Libchaber,
Phys. Rev. E55, 850 ~1997!.

@7# S.G.J.M. Kluijtmans, G.H. Koenderink, and A.P. Philipse,
Phys. Rev. E61, 626 ~2000!.

@8# G. A. Vliegenthart, Dissertation, Utrecht University, 1999.
@9# P. Bolhuis and D. Frenkel, J. Chem. Phys.101, 9869~1994!.

@10# S. Asakura and F. Oosawa, J. Chem. Phys.22, 1255~1954!.
@11# A. Vrij, Pure Appl. Chem.48, 471 ~1976!.
@12# H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A.

Stroobants, and P.B. Warren, Europhys. Lett.20, 559 ~1992!.

@13# K. Yaman, C. Jeppesen, and C.M. Marques, Europhys. Lett.
42, 221 ~1998!.

@14# Y. Mao, M.E. Cates, and H.N.W. Lekkerkerker, Phys. Rev.
Lett. 75, 4548~1995!.

@15# Y. Mao, M.E. Cates, and H.N.W. Lekkerkerker, J. Chem. Phys.
106, 3721~1997!.

@16# Z. Dogic, D. Frenkel, and S. Fraden, Phys. Rev. E62, 3925
~2000!.

@17# R. Evans, inFundamentals of Inhomogeneous Fluids, edited
by D. Henderson~Dekker, New York, 1992!, p. 85.

@18# R. Evans, Adv. Phys.28, 143 ~1979!.
@19# Y. Rosenfeld, Phys. Rev. Lett.63, 980 ~1989!.
@20# Y. Rosenfeld, M. Schmidt, H. Lo¨wen, and P. Tarazona, J.

Phys.: Condens. Matter8, L577 ~1996!.
@21# Y. Rosenfeld, M. Schmidt, H. Lo¨wen, and P. Tarazona, Phys.

Rev. E55, 4245~1997!.
@22# P. Tarazona and Y. Rosenfeld, Phys. Rev. E55, R4873~1997!.
@23# P. Tarazona, Phys. Rev. Lett.84, 694 ~2000!.
@24# Y. Rosenfeld, Phys. Rev. E50, R3318~1994!.
@25# A. Chamoux and A. Perera, J. Chem. Phys.104, 1493~1996!.
@26# A. Chamoux and A. Perera, Phys. Rev. E58, 1933~1998!.

BRADER, ESZTERMANN, AND SCHMIDT PHYSICAL REVIEW E66, 031401 ~2002!

031401-12

268 Rod-sphere mixtures



@27# A. Chamoux and A. Perera, Mol. Phys.93, 649 ~1998!.
@28# M. Schmidt, Phys. Rev. E63, 050201~R! ~2001!.
@29# M. Schmidt and C. von Ferber, Phys. Rev. E64, 051115

~2001!.
@30# M. Schmidt and A.R. Denton, Phys. Rev. E65, 021508~2002!.
@31# R. Roth, R. van Roij, D. Andrienko, K. R. Mecke, and S.

Dietrich, Phys. Rev. Lett.~in press!, eprint cond-mat/0202443.
@32# K. Shundyak and R. van Roij, J. Phys.: Condens. Matter13,

4789 ~2001!, and references therein.
@33# M.E. Fisher and B. Widom, J. Chem. Phys.50, 3756~1969!.
@34# R. Evans, J.R. Henderson, D.C. Hoyle, A.O. Parry, and Z.A.

Sabeur, Mol. Phys.80, 755 ~1993!.
@35# R. Evans, R.J.F. Leote de Carvalho, J.R. Henderson, and D.C.

Hoyle, J. Chem. Phys.100, 591 ~1994!.
@36# M. Dijkstra and R. Evans, J. Chem. Phys.112, 1449~2000!.
@37# J.M. Brader, R. Evans, M. Schmidt, and H. Lo¨wen, J. Phys.:

Condens. Matter14, L1 ~2002!.
@38# J.M. Brader, M. Dijkstra, and R. Evans, Phys. Rev. E63,

041405~2001!.
@39# L. Onsager, Ann. N.Y. Acad. Sci.51, 627 ~1949!.
@40# J.A. Barker and D. Henderson, Rev. Mod. Phys.48, 587

~1976!.
@41# R. van Roij, M. Dijkstra, and R. Evans, Europhys. Lett.49,

350 ~2000!.
@42# A.J. Archer and R. Evans, Phys. Rev. E64, 041501~2001!.
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Abstract. – We investigate the behavior of a model colloidal mixture of hard spheres and
rod-like particles near a planar hard wall using density functional theory. For small size ratios of
rod length and sphere diameter we find that the colloidal liquid phase wets the wall completely
upon approaching the fluid demixing binodal from the colloidal gas side, provided the density
of the rods lies below the wetting point. Using an effective one-component description based on
the pairwise depletion potential for higher density of rods, a finite sequence of layering phase
transitions is found. For large rod-to-sphere size ratios, using a binary treatment, thick films
are obtained even close to the triple point.

Purely repulsive interactions between the constituent mesoscopic particles may lead to
surprisingly rich bulk phase behavior of multi-component colloidal suspensions. Such systems
are often viewed as a primary system of colloids with added “depletant agents” that mediate
an effective interaction between the particles of the primary component. Adding depletant
agents to a colloidal hard-sphere dispersion may, under appropriate conditions, drive a fluid-
fluid demixing phase transition, which is reminiscent of the gas-liquid transition in atomic and
molecular fluids: The phase that is poor in colloids (and rich in depletants) corresponds to the
gas and the phase that is rich in colloids (and poor in depletants) corresponds to the liquid
phase. Among the broad range of depletant agents notable examples are smaller-sized spheres
and globular non-adsorbing polymers. Another case of intriguing depletants are elongated
particles, like colloidal rods or stretched polymers. One reason for such depletants being very
interesting is the possibility of liquid-crystalline order, which will further enrich the bulk phase
behavior [1] and the correlations between spheres [2].

For conditions where the density of rods is well below the onset of nematic order, much
work has been devoted to understanding the bulk phase behavior of rod-sphere mixtures [3–8].
Among the different techniques employed are computer simulations [3], free-volume [3,4] and
liquid integral equation [5] theories, as well as experiments with silica spheres mixed with
silica-coated bohemite rods [4, 6] or (semi-flexible) polymeric rods [7, 8]. It can be concluded
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sitätsstraße 1, D-40225 Düsseldorf, Germany.
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that the gas, fluid, and solid phase are thermodynamically stable and that the density of rods
(often one uses the density in a hypothetical reservoir of rods) plays a role similar to that of
inverse temperature in simple fluids. The second control parameter is the ratio of rod length
L and sphere diameter σ; for large enough values stable bulk fluid-fluid demixing occurs.

One approach to describe such complex systems is based on the depletion picture where
the depletants are regarded as mediating an effective interaction between the spheres [9–13].
Theoretically, one integrates out the depletant degrees of freedom in the partition sum [9,13]
to obtain the effective interactions, which have, in general, a many-body character. Under
suitable conditions one may take into account only the one- and two-body contributions.
Experimentally, one can measure the forces directly, e.g., between two spheres [10] or between
a sphere and a wall [12] immersed in a sea of rods.

Despite the considerable interest in the bulk properties of rod-sphere mixtures little is
known about their behavior at interfaces. This is in contrast to the case of mixtures of
colloidal spheres and globular non-adsorbing polymer, where recent results [14–16] indicate
surprisingly rich behavior at a simple hard wall. Theoretical predictions of wetting and lay-
ering surface phase transitions [14] have been validated by computer simulations [15] and,
partly, experimentally [16,17], in particular by light microscopy in a mixture of silica spheres
and poly(dimethyl siloxane) dispersed in cyclohexane [16]. The emerging picture is that the
colloidal liquid wets the wall completely for sufficiently low polymer concentrations (on the
gas-branch of the gas-liquid binodal). For higher polymer concentrations, partial wetting oc-
curs via an unusual (finite) sequence of layering transitions, which has been attributed to the
presence of many-body effective depletion interactions between the colloidal spheres [14, 15].
The layering behavior has not yet been experimentally confirmed.

In this letter we report on density functional [18] results for the interface behavior of a
model rod-sphere mixture exposed to a hard wall. For equally sized species we find that the
colloidal liquid wets the wall completely upon approaching the gas branch of the demixing
binodal for low rod densities. There occurs a first-order wetting transition to the partial-
wetting regime for higher rod densities. In the partial-wetting regime we can identify a finite
number of distinct lines where a jump in the adsorption occurs. These results are obtained by a
treatment that only includes the pair-wise contribution to the depletion interaction, and hence
questions the above conjecture that many-body terms are a prerequisite for the occurrence of
a finite sequence of layering transitions in the partial-wetting regime. We test the robustness
of these results: Complete wetting remains upon including all higher body interactions, i.e.
treating the full mixture. For longer rod-sphere size ratios, thick films result even for high rod
densities, i.e. close to the triple point.

We use a model proposed in [3] and employed by others [5,9,13,19,20] that can be viewed
as the most simplistic binary mixture that still captures the essentials: Hard spheres (species
S) of diameter σ are mixed with hard needle-like rods (species N) of length L and vanishing
thickness. The one-body density distributions are denoted by ρS(r) and ρN(r, ω̂), where r is
the space coordinate and the unit vector ω̂ is the (rod) orientation. This mixture is exposed to
a planar smooth hard wall described by external hard-core potentials, V S

ext(r) and V N
ext(r, ω̂).

Due to the symmetries of fluid states the only two relevant variables are the component of r
perpendicular to the wall, z, and the angle between ω̂ and the surface normal.

In the following a brief overview of the theory is given. In the binary treatment the grand
potential is expressed as a functional of the density fields of both species,

Ωbin[ρS, ρN] = Fid[ρS] + Fid[ρN] + F hs
exc[ρS] + F SN

exc [ρS, ρN] +

+
∫

drρS(r)
(
V S

ext(r)− µS

)
+

∫
dr dω̂ρN(r, ω̂)

(
V N

ext(r, ω̂)− µN

)
, (1)
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where the ideal-gas contribution is for spheres Fid[ρS] = kT
∫

drρS(r)(ln(ρS(r)Λ3
S) − 1) and

for rods Fid[ρN] = kT
∫

dr dω̂ρN(r, ω̂)(ln(ρN(r, ω̂)Λ3
N)− 1), where k is Boltzmann’s constant,

T is temperature, and Λi is the thermal wavelength of species i = S, N. The excess (over ideal
gas) parts are Rosenfeld’s functional [21] for hard spheres, F hs

exc[ρS], and the rod-sphere con-
tribution, F SN

exc [ρS, ρN], of refs. [19,20]. Clearly, the minimization of the grand potential needs
to be performed with respect to both species, i.e. we solve simultaneously δΩbin/δρS(r) = 0
and δΩbin/δρN(r, ω̂) = 0. For practical reasons the angle between ω̂ and the surface normal
of the wall is discretized in 60 steps, hence the latter condition is in fact a set of equations
indexed by ω̂, see [20] for further details about the numerical strategy. This treatment takes
into account all effective many-body terms, but is computationally demanding.

In the effective one-component description depletion potentials between spheres, WSS, and
between a sphere and the wall, WSW, are obtained by integrating out the rod degrees of
freedom [13]. Then the grand potential depends only on the sphere density distribution,

Ωeff [ρS] = Fid[ρS] + F hs
exc[ρS] +

1
2

∫
dr dr′ρS(r)K(|r − r′|)ρS(r′) +

+
∫

drρS(r)
(
V S

ext(r) + WSW(r)− µS

)
, (2)

where the depletion attraction is treated in a mean-field–like manner [22]: The convolution
kernel is K(r) = WSS(r) for r ≥ σ, and K(r) = WSS(σ+) for r < σ. Note that this is a
particularly clean application of the framework: No mapping of a soft repulsion onto a hard-
sphere reference system is to be performed; σ is the true physical particle size and WSS(σ+) is
the minimal value of the pair potential. The particular choice of K(r < σ) to treat attractive
interactions has been empirically found to improve the agreement between DFT and other
theories. Due to the rod ideality, the depletion potentials WSW and WSN depend linearly on
ρr
N, which is the density in an (ideal) reservoir of needles that is in chemical equilibrium with

the system. ρr
N thus plays a role analogous to that of inverse temperature in simple fluids.

Due to the particle geometries higher than two-body contributions vanish only for size ratios
L/σ < 1− (2

√
3−3)1/2 = 0.31875. The crucial benefit of the one-component approach is that

one has to deal with only one single minimization condition: δΩeff/δρS(r) = 0.
From either approach the bulk free energy for fluid states is obtained by assuming the

density field(s) to be constant. As thermodynamic variables we use the sphere packing fraction
η = πρSσ3/6 and a scaled rod reservoir density, ρr

NL2σ. The conditions of equal pressure
and chemical potentials of both species yield the phase diagram as a function of η and ρr

N,
as displayed in fig. 1 for L/σ = 1, which is large enough (> 0.3) so that a liquid phase
exists [3]. For ρr

N above the critical point, phase separation occurs into a gas phase that
is dilute in spheres and a liquid phase that is dense in spheres; phase coexistence is along
horizontal tie lines at constant ρr

N. The free energy obtained from the binary treatment [19]
is the same as that of [3], and was shown to give good account of the simulated coexistence
curve [3]. The binodal from the effective treatment has the same qualitative behavior, the
critical point, and accordingly the whole binodal, being shifted slightly toward lower densities.
Comparing structure at two statepoints in the mixed region away from coexistence yields a
further comparison of the consistency of both approaches; see fig. 2 for results for ρS(z) at a
hard wall. As a reference, corresponding profiles for the pure hard-sphere case (for the same
values of η) are displayed. Clearly, the addition of rods leads to a strong increase near contact
with the wall, 0.5 < z/σ < 0.7, as well as an increase in the contact value, ρS(σ+/2), itself
—the manifestation of the depletion effect. Remarkably, the results from both approaches
are identical on the scale of the plot, except for a slightly higher contact value of the one-
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Fig. 1 Fig. 2

Fig. 1 – Fluid-fluid demixing phase diagram for the rod-sphere mixture as a function of the sphere
packing fraction, η, and scaled needle reservoir density, ρr

NL2σ, for size ratio L/σ = 1. The binodal
(lines) and critical point (dots) from the binary and the effective one-component DFT are shown.
Coexistence is along horizontal tie lines (not shown). The crosses mark statepoints where wall density
profiles from both theories are compared in fig. 2. The arrow indicates a path along which wetting
profiles are presented in fig. 3. The rectangle near the vertical axis indicates the region where the
surface phase transitions near a hard wall are investigated in figs. 4 and 5.

Fig. 2 – Sphere density profiles, ρS(z)σ
3, at a hard wall as a function of the scaled distance, z/σ, from

the wall for size ratio L/σ = 1 at two statepoints (marked by crosses in fig. 1): η = 0.2, ρr
NL2σ = 5

and η = 0.3, ρr
NL2σ = 10 (shifted upwards one unit for clarity). For comparison, the corresponding

hard-sphere results (for the same values of η but ρr
N = 0) are displayed. Except for the region very

near to contact with the wall (z/σ ≈ 0.5) in the case of the higher packing fraction, the results from
both theories are indistinguishable on the scale of the plot.

component treatment for the statepoint with higher densities. The good overall agreement for
phase behavior and structure thus provides a solid basis for our subsequent interface study.

We first approach the gas branch of the fluid demixing binodal not too far from the critical
point at ρr

NσL2 = 16 and increasing η, as indicated by the arrow in the phase diagram, fig. 1. A
representative set of wall density profiles approaching coexistence is depicted in fig. 3 obtained
from the one-component (upper panel) and binary (lower panel) treatments. Close to the wall,
pronounced oscillations appear that can be attributed to packing effects of the spheres. For
increasing z, the crossover to the low gas bulk density occurs via an intermediate plateau
value of liquid-like density. The thickness of this region grows, and eventually diverges, upon
approaching coexistence. The wall is wet completely by the colloidal liquid phase. The profiles
from the one-component treatment possess a markedly thinner wetting film and a sharper
interface of the liquid-gas part than those from the binary treatment. This is consistent with
the difference in bulk phase diagrams. For the fixed value of ρr

N, the binary theory is relatively
closer to its critical point, hence thicker films and broader liquid-gas interfaces are expected.
We can, however, get similar wetting film thicknesses from the one-component treatment by
going even closer to coexistence; an example of ρS(z) is shown in fig. 3 (dashed line). Both
theories consistently predict complete wetting, differences in the detailed structure can be
fully understood from the differences in the respective bulk phase diagrams.

Having gained confidence into the one-component description, we use this computation-
ally efficient approach to calculate the full surface phase diagram. As a first path we scan the
phase diagram right at coexistence along the gas branch of the binodal by decreasing ρr

N (and
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Fig. 3 Fig. 4

Fig. 3 – Wetting density profiles, ρS(z)σ
3, as a function of the scaled distance from the wall, z/σ,

for needle reservoir density ρr
NL2σ = 16 following the path marked in fig. 1 and obtained from the

one-component (upper panel) and the binary (lower panel) treatment. The profiles are for (ηcoex −
η)/ηcoex = 0.01305, 0.004894, 0.001631, 0.001305 (from left to right); coexistence is at ηcoex = 0.06130
(binary), 0.02994 (one-component). The dashed line in the upper panel indicates the one-component
result even closer to coexistence, (ηcoex − η)/ηcoex = 5.77 · 10−6.

Fig. 4 – Sequence of sphere density profiles, ρS(z)σ
3, as a function of the scaled distance from the

wall, z/σ, obtained from the one-component treatment for statepoints at coexistence moving down the
gas-branch of the fluid demixing binodal. Density profiles from left to right correspond to increasing
η and decreasing ρr

NL2σ, spaced in steps of ∆ρr
NL2σ = 0.04 (dashed lines). Five pronounced jumps

occur, the corresponding density profiles at these layering transitions are indicated by solid lines. The
inset shows the corresponding adsorption Γσ2 as a function of η.

accordingly increasing η). Our aim is to stay below the triple point, which is obtained from per-
turbation theory at ρr

N ≈ 25 [3]. For high ρr
N the excess adsorption, Γ =

∫
dz(ρS(z)− ρS(∞)),

is finite at coexistence, i.e. the liquid wets the wall partially. Decreasing ρr
N continuously

leads to several (five) jumps in the density profiles and correspondingly in Γ, see fig. 4. The
sixth jump is that to a bulk liquid, i.e. the wetting point. Along our chosen path all layering
transitions and the wetting transition are first order.

To reveal the full surface phase diagram we have covered the region of stability of the gas
phase in the phase diagram on a fine grid. From anomalies in the density profiles, i.e. from
jumps in Γ, the full surface phase diagram is constructed, see fig. 5 for the result. Due to our
method of locating the interfacial transitions, their exact location is subject to some hysteresis
effects. By calculating the adsorption along the reverse path, i.e. along the binodal from low
ρr
N to high ρr

N, we could confirm that these effects are very small. We find that the five
layering transitions all extend into the bulk gas region. Moving away from coexistence along
such a layering line the jump in the adsorption decreases in magnitude and eventually ends
in a critical point. The first layering transition is very pronounced, the subsequent transition
lines decrease in length. The transition point on the binodal closest to the critical point is
the wetting point; for rod densities below the corresponding value (and above the critical
point), complete wetting occurs. We could not find the corresponding prewetting line where a
transition from a thin to a thick line appears, and conclude that it is too small to be identified
within our current numerical accuracy.

The whole pattern of surface phase transitions found from this description using pair poten-
tials is very similar to that recently found in a related model colloid-polymer mixture taking
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Fig. 5 Fig. 6

Fig. 5 – Surface phase diagram of the rod-sphere mixture at a hard wall as a function of the sphere
packing fraction, η, and scaled needle reservoir density, ρr

NL2σ, for size ratio L/σ = 1 obtained
from the one-component theory. Shown are the bulk fluid demixing binodal (dashed line), layering
transition points on the binodal (open circles), layering transition lines (solid lines), layering critical
points (crosses), and wetting point (filled circle). The plot range corresponds to the rectangle in fig. 1.

Fig. 6 – Sphere density profiles ρS(z)σ
3 as a function of the distance z/σ from the wall for size ratio

L/σ = 5, needle reservoir density ρr
∗ = 100 and increasing bulk colloid packing fraction η = 1.04 ·10−5

(dashed line), 1.06 · 10−5 (dotted line) and 1.065 · 10−5 (full line) obtained from the binary theory.
Coexistence is at ηcoex = 1.077 · 10−5. The inset shows the fluid demixing binodal as a function of η
and needle reservoir density ρr

∗ for L/σ = 5.

into account all many-body interactions between colloids, i.e. treating the full binary mix-
ture [14,15]. In that case, the inclusion of many-body terms is crucial; no layering transitions
were found from a pair-wise treatment [14].

We believe that the occurrence of layering phase transitions is due to a subtle interplay
between the relative strength of the particle-particle and the particle-wall attractions. Due to
the particle geometries for the present case of rod depletants, the particle-wall attraction is rel-
atively stronger than in the case of spherical (polymer) depletants. In that case a similar (rel-
ative) strengthening of the wall-particle attraction can happen due to the many-body terms.
As a test for this hypothesis we have rescaled the wall-particle attraction, i.e. used λWSW(z),
0 ≤ λ ≤ 1, which artificially interpolates between the actual physical situation (λ = 1) and a
(hypothetical) wall without depletion attraction (λ = 0). Indeed we find for λ = 0.5 complete
wetting without any indications of layering transitions anywhere in the partial-wetting regime.

As a final investigation we consider a case of markedly longer rods: L/σ = 5. We expect
many-body terms in the effective Hamiltonian to be important and that the effective one-
component description with pair-wise interactions only will break down. In fact the phase
diagram resulting from the one-component treatment is no longer comparable to the still
rather accurate [3] binary treatment. From the binary DFT we find that thick films can be
obtained even far away from the critical point, see fig. 6 for profiles close to the triple point
at ρr

NL2σ = 100 [23]. Hence for observing thick films in experiment large L/σ are suitable.
In conclusion, we have investigated the adsorption properties of a colloidal mixture of rods

and spheres at a hard wall. We find that for low rod densities the sphere liquid wets the
wall completely upon approaching the fluid-fluid demixing binodal from the gas side. For
high rod densities, above the wetting point, partial wetting occurs via a finite sequence of
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layering phase transitions, where the adsorption jumps by finite increments. We argue that
the crucial parameter for the occurrence of such layering transitions is the relative strength
of wall-particle and particle-particle depletion interactions.

Colloidal mixtures of rods and spheres can be prepared so that they closely resemble the
model system of hard spheres and needles [12] considered here. Therefore, our findings should
be experimentally observable. In particular, it would be highly interesting to observe thick
wetting films in the complete-wetting regime, e.g. with light [16] or confocal microscopy.
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Density functional theory for sphere-needle mixtures: Toward finite rod thickness
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For mixtures of hard spheres and hard spherocylinders of large aspect ratio a recently proposed density
functional theory is extended to incorporate effects due to nonvanishing rod thickness. This is accomplished by
introducing several new geometric weight functions into the framework. We demonstrate explicitly how these
weight functions recover the sphere-rod Mayer bond.
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Mixtures of colloidal spheres and mesoscopic rods, like
colloidal rods or stiff polymer chains, suspended in a mo-
lecular solvent, are well-characterized model systems gov-
erned by steric(excluded volume) forces [1–6]. Interesting
questions concern the bulk phase behavior and effective
sphere–sphere and sphere–wall interactions mediated by the
presence of the rods[3,6]. Based on Rosenfeld’s
fundamental-measure theory for mixtures of nonconvex bod-
ies [7,8], recently a density-functional theory(DFT) [9] for a
minimal model of hard sphere colloids and infinitely thin
needles[10] was proposed[11] and used to investigate the
structure of the interface between sphere-rich and sphere-
poor phases[12,13], and the wetting behavior of a hard wall
[14]. This binary DFT proved to predict phase behavior ac-
curately compared to the simulation results of[10], and to
give high-quality results for(fluid) density profiles in inho-
mogeneous situations, when compared both to results from
an effective one-component treatment[14] using the deple-
tion potential between spheres[15,16], and to computer
simulation results of the free fluid–fluid interface of the bi-
nary mixture[13]. By combining Yu and Wu’s functional for
mixtures of polymeric fluids[17] and the theory of Ref.[11],
Bryk arrived at a DFT for binary mixtures of hard rods and
polymer chains[18].

In all these cases, the rods are assumed to have vanishing
thickness. Due to the geometry, the statistical weight of con-
figurations with overlapping rods vanishes, and hence the
rods behave as though being ideal.(The rod–sphere interac-
tion is unaffected by this argument and is governed by ex-
cluded volume.) Rosenfeld’s theory when applied to a mix-
ture of hard spheres of finite(large) packing fraction and a
second component of(thick) spherocylinders at vanishing
density was shown to predict the entropic force and torque
on the rod near a hard wall very accurately[19] and more
general cases have also been considered[20].

In order to capture effects of finite rod thicknessandfinite
rod density an extension to the theory for vanishingly thin

rods [11] was made in Ref.[12], incorporating the Onsager
limit of the rods[21], hence recovering exactly the rod–rod
Mayer bond in the limit of large aspect ratio. The Onsager
model continues to be a valuable system to study the prop-
erties of anisometric particles, see, e.g., Refs.[22–24] for
recent work. Cinacchi and Schmid proposed a DFT for gen-
eral anisotropic particles interpolating between the Rosenfeld
and the Onsager functional[25]. The theory of Ref.[12] is,
however, restricted to the limit ofLD /s2!1 whereL andD
are the rod length and thickness, respectively, ands is the
sphere diameter.

In the present contribution, we extend the framework, re-
stricting ourselves still to the Onsager limit ofL /D@1. This
is accomplished by introducing several new geometric
weight functions. We demonstrate how these weight func-
tions recover the leading order contribution(in D) to the
rod–sphere Mayer bond. Our model is a binary mixture of
hard spheres(speciesS) of diameters and hard needlelike
spherocylinders(speciesN) with lengthL (of the cylindrical
part) and diameterD. This is considered in the(Onsager)
limit of large rod aspect ratio of length-to-thickness,L /D
@1. The one-body density distributions of spheres and
needles are denoted byrSsr d and rNsr ,Vd, respectively,
wherer is the position coordinate(pointing to the center of
the respective particle shape) andV is a unit vector describ-
ing the needle orientation.

We start by defining the density functional. In order to not
duplicate material, explicit expressions are given only for the
new quantities. We refer the reader directly to Ref.[12] for a
full account of the known terms. We do, however, discuss the
relation to the sphere–rod Mayer bond in detail below. The
Helmholtz excess(over ideal gas) free energy functional is
expressed as

FexcfrS,rNg = kBTE d3r E d2V

4p
Fshni

ajd, s1d

wherekB is the Boltzmann constant andT is temperature,ni
a

are weighted densities that are obtained through convolutions
of the bare density profiles with geometric weight functions
wi

a; a refers to the particle species andi refers to the type of
weighted density. The weight functionswi

a are obtained by
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imposing the correct(second order) low-density behavior of
(1); this is achieved by the so-called deconvolution of the
Mayer bond, which we will turn to below. The functional
form of F is obtained from consideration of the dimensional
crossover[26,27] and scaled-particle ideas[28].

The weight functions necessary to recover the Mayer
bond are found to be

w1
SNsr ,Vd = s2pd−1dsr · VddsR− rd, s2d

w2±
SNDsr ,Vd = dsR− rdQs±V · r d, s3d

w1±
NDsr ,Vd = sD/2ddsr ± LV/2d, s4d

w2
Nsr ,Vd = pDE

−L/2

L/2

dldsr + Vld, s5d

whereR=s /2 is the sphere radius,ds·d is the Dirac distribu-
tion, Qs·d is the stepfunction, andr = ur u. We use “mixed”
weight functions that depend on properties of both species
(see Fig. 1 for illustrations). w1

SN describes the “equator” of
the sphere, where the polar axis is pointing into the direction
given by the (needle) orientation V. w2±

SND describes the
“northern” (subscript1) and “southern”(subscript2) hemi-
sphere. Hence,w2+

SND+w2−
SND=w2

S, where w2
S is the usual

sphere surface weight function[28]. The rod endcaps are
described byw1±

ND, wherew1+
ND+w1−

ND=Dw0
N (as defined in Ref.

[11]). The weight functionw2
N makes the dimensional analy-

sis consistent[7,8], and is proportional to a known weight,
w2

N=4pDw1
N, wherew1

N is given in[11] and obtained directly
through[7,8].

Weighted densities are built using spatial convolution, but
retaining the angular dependence:

n1
SNsx,Vd =E d3rrSsr dw1

SNsx − r ,Vd, s6d

n2±
SNDsx,Vd =E d3rrSsr dw2±

SNDsx − r ,Vd, s7d

n1±
NDsx,Vd =E d3rrNsr ,Vdw1±

NDsx − r ,Vd, s8d

n2
Nsx,Vd =E d3rrNsr ,Vdw2

Nsx − r ,Vd. s9d

Note that orientation-dependentspheredensities are built via
(6) and (7).

Following Rosenfeld’s dimensional analysis[7,8,28], and
in accordance with the scaled-particle theory for mixtures of
non-spherical particles[29], the (reduced) free energy den-
sity is found to beF=FS+FSN+FSNN+DF, whereFS is the
hard sphere term[28], FSN is the contribution in the case of
infinitely thin needles[11], andFSNN is the correction in the
Onsager limit[12] with LD /s2!1; these terms are given
explicitly in Eqs. (11), (12), and (17) of Ref. [12], respec-
tively. The new contribution is

DF =
n1

SNn2
N + n1+

NDn2−
SND+ + n1−

NDn2+
SND

1 − n3
S , s10d

where n3sr d=QsR− ur udprSsr d is the usual local packing
fraction for spheres. This completes the prescription of the
functional.

The corresponding fundamental measures,ja
i

=ed3r ed2Vwa
i / s4pd, are

j1
SN= R, j2±

SND = 2pR2, j1±
ND = D/2, j2

N = pLD, s11d

equal to the integral mean curvature of the sphere, surface of
a hemisphere of radiusR, radius of a hemispherical endcap
of the rod, and residual(for small D /L) rod surface, respec-
tively.

The exact second virial coefficient between sphere and
rod is

B2
SN= pR2SL +

4R

3
D + pDRsL + 2Rd + pD2SL

4
+ RD +

pD3

6
,

s12d

where the theory of Ref.[12] obtains the first term(indepen-
dent of D), and the present contribution recovers also the
next term, linear inD.

Expanding(10) for small density leads to second(lead-
ing) order Df=n1

SNn2
N+n1+

NDn2−
SND+n1−

NDn2+
SND=rSrNsj1

SNj2
N

+j1+
NDj2−

SND+j1−
NDj2+

SNDd=rSrNpsLDR+2DR2d. Hence, the addi-
tional contribution to the second virial coefficient isB2

SND

=Df / srSrNd=psLDR+2DR2d, indeed equal to the second
term of the exact result, given in(12).

In the following we demonstrate the relation to the
sphere-rod Mayer bondfSN being −1 if both particles overlap
and zero otherwise. We splitfSN= fSN

sD=0d+DfSN, where fSN
sD=0d

is the Mayer bond for vanishingly thin needles, which can be
deconvolved into one-body weight functions, see appendix A
1 of [12] (where this contribution is denoted byfSN). We
express the correction, valid for smallD /L, as

− DfSNsr ,Vd =
D

2
„Qsur · Vu − L/2ddsur − sr · VdVu − Rd

+ dsur + LV/2u − RdQs− r · V − L/2d

+ dsur − LV/2u − RdQsr · V − L/2d…, s13d

wherer is the difference vector between particle centers and
V is the rod orientation. Note thatDdsxd /2=QsD /4−ux
−D /4ud for D→0. Using the weight functions,(2)–(5), this
can be expressed as

FIG. 1. Illustration of the geometry of the weight functions:w2
N

describes the residual rod surface(thick line), w1
SN is nonvanishing

on the equator of the sphere(bold circle), w1
ND+ corresponds to one

rod endcap(dot), andw2
SND− describes a hemisphere(gray).
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− DfSN= w1
SNp w2

N + w1+
ND p w2−

SND + w1−
ND p w2+

SND, s14d

wherep denotes the spatial convolution.
We next chose a specific coordinate system, and demon-

strate the validity of Eq.(14). We first consider the first term
on the right-hand side of Eq.(14) and take the needle orien-
tation V to be parallel to thez axis and both needle and
sphere to lie within they-z plane, i.e., V=s0,w̄d, r
=sr ,q ,0d. Then,

w1
SNp w2

N =
D

2
E

0

p E
0

2p

dsRcosq8dE
−L/2

L/2

d1 − Rsinq8 sinw8

r sinq − Rsinq8 cosw8

r cosq − Rcosq8 + l
2dlR2 sinq8dw8dq8

s15d

=
D

2
E

0

2p E
−L/2

L/2

d1 − Rsinw8

r sinq − Rcosw8

r cosq + l
2dlRdw8 s16d

=
D

2
QSL

2
− ur cosquDE

0

2p

dsRsinw8ddsr sinq

− Rcosw8dR dw8 s17d

=
D

2
QSL

2
− ur cosquDdsr sinq − Rd, s18d

which recovers the first line of Eq.(13).
We next consider the termw1+

NDpw2−
SND in Eq. (14); the

calculation ofw1−
NDpw2+

SND can be performed analogously and
is skipped here. We write the convolution in its most general
form, i.e. using absolute coordinates,

E w1+
NDsr − r 8,Vdw2−

SNDsr 9 − r 8dd3r8 s19d

=E D

2
dSr − r 8 + V

L

2
DdsR− ur 9 − r 8udQ„− V · sr 9 − r 8d…d3r8.

s20d

Then we place everything in thex–y plane, q=q̄=q9
=p /2; the sphere shall sit on the negativex axis: w9
=−p /2. Using the remaining translational symmetry, we put
the tip of the needle in the origin:r =L /2, w=p+w̄. To sum-
marize, we have:r =sL /2 ,p /2 ,p+w̄d, r 8=sr8 ,q8 ,w8d, r 9
=sr9 ,p /2 ,−p /2d, V=sp /2 ,w̄d. Using these coordinates, we
can transform Eq.(20) and obtain:

w1+
ND p w2−

SND =
D

2
E

0

` E
0

2p E
0

p

dsr8 sinq8 sinw8d

3dsr8 sinq8 cosw8ddsr8 cosq8d

3dsR− Îr92 + r82 + 2r8r9 sinq8 sinw8d

3Qsr9 sin w̄ + r8 sinq8 sinw8 sin w̄

+ r8 sinq8 cosw8 cosw̄dr82 sinq8dq8dw8dr8

s21d

=
D

2
E

0

` E
0

2p

dsr8 sinw8ddsr8 cosw8d

3dsR− Îr92 + r82 + 2r8r9 sinw8dQsr9 sin w̄

+ r8 sinw8 sin w̄ + r8 cosw8 cosw̄dr8dw8dr8

s22d

=
D

2 o
±
E

0

`

dsr8ddsR

− Îr92 + r82dQsr9 sin w̄ ± r8 cosw̄ddr8 s23d

=
D

2
dsR− r9dQsr9 sin w̄d s24d

which recovers the second line of Eq.(13).
We turn to a brief investigation of the prediction of the

DFT for the bulk free energy. There the contribution of(10)
to the free energy per volume is obtained by settingri
=constant, and henceni

a=ji
ari. With the sphere packing frac-

tion h=prSs3/6, the resulting excess free energy is

bFexc

V
= fhsshd − rN lns1 − hd +

pL2D

4

rN
2

1 − h

+
3

2
S L

2R
+

LD

2R2 +
D

R
D rNh

1 − h
, s25d

where fhs is equal to the Percus–Yevick compressibility
(scaled-particle) result for pure hard spheres,V is the system
volume, and the second and third term inside the parentheses
is the contribution due to(10).

In conclusion, we have extended the DFT of Refs.[11]
and[12] to include effects of nonvanishing rod thickness. To
that end, we have introduced two qualitatively new weight
functions into the geometric framework. Our theory accounts
for excluded volume effects caused by finite rod aspect ra-
tios,D /L. We emphasize, however, that although we treat the
statistical weight associated with finiteD, the present theory
will not resolve features of density variation on length scales
comparable toD. We also have only dealt with contributions
of the order of 1/s1−n3

Sd to the excess free energy. Rosen-
feld’s prescription[7,8] also involves terms proportional to
1/s1−n3

Sd2, which we have not treated here. Whether the
weight functions introduced in the present work can be used
to modify these terms is an interesting problem, that we
leave for future research.

BRIEF REPORTS PHYSICAL REVIEW E70, 022501(2004)

022501-3

Refinement of the theory 287



The proposed theory should lead to rich bulk phase be-
havior as one has, besides demixing into fluid phases with
different chemical composition of species, also the possibil-
ity of nematic ordering of rods. In turn this clearly leads to a
rich variety of interesting interfacial situations. It would also
be interesting to see how the present theory performs against
other theoretical approaches or computer simulations. From
the practical point of view, the present functional causes only

a moderate increase of computational complexity as the new
weighted densities are built with spatial convolutions only
(the angular convolution of Ref.[12] is more involved).

The work of one of the authors(M.S.) is part of the re-
search program of theStichting voor Fundamenteel Onder-
zoek der Materie(FOM), that is financially supported by the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO).
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Colloids, polymers, and needles: Demixing phase behavior
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We consider a ternary mixture of hard colloidal spheres, ideal polymer spheres, and rigid vanishingly thin
needles, which model stretched polymers or colloidal rods. For this model, we develop a geometry-based
density functional theory, apply it to bulk fluid phases, and predict demixing phase behavior. In the case of no
polymer-needle interactions, two-phase coexistence between colloid-rich and colloid-poor phases is found. For
hard needle-polymer interactions, we predict rich phase diagrams, exhibiting three-phase coexistence, and
reentrant demixing behavior.
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I. INTRODUCTION

The richness of phase behavior of systems with purely
repulsive interactions depends crucially on the number of
components. For a one-component system like colloidal hard
spheres, there occurs a freezing transition from a single fluid
phase to a dense crystal. Adding a second component, such
as nonadsorbing globular polymer coils@1# or rodlike par-
ticles @2,3# generates an effective depletion-induced attrac-
tion between colloidal spheres, leading to the possibility of
demixing. This transition is an analog of the vapor-liquid
transition in simple fluids: The phase that is concentrated in
one of the components corresponds to a liquid, while the
dilute phase corresponds to a vapor, and one frequently re-
fers to such phases as colloidal liquid and colloidal vapor,
although the ‘‘vapor’’ is concentrated in the added compo-
nent.

Generic theoretical models for such systems are those in-
troduced by Asakura and Oosawa~AO! and independently
by Vrij @1,4#, Bolhuis and Frenkel~BF! @5#, and Widom and
Rowlinson~WR! @6#. The AO model comprises hard colloi-
dal spheres mixed with polymer spheres that are ideal
amongst themselves but cannot penetrate the colloids. The
BF model adds stiff vanishingly thin needles to a hard sphere
system. Because of their vanishing thickness, the needles do
not interact with one another. Clearly, both models are simi-
lar in spirit, as a noninteracting component is added to hard
spheres. In the WR model this is different; two species of
spheres interact symmetrically, such that hard core repulsion
occurs only between particles of unlike species. Hence a pure
system of either component is an ideal gas. All of these
model binary mixtures exhibit liquid-vapor phase separation,
well established by computer simulations and theories
@7–12#. The WR model@6,13–15# has been studied with a
range of approaches, including mean-field theory~MFT!
@15#, Percus-Yevick ~PY! integral equation theory
@14,16,17#, scaled-particle theory~SPT! @18#, as well as com-
puter simulations@16,19,20#. The precise location of the
liquid-vapor critical point was located by simulations about

50% higher than previously thought@16,19#, still a challenge
for theories~for a recent integral-equation closure, see Ref.
@17#!.

In the AO and BF cases a reservoir description has proven
to be useful. The reservoir density of either polymers or
needles rules the strength of effective attraction and hence
plays a role similar to~inverse! temperature in simple sub-
stances. Although the WR model features an intrinsic sym-
metry that seems to preclude such a description, an effective
model can also be formulated@15#. In the present paper we
consider the phase behavior of a mixture of spheres, poly-
mers, and needles, a natural combination of the above binary
cases. We note that our ternary model may provide insight
into certain real systems, such as paints, which contain col-
loidal latex and pigment particles, polymer thickeners and
dispersants, as well as many other components@21#.

Density functional theory~DFT! @22# is a powerful ap-
proach to equilibrium statistical systems, possibly under in-
fluence of an external potential. Building on Rosenfield’s
work @23#, a geometry-based approach was recently pro-
posed that also predicts bulk properties, without the need of
any input, allowing the AO@24#, BF @25#, and WR @26#
models to be treated. Here we combine these tools to derive
a DFT for ternary systems.

In Sec. II we define the model ternary mixtures of
spheres, polymers, and needles. In Sec. III the DFT is devel-
oped. Application to bulk phases in Sec. IV yields the phase
behavior. We finish with concluding remarks in Sec. V.

II. THE MODEL

We consider a mixture of colloidal hard spheres~species
C! of radius RC , globular polymers~speciesP! of radius
RP , and vanishingly thin needles~speciesN! of length L,
with respective number densitiesrC(r ), rP(r ), and
rN(r ,V), wherer is the spatial coordinate andV is a unit
vector pointing along the needle axis~see Fig. 1!. The pair
interaction between colloids isVCC5` if the separationr
between sphere centers is less than 2RC , and zero otherwise.
The pair interactions between like particles of both other
components vanish for all distances:VPP5VNN50. For
polymers this is an assumption strictly valid only at the theta
point; for needles it becomes exact in the present limit of
large aspect ratio, where overlapping needles contribute a

*Permanent address: Institut fu¨r Theoretische Physik II,
Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1,
D-40225 Düsseldorf, Germany.
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negligible fraction of configurations. The colloidal spheres
interact with both other components via excluded volume:
The pair interaction between colloids and polymers isVCP
5` if r ,RC1RP , and zero otherwise; the interaction be-
tween colloids and needles isVCN5`, if both overlap, and
zero otherwise. What remains to be prescribed is the interac-
tion between needles and polymers. We consider two cases:
~i! ideal interactions such thatVPN50 for all distances, and
~ii ! excluded volume interactions such thatVPN5` if needle
and polymer overlap, and zero otherwise. We denote the
sphere diameters bysC52RC , sP52RP , the sphere pack-
ing fractions byhC54pRC

3 rC/3, hP54pRP
3rP/3, and use a

dimensionless needle densityrN* 5rNL3.

III. DENSITY FUNCTIONAL THEORY

A. Weight functions

We start with a geometrical representation of the particles
in terms of weight functionswm

i , wherem53,2,1,0 corre-
sponds to the particles’ volume, surface, integral mean cur-
vature, and Euler characteristic, respectively@27#, and i
5C,P,N labels the species. We will useS as a unifying
symbol for the spherical speciesC and P, and denote the
radius asR, where R5RC , RP for S5C,P, respectively.
The weight functions are determined to give the hard core
Mayer bondsf i j 5exp(Vij)21 by a linear combination of

termswg
i (r )* w32g

j (r ), where the asterisk denotes the con-
volution, g(r )* h(r )5*d3xg(x)h(r2x).

For spheres, the usual weight functions@23,28# are

w3
S~r !5u~R2r !, w2

S~r !5d~R2r !, ~1!

wv2
S ~r !5w2

S~r !r /t, ŵm2
S ~r !5w2

S~r !@rr /r 221̂/3#, ~2!

wherer 5ur u, d(r ) is the Dirac distribution,u(r ) is the step
function, and1̂ is the identity matrix. Further linearly depen-
dent weights are w1

S(r )5w2
S(r )/(4pR), wv1

S (r )
5wv2

S (r )/(4pR), w0
S(r )5w1

S(r )/R. Note that these weights
have different tensorial rank:w0

S , w1
S , w2

S , w3
S are scalars;

wv1
S , wv2

S are vectors;ŵm2
S is a ~traceless! matrix. These

functions give the Mayer bond between pairs of spheres@23#
through 2 f SS/25w3

S
* w0

S1w2
S
* w1

S2wv2
S

* wv1
S . However,

they are not sufficient to recover the sphere-needle Mayer
bond @27#. This is achieved through

w2
SN~r ,V!52uwv2

S ~r !•Vu, ~3!

which contains information aboutbothspecies: it is nonvan-
ishing on the surface of a sphere with radiusR, but this

surface is ‘‘decorated’’ with anV̂ dependence. Furthermore,
for needles, we follow Ref.@27# to obtain

w1
N~r ,V!5 1

4 E
2L/2

L/2

dld~r1V̂l !, ~4!

w0
N~r ,V!5 1

2 @d~r1V̂L/2!1d~r2V̂L/2!#, ~5!

andr is the needle center of mass. The functionw1
N describes

the linear extent of a needle, whereasw0
N is characteristic of

its endpoints. For vanishingly thin needles, both surface and
volume vanish, and so do the corresponding weights,w2

N

5w3
N50. Technically, the Mayer bond is generated through

2 f SN(r ,V) 5 w3
S(r )* w0

N(r ,V) 1 w2
SN(r ,V) * w1

N(r ,V),
wherer is the difference vector between sphere and needle
position.

B. Weighted densities

The weight functions are used to smooth the possibly
highly inhomogeneous density profiles by convolutions,

nn
C~r !5rC~r !* wn

C~r !, ~6!

nn
P~r !5rP~r !* wn

P~r !, ~7!

n2
CN~r ,V!5rC~r !* w2

CN~r ,V!, ~8!

n2
PN~r ,V!5rP~r !* w2

PN~r ,V!, ~9!

nt
N~r ,V!5rN~r ,V!* wt

N~r ,V!, ~10!

wheren50, 1, 2, 3,v1, v2, m2, andt50, 1; rC(r ), rP(r ),
and rN(r ,V) are the one-body density distributions of
spheres, polymers, and needles, respectively. Note thatnn

C ,
nn

P , nn
N are ‘‘pure’’ weighted densities, involving only vari-

ables of either species@23,27#. In contrast,n2
CN andn2

PN are
a convolution of the sphere densities with orientation-
dependent weight function, combining characteristics of both
species@25#.

C. Free energy density

The Helmholtz excess free energy is obtained by integrat-
ing over a free energy density,

Fexc@rC ,rP ,rN#5kBTE d3xE d2V

4p
F~$ng

i %!, ~11!

FIG. 1. Sketch of the ternary mixture of colloidal hard spheres
with diametersC , ideal polymer spheres of diametersP and van-
ishingly thin needles of lengthL. Different cases for interactions
between polymers and needles are depicted:~a! no interactions;~b!
excluded volume interactions.
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wherekB is Boltzmann’s constant,T is temperature, and the
~local! reduced excess free energy densityF is a simple
function~not a functional! of the weighted densitiesng

i . This
leads to a dependence ofF on orientation and position. The
variable x runs over space@23,27#, and V over the unit
sphere@25#.

The functional form ofF is obtained by consideration of
the exact zero-dimensional excess free energy. We obtain

F5FCC1FCP1FCN1lFPN , ~12!

where in the case of ideal polymer-needle interactionl50,
and for hard polymer-needle interactionl51. In the follow-
ing, the arguments of the weighted densities are suppressed
in the notation; see Eqs.~6!–~10! for the explicit dependence
on r andV. The hard sphere contribution, being equal to the
pure HS case@23,28#, is

FCC52n0
C ln~12n3

C!1~n1
Cn2

C2nv1
C
•nv2

C !/~12n3
C!

1@~n2
C!3/32n2

C~nv2
C !213~nv2

C
•n̂m2

C
•nv2

C

23 detn̂m2
C !/2#/@8p~12n3

C!2#. ~13!

The contribution due to interactions between colloids and
polymers is the same as in the pure AO case@24# and is
given by

FCP5(
n

]FCC

]nn
C nn

P . ~14!

The contribution due to interactions between colloids and
needles@25# is

FCN52n0
N ln~12n3

C!1
n1

Nn2
CN

12n3
C . ~15!

Note that the simultaneous presence ofFCP andFCN in F
does not generate artificial interactions betweenP andN. For
vanishingPN pair potential one can derive these terms from
consideration of multicavity distributions like in the binary
CP @24,12# and CN cases@25#. In order to model the WR-
type interaction between polymers and needles in the pres-
ence of the colloidal spheres we use

FPN5
n0

Nn3
P1n1

Nn2
PN

12n3
C . ~16!

This can be derived as follows. The starting point is a func-
tional for binary hard spheres with added needles. Lineariza-
tion in one of the sphere densities~which becomes the poly-
mer species! is performed in the same way as linearization of
binary hard spheres leads to the CP functional@12#. In the
absence of colloids, we obtainF5FPN5n0

Nn3
P1n1

Nn2
PN .

Then the density functional can be rewritten
as Fexc52*d3r *d3r 8*d2VrP(r ) f PN(r ;r 8,V)rN(r ,V)/
(4p). This is precisely~a generalization to needles of! the
mean-field DFT for the WR model@15#. Although this does

not feature the exact zero-dimensional~0d! limit, as the
geometry-based DFT@26# for WR spheresdoes, we expect
differences to be small.

IV. RESULTS

A. Bulk fluid phases

For homogeneous density profiles,r i5const, the integra-
tions in Eqs.~6!–~10! can be carried out explicitly. The hard
sphere contribution is equal to the Percus-Yevick compress-
ibility ~and scaled-particle! result, which is

FCC5
3hC@3hC~22hC!22~12hC!2ln~12hC!#

8pRC
3 ~12hC!2 .

~17!

The colloid-polymer contribution is equal to that predicted
by free volume theory@8#, and rederived by DFT@24# as

FCP5
hP /~8pRP

3 !

~12hC!3 $3qhC@6~12hC!213q~22hC2hC
2 !

12q2~11hC1hC
2 !#26~12hC!3 ln~12hC!%,

~18!

where q5sP /sC . The colloid-needle contribution equals
the perturbative~around a pure hard sphere fluid! treatment
of Ref. @5#, which can be shown to equal the result from
application of scaled-particle theory@29#, and DFT@25#, and
is given by

FCN5rNF2 ln~12hC!1
3L

4RC

hC

12hC
G . ~19!

The WR-type polymer-needle contribution is

FPN5S 11
3L

4RP
D rNhP

12hC
. ~20!

For completeness, the ideal free energy contribution is

f id5 (
i 5C,P,N

r i@ ln~r iL i
3!21#, ~21!

where theL i are~irrelevant! thermal wavelengths of species
i. This puts us into a position to obtain the reduced total free
energy per volumeF tot5Fid1F of any given fluid state
characterized by the bulk densities and relative sizes of the
three components.

B. Phase diagram

The general conditions for phase coexistence are equality
of the total pressuresptot , and of the chemical potentialsm i
in the coexisting phases. Equality of temperature is trivial in
hard-body systems. For phase equilibrium between phases I
and II,

ptot
I 5ptot

II , ~22!
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m i
I5m i

II , i 5C,P,N. ~23!

These are four equations for six unknowns~two statepoints
each characterized by three densities!. Hence two-phase co-
existence regions depend parametrically on two free param-
eters. For three-phase equilibrium between phases I, II, and
III,

ptot
I 5ptot

II 5ptot
III , ~24!

m i
I5m i

II5m i
III , i 5C,P,N. ~25!

Eight equations for nine variables leave one free parameter.
In our caseptot /kB T52Ftot1(i5C,P,N ri]Ftot /]ri , andm i

5kBT]F tot /]ri yield analytical expressions. We solve the
resulting sets of equations numerically, which is straightfor-
ward.

1. Ideal polymer-needle interaction

Let us first explain our representation of the ternary phase
diagrams. We take the system densitieshC ,hP ,rN* as basic
variables. For given particle sizes, these span a three-
dimensional~3D! phase space. Each point in this space cor-
responds to a possible bulk state, at some pressureptot . Two-
phase coexistence is indicated by a pair of points that are

joined by a straight tie line. Accordingly, three-phase coex-
istence is a triplet of points, defining a triangle. In order to
graphically represent the phase diagram, we show surfaces
defined by one thermodynamic parameter being constant.
Such surfaces are conveniently taken such that coexistence
lines ~and triangles! lie completely within the surface.
Clearly, this can be accommodated by imposing a constant
value of ptot or any of mC , mP , andmN . Here we choose
mP5const, and hence imagine controlling the system
directly with hC and rN* , but indirectly via coupling to a
polymer reservoir of packing fraction hP

r 5(4p/
3)(RP /LP)3 exp(mP /kBT). A constant-hP

r surface is nontrivi-
ally embedded in the 3D phase diagram. To depict it graphi-
cally, we show projections onto the three sides of the coor-
dinate system, namely, thehC2rN* , hC2hP , andhP2rN*
planes, as well as a perspective 3D view. Furthermore, we
indicate the accessible regions that are compatible with the
constraint of fixedhP

r . Their boundaries are implicitly
defined through hP

r (hC50,hP ,rN* )5const and
hP

r (hC ,hP ,rN* 50)5const. Note that tielines are allowed to
cross inaccessible regions.

For simplicity, and to establish a reference case, we ini-
tially ignore polymer-needle interactions and consider equal
particle sizes,sC5sP5L. In the absence of polymer (hP

r

FIG. 2. Demixing phase diagram of a ternary colloid-polymer-needle mixture with ideal polymer-needle interactions forsC5sP5L, and
hP

r 50 ~a!, 0.5 ~b!, 0.638 31~c!, 0.8 ~d!. Shown are binodals~lines!, tielines between coexisting phases~thin lines!, and critical points~dots!.
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50), colloids and needles demix, as shown in Fig. 2~a!. In-
creasing the packing fraction of polymers in the reservoir
causes the demixed region to grow and to shift to smallerhC

and rN* @see Fig. 2~b! for hP50.5#. This behavior can be
understood if addition of a second depleting species simply
enhances the depletion-induced attraction between colloids.
IncreasinghP

r further causes the critical point to hit therN*
50 axis. This is precisely the demixing critical point of the

binary CP~AO! model, which is located athP
r 50.638 31

@see Fig. 2~c!#. Computer simulations are currently being car-
ried out to test the accuracy of this value@30#. For still larger
hP

r , the mixed states become disconnected, hence there is no
path between colloid-rich and colloid-poor phases that does
not pass through a first-order phase transition@see Fig. 2~d!
for hP

r 50.8#.

2. Hard polymer-needle interaction

Turning on the excluded-volume interaction between
polymers and needles allows the possibility of demixing be-
tween these components. In the absence of colloids, the PN
mixture is of WR type: Interactions between particles of like
species vanish, while unlike particles interact with a hard
core repulsion. Our case is a generalization to nonspherical
particle shapes. In the mean-field treatment this does not af-
fect the phase diagram, as only the net excluded volume
enters into the theory. This robustness is also present in our
approach.

We first consider equal particle sizes,sC5sP5L. It
turns out that interesting behavior is observed only for small
rN* ,0.2. The colloid-needle demixing curve lies well above
this region, and is only weakly affected byhP

r .0. In the
absence of needles (rN* 50) and for large enough polymer
density, colloids and polymers demix, indicated by a misci-
bility gap along therN* 50 axis @see Fig. 3~a! for hP

r 50.8#.
Increasing needle densityrN* .0 causes the gap to shrink and
eventually to disappear in a critical point. Quite surprisingly,
and in contrast to the former case of absentPN interactions,
the addition of needlesfavors mixing. This behavior may
reflect a competition between the depleting effects of inter-
acting polymers and needles. By analogy with theCP sub-
system it is clear that at sufficiently high polymer density, a
PN miscibility gap will open forhC50. However, this hap-
pens not by growing a small bump as in theCP case. Instead
theCP demixing curve bends over to smallerhC and touches
~with its critical point! the hC50 axis ~see Fig. 3~b! for
hP

r 51.087 31!. For largerhP
r , the critical point disappears

@see Fig. 3~c! for hP
r 51.2#.

FIG. 3. Demixing phase diagram of a ternary colloid-polymer-
needle mixture with hard polymer-needle interactions forsC5sP

5L, andhP
r 50.8 ~a!, 1.087 31~b!, 1.2 ~c!.

FIG. 4. Demixing phase diagrams in the binary subsystems with
hard polymer-needle interactions forsC52sP5L/2.
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In order to bringCP andCN demixing closer together, we
consider a reduced polymer sizesP5sC/2, generating a
weaker depletion attraction between colloids~at the same
number density of polymers!, and longer needles,L52sC
generating stronger depletion between colloids, and hence
lower rN* at the critical point in the binaryCN case. Figure 4
shows the binodals in the~three! binary subsystems. For the
ternary mixture, we follow a path of increasinghP

r , starting
with hP

r 50, for which the phase diagram is displayed in Fig.
5~a!. There is no polymer present in the system, and phase

separation into colloid-rich and needle-rich phases occurs at
high enough densities of these components. BothhP-rN* and
hC-hP planes are inaccessible ashP50. Increasing polymer
density@hP

r 50.4 in Fig. 5~b!# shifts theCN critical point to
lower hC , distorting the formerly rounded shape of the bin-
odal. For hC50, polymers and needles demix, ashP

r is
above the critical value for the Widom-Rowlinson type de-
mixing of these species. The presence of colloids (hC.0)
disturbs thePN transition; the miscibility gap narrows, even-
tually disappearing in a critical point, with subsequent mis-

FIG. 5. Same as Fig. 3, but forsC52sP5L/2, andhP
r 50 ~a!, 0.4 ~b!, 0.408 107~c!, 0.5 ~d!, 0.526 26~e!, 0.54 ~f!.
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cibility. At hP
r 50.408 107@Fig. 5~c!# theCN andPN critical

points merge into a single one, and a needle-rich phase~N!
becomes isolated. This coexists with a phase that consists
~primarily! of colloids and polymers at varying composition.
For growinghP

r , the ‘‘double’’ critical point broadens into a
line and results in a thin neck joining both transitions.

With increasinghP
r the coexistence region broadens fur-

ther @see Fig. 5~d! for hP
r 50.5#. Colloids and polymers also

demix. ForrN* 50, the system is above the critical point for
the pure AO model, and hence coexistence between colloid-
rich and polymer-rich phases occurs. Again, the presence of
the third component, in this caseN, causes the density gap to
shrink and eventually disappear with a critical point. As all
binary subsystems are by now demixed, it is evident that the
system will ultimately display coexistence between three
phases, each one enriched by one of the components, and
represented by a triangle in system representation. Each cor-
ner of the triangle corresponds to one of the three coexisting
phases. The Gibbs phase rule dictates that one degree of
freedom remains, which isptot or, equivalently,hP

r ~note that
for hard-body systems, temperature is trivially related to
pressure!. It is striking, however, how this triangle develops.
One might expect this to occur by the joining of existing
binary coexistence regions. This is not the case. The ternary
region instead grows solely out of theN-rich-poor coexist-
ence, wherebyCP coexistence is only a spectator, separated
by mixed states. The initial three-phase triangle is extremely
elongated~being a line as a boundary case!. One corner cor-
responds to a needle-rich phase; both others differ only
slightly in densities, one phase favoring colloids, the other
polymers. Moving away from this CP edge of the triangle
~by reducingrN* ! leads to binary coexistence betweenC and
P. This phase separation is reminiscent of the behavior of the
pure AO model. However this reentrant coexistence is trig-
gered by the presence of the needles, and it is separated~by
mixed states! from the pure AO transition~and its region of
stability in the presence of needles!. In Fig. 5~e! we show
results forhP

r 50.526 26, where the critical points of both CP
transitions have already merged, and again a neck is reminis-

cent of the formerly distinct transitions. For still largerhP
r ,

the three-phase triangle grows further@see Fig. 5~f! for hP
r

50.54#. Ultimately, at sufficient concentration the colloids
must freeze, but we disregard the solid phase in the present
work. We finally note that the whole scenario is covered over
a relatively small density intervalhP

r 50.420.54, and that
the packing fractions of colloids and polymers are only mod-
erate. However, needle densities can be quite high.

V. DISCUSSION

In conclusion, we have considered a simple hard-body
model for a mixture of spherical colloidal particles, globular
polymer coils, and needle-shaped objects, which may repre-
sent either colloidal needles, stretched polymers or polyelec-
trolytes. We have extended a recent DFT approach to this
model and applied it to bulk fluid phases. The resulting phase
behavior is very rich, ensuing from competition of demixing
in the binary subsystems.

The present paper has interesting implications for the
techniques of integrating out degrees of freedom~see e.g.,
@31,32#!. Note that by integrating out, e.g., the needles, ef-
fective interactions between pairs of colloids, pairs of poly-
mers, as well as colloids and polymers arise. Hence one ar-
rives at a binary mixture with~soft! depletion interactions.
To what extent the ultimate mapping onto a one-component
~colloid! system, by further integrating out the polymers, can
be achieved is an interesting question. As a further outlook,
the inclusion of freezing of colloids, disregarded in the
present work, would further enrich the phase behavior. Com-
puter simulations are desirable to test the theoretical phase
diagrams. Furthermore it is interesting to elucidate the struc-
tural correlations present in the various fluid phases. Inho-
mogeneous situations, such as induced by walls or present at
interfaces between demixed states, constitute further exciting
directions of research.
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In order to study ternary amphiphilic mixtures, we introduce a simplistic model of hard spheres correspond-
ing to water and hard needles corresponding to oil and amphiphilic particles, where the hydrophilic head is
modeled as a hard sphere and the hydrophobic tail as an infinitely thin needle attached radially to the sphere.
For this system, we construct a geometry-based density functional and perform Monte Carlo computer simu-
lations. The equation of state derived from the theory is found to be in remarkable agreement with our
simulation results. We investigate the theoretical demixing phase diagram, and find that the predicted trends
strongly support the amphiphilic character of the model.
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I. INTRODUCTION

Adding amphiphiles to a system of oil and water consid-
erably enhances the miscibility of these substances. Am-
phiphilic molecules consist of a hydrophilic head group and
a hydrophobic tail, which prefer being dissolved in water and
oil, respectively. The physics of amphiphilic systems is im-
portant in many areas, including industrial and domestic ap-
plications like washing, cleaning, emulsification, and many
more. Due to the different preferences of their constituents,
amphiphiles adsorb at oil-water interfaces and facilitate the
creation of such interfaces. Depending on the thermodynami-
cal variables, these interfaces arrange in a rich variety of
structures@1–4#, and much theoretical work has been de-
voted to understanding the underlying basic mechanisms.
Microscopic approaches have often used a lattice fluid model
@5–8#, while coarse grained continuum descriptions are pro-
vided by Ginzburg-Landau@9# or integral geometrical@10#
models.

Density functional theory~DFT! @11# is a powerful ap-
proach to inhomogeneous statistical systems, and has been
applied to study amphiphilic behavior on different levels
from microscopic to macroscopic. A model for membranes,
vesicles, and micelles@12# based on a description for effec-
tive amphiphile interactions arising from the presence of sol-
vent molecules has been studied. The phase behavior of a
symmetrical ternary mixture was found to exhibit three-
~isotropic!-liquid-phase coexistence@13#. This approach was
generalized to asymmetric interactions between amphiphiles
and water and oil, and lamellar and micellar phases were
found@14#. The structure of droplet microemulsions was also
treated@15#. The problem of separation of length scales into
those of the microscopic domain~relevant for building up
interfaces! and those of the mesoscopic regime~to capture
the degrees of freedom of supramolecular aggregates! was
addressed within a one-dimensional model of molecular ag-
gregation @16#, and later on generalized to the three-
dimensional case@17#. The phase behavior@18# and gas-
liquid nucleation @19# of amphiphilic binary mixtures
consisting of Lennard-Jones monomers and bonded dimers
has been investigated. Furthermore, a DFT approach has
been applied to nucleation in micellar solutions@20#.

In this work we propose a simple atomistic model in order

to investigate amphiphilic mixtures. The particles possess
continuous~off-lattice! positions and orientations, and we
prescribe the microscopic interparticle interactions. In our
model, only hard core pair interactions are present; hence the
behavior is solely driven by entropy. Using hard core sys-
tems has proved to be fruitful for important phenomena like
freezing@21# and liquid crystalline ordering, and we believe
that this could also be the case for amphiphiles. To study the
model, we construct a geometry-based DFT. This approach
originates from Rosenfeld’s fundamental measure theory for
hard sphere mixtures@22–25#, which was also formulated for
convex bodies@26# and parallel hard cubes@27,28#. Re-
cently, within geometry-based DFT, a range of models has
been treated successfully, including the Asakura-Oosawa
colloid–ideal-polymer mixture@29#, the Widom-Rowlinson
model @30#, and a model due to Bolhuis and Frenkel@31#,
where hard spheres are mixed with infinitely thin needles
@32#. This needle-sphere mixture displays a demixing phase
transition crudely reminiscent of that of water and oil. Here,
we use this as a starting point, and supplement it with a third
species of particle that consists of a sphere to which a needle
is attached rigidly. The spherical part is a caricature of the
hydrophilic head and the needle models the hydrophobic tail
of an amphiphilic molecule. Hence we arrive at a simplistic
model for a nonionic amphiphile ternary mixture, featuring
explicit water-oil asymmetry. Hybrid shapes of spheres and
~thin! rods are also realized in the colloidal domain by mi-
crotubules inside vesicles@33,34#, and by rodlike fd bacte-
riophage viruses bound to silica beads@35#.

As will be seen below, our hard body amphiphiles are
nonconvex particles. In order to deal with nonconvexity, we
carry over the recipes developed for convex particles@32#, at
the expense of a certain violation of the overlap condition
within the theory. As we will show in detail, the violation is
quantitatively small and does not hinder the development of
a powerful theory.

Our final aim is to elucidate the phase behavior of the
system. To have benchmark results to test the theory against,
we have carried out Monte Carlo~MC! computer simula-
tions, and have obtained results for the equation of state for
typical compositions of species and over a broad range of
densities in regions where the system remains in a fluid state.
Comparing with the theoretical results, we find nice agree-
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ment, and hence are confident in trusting the theoretical re-
sults for the phase diagram, without further checking against
simulations. We find that amphiphiles mix better with either
spheres or needles than do spheres with needles. The ratio of
tail length to head radius acts as a control parameter govern-
ing the relative affinity of amphiphiles for either spheres or
needles.

The paper is organized as follows. In Sec. II we define the
ternary hard body mixture of amphiphiles, spheres, and
needles, as well as a multicomponent generalization thereof.
In Sec. III we develop the DFT first for this general system,
and then specialize to the actual ternary mixture as well as to
a pure system of amphiphiles. We also discuss the problem
arising from the nonconvexity of the particles. Our computer
simulation technique is presented in Sec. IV. In Sec. V we
investigate demixing phase behavior for homogeneous fluid
states. Discussion and an outlook are given in the concluding
Sec. VI.

II. THE MODEL

Let us introduce amphiphilic hard core particles, which
consist of a hard sphere of radiusR and an infinitely thin
needle of lengthL. The needle~tail! is attached radially to
the sphere~head!; see Fig. 1~a! for a sketch of the resulting
geometrical shape. The direction of the needle is denoted by
V. A single-component system of amphiphiles@see Fig. 1~b!
for an illustration# is ruled by the number densityrA . We
refer to this system in the following aspure amphiphiles; see
Fig. 2~a! for a snapshot from a computer simulation~de-

scribed below! of this model.
We also consider a three-component mixture of~i! par-

ticles with amphiphilic character,~ii ! particles corresponding
to water, and~iii ! particles corresponding to oil molecules.
For our amphiphiles~speciesA!, adding two further species
for which their shape possesses an amphiphilic character is
straightforward. We use hard spheres~speciesS! with radius
R as a caricature of water. The role of oil is played by hard,
infinitely thin needles~speciesN! of length L. Hence we
arrive at a model that we refer to as theternary mixture; see
Fig. 1~c! for a sketch. The number densities are denoted by
r i ,i 5A,N,S, the sphere diameter bys52R, and the size
ratio by q5L/R. The packing fraction of spheres ishS
54pR3rS/3, and that of amphiphilic heads ishA
54pR3rA/3. We show a typical particle configuration in
Fig. 2~b! as an illustration.

Additionally, we generalize to a multicomponent mixture
where the species are labeled byi ~adopting a discrete picture
of mixtures!; the spherical head groups of speciesi possess
radii Ri and the needle tails have lengthsLi . This multicom-
ponent mixturewill be used below to formulate the DFT.
Clearly, it includes the case of monodisperse amphiphiles, if
only a single speciesA is present. Also the ternary mixture is
obtained as a special case. Fori 5A,N,S, we simply setLA
5LN , LS50, RA5RS , andRN50.

FIG. 1. Sketch of the model amphiphilic mixture.~a! Am-
phiphilic molecules consisting of a hard, infinitely thin needle of
length L, which is attached radially to a hard sphere of radiusR.
The orientation of the particle is described by the unit vectorV. ~b!
Pure amphiphile system.~c! Ternary system consisting of am-
phiphiles, hard spheres~water!, and hard, infinitely thin needles
~oil!.

FIG. 2. Snapshots from computer simulation.~a! Pure am-
phiphile system; the particles possess different gray levels.~b! Ter-
nary mixture of spheres~black!, needles~gray!, and amphiphiles
~white!.
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III. THEORY

A. Density functional

The DFT we propose is a weighted density approxima-
tion. By convolutions of the position- and orientation-
dependent density profilesr i(r ,V), weighted densities are
obtained. These weighted densities are converted by a simple
function into an excess free energy density. This is a local
quantity, depending on space point and orientation. The glo-
bal excess free energy is obtained by integration over space
and rotator degree of freedom. The weight functions with
which ther i(r ,V) are convoluted are obtained by geometric
considerations and describe the geometrical shapes of the
particles. We first formulate the theory for the general mul-
ticomponent mixture, and then specialize to pure am-
phiphiles as well as to the ternary mixture.

1. Multicomponent amphiphiles

We start by giving the weight functions. Those that are
characteristic functions of the needle part of the particles are
defined as

w̄q
~ i !~r ,V!5

1

4 ER4

Ri1Li
dld~r1 l V!, ~1!

w̄0
~ i !~r ,V!5

1

2
@d„r1~Ri1Li !V…2d~r1RiV!#. ~2!

Here and in the following, the overbar indicates needle~tail!
quantities. The weight functions that describe the sphere part
of the particles are equal to those for pure hard spheres
~HS’s! @22,25# and are defined as

w3
~ i !~r !5u~Ri2r !, w2

~ i !~r !5d~Ri2r !, ~3!

wv2
~ i !~r !5w2

~ i !~r !•r /r , ŵm2
~ i !
•~r !5w2

~ i !~r !@rr /r 221̂/3#,
~4!

w̄2
~ i !~r ,V!52uwv2

~ i !~r !•Vu, ~5!

wherer 5ur u, u(r ) is the step function, and1̂ is the identity
matrix. Further, linearly dependent, weights arew1

( i )(r )
5w2

( i )(r )/(4pRi), wv1
( i )(r )5wv2

( i )(r )/(4pRi), and w0
( i )(r )

5w1
( i )(r )/Ri . The weight functions possess different tenso-

rial rank:w0
( i ) , w1

( i ) , w2
( i ) , andw3

( i ) are scalars;wv1
( i ) andwv2

( i )

are vectors;ŵm2
( i ) is a ~traceless! matrix. The weighted densi-

ties are

nn~r !5(
i
E d2V8

4p
r i~r 8,V8!* wn

~ i !~r 9!, ~6!

n̄n~r ,V!5(
i

r i~r 8,V!* w̄n
~ i !~r 9,V!, n50,1, ~7!

n̄2~r ,V!5(
i
E d2V8

4p
r i~r 8,V8!* w̄2

~ i !~r 9,V!, ~8!

where the star denotes convolution,g(r 8)* h(r 9)
5*d3xg(x)h(r2x). The Helmholtz free energy isF5F id

1Fexc, whereFexc arises from interactions and the ideal gas
contribution is

F id@r i~r ,V!#5(
i
E d3xE d2V

4p
r i~r ,V!

3$ ln@r i~r ,V!L i
3#21%, ~9!

whereL i is the thermal wavelength of speciesi. @Note that
the normalization is such thatr(r ,V)5r(r ) for isotropic
orientation distributions.# The excess free energy is

Fexc@$r i~r ,V!%#5kBTE d3r E d2V

4p
F~$ng%,$n̄g%!,

~10!

wherekB is Boltzmann’s constant andT the temperature, and
the ~local! free energy densityF is a simple function~not a
functional! of the weighted densitiesng . Considering multi-
cavity distributions@25#, we obtainF5FHS1F̄ with

FHS52n0 ln~12n3!1~n1n22nv1•nv2!/~12n3!

1@~n2!3/32n2~nv2!213~nv2•n̂m2•nv2

23 detn̂m2!/2#/@8p~12n3!2#, ~11!

which is equal to the pure HS case@22,25#. The contribution
due to the presence of the needles is

F52n̄0 ln~12n3!1
n̄1n̄2

12n3
. ~12!

This completes the prescription for the functional for multi-
component amphiphiles.

2. Pure amphiphiles

For a one-component system of amphiphile particles with
radiusR and needle lengthL, the general functional can eas-
ily be reduced. The summations over speciesi in Eqs. ~6!–
~8! vanish, and a density functional of a single density field
rA(r ,V) is obtained.

3. Ternary mixture

We consider a mixture of spheres~speciesS! with radii R,
needles~speciesN! with lengthL, and amphiphiles~species
A! with thesamedimensions, namely, radiusR and lengthL.
The weight functions for spheres (LS50) simplify, such that
w̄0

(S)5w̄1
(S)50, and w̄2

(S) is identical to the corresponding
weight function in the case of the needle-sphere functional
@32#. All wv

(S) are identical to those of the pure hard sphere
case@22,25#. For needles, all densities withv.1 vanish,
wv

(N)50. This is expected from dimensional arguments, be-
cause an infinitely thin needle does not possess surface area
(v52), nor volume (v53). The remaining weight function
w1

(N) is identical to that in the case of the needle-sphere func-
tional. The weight function forv50 is also identical to that
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in this case, and is obtained as the sumw0
(N)1w̄0

(N) . Note
that in the present description the position coordinate of the
needle is one of its end points, whereas using the needle
midpoint might be more intuitive~see Ref.@32#!. Both de-
scriptions are of course equivalent, and are related by a
simple coordinate transformation.

B. Mayer bonds

The Mayerf i j bond between speciesi andj is f i j 521, if
the two particles overlap, and zero otherwise. Within
geometry-based DFT, thef i j are represented as the~nega-
tive! Euler characteristics of the overlap region of the two
bodiesi and j. For convex bodies, the overlap region is also
convex, and hence carries Euler characteristic of unity. For
nonconvex bodies the situation is more complicated. The
overlap region may consist of several disconnected portions,
and its Euler characteristic equals the number of these
portions.

For our model, the two-particle Mayer bonds are correct
within the DFT, if no amphiphile is involved, i.e.,f SS and
f SN. Furthermore,f AN is also correct. Problems arise be-
tween two amphiphiles,f AA , as well as between an am-
phiphile and a sphere,f AS. In Figs. 3~a–c! we display the
cases where the Mayer bond is correct, and Figs. 3~d,e! show
the cases where the Mayer bond is incorrect, namely,f i j 5
22. It might be physically expected that the statistical
weight of such problem configurations is only small, because
for a given position and orientation of the first particle the
second particle’s positionand orientation are restricted.

C. Second virial coefficients

In order to measure quantitatively the degree of violation
of the overlap condition, we evaluate the second virial coef-
ficient for amphiphiles from the DFT and compare it to the
exact result, which we can obtain analytically. Note that this
is precisely a test of the accuracy of the present approach in
the low-density limit. For simplicity, we perform the calcu-
lation for pure amphiphiles. The second virial coefficient is
defined as

B2,i j 52
1

2V E d3rd2Vd3r 8d2V8 f i j ~r ,V;r 8,V8!,

~13!

whereV is the system volume. We find the exact result for
pure amphiphiles as

B2,AA
exact5

16p3

15~L1R!2 $22L5210L4R15L3R215~2516) !

3L2R315~41112) !LR41~91130) !R5

12@R21~L1R!2#5/2%, ~14!

which holds for the caseL.()21)R. For L@R, the ex-
pansion is

B2,AA
exact516p3F2LR21S 20

3
12) DR31OS R4

L D G , ~15!

where 20/312)510.1308. The result from DFT is

B2,AA
DFT 516p3S 2LR21

32

3
R3D , ~16!

which is free of terms of orderR4/L and higher. Note that
the term of orderLR2 is the dominant contribution from
sphere-needle overlap. This is exact in the DFT. The term of
order R3 stems from the hard core between spheres, and is
overestimated by about 5% in the DFT. All higher-order cor-
rections are not reproduced in the DFT result. We conclude
that forL@R the DFT result is an excellent approximation to
B2,AA

exact. Even for L/R510, the relative deviation is only
B2,AA

DFT /B2,AA
exact51.017. For shorter needles,L5R, the deviation

grows somewhat toB2,AA
DFT /B2,AA

exact51.036.

IV. COMPUTER SIMULATION

We use the canonical ensemble to carry out Monte Carlo
simulations. Our method of obtaining the pressure is based
on the probability density of a successful small change in
system volume. In order to perform such a compression, we
enlarge the dimensions of each particle by a factor 11a,
wherea50.001 2520.005, and test for overlap. The statis-
tics of this test yields the pressurep.

We have carried out simulations at 48 state points with
different densities and compositions of species. At each state
point 104 Monte Carlo cycles were done. Particle numbers
range from 1000 to 2500 particles; see Table I for details. As

FIG. 3. Configurations of overlapping amphiphiles. Cases where
the Mayer function is correct within the DFT,f 521: ~a! sphere-
sphere;~b! sphere-needle;~c! sphere overlapping simultaneously
with the needle and the sphere of a second particle. Problem cases,
where f 522 within the DFT: ~d! simultaneous sphere-needle
overlap; ~e! sphere overlapping with the needle and the sphere of
the second particle, so that the inner needle end point is outside the
first sphere.

TABLE I. Overview of simulated systems. Particle numbers~#!
for needles~N!, amphiphiles~A!, and spheres~S! are given.h tot

denotes the total packing fraction ofsphericalentities.

Species #N #A #S h tot

Pure A 1000 hA

S 1000 hS

Binary AN 1000 1000 hA

SN 1000 1000 hS

AS 500 500 hA1hS

Ternary ASN 1000 500 500 hA1hS

1000 500 1000
1000 1000 500

MATTHIAS SCHMIDT AND CHRISTIAN von FERBER PHYSICAL REVIEW E64 051115

051115-4

300 Hard body amphiphiles



a compromise between considerable needle length and man-
ageable simulation box size, we pick the size ratioq5L/R
510 for all runs. The simulation box is chosen to be larger
than twice the particle length in order to avoid problems with
multiple overlap of periodic images. In terms of the total
packing fractionh tot5hA1hS, we simulate in the rangeh
50.05– 0.3 by varying the simulation box size.

V. FLUID PHASES

We proceed from simple to complex, and hence start with
a discussion of one-component fluid phases, in particular, of
the pure amphiphile system. We then turn to the~three! bi-
nary systems that are obtained by selecting pairs out of the
three species. Formally, these are obtained from the ternary
sphere-amphiphile-needle system by setting the density of
one of the species to zero. Finally, we investigate the full
ternary mixture.

In the following we restrict ourselves to homogeneous,
isotropic fluid states, which are characterized by spatially
and rotationally invariant density distributions,r i(r ,V)
5const. Any mesophases, like lamellar or micellar ones, as
well as liquid crystalline ordering, are explicitly excluded
from our investigation. However, such density distributions
allow for phase separation into macroscopically demixed
phases. The strategy is to apply the DFT to the homogeneous
densities and hence to derive the bulk free energy and the
equation of state. This task can be performed analytically
within the present theory. We then check the numerical ac-
curacy of the equation of state obtained via differentiation of
the free energy against computer simulation results. Finally,
we calculate the theoretical demixing phase diagrams includ-
ing binodal, spinodal, and critical point for the binary mix-
tures. In the final case of the ternary mixture, we restrict
ourselves to the spinodal.

In detail, our calculations are as follows. For homoge-
neous, isotropic states, the weighted densities become pro-
portional to the bulk densitynn5S ijn

( i )r i . The proportion-
ality constants are given as fundamental measuresjn

( i )

5*d3rwn
( i )(r ). For the ternary case, the fundamental mea-

sures are for spheresj3
S54pR3, j2

S54pR2, j1
S5R, j0

S51,
for amphiphiles j3

A54pR3, j2
A54pR2, j1

A5R1L/4, j0
A

51, and for needlesj̄15L/4, j̄051. Note that, although an
amphiphile consist of a sphere and a needle,jn

A5jn
S1jn

N

does not hold for alln. This is becausej0
( i )51 for all species,

because each particle consists of a single body and hence
possesses Euler characteristic unity. Hence the weighted den-
sities in isotropic bulk fluids becomen354pR3(rS
1rA)/3(5h tot), n254pR2(rS1rA)(53h tot /R), n15R(rS
1rA)@53h tot /(4pR2)#, n05rS1rA@53h tot /(4pR3)#, and
n̄15(rN1rA)L/4, n̄05rN .

We obtain the spinodal for demixing from the bulk free
energy by solution of det]2(F/V)/]ri]rj50, which indicates
the boundary of stability. This was carried out previously for
the case of the binary needle-sphere mixture (rA50) @32#,
and auniversal ~q-independent! spinodal was found. Here
we follow the same recipe for the remaining two binary mix-
tures, namely,~i! adding needles to pure amphiphiles and~ii !

adding spheres to pure amphiphiles. For the full ternary mix-
ture, we can also, somewhat surprisingly, find an analytical
expression for the spinodal depending on all three densities.

In the case of one-component hard spheres our theory
reduces to the Rosenfeld functional@22# in Tarazona’s latest
tensorial version@25#. The excess free energy density per
volume for pure hard spheres with packing fractionh and
radiusR derived from the DFT is identical to the result of the
Percus-Yevick compressibility~scaled-particle! approxima-
tion, and is given asbFexc(hS)/V5FHS, whereb51/kBT
and

FHS~h!5
3h@3h~22h!22~12h!2 ln~12h!#

8pR3~12h!2 . ~17!

The pure system of needles constitutes an ideal gas of~non-
interacting! rotators. Hence the excess free energy vanishes
exactly, and indeed we recover this~trivial! result, F50.
This is merely a check of the above method~Sec III A! for
generating DFTs from the zero-dimensional limit, and dem-
onstrates that this does not lead to artificial interactions.

A. Pure amphiphiles

The system of one-component amphiphiles provides a
first nontrivial test case. For the homogeneous, isotropic bulk
phaserA(r ,V)5const, we obtain the excess Helmholtz free
energy per volumebFexc/V5FA , with

FA5FHS~hA!1
9qhA

2

16pR3~12hA!
. ~18!

In this additive expression,FHS is the residual contribution
for q50, stemming only from the presence of the spherical
heads. The contribution due to the presence of the needle
tails scaleslinearly with size ratioq. The dependence onhA
is a rational expression typical of geometry-based DFT, with
a ~formal! divergencehA→1. Clearly, for largeq this second
term dominates overFHS.

In order to check the quality of this result, we compare the
compressibility factorZ5bp/r, where the pressure isp5
2]F/]V and the total densityr in this caser5rA , against
simulation results forq510 in Fig. 4~a!. Also shown are
results for the pure hard sphere case. The compressibility
factor is considerably larger for amphiphiles than for
spheres. This is to be expected, as we compare states with
equal packing fractions of spheres, but with~amphiphiles!
and without~spheres! tails. The interactions of the tails with
the sphere lead to the observed increase by more than a fac-
tor of 2. The shapes of both curves, however, are similar.
The theoretical results are slightly smaller than the MC data,
but the general agreement is remarkable. Finally, we note
that Z is a quite sensitive quantity. Recall that our approxi-
mation is on the level ofFexc, andZ is obtained by differen-
tiation and division by density, operations which in general
will enhance any deviations. We also plot the low-density
behavior governed by the second virial coefficient both from
DFT and from the exact calculation. They essentially coin-
cide on the resolution of the plot.
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B. Binary mixtures

Once a system possess two distinguishable components, it
may undergo a demixing phase transition into two macro-
scopically distinct phases with different compositions of par-
ticles. In our case, binary mixtures are obtained by setting
the density of one of the species of the ternary mixture to
zero. For these systems, we shall investigate how the size
ratio q plays the role of a control parameter for demixing
behavior, and especially enlighten the limitsq→0,̀ . Then
we focus on the interesting question of how amphiphiles mix
with either needles or spheres, compared to the mixing be-
havior of needles and spheres.

1. Needles and spheres

According to computer simulation results by Bolhuis and
Frenkel@31#, a mixture of spheres and infinitely thin needles
displays a demixing phase transition into a sphere-rich

~needle-poor! phase and a sphere-poor~needle-rich! phase.
The mechanism for this phase separation is, crudely speak-
ing, the gain in configurational entropy in both demixed
phases. In the needle-rich phase, interactions are consider-
ably reduced, because the needles do not interact among
themselves, and the presence of spheres is only a perturbing
‘‘impurity’’ effect to essentially an ideal gas of needles. The
sphere-rich phase, however, is only weakly disturbed by the
presence of the needles@32#. Bolhuis and Frenkel developed
a first order perturbation theory that is similar to Lekkerkerk-
er’s free volume approach for the Asakura-Oosawa colloid–
ideal-polymer mixture. The present DFT approach recovers
their result@32#; the excess free energy per volume is

bFexc

V
5FHS~hS!1rNF 3qhS

4~12hS!
2 ln~12hS!G . ~19!

It is interesting to compare this result with that of the above
case of pure amphiphiles, Eq.~18!. To do so, we naively set
rS5rN , and compare withFA for a single component. The
results are not identical~which should not be expected!, but
differ by a logarithmic expression. Its origin can be traced
back to the fact that the needles in the binary mixture are
individual particles with an Euler characteristic of unity. In
the case of amphiphiles, the needle tails alone have vanish-
ing Euler characteristic, and the corresponding term in the
free energy functional vanishes~in bulk!. Note also that this
term is independent ofq ~as is the Euler characteristic!. In
summary, we stress thatFA cannot be obtained by the trivial
restriction of equal densities in the free energy of the binary
sphere-needle mixture. The naive calculation yields an addi-
tional term in the compressibility, which isq independent
and given byhA /(12hA). This is a small contribution for
largeq, but destroys the hard sphere limit forq→0, which is
correct in the proper DFT result.

As was already found in Ref.@31#, a comparison with the
simulation results demonstrates the excellent quality of the
equation of state obtained from the theory. We repeat this
comparison in Fig. 4~b!, using the compressibility factor
from both simulation and theory. Indeed, both results are in
good agreement.

In the case of the needle-sphere binary mixture the ana-
lytic expression for the spinodal was found to be@32#

rNpq2R35
4~112hS!2

3hS
. ~20!

This is universal~q independent! in the ‘‘natural’’ variables
hS andrNq2R3. Note thatrNq2 is exactly the proper scaling
in the Onsager limit. The critical point in the limitq→` is
qrNR35p@11(44/3)q211O(q22)# and qhS5(4/3)@1
2(28/3)q211O(q22)#. We display the demixing phase
diagram in Fig. 5 forq510,20,50, as well as the metastable
~with respect to freezing! @31# caseq50. For small densities
the system is in a mixed state; increasing density leads to
demixing. The critical point moves toward smallerhS as q
grows.

FIG. 4. Compressibility factorZ as a function of total packing
fraction h tot . Simulation results~symbols! are compared against
theoretical predictions~lines!. Straight lines indicate the low-
density limit governed by the second virial coefficient.~a! Pure
systems;~b! binary mixtures;~c! ternary mixtures.
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2. Amphiphiles and needles

Adding needles to a fluid phase of amphiphiles should be
easier than adding needles to a hard sphere fluid of the same
density: The amphiphile tails are expected to create free vol-
ume for the needles, an effect that is absent in the case of
hard spheres as a host fluid. The excess free energy for the
amphiphile-needle mixture is

bFexc

V
5FA~hA!1rNF 3qhA

4~12hA!
2 ln~12hA!G . ~21!

This result is the same as in the case of the sphere-needle
mixture, but withFHS replaced byFA . Hence the contribu-
tion due to the presence of the free needles is the same in
both cases. In other words, the free needles interact only with
the heads of the amphiphiles. Clearly, this is true for the
interaction potentials. On the level of the free energy, it rep-
resents an approximation and will not hold in general for the
exact free energy. See Fig. 4~b! for comparison with the
simulation results.

The demixing spinodal of the amphiphile-needle binary
mixture is

rNpL2R5
4~112hA!2

3hA
12q~12hA!. ~22!

We next investigate the limit of short needles,q→0. At fixed
scaled densityrNpL2R, the model reduces to the sphere-
needle mixture. This is physically reasonable, because the
amphiphile shape reduces essentially to a sphere to which
only a very short needle is attached. The latter should not
matter. The free needles still play a role, because their den-
sity rN grows large asrNpL2R is kept constant. See Fig. 6
for the demixing phase diagram as a function ofhA and
q2rN for q50,10,20. Asq increases, the spinodals shift to
higher densities, and the critical point moves to smallerhA .
In the case of long rods,q→`, the location of the critical
point is qrNR35(4/p)@112q211O(q22)# and qhA
5(2/3)@122q211O(q22)#.

3. Amphiphiles and spheres

The excess free energy is

bFexc

V
5FHS~h tot!1

9qhAh tot

16pR3~12h tot!
, ~23!

where h tot5hS1hA . Here both densities are intimately
coupled, throughFHS as a function of the total packing frac-
tion. The additional contribution is again linear inq, and has
a similar but not identical dependency on the densities as in
the other cases. See Fig. 4~b! for comparison with the simu-
lation results:

The spinodal for the amphiphile-sphere binary mixture is
obtained as

rA8p~q821!R3/3

511q82hS~q821!~q812!

1A3q8~11q8/3!@11hS~q821!~q8hS22!#, ~24!

whereq853q/8.
We next discuss the limiting cases. Clearly, for needles

with vanishing lengthq50, the amphiphiles reduce to
spheres, and the system reduces to pure hard spheres. A par-
ticularly interesting case is the crossover between short and
long needle tails. For amphiphiles with largeq, the system
demixes. For smallq the phase transition is clearly absent, as
both species become identical. The interesting question is
how the crossover between the two cases happens. We find
that demixing is absent forq,q* 58/3. If q* is approached
from above, the spinodal shifts to large amphiphile densities,
and diverges formally. However, this scenario is likely to be
preempted by freezing. For long needlesq→`, the effect of
the attached head groups vanishes, and the amphiphiles be-
have like effective needles. Hence the model reduces to the
needle-sphere mixture. As regards the spinodal, the limit is
attained at quite large size ratiosq.

In Fig. 7~a! we display the demixing phase diagram as a
function of both packing fractionshS and hA . In order to
have packing fractions inside the assumed fluid region, we
use the rough criterionhS1hA,0.5, which is about the
value at freezing of pure hard spheres. Rather long needle
tails with q.20 are needed to access this region. The limit

FIG. 5. Phase diagram for the sphere-needle mixture forq
510,20,50 as a function of sphere packing fractionhS and scaled
needle densityrq2R3. The binodals~thick lines!, q-independent
spinodal~thin line!, and critical points~dots! are shown.

FIG. 6. Phase diagram for amphiphile-needle mixture forq
50,10,20. The dots mark the critical points. The caseq50 is equal
to the sphere-needle binary mixture.
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q→` can be traced by using the scaled densityrAq2R3 in-
stead of the packing fraction; see Fig. 7~b!. In this represen-
tation, a well-defined limiting curve is obtained, which again
coincides with the universal needle-sphere spinodal.

Let us discuss the disappearance of the demixing transi-
tion in both binary systems that contain amphiphiles. This
crucially depends on the size ratioq. In the case of the
amphiphile-needle mixture, increasingq leads to a suppres-
sion of demixing, i.e., to a shift toward higher densities. In
contrast, for amphiphile-sphere mixtures,decreasing qis
necessary to suppress demixing. In conclusion,q tunes the
character of the amphiphiles, whether spherophile~small q!
or needle loving~largeq!.

4. Comparison of binary mixtures

The sphere-needle mixture will constitute our reference
system, with which we compare both other binary sub-
systems possessing amphiphiles. The amphiphile-needle sys-
tem can be regarded as a derivative of the needle-sphere
system that is obtained by replacing each sphere particle in
the needle-sphere system with an amphiphile particle. It is
interesting to investigate the differences of these two similar
systems, namely, to monitor the effect of the attached
needles. In Fig. 8~a! we show the demixing phase behavior
as a function of packing fraction and scaled needle density.
In order to compare with the needle-sphere mixture, we use
hA andhS as variables for the respective systems. Hence we
compare states with the same packing fraction of spheres,
whether these are part of amphiphiles~in the amphiphile-
needle case! or free~in the sphere-needle case!. We observe
that the amphiphile-needle system demixes for considerably

higher densities than the sphere-needle system, i.e., it still
remains in a mixed state after the sphere-needle system has
already undergone the demixing transition. Note that this
happens even though the amount of particle ‘‘material’’ is
larger in the amphiphile-needle case due to the additional
presence of the amphiphile tails. However, this is precisely
what is expected for amphiphilic behavior: The amphiphiles
mix better with the needle phase than do pure spheres.

Next we seek to investigate how the behavior of the
amphiphile-sphere system changes, if we replace the am-
phiphiles with needles. In Fig. 8~b! we compare both phase
diagrams forq550 as a function of sphere packing fraction
hS and the respective densitiesrA andrN , which we scale
with the volume of a sphere 4pR3/3. The amphiphile-needle
demixing curve is shifted toward larger densities compared
to the sphere-needle case. This means that amphiphiles mix
better with spheres than pure needles do. Again, this behav-
ior is precisely the expected one for particles with am-
phiphilic character.

FIG. 7. Phase diagram for the amphiphile-sphere mixture for
q520,50,̀ : ~a! as a function ofhS andhA ; ~b! as a function ofhS

andrAq2. The caseq5` is equal to the~universal! result for the
sphere-needle binary mixture.

FIG. 8. Comparison of phase diagrams for different binary mix-
tures atq550. Thick lines are binodals, thin lines spinodals, and
the dots mark the critical points.~a! Sphere-needle and amphiphile-
needle;~b! sphere-needle and amphiphile-sphere;~c! amphiphile-
needle and amphiphile-sphere.
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The final comparison aims at the question of which spe-
cies, needles or spheres, mixes better with amphiphiles. In
Fig. 8~c! the amphiphile-needle phase diagram is compared
with the amphiphile-sphere phase diagram. As variables, we
use the packing fraction of spheres and the number densities
of either spheres or needles~again scaled by the volume of a
sphere!. The amphiphile-sphere spinodal is at slightly higher
densities. The difference decreases upon increasingq. So the
tendencies of spheres and needles to mix with amphiphiles
are roughly equal~and become identical forq→`.!

In summary, we observe a strong shift of the coexistence
lines toward higher densities in those systems where par-
ticles are replaced by amphiphiles. Note that all our compari-
sons are done at equal densities. This also means that in the
case with amphipiles space is more density filled with par-
ticles, because amphiphiles are larger than either spheres or
needles. In spite of this, the system favors the mixed state.
All these findings strongly support the initial assumption,
that our model particles indeed possess amphiphilic charac-
ter.

C. Ternary mixture

For the three-component system of spheres, needles, and
amphiphiles, the Helmholtz excess free energy per volume
for homegeneous, isotropic states is

bFexc

V
5FHS~h tot!1rNF 3qh tot

4~12h tot!
2 ln~12h tot!G

1
9qhAh tot

16pR3~12h tot!
~25!

52@rN13h tot /~4pR3!# ln~12h tot!

1
3h tot

16pR3~12h tot!
2 @6h tot~22h tot!13q~12h tot!

3~h tot2hS!14pqR3rN~12h tot!#. ~26!

From the excess pressurepexc52]Fexc/]V52F
1S ir i]F/]r i , we obtain the~excess! compressibility factor
as

bpexc

r
5

h tot

4~12h tot!
3 H ~12h tot!@3q14~12h tot!#

19
4h tot2qhS~12h tot!

3h tot14pR3rN
J , ~27!

wherer5rA1rN1rS is the total density. We compare this
expression with results from computer simulations in Fig.
4~c! for two different compositions of species, and find good
agreement over the entire density range considered.

The densityrN
r in a reservoir of needles that is in equilib-

rium with the system is related to the system density via
rN5rN

r exp(2bmN), where the~reduced! excess chemical
potential for the needles isbmN5]F/]rN . Here the result is

rN5rN
r ~12h tot!expS 2

3qh tot

4~12h tot!
D , ~28!

which has the same structure as in the sphere-needle binary
case, except that thetotal number of spheres contributes
throughh tot , not only the free ones throughhS . It is the total
packing fraction of spheres, whether pure or the heads of
amphiphiles, that interacts with the needles.

A complete investigation of the demixing phase diagram
of the ternary mixture is beyond the scope of the present
work, and we restrict ourselves to a study of the spinodal.
The spinodal for the full three-component system can be
obtained as

rNpR3q25
1

h tot
@ 4

3 ~2h tot11!212qhA~12h tot!

2 3
4 q2hA~h tot2hA!#, ~29!

where h tot5hA1hS. This is an explicit expression for the
needle densityrN as a function of the densities of spheres
and amphiphiles. It can easily be converted into reservoir
representation using Eq.~28!. Given the complexity of the
model containing three species, two of them possessing an-
isotropic shapes, we find it quite remarkable that a simple
expression can be obtained for an~approximate! spinodal.
Note that for fixed size ratioq the ternary mixture has three
thermodynamic variables, namely, the densities of the three
species. The spinodal is a two-dimensional manifold, which
is embedded in the three-dimensional phase space.

VI. CONCLUSIONS AND OUTLOOK

We have proposed a hard body model for a ternary am-
phiphilic mixture. Water molecules are represented by hard
spheres, oil molecules by infinitely thin hard needles, and
amphiphiles are a hybrid of both. Clearly, this can at best
mimic the complex molecular interactions in a real system.
Nevertheless, our model featurescontinuousdegrees of free-
dom, in contrast to widely used lattice models. Our aim was
to demonstrate that this model carries various characteristics
of real amphiphilic mixtures. Using a specifically designed
density functional theory, we have investigated the bulk fluid
demixing phase diagram, and have discussed its rich behav-
ior, demonstrating that phase boundaries are qualitatively in
accordance with physical expectation. We expect that our
theory accounts also for inhomogeneities on small length
scales similar to the particle dimensions. As its hard sphere
counterpart~Rosenfeld’s functional! yields excellent results
when compared to simulations, we expect a similar quality
of results for our system. Such applications to inhomoge-
neous situations have been left out of the current work. The
next step is to show whether the model exhibits lamellar and
micellar phases. Their existence is crucial to the ability of the
hard body amphiphile mixture to describe real systems.

As possible further directions of research, we mention the
question of how freezing of hard spheres is affected by the
presence of amphiphiles, as well as the nature of the solid
phases built by the amphiphiles, which poses a challenging
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packing problem. Furthermore, the study of the interfaces
between demixed phases will be especially intriguing due to
the number and nature of the different phases in the bulk
phase diagram. This touches on the very relevant question of
how the amphiphiles are arranged at the oil-water interface.

Concerning the general status of the theory, we are faced
with an important example where geometry-based DFT
yields previously unknown bulk thermodynamics. This is in
contrast to the cases of hard spheres, the Asakury-Oosawa
model, and Bolhuis-Frenkel’s needle-sphere mixture, where
expressions from scaled-particle or free volume theory were
previously known, and where these results were rederived by

DFT. Geometry-based DFT is a systematic way to treat such
hard core systems, whereas the scaled-particle or free vol-
ume approaches require considerable physical insight to be
formulated. This is an advantage in terms of comprehensibil-
ity; however, it becomes increasingly difficult to apply these
approaches to more complex systems like the one considered
in this work.
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Hard body amphiphiles at a hard wall
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We investigate the structure of amphiphilic molecules exposed to a substrate that is modelled
by a hard wall. Our simple model amphiphiles consist of a hard sphere head group to which a
vanishingly thin needle tail is radially attached, resulting in a lollipop shape. Such particles act
as amphiphiles when added to a binary fluid of hard spheres and needles. Focusing on the pure
amphiphile system we compare the results for the positional and orientational order profiles
obtained from a recent density functional approximation to those of our computer simulations
and find good agreement. For low densities the structure is ruled by the loss of orientational
free volume near the wall, while for higher densities packing of the spherical heads dominates.
Furthermore, we test the wall sum rule explicitly for this model fluid and find rich structure of
the contact distribution which can be interpreted in terms of typical particle configurations.

1. Introduction

In order to understand the behaviour of ternary
water–oil–surfactant mixtures on a microscopic level,
different model systems have been utilized, ranging from
very simplified phenomenological theories to more
realistic simulation studies. The principal objective of
such research is to start from model interactions
between individual molecules and to predict macro-
scopic properties such as phase behaviour and structural
correlations [1–6]. Often the attractive parts of the pair
potentials are specifically tailored to generate the
required amphiphilic properties. However, it was
shown by computer simulations that hard body inter-
actions alone are sufficient to generate mesoscopic
micellar structures [7], using a model of amphiphilic
molecules immersed in a hard sphere fluid. As a model
for mesogens, van Duijneveldt et al. investigated the
phase behaviour of hard spherocylinders with a flexible
tail attached to either endcap [8] and to only one of the
endcaps [9]. They found that the presence of the tails
enhances the stability of the smectic-A phase and
suppresses the nematic phase.

Recently, a similar simple model that features hard
body interactions only was proposed [10]. To a binary
mixture of hard spheres and vanishingly thin needles
[11], a third component is added that consists of a sphere
and a radially joined needle. Besides being the ‘natural’
amphiphile for the sphere–needle mixture, this mimics
the shape of the hydrophilic headgroup and hydrocar-
bon tail of real amphiphile molecules. The appeal of the
model stems from the absence of an energy scale, hence
its behaviour is governed solely by the (three) densities of
the species and the ratio of needle length and sphere
diameter as an additional geometric parameter that
determines the amphiphile strength. In the framework of
density functional theory (DFT) [12, 13] extending
Rosenfeld’s work [14–16] and following the treatment
of a binary sphere–needle mixture [17], a geometry-based
DFT for this model was proposed [10]. The bulk fluid
equation of state derived from the theory was found to
be in good agreement with that obtained from computer
simulations. Theoretical results for the fluid demixing
phase behaviour of the binary subsystems (obtained by
setting the density of one of the components to zero)
supported the amphiphilic character of the model. In
particular it was found that compared to the demixing
binodal in the sphere–needle mixture, the mixed region
grows (demixing is suppressed) if either component is
replaced with amphiphiles. Besides the ternary bulk
phase behaviour (which has not been considered so far),
the crucial test to prove the validity of the model is
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whether the interfacial properties are in accordance with
those of real ternary surfactant mixtures. Clearly, this is a
potentially demanding project, and as a prerequisite, in
the present study we seek to understand the nature of
correlations that emerge from the shape (and hence the
interactions) of the model amphiphiles.

We choose a generic situation, the hard, impenetrable
wall, to study the packing effects caused by the hybrid
shape of the particles. Besides the intrinsic interest in
amphiphiles at surfaces, our aim is also to assess the
accuracy of the theory in inhomogeneous situations. In
contrast to fluid–fluid interface studies, the behaviour
near walls can be obtained more easily from computer
simulations, and hence we have carried out Monte Carlo
(MC) simulations for the pure system of amphiphiles
against a hard wall.

We find that for low densities the behaviour is driven
by the (trivial) loss in rotational free volume (accessible
particle orientations) that arises from the overlap of the
particle tail with the wall. Increasing the bulk density
leads to a crossover to behaviour that is governed by the
packing of the heads, and thus resembles that of the
hard sphere fluid. Theoretical and simulation results
agree well, given the complexity of the situation, also
very close to the wall. The peculiar shape of the second
peak is captured correctly but its height is slightly
overestimated. Our theoretical results for the wall–
particle contact distribution show rich structure, which
we can relate to special geometric particle arrangements
at the wall.

The paper is organized as follows. In Section 2 we
define the model explicitly. Section 3 is devoted to the
density functional and computer simulation methods.
In Section 4 we present results and we conclude in
Section 5.

2. Model

We consider amphiphilic hard core particles which
consist of a hard sphere of diameter � and a vanishingly
thin needle of length L. The needle (tail) is attached
radially to the sphere (head). We take the centre of the
sphere as the position of the particle (denoted by r) and
denote the direction of the tail by a unit vector :, see
figure 1 (a). The interparticle interactions are such that
both sphere–sphere and sphere–needle overlaps are
forbidden. The excluded volume between two needles
is zero owing to their vanishing thickness. Hence
configurations with overlapping needles carry vanishing
statistical weight, and the needle–needle interactions can
be assumed as being ideal. The wall (see figure 1 (b)) is
impenetrable to both the head and tail. Let � be the
angle between : and the surface normal towards the
wall (see again figure 1 (b)), and let z be the component
of r perpendicular to the wall. Then we can describe the

wall as an external potential

VwallðzÞ ¼
1 z< zþð�Þ
0 otherwise,

�
ð1Þ

where zþð�Þ is the distance of closest allowed approach
between the sphere centre and the wall, given by

zþð�Þ ¼
ðLþ �=2Þ cos � �<arccos[1/(1+2L/�)]
�=2 otherwise.

�
ð2Þ

The system is governed by only one thermodynamic
parameter, which we take to be the packing fraction of
the spherical heads, �A ¼ �A��

3=6, where �A is the
amphiphile number density. The size ratio of needle
length and sphere diameter, L=�, is a further geometric
control parameter.

3. Methods

3.1. Density functional theory
As a theoretical approach to the study of the

interfacial properties of our model fluid we use the
DFT of [10] which extends Rosenfeld’s fundamental
measures theory [14–16] to an example of non-convex
particles with orientational degrees of freedom. The only
inputs to the theory are a geometrical description of the
particle shape and exactly known limits for situations of
extreme confinement. The theory in [10] is formulated
for a multicomponent mixture. Here we apply it to a
one-component system (monodisperse in sphere dia-
meter and tail length). As an essential feature, this DFT
describes the many-body behaviour of the system in
terms of geometrically determined weight functions that
correspond to the particle shape. The weight functions
are used to obtain weighted densities by building
convolutions with the actual density profile. The excess
(over ideal gas) free energy density is expressed as a
function of these weighted densities and integration over
space and orientational degrees of freedom yields the
excess free energy. For the full definition of the weight
functions, that of the free energy density, and all further
technical details we refer the reader directly to [10].

Figure 1. Sketch of the model amphiphilic system. (a) Each
amphiphilic molecule consists of a hard sphere of diameter
� to which a vanishingly thin needle of length L is radially
attached. The particle orientation is described by the unit
vector:. (b) Typical configuration of amphiphiles against
a hard wall. The needle tails may overlap with each other
owing to their vanishing excluded volume, but they can
penetrate neither the spheres nor the wall.
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The numerical minimization of the density functional in
the presence of the external potential, equation (1), is
done via a standard iteration technique, and follows
closely that of a related investigation in a binary sphere–
needle mixture [18].

3.2. Computer simulations
In order to obtain benchmark results, we performed

canonical Monte Carlo simulations with 500 particles.
Periodic boundary conditions are used in both direc-
tions parallel to the walls. The two walls have square
shapes. The distance between both walls is taken to be
twice their lateral length, in order to reduce finite-size
effects. For the simulated total densities �A ¼ 0:05,
0:10, 0:15, 0:20, 0:25, 0:30 we performed 2.1, 2.7, 3.6, 4.4,
4.7, 7.0 million MC moves per particle, respectively. The
maximal spatial and orientational displacements were
adjusted to obtain acceptance ratios of about 0.85. As
we fix the volume V and the total particle number N, the
mean density in the simulation box is prescribed, but not
the bulk density. We determine this a posteriori from the
(plateau) value of the density profile away from the wall,
that is in the middle of the simulation box.

For the size ratio L=� ¼ 1:5 we obtained reliable
results for the density and order parameter profiles;
those are presented below. Increasing the needle length
(we checked L=� ¼ 5) leads to significant slowing down
of the equilibration of the system, and hence prohibited
the obtaining of high-quality data.

3.3. Order parameters and the wall sum rule
In order to analyse the behaviour of the non-spherical

particles we consider two characteristic distributions
obtained from the full profile �Aðr,:Þ. The first is the
orientation averaged profile which describes the dis-
tribution of the centres of the spheres, regardless of their
tail orientation, given by

��AðrÞ ¼

Z
d2O
4p

�Aðr;:Þ: ð3Þ

The second is an orientational order parameter

hcos�i ¼ ��AðrÞ
	1

Z
d2O
4p

�Aðr;:Þ cos �, ð4Þ

that varies between 	1 for particles with tails pointing
away from the wall and þ1 for particles with tails
pointing towards the wall. It vanishes in the (isotropic)
bulk fluid. As we restrict ourselves to the study of states
with planar symmetry, ��A and hcos �i depend only on z.

For hard spheres, that is L ¼ 0, the density profiles
against a hard wall satisfy the well-known sum rule

P ¼ �ðRþÞ, where 
 ¼ 1=kBT , kB is the Boltzmann
constant, T is absolute temperature, P is the bulk

pressure and Rþ ¼ ð�=2Þþ is the distance of the closest
approach between the sphere centre and the wall surface
[19] (the upper plus indicates a limit from above). This
sum rule was subsequently generalized to systems of
hard anisotropic particles against a hard wall [20] which,
for a one-component system of amphiphiles, is given by


P¼

Z
d2O
4p

�Aðz
þð�Þ, �Þ, ð5Þ

where zþð�Þ is the distance of the closest approach
between the particle centre and the surface of the wall
for a particle with orientation �, see equation (2).

4. Results

4.1. Density and order parameter profiles: comparison
with simulations

To assess the performance of the amphiphile func-
tional we compare positional and orientational order
parameter profiles (equations (3) and (4)) from DFT and
MC simulation for L=� ¼ 1:5. Owing to the complicated
shape of the amphiphilic particles it is not obvious to
what extent our approximate functional will capture the
subtle packing effects which determine the interfacial
structure in this system. Figure 2 shows the angle
averaged density profiles ��AðzÞ. At low densities (�A ¼

0:052 12 in figure 2 (a) and �A ¼ 0:104 37 in figure 2 (b))
the amphiphile tails strongly perturb the density profiles
from those of pure hard spheres at the same packing
fraction. At these low densities the contact value is
reduced compared to pure hard spheres owing to wall–
amphiphile tail collisions which tend to move the sphere
centres away from the wall. Note that the lowering of
the contact value of the averaged density profile does
not imply lowering of the bulk pressure (via relation
through the wall sum rule), as collisions of the tails with
the wall also need to be taken into account. We shall
discuss this issue in the next subsection. The kink in the
profile at z ¼ 2� corresponds to a distance where an
amphiphile with � ¼ 0 makes contact with the wall. For
these low densities we find good agreement between
simulation and theory.

As �A is increased the packing of the amphiphile
heads begins to dominate and the structure becomes
closer to that of hard spheres (�A ¼ 0:155 85 in figure
2 (c) and �A ¼ 0:207 28 in figure 2 (d)). For high densities
(�A ¼ 0:258 10 in figure 2 (e) and �A ¼ 0:307 51 in figure
2 (f)) the profile is very close to that of hard spheres and
the presence of the amphiphile tails acts only as a weak
perturbation. The effect of the tails is overwhelmed by
the sphere packing.

Figure 3 shows the orientational order parameter
profile hcos �i for two typical densities, namely �A ¼

0:05 and 0:25. Despite the markedly differing values the
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simulation yields two very similar profiles, the only
significant difference being the weak oscillations for
�A ¼ 0:25 induced by sphere packing. The ‘triangle’
structure for z < 2� is almost completely determined by
the reduction in solid angle available to each amphiphile

tail when close to the wall; interactions between the
amphiphiles appear to have little effect. In fact the
profile for � ¼ 0:05 already lies very close to the low
density limit with a small positive enhancement at
z ¼ 2�. While the functional gives a good account of the

Figure 2. Angle averaged amphiphile density profiles ��A as a function of the scaled distance from the wall z=� for L=� ¼ 1:5
obtained from simulations (symbols) and DFT (solid curve). For comparison we also plot the DFT results for the pure
hard sphere case (L ¼ 0) for the same densities (dashed curve). Packing fractions are (a) �A ¼ 0:052 12; (b) �A ¼ 0:104 37;
(c) �A ¼ 0:155 85; (d) �A ¼ 0:207 28; (e) �A ¼ 0:258 10; ( f ) �A ¼ 0:307 51.
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low density behaviour of hcos �i when compared to
simulation, for higher densities the agreement is poor.
As � is increased the simulation results show that (i) the
contact value increases (becomes less negative), (ii) there
is a deviation from linearity between contact and z ¼ 2,
(iii) there is enhancement at z=� ¼ 2 and, (iv) oscilla-
tions develop. All of these features are captured by the
DFT, but are grossly overestimated. A possible expla-
nation could lie in our assumption that there is no
ordering parallel to the wall. This is implicit in our
calculation of one-dimensional (z-dependent) density
profiles but is still accounted for within the simulation.
While this presents an interesting possibility, the
numerical minimization of the amphiphile functional
[10] allowing for such ordering presents a formidable
numerical challenge and is beyond the scope of the
present work.

Preliminary simulation results for longer tails,L=� ¼ 5,
and �A ¼ 0:2 indicate deviations from the theoretical
profiles. In particular we observe a dip in �AðzÞ ranging

from about z ¼ 2� to z ¼ 5�, which is about 15% lower
than the bulk density. This feature is absent in the
starting configuration and develops over simulation
time, albeit no equilibrated state could be reached. Our
current DFT implementation is limited to planar
symmetry, and does not reproduce this feature. Thus it
is interesting to speculate that this could be an
indication of lateral ordering at the wall, for example
wall-induced micelle formation or freezing. We leave
this issue for future work.

4.2. Wall contact distribution
The hard wall sum rule, equation (5), is an exact

theorem. When used in an approximative DFT treat-
ment it is expected, from general considerations, that the
equality holds provided both sides of the equation are
obtained from the same theory, that is the pressure (left-
hand side of equation (5)) is obtained from the bulk
equation of state while the right-hand side is obtained
from the density profile which minimizes the functional.
The sum rule should be satisfied by any non-local
functional and thus provides a useful check of our
numerical procedure. For each �A value we find the sum
rule (equation (5)) to be satisfied. The present study
introduces two non-trivial complications over existing
studies of hard particles at a hard wall: (i) the
amphiphile particles are non-convex and (ii) the func-
tional contains only an approximate Mayer function. To
the best of our knowledge the sum rule has never been
explicitly tested for either of these cases. Satisfaction of
the sum rule for amphiphiles proves to be considerably
more demanding than for pure hard spheres or the
sphere–needle binary mixture [18]. A rather fine
numerical mesh is required to achieve good accuracy;
we use 200 spatial grid points per � in z and 150 angular
steps in the range 0 
 � 
 �. To provide good resolution
in rapidly varying regions we employ a non-uniform
grid in �.

In addition to providing a numerical check, the
investigation of the sum rule also yields insight into
the liquid structure at the wall. Using hcos �i as a
measure of orientational order does demonstrate the
average tendency of the amphiphile tails to point away
from the wall. However, much detail is washed out in
the averaging process. Figure 4 shows the contact
distribution �þAð�Þ � �Aðz

þð�Þ, �Þ sin � (the integrand of
equation (5)), for several values of �A. For low �A values
the function is smooth (in �) but as �A increases it
becomes sharply peaked at the point labelled a. A
careful numerical integration is thus required to evaluate
the right hand side of equation (5). For the size ratio
considered (L=� ¼ 1:5) the peak is located at an angle
�a ¼ 1:318, identifying the most common geometrical
arrangement of a particle at the wall. This a-type

Figure 3. The orientational order parameter profiles hcos �i
as a function of the scaled distance z=� from the wall
obtained from simulation (circles) and DFT (curves).
Packing fractions are (a) �A ¼ 0:05 and (b) �A ¼ 0:25.
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configuration is shown in figure 5. It consists of an
amphiphile with both the spherical surface and tail end
simultaneously touching the wall. As �A increases this
configuration becomes more dominant and particles
thus arranged play the largest role in balancing the bulk
pressure via equation 5. We have checked that for longer
tail lengths (L=� ¼ 5) the peak develops at lower �A
values as it becomes easier to ‘flatten’ the amphiphiles
against the wall. Hence in general we expect �a ¼
arccos½1=ð1þ 2L=�Þ.

For �A > 0:3 two more peaks become apparent at
angles b and c in figure 4, each corresponding to a
favoured amphiphile configuration at the wall. The
interpretation of these higher order peaks is more subtle
as they represent configurations involving pairs of
amphiphile particles against the wall, see figure 5.
Configuration b occurs when the amphiphile sphere
surface touches the wall while the tail rests on top of a
neighbouring sphere. If the needle touches the neigh-
bouring surface such that it assumes the largest � value
possible for a given sphere–sphere separation, then for
L=� ¼ 1:5, 1:824 < �b < 2:094 for sphere separations

where the needle is tangent to the neighbouring sphere
surface. This is in excellent agreement with the location
of peak b in figure 4. It should be noted that peak a is
sharp because amphiphiles with angles close to �a all
rapidly fall into a-type configurations; type-b configura-
tions are more varied and include those where the needle
has ‘slid off’ its neighbouring sphere to some extent.
This accounts for the rounding of the peak. Also, the
peak height of b is lower than that of a because b
configurations are unstable and can easily fall into type a.
The peak c is small, even for �A ¼ 0:35, and is the most
unstable of the three identified configurations. If the
head of amphiphile c in figure 5 is positioned directly on
top of the second amphiphile head, that is the line joining
the sphere centres is normal to the wall and the tail
touches the wall, an angle of �c ¼ arccos½3=ð1þ 2L=�Þ is
achieved. For L=� ¼ 1:5 this yields �c ¼ 0:723, in
excellent agreement with the peak location.

It is likely that the smooth background in the contact
distribution (figure 4) also contains numerous other
geometrically significant arrangements involving three-
and higher-body structures but these are so weak that
they cannot be resolved. The dominance of a-type
configurations at large �A values also provides an
explanation for the increase in hcos �i at contact with
increasing �A (see figure 3). As �A is increased a-type
configurations become more common, as �a < �=2: Such
configurations tend to make hcos �i more positive.

5. Conclusions

In summary, we have investigated the structural
correlations that arise near a hard wall in a hard body
amphiphile fluid. In our simple model the amphiphile
headgroup is taken to be a hard sphere and the tail is
modelled as a rigid, vanishingly thin hard needle
attached radially to the sphere. A fluid of such joined
hard particles, when supplemented by species corre-
sponding to water and oil (hard spheres and hard
needles in this case) gives a simplistic representation
of a ternary amphiphilic mixture. The simplicity stems
from the absence of temperature as a relevant variable
and hence the behaviour is solely governed by entropy.

Previous results for the fluid demixing phase beha-
viour indicated that the model indeed displays some of
the features found in real systems [10]. Those results
were obtained using a density functional approach that
utilizes the fundamental measure concept to approx-
imate the excess free energy. In this paper we presented
the first application of the theory to an inhomogeneous
situation. We chose a simple, albeit non-trivial test case,
namely the pure amphiphile fluid against a hard wall,
where non-trivial positional and orientational packing
of particles is found. We have focused on the case of
one-component amphiphiles in order to assess the

Figure 4. Amphiphile contact distribution �þA � �Aðz
þ
Að�Þ, �Þ

sin � for packing fraction �A ¼ 0:15–0:35 in intervals of
0:05 (from bottom to top). � is the angle between the
amphiphile tail and the wall surface normal. The features
labelled a, b, c correspond to the configurations shown in
figure 5.

Figure 5. Typical configurations of model amphiphiles at
contact with the hard wall, shown here for L=� ¼ 1:5. The
configurations labelled a, b, c correspond to the peaks in
the contact distribution, see figure 4.

2230 J. M. Brader et al.

312 Hard body amphiphiles



accuracy of the DFT and have carried out Monte Carlo
computer simulations to provide benchmark results.

We find good agreement between results from the
theory and the simulations for the total (integrated over
orientations) density, and reasonable agreement for the
angular order parameter profile. We conclude that the
theory gives a good account of the structural correlations
that arise from the packing effects in this model. Owing
to the particle shape, interesting behaviour at contact
with the wall is found. The (orientation-dependent)
density at contact with the wall displays a highly
irregular, peaked structure, and we could qualitatively
interpret the results in terms of typical particle config-
urations. In particular the most probable configuration is
where head and tail touch the wall simultaneously.

As concerns future work, we mention the problem of
how adding amphiphiles changes the free interface
between demixed fluids in the sphere–needle mixture
[18]. Furthermore whether the model leads to mesoscopic
structures such as micelles is interesting. A particular
challenge is to reveal the nature of the crystalline state(s).
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As models for substances adsorbed within amorphous solid matrices, we consider mixtures of spheres with
either hard or ideal interactions where several~matrix! components are quenched and the remaining~adsorbate!
components are equilibrated. We propose a density-functional theory, based on the exact zero-dimensional
limit, which treats both matrix and adsorbate components on the level of the respective one-body density
profiles. As a test, we calculate pair correlation functions for hard spheres adsorbed in either a hard sphere or
an ideal sphere matrix, and find good agreement with our computer simulation results.
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I. INTRODUCTION

The behavior of atomic, molecular, and complex fluids,
e.g., colloidal suspensions, adsorbed in porous media, is of
considerable practical as well as fundamental interest. Disor-
dered substrates that are permeable to a substance are en-
countered in environmental, biological, and industrial fields.
From a fundamental point of view, one is interested how
condensed matter phenomena~like phase transitions! are al-
tered by confinement@1# and the presence of disorder@2#.
The details of the porous medium are often disregarded and
to model such amorphous substances one relies on equilib-
rium fluid configurations of model systems. The advantages
are twofold:~i! The statistics of such model matrices are well
studied and understood, e.g., in the case of the hard sphere
~HS! systems.~ii ! A direct link to the statistical mechanics of
equilibrated fluids is provided. The primary tool in the de-
scription of adsorbates to such a matrix are quenched-
annealed~QA! averages@3,4#. There the adsorbate free en-
ergy ~rather than the partition sum! is averaged over~many!
representations of disorder. Hence the matrix is quenched,
while the adsorbate is annealed~allowed to equilibrate! in
the presence of the disordered background. Typically, one
assumes that there is no back feeding toward the matrix: The
porous medium is unaffected by the presence of the adsor-
bate. Besides computer simulations, theoretical work is
mainly based on the replica trick, which relates the QA sys-
tem to a special limit of a corresponding fully equilibrated
extended~replicated! system, which is tackled with integral
equation theory and replica Ornstein-Zernike equations@3,4#.

Density-functional theory~DFT! @5# is a powerful ap-
proach to equilibrium~fully annealed! fluids @6# and solids
@7#. It models the influence of an external potential energy
Vext acting on the system. Commonly, DFT is applied to well
defined, idealized pores~see e.g., Ref.@8#!. In principle, a
disordered matrix may be represented by an appropriateVext

acting on the adsorbate. To treat amorphous pore structures
within this approach requires solution~minimization of the
grand potential! for a given Vext, and subsequent explicit
averaging ‘‘by hand’’ over many realizations ofVext. This
was recently carried out with a mean-field DFT for a lattice
fluid model @9#, and formidable insight into adsorption,
metastability, and hysteresis was gained. However, the prin-
ciple approach seems to be limited to simple models and is

cumbersome, if not inapplicable, in the case of more sophis-
ticated DFTs and continuum models.

In this work, we argue that a more general DFT is fea-
sible, where the matrix is described on the level of the~one-
body! density distribution of its constituent particles, and
where the functionalis the average free energy~averaged
over matrix realizations!, depending on matrix and adsorbate
density profiles. We expect this to be very powerful, as ma-
trix details ~of single representations! are disregarded, and
only relevant statistical properties enter. Here, we present
explicit approximations for~a restricted set of! common
adsorbate-matrix models. Our approach is an extension of a
theory for fully annealed mixtures@6#, which is considered to
be ‘‘for multicomponent HS fluids, the most accurate and
successful approximate functional’’@8#. The theory captures
local packing effects, and correlation functions are predicted
in a nonperturbative fashion, without need of external input.
We demonstrate the good accuracy of the approach by com-
paring calculated pair distribution functions to computer
simulation data.

II. MODELS

To model adsorbates in porous media, we restrict our-
selves to mixtures with spherical symmetric pair interactions,
where each speciesi consists of spheres with radiiRi . Two
kinds of pair interactionsVi j (r ) between speciesi and j as a
function of the separation distancer are considered:~i! ideal
interactions such thatVi j (r )50 for all distancesr; ii ! hard
core interactions such thatVi j (r )5VHC(r )5`, if r ,Ri
1Rj , and zero otherwise. This covers additive hard sphere
mixtures, mixtures of hard and ideal spheres like realized in
the Asakura-Oosawa~AO! colloid-ideal polymer model@10#,
as well as the Widom-Rowlison~WR! model @11#, where
only particles of unlike species experience hard core repul-
sion. We further discriminate between quenched (i[0a) and
annealed (i[1b) species, wherei is a composite index, such
that the first digit 0,1 correspond to quenched and annealed
species, respectively, anda,b are integers that label the dif-
ferent ~sub!species.

Below we will consider two simple binary mixtures of
one quenched~index 0! and one annealed~index 1! compo-
nent. The first case is constituted by hard spheres in a hard
sphere matrix, where all interactions are hard core,Vi j
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5VHC, for i , j 50,1. In the second case we treat the hard
sphere adsorbate in an ideal sphere matrix, whereV00
50,V015VHC,V115VHC. ~This is formally equivalent to an
AO model where the polymer species is quenched and col-
loids are annealed.! In both of these binary cases the inter-
actions between matrix and adsorbate are hard core interac-
tions.

III. THEORY

A. Zero-dimensional limit

Let us start by considering a situation of extreme confine-
ment, where all particles are forced to sit on top of each
other, a situation which allows for an exact solution of the
many-body problem. Although the detailed shape of the con-
fining external potentialVext will not affect the excess free
energy, for clarity we explicitly chooseVext(r )50 if r ,e,
and ` otherwise. This corresponds to a hard cavity of (i
dependent! radiusRi1e. Hence each particle’s center is al-
lowed to move inside a sphere of volume 4pe3/3. In the
limit e→0, a zero-dimensional (0d) situation is encoun-
tered, and it is assured that all particles present in the cavity
overlap.

In the following, we first give a detailed derivation of the
0d free energy for two simple QA models. Then, in Sec.
III A 3, we proceed to the case of general mixtures, where an
arbitrary number of components is treated. Readers primarily
interested in the hard sphere examples~and subsequent re-
sults! may wish to skip Sec. III A 3.

1. Hard spheres in a hard sphere matrix

In order to illustrate the general procedure, we start with
an example where both calculations and notation are simple.
We consider a binary system of hard spheres, where species
0 is quenched~hence represents the matrix!, and species 1 is
annealed~hence represents the adsorbate!. The first step is to
calculate the grand partition sumJ0 for the matrix particles
in the 0d situation. This problem is equivalent to calculating
the grand partition sum for pure hard spheres in 0d @12,13#.
To obtainJ0 we need to consider all states that are allowed
~are compatible with the hard core exclusion!. Those are~i!
the empty state, and~ii ! the state with exactly one hard
sphere. Hence one obtains

J0511z0 , ~1!

where the ~scaled! fugacity is zi5exp(bmi)(4pe3/3)L i
23 ,

and b51/kBT, wherekB is the Boltzmann constant andT
being the absolute temperature, andL i is the ~irrelevant!
thermal wavelength of speciesi 50,1. The first ~second!
term on the right hand side of Eq.~1! corresponds to case i
~ii ! above. The grand potential is then given asV0

52kBTlnJ0, and the mean particle numberh̄0 can be ob-
tained using the thermodynamic relationh̄05z0] lnJ0 /]z0.
The Helmholtz free energy is obtained by Legendre trans-
form as bA0

tot(h̄0)5bV01h̄0ln(z0). Its excess~over ideal

gas! part is bA05bA0
tot2h̄0@ ln(h̄0)21#. Carrying out the

calculations yields

bA0~ h̄0!5~12h̄0!ln~12h̄0!1h̄0 , ~2!

the result for~fully annealed! hard spheres@12,13#
To obtain the 0d excess free energy of the annealed com-

ponentA1 we proceed in a similar fashion than above, but
with the important distinction of using QA averages instead
of fully annealed ones. We consider each matrix configura-
tion as being fixed~in effect exerting an external potential on
the adsorbate!, and sum over all allowed adsorbate states
with the correct statistical weight in the grand ensemble of
the adsorbate. As in 0d the matrix has only two configura-
tions ~either the cavity is empty or a single matrix particle is
present!, this is an easy task and yields

J15H 11z1 no matrix particle

1 else.
~3!

The case of no matrix particles is the sum of the contribu-
tions from the state empty of adsorbate particles and the state
with a single adsorbate particle.@This is again similar to the
structure ofJ0, Eq. ~1!.# In the case of one single matrix
particle the matrix-adsorbate hard core repulsion prohibits all
states except precisely that one where no adsorbate particles
are present. Clearly, all terms proportional to higher than
linear powers inz1 vanish due to the hard core repulsion
between adsorbate particles.

To obtain the QA free energy we need to average the
logarithm of J1 over all matrix configurations. As ln 150,
only the first line in Eq.~3! contributes, and its statistical
weight in the grand ensemble of matrix configurations is
1/J0 ~the factor unity stems from the fact that matrix par-
ticles are absent!. Hence the 0d grand potential for the ad-
sorbateV1 is simply given by

2bV15
ln~11z1!

11z0
. ~4!

To obtain the corresponding 0d excess free energyA1, es-
sentially the same steps as those above in the caseA0 are
required: The average particle number of adsorbates is given
as h152]bV1 /]z1, and the Helmholtz free energy is ob-
tained asbA1

tot5bV11h̄1ln(z1). Its excess part is obtained
by subtracting the~adsorbate! ideal gas contribution,bA1

5bA1
tot2h̄1@ ln(h̄1)21#. As final result, we find

bA1~ h̄0 ,h̄1!5~12h̄02h̄1!ln~12h̄02h̄1!1h̄12~1

2h̄0!ln~12h̄0!. ~5!

As an aside it is interesting to note that in the present case
the sumA01A1 equals the 0d excess free energy of binary
annealed hard spheres. However, this constitutes a special
case. In general, we do not find a simple relation between the
QA and the corresponding fully annealed free energies.~The
relation to thereplicatedfully annealed system is discussed
below in Sec. III A 4.!
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2. Hard spheres in an ideal sphere matrix

If the matrix particles are noninteracting, their grand par-
tition sum is that of an ideal gas

J05exp~z0!, ~6!

where we use the same notation as in the preceding subsec-
tion. Carrying out the same steps as above yields the~ex-
pected! result that the 0d excess free energy vanishes,

A0~ h̄0!50. ~7!

The grand partition sum for the matrix is equal to the above
result, Eq.~3!, in the case of the hard sphere matrix. In order
to obtain the 0d QA grand potential for the adsorbate,V1,
we again have to average the logarithm of the adsorbate par-
tition sum over all matrix configurations. This yields

2bV15
ln~11z1!

exp~z0!
, ~8!

from which the adsorbate free energy is obtained as

bA1~ h̄0 ,h̄1!5@exp~2h̄0!2h̄1# ln@exp~2h̄0!2h̄1#1h̄1

1h̄0exp~2h̄0!. ~9!

Note that in the fully annealed case, the present model is
equal to the AO model where species 0~1! is identified as
polymer ~colloid!, where the ~exact! 0d free energy is
bAAO(h̄0 ,h̄1)5(12h̄12h̄0)ln(12h̄1)1h̄1 @14,15#, clearly
different from the above QA result.

3. Multicomponent mixtures

Here we give a formal derivation for general mixtures
with more than two components. LetNi particles of typei be
in the cavity, and$Ni% denote the set of occupation numbers.
Irrespective of the precise particle coordinates, the~reduced!
potential energy due to interactions between like particles of
type i is U(Ni)5(Ni /2)(Ni21)bVii (r 50). The contribu-
tion from interactions between unlike particles~of types i
and j ) is U(Ni ,Nj )5NiNjbVi j (r 50). The total potential
energy may be expressed asU($Ni%)5( iU(Ni)
1( i , jU(Ni ,Nj ), where the summations run over all spe-
cies. Due to the nature of interactions,U($Ni%) takes on
values 0,̀ . Let us further decompose the occupation num-
bers into~disjunct! subsets of quenched and annealed spe-
cies, $N0a%ø$N1b%5$Ni%. The potential energy may be ar-
ranged similarly, such that U($Ni%)5U00($N0a%)
1U01($N0a%,$N1b%)1U11($N1b%), where U00 stems from
matrix-matrix, interactionsU01 from matrix-adsorbate inter-
actions, andU11 from adsorbate-adsorbate interactions.

The grand partition sum for the matrix in the 0d situation
is

J05 (
$N0a%

F)
a

~z0a!N0a

N0a! Ge2U00($N0a%), ~10!

where ~for i 50a) the reduced fugacity is zi

5exp(bmi)4pe3/(3Li
3), m i is the chemical potential, andL i

is the thermal wavelength of speciesi; notation is such~for
t50) that ($Nta%[(Nt150

` (Nt250
` . . . , and theproduct runs

over all quenched speciesa. The grand potential isV05
2kBTlnJ0. In the context of fully equilibrated systems, it
was demonstrated that imposing the exact crossover on an
approximate functional may be exploited to derive system-
atically DFTs for systems including hard spheres@7#, the AO
model@14#, and the WR mixture@16#. Here we add adsorbate
particles. For a given matrix realization$N0a%, the matrix
particles are inert, and act as an external potential on the
adsorbate. Its grand partition sum is

J1~$N0a%!5 (
$N1b%

F)
b

~z1b!N1b

N1b! G
3e2U11($N1b%)e2U01($N0a%,$N1b%). ~11!

To obtain the QA adsorbate grand potentialV1, we need to
average over all matrix realizations as

2bV15
1

J0
(

$N0a%
F)

a

~z0a!N0a

N0a! G
3e2U00($N0a%)ln J1~$N0a%!. ~12!

FromV0 andV1, standard relations yield the mean num-
bers of particlesh̄0a , h̄1b throughh̄ tc52ztc]bV t /]ztc ~for
tc50a,1b). The Helmholtz free energy is obtained via Leg-
endre transform asbAt

tot5bV t2(cm tc]bV t /]m tc[bV t

1(cln(ztc)h̄tc . Its excess ~over ideal gas! part is bAt

5bAt
tot2(ch̄ tc@ ln(h̄tc)21#. Explicit dependence on the

natural variables isA0($h̄0a%), andA1($h̄0a%,$h̄1b%).

4. Relation to the replica trick

Before proceeding with the construction of the DFT, let us
elucidate the relation of the present analysis to the replica
trick. Using the replica trick one starts from a fully equili-
brated system, in which the adsorbate species are replicateds
times. The replicas do not interact among each other~their
interactions are ideal!, but interact with the matrix particles
in the same fashion. Such replicated models still fall into our
class of models~provided the QA system aimed at does!,
hence the above formalism~for A0) may be applied, and the
0d excess free energy,A2, of the replicated system obtained.
The 0d QA free energy is obtainable in the limitbA1
5 lims→0@]exp(2bA2)/]s#exp(bA2). One can show thatA2

5A0($h̄0a%)1sA1($h̄0a%,$h̄1b%) for small s ~where the ab-
sence of replica symmetry breaking is assumed!.

B. Density-functional theory

1. Geometry-based free energy functional

Returning to three dimensions, we apply well-tried geo-
metrical recipes to derive approximate DFTs@6,7,14,16#. The
formalism requires as input the 0d excess free energyA of
the model under consideration, and hence can be applied to
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either the pure matrix, whereA5A0, to the adsorbate,A
5A1, or even to the replicated system,A5A2. Within the
framework, the excess Helmholtz free energy is expressed as

Fexc@$r i~r !%#5kBTE d3xF~$na
( i )~x!%!, ~13!

where$r i(r )% is the set of all density profiles. The reduced
free energy densityF is a function of a set of weighted
densities$na

( i )(x)%, wherei labels the species anda the type
of weighted density. The weighted densities are obtained by
convolutions with the actual density profiles,na

( i )(x)
5*d3rr i(r )wa

( i )(x2r ). As all nonvanishing interactions are
hard core, it is sufficient to take the usual fundamental mea-
sure weight functions@6,7#, which recover~upon convolu-
tion! the Mayer bonds exp(2bVHC(r ))21. They are defined
as

w3
( i )~r !5u~Ri2r !,w2

( i )~r !5d~Ri2r !, ~14!

wv2
( i )~r !5w2

( i )~r !r /r ,ŵm2
( i ) ~r !5w2

( i )~r !F rr

r 2
21/3G , ~15!

wherer 5ur u, u(r ) is the Heaviside step function,d(r ) is the
Dirac distribution, and 1 is the identity matrix. Further,
linearly dependent, weights arew1

( i )(r )5w2
( i )(r )/(4pRi),

wv1
( i )(r )5wv2

( i )(r )/(4pRi),w0
( i )(r )5w1

( i )(r )/Ri . The weight
functionswa

( i ) have dimension of length32a. They differ in
their tensorial rank:w0

( i ) ,w1
( i ) ,w2

( i ) ,w3
( i ) are scalars;wv1

( i ) ,wv2
( i )

are vectors;ŵm2
( i ) is a matrix; the subscript letters identify the

rank.
We determine the functional dependence ofF on the

weighted densities by imposing the exact crossover to 0d,
wherer i(r )5h̄ id(r ), and follow recent treatments of funda-
mental measure theory@7# by considering multi-cavity limits
to obtainF5F11F21F3, with contributions

F15n0
( i )w i~$n3

( l )%!, ~16!

F25~n1
( i )n2

( j )2nv1
( i )
•nv2

( j )!w i j ~$n3
( l )%!, ~17!

F35
1

8p S n2
( i )n2

( j )n2
(k)/32n2

( i )nv2
( j )
•nv2

(k)1
3

2
@nv2

( i )n̂m2
( j ) nv2

(k)

2tr~ n̂m2
( i ) n̂m2

( j ) n̂m2
(k)!# Dw i jk~$n3

( l )%!, ~18!

where repeated-index summation convention is used, and
mth order derivatives of the 0d excess free energy are
w i . . . k($h̄ l%)[ ]mbAt($h̄ l%)/]h̄ i . . . ]h̄k . For t50,1,2,
functionalsFt

exc for matrix, adsorbate, and replicated system
are obtained, respectively. Two routes to the QA free energy
functional are possible: either directly throughA1, giving
F1

exc, or via application of the replica trick toF2
exc. The

results from the two routes can be shown to be equal, which
is a sign of internal consistency of the current approach.

2. Minimization principle

In order to apply the theory to an actual problem, the
principal way is as follows. We first need to obtain the matrix
density profiles from minimization~with respect to all matrix
density fieldsr0a(x)) of the grand potential functional

Ṽ0@$r0a~x!%#5F0
exc@$r0a~x!%#1kBTE d3x(

a
r0a~x!

3@ ln~r0a~x!L0a
3 !21#

1E d3x(
a

~V0a
ext~x!2m0a!r0a~x!, ~19!

whereV0a
ext is an external potential acting on 0a, generating

matrix inhomogeneities. At the minimum

dṼ0

dr0a~r !
50. ~20!

Once ther0a are known, the adsorbate densities are obtained
from minimization@only with respect to the adsorbate den-
sity distributionsr1b(x)] of the grand potential

Ṽ1@$r0a~x!%;$r1b~x!%#

5F1
exc@$r0a~x!%;$r1b~x!%#1kBTE d3x(

b
r1b~x!

3@ ln~r1b~x!L1b
3 !21#1E d3x(

b
~V1b

ext~x!

2m1b!r1b~x!, ~21!

whereV1b
ext acts on adsorbate 1b, and ther0a(x) are treated

asfixed input quantities. Again, at the minimum

dV1

dr1b~r !
50. ~22!

Note that the~bulk! Gibbs adsorption equation is intrinsi-
cally fulfilled: (r1b2r1b

free)V52]@Ṽ12Ṽ1($r0a

[0%)#/]m1b , whereV is the system volume, andr1b
free is the

density in equilibrium without matrix.

IV. RESULTS

A. Structural correlations

As an application, we consider the structural correlations
of hard spheres adsorbed in sphere matrices. We consider the
two types of matrices summarized in Sec. II, where the ma-
trix is either a hard sphere fluid, or a fluid of noninteracting
~hence freely overlapping! spheres.

Madden and Glandt@3# derived a set of replica Ornstein-
Zernike~ROZ! equations for one quenched~index 0! and one
annealed~index 1! species, given as

h005c001c00^ r0h00, ~23!
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h015c011c01^ r0h001c11^ r1h01, ~24!

h115c111c01^ r0h011c11^ r1h11, ~25!

where^ denotes the spatial convolution,hi j 5gi j 21 are the
total correlation functions,gi j are the partial pair correlation
functions, andci j are the direct correlation functions. Given
and Stell@4# have shown that Eqs.~23!–~25! are approxima-
tions; the exact ROZ equations contain contributions from
nonvanishing direct correlation functions between different
replicas.

In liquid integral equation theories, Eqs.~23!–~25! are
supplemented by~approximate! closures, and the resulting
set of equations is solved numerically, see e.g., Ref.@17,18#.
Here we proceed in a different fashion, andderivethe direct
correlation functionsci j from our density functional. Then
we use Eqs.~23!–~25! to obtain thehi j and hence thegi j (r ),
which will be compared to computer simulation data below.
This procedure constitutes a demanding test for the present
theory, as theci j (r ) are obtained by second functional de-
rivatives as

c00~ ur2r 8u!5
d2F0

exc@r0#

dr0~r !dr0~r 8!
U

r05const

, ~26!

c01~ ur2r 8u!5
d2F1

exc@r0 ;r1#

dr0~r !dr1~r 8!
U

r0 ,r15const

, ~27!

c11~ ur2r 8u!5
d2F1

exc@r0 ;r1#

dr1~r !dr1~r 8!
U

r0 ,r15const

. ~28!

Clearly, as the approximation is done on the level ofFt
exc,

any inaccuracies will be enhanced by taking two derivatives
to obtain theci j . We find that the approximate ROZ equa-
tions, Eqs.~23!–~25!, are sufficient within the present ap-
proximations, i.e., the direct correlation functions between
species from different replicas vanish identically.

In order to compare the DFT results, we have carried out
Monte Carlo ~MC! computer simulations with 1024 par-
ticles, and 23106 MC moves per particles. Averages were
taken over 20 different representations of the matrix, which
we find to be sufficient to obtain reliable data.

We first turn to the case of hard spheres in a hard sphere
matrix. For simplicity, we consider the case of equal sphere
sizes s05s1(5s), and equal packing fractionsh05h1
50.15. ~The total packing fraction is henceh01h150.3, a
moderately large value.! To obtain the matrix pair correlation
function g00(r ), we need to solve Eq.~23!, which is com-
pletely decoupled from Eqs.~24! and ~25! containing also
adsorbate distribution functions. Hence as input onlyc00 is
required. We obtain it from Eq.~26!, whereF0

exc is the den-
sity functional obtained from applying the procedure out-
lined in Sec. III B 1 to the HS 0d excess free energy for hard
spheres,A0, which is given in Eq.~2!. F0

exc derived in this
way is equal to Rosenfeld’s functional@6# in Tarazona’s ten-
sorial formulation@7#. This reproduces the direct correlation
function for pure hard spheres in the Percus-Yevick approxi-

mation@6,7#. Forh050.15 this is known to be very accurate,
as can be seen in Fig. 1~a!, where we plotg00(r ) along with
the corresponding result from computer simulation. Both
curves practically lie on top of each other.

In order to obtain the partial pair correlation functions
involving the adsorbate species,g01(r ) andg11(r ), we solve
Eqs.~24! and~25!, where the direct correlation functionsc01

and c11 are obtained through Eqs.~27! and ~28!, with F1
exc

obtained from the prescription in Sec. III B 1 applied to the

FIG. 1. Partial pair distribution functionsgi j (r ) as a function of
the scaled distancer /s for hard spheres of diameters and packing
fraction h150.15 adsorbed in a hard sphere matrix with the same
diameter s and packing fractionh050.15. Solid lines denote
Monte Carlo results, dashed lines denote DFT results. Different
cases are shown:~a! g00 matrix-matrix pair correlations;~b! g01

matrix-adsorbate pair correlations;~c! g11 adsorbate-adsorbate pair
correlations.
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0d free energy of hard spheres in a hard sphere matrix,A1,
given in Eq.~5!. We displayg01(r ) andg11(r ) in Figs. 1~b!,
1~c!, respectively. Both functions display considerably stron-
ger oscillations thang00. For g01 the agreement with MC
data is very good forr /s*1.1. In the immediate vicinity of
contact,r /s&1.1, and at contact,r→s1, the DFT result
underestimates the simulation result. Inside the core region,
r /s,1, due to the overlap restriction,gi j (r )50 is an exact
condition. Our theory fails to reproduce this and yields non-
zero values@the extreme value beingg01(r 50)520.46].
This deficiency is known from other geometry-based density
functionals for fully annealed systems@14,15#, and could be
remedied with a test-particle limit calculation, i.e., minimiz-
ing the density profiles~see Sec. III B 2! in the presence of
an external potentialVext that describes a particle fixed at the
origin. We expect such results to also improve the behavior
for r /s&1.1, albeit at the expense of more numerical work.
Note further that the core condition is fulfilled in the low
density~virial! expansion, i.e., we recover the correct limit-
ing behaviorgi j →exp@2bVij(r)#. Finally, g11(r ), displayed
in Fig. 1~c!, fares again better. The DFT result is very good
even near contact, and the violation of the core condition is
smaller@g11(r 50)520.09#.

To exemplify that the good quality of the DFT result is
not accidental, we change the matrix properties by switching
off the interactions between matrix particles. Hence the ma-
trix is constituted by freely overlapping spheres that are ho-
mogeneously distributed. Clearly, such configurations act
differently on the adsorbate than in the previous case of the
hard sphere matrix. Again we restrict ourselves tos05s1
(5s), and consider slightly higher packing fractionsh0
5h150.2. In order to calculate thegi j (r ), we proceed as in
the previous case, but instead of using Eqs.~2! and ~5! for
the 0d free energiesA0 and A1, we take the appropriate
expressions for the current model, given in Eqs.~7! and~9!,
respectively. DFT and simulation results are displayed in Fig.
2. As the matrix is an ideal gas,g00(r )51 for all distances,
and the DFT trivially fulfills this relation, asF0

exc50. The
core condition is again violated@the extreme cases are
g01(r 50)520.84,g11(r 50)520.96]. Apart from that, the
accuracy ofg01(r ) and g11(r ) is generally quite good and
comparable to that found in the previous case. We conclude
that the DFT correctly describes the structural correlations of
bulk fluid states in homogeneously distributed random ma-
trices.

V. CONCLUSIONS

In summary, we have presented the first DFT, to the best
of our knowledge, for QA systems that treats the quenched
species~which model a porous material! on the level of their
one-body density profiles. This provides an enormous sim-
plification over a treatment where the matrix particles are
described by an external potential~which is a highly non-
trivial three-dimensional field for a single matrix realization!
and averaging over matrix realization has to be done explic-
itly. We have presented evidence for the potential of our
approach, through the investigation of pair correlation func-
tions of hard spheres adsorbed in two different types of ma-

trices, where we find good agreement with computer simu-
lation results. Possible future applications may focus on
freezing in porous media; note that the bulk~no matrix! HS
transition is described very accurately@7#. Furthermore, the
effects caused by inhomogeneous matrices should be inter-
esting. Wetting of~macroscopic! surfaces of the porous ma-
terial, confinement within slits, pores, or cavities that are
filled with porous material, as well as behavior near rough
walls would be further interesting applications. Results for
fluid demixing will be presented elsewhere@19#.
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FIG. 2. Same as Fig. 1, but for a matrix of freely overlapping
spheres of diameters and packing fractionsh05h150.2.
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Hard sphere fluids at surfaces of porous media
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An adsorbate fluid of hard spheres is brought into contact with a semi-infinite porous matrix modeled by
immobilized configurations of freely overlapping spheres with a sharp kink one-body density distribution.
Comparison of results from a recent density-functional approach to those of our computer simulations yields
good agreement for the adsorbate density profile across the matrix surface. We show how the matrix can be
replaced by a fictitious external potential that only depends on the distance from the interface, and that leads to
the same adsorbate density profile. This potential is found to be a smooth function of distance, due to the
geometry of the matrix particles. For high matrix densities, the porous medium becomes practically impen-
etrable, and its surface behaves like a rough hard wall whose roughness decreases with increasing matrix
density.

DOI: 10.1103/PhysRevE.68.021106 PACS number~s!: 64.10.1h, 61.20.2p, 61.43.2j, 78.55.Mb

I. INTRODUCTION

Fluids in porous media have considerable technical as
well as fundamental importance@1#. Such systems are intrin-
sically inhomogeneous through the presence of a disordered
medium that can be regarded as a random external potential
acting on the adsorbed fluid. The behavior of such a confined
fluid may be drastically different from that of the same sub-
stance in bulk@1,2#. As a theoretical model to study such
systems, one often relies on so-called quenched-annealed
~QA! fluid mixtures, where the immobilized particles of the
quenched species constitute the matrix and the particles of
the annealed species represent the adsorbate. Various ap-
proaches to such systems exist.

Within the framework of a lattice model the important
problem of hysteresis in sorption isotherms was recently
considered using a mean-field density-functional approach
@3,4#. It was found that hysteresis can occur both with and
without an underlying equilibrium phase transition. Subse-
quently, a pronounced change in the desorption behavior was
found if a surface of the matrix is explicitly taken into ac-
count@5#, and hence, direct contact with the gas reservoir is
considered.

For continuum fluids similar inhomogeneous situations
have been considered using integral equation theory and
computer simulations. Dong, Kierlik, and Rosinberg derived
the inhomogeneous replica Ornstein-Zernike equations to
treat problems such as the adsorption near a plane boundary
of a disordered matrix@6#. Pizio and Sokolowski@7# used a
similar approach to investigate an annealed fluid in a slitlike
pore filled with quenched hard spheres. They found that the
matrix lowers the amount of adsorbed fluid at low chemical
potentials and that layering occurs for high chemical poten-
tials. Subsequently, Kovalenkoet al. @8# extended upon this
work and compared results from different integral equation
closure relations to those from their computer simulations
finding good agreement.

For such inhomogeneous situations density-functional
theory~DFT! @9# seems to be a natural tool of investigation.
Recently, a DFT, based on Rosenfeld’s fundamental-measure
theory@10#, was proposed that is specially tailored for adsor-

bates in porous media@11#. An explicit approximation for
mixtures of particles interacting with either hard core or
~vanishing! interactions was given. The particular feature of
this QA-DFT approach is that the matrix is described on the
level of its one-body density distribution and the free-energy
functional is directly the~over all matrix realizations! aver-
aged free energy. This offers great advantages: First, one
gains immediate access to matrices that are nonuniformon
average; second, matrices that are uniform~on average! are
described particularly simple, namely, by aconstantone-
body density distribution of quenched particles. This is in
contrast to~computationally more involved! approaches that
treat the matrix as an external potential@12#. However, the
practical usefulness clearly depends on the quality of results.
In the original work@11#, the structural correlations in~on
average! homogeneous matrices were considered and com-
pared to computer simulation results. For both hard sphere
and freely overlapping sphere matrices, it was found that the
pair correlation functions obtained from the theory are in
very good agreement with simulation results. The differing
matrix-matrix correlations in these models have an effect on
the detailed structure of the adsorbate, and the theory was
shown to describe either case well. Subsequently, the prob-
lem of phase separation in porous media was treated using a
simple model for a colloid-polymer mixture@13#. Besides the
practical importance of mesoscopic particles in porous me-
dia, this is a convenient model as it displays a~colloid!
liquid-vapor phase transition. The DFT results were com-
pared with those from an integral-equation approach based
on the replica Ornstein-Zernike relations together with the
optimized random phase approximation~ORPA! @13#. All
major trends found in the ORPA could be reproduced by the
DFT. In particular, it was found that by tuning the matrix-
adsorbate interactions either capillary condensation or
evaporation is induced. Although these results seem promis-
ing, so far the theory has not yet been tested in inhomoge-
neous situations. This is the aim of the present work.

We use freely overlapping spheres to represent a porous
medium and prescribe their density distribution to be a step
function as a simple model for the surface of a porous me-
dium. A hard sphere fluid is brought into contact with this
model solid, and we obtain its density profile both from the
DFT and, as a benchmark, from Monte Carlo computer
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simulations. As expected from the above mentioned bulk re-
sults, the plateau density inside the matrix is reproduced well
by the theory. Moreover, the interfacial structure is also de-
scribed very satisfactorily, both on the outside and on the
inside of the matrix surface. As a further investigation, we
replace the matrix by a fictitious external potential that gen-
erates the same adsorbate density profile. This can be natu-
rally done in the DFT framework by requiring the corre-
sponding density profiles to be equal and solving the Euler-
Lagrange equation for the fictitious external potential. We
find that although the matrix density distribution is a step
function, the fictitious external potential is a smoothly vary-
ing, slightly oscillating function.

The paper is organized as follows. In Sec. II, we define
the model of hard spheres in a matrix of freely overlapping
spheres more explicitly. In Sec. III, a brief overview of the
theory is given. Section IV is devoted to the simulation
method. Results are presented in Sec. V and we conclude in
Sec. VI.

II. THE MODEL

We consider an annealed adsorbate of hard spheres~spe-
cies 1) with diameters1 immersed in a matrix of quenched
ideal spheres~species 0) of diameters0. The interaction
between matrix particles and adsorbate particles is again that
of hard spheres. Explicitly, there are three pair interactions as
a function of the center-to-center distancer between two
particles given by

V00~r !50, ~1!

V01~r !5H ` if r ,~s01s1!/2

0 otherwise,
~2!

V11~r !5H ` if r ,s1

0 otherwise,
~3!

see Fig. 1 for an illustration of the model. In order to achieve
an ~on average! inhomogeneous matrix, we consider an ex-
ternal potential acting on the matrix particles given by

V0
ext~z!5H `, z.0

0 otherwise,
~4!

wherez is the space coordinate perpendicular to the matrix
surface. As the matrix alone is a~quenched! ideal gas@Eq.
~1!#, its density distribution under the influence of Eq.~4! is
simply a step function

r0~z!5r0
inQ~2z!, ~5!

wherer0
in is the mean density ‘‘inside’’ the matrix and we

denote one-body density distribution of speciesi 50,1 by
r i(r ), wherer is the spatial coordinate.

Packing fractionsh i , i 50,1 are used as thermodynamic
variables: For the matrixh05pr0

ins0
3/6, wherer0

in is the
number density inside the matrix@see Eq.~5!#. For the ad-
sorbate, we use the overall packing fractionh1

5ps1
3N1 /(6V), where N1 is the number of adsorbate

spheres andV is the system volume. In general, the size ratio
s1 /s0 is a further control parameter. We will, however,
present results below only for the case of equal sizes,s0
5s1[s.

III. THEORY

Let us start with a description of the matrix alone. For
general matrix-matrix interactions, the grand potential of the
matrix as a functional of its one-body distribution is given as

bV0@r0#5E drr0@ ln$r0~r !L0
3%21#1bF0

exc@r0#

1bE drr0~r !@V0
ext~r !2m0#, ~6!

whereb51/(kBT), kB is the Boltzmann constant,T is the
absolute temperature,L i is the thermal wavelength, andm i is
the chemical potential of speciesi. The first term on the
right-hand side of Eq.~6! is the free energy of an ideal gas;
the second term is the excess Helmholtz free energyFexc that
is due to interparticle interactions. In the present case of
vanishing interactions between matrix particles@Eq. ~1!#,
F0

exc50. OnceV0
ext(r ) is prescribed, the corresponding den-

sity profiles is obtained from minimization of the grand func-
tional

dV0@r0#

dr0~r !
50. ~7!

In the present case@Eq. ~4!#, this is trivial and leads to the
above step function for the matrix profile, Eq.~5!.

Following Ref.@11# also, the~over all matrix realizations!
averaged grand potential of the QA system is expressed as a
functional, dependent on both the density distribution of the
annealed component and that of the quenched component.
Explicitly,

FIG. 1. Model of an adsorbate hard sphere fluid of diameters1

~dark circles! inside a matrix of freely overlapping spheres of diam-
eters0 ~white circles!. There is hard core interaction between ad-
sorbate and matrix particles. The matrix particles are homoge-
neously distributed in the half spacez,0 generating a planar
surface of the porous medium perpendicular to thez direction and
located atz50 ~dashed line!.
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bV1@r0 ;r1#5E drr1~r !@ ln$r1~r !L1
3%21#1bFexc@r0 ;r1#

1bE drr1~r !@V1
ext~r !2m1#. ~8!

Again there is a minimization principle, but, in contrast to
the case of a fully annealed binary mixture, this applies only
to the adsorbate component

dV1@r0 ;r1#

dr1~r !
U

r0(r )

50. ~9!

The matrix density fieldr0(r ) is treated as a fixed input
quantity in Eq.~9!. Once the external potential acting on the
adsorbate,V1

ext(r ) in Eq. ~8!, is prescribed, solving Eq.~9!
yields the adsorbate one-body densityr1(r ). This holds for
the general case, in the present surface investigation we do
not consider such an influence, and hence, restrict ourselves
to V1

ext(r )50.
In general, unknown part in the grand potential, Eq.~8!, is

the Helmholtz excess free energy functionalF1
exc. Here, we

rely on the geometrical DFT proposed in Ref.@11#. This is
based on both the exact zero-dimensional limit of the QA
model under consideration and on Rosenfeld’s fundamental
measure theory@10#. For technical details, we refer the
reader directly to Ref.@11#. To obtain numerical solutions of
Eq. ~9!, we employ a standard iteration procedure@14#. For
the special case of constant density fields of both matrix and
adsorbate the excess free energy per volume as obtained by
applying the density functional to constant density fields is
given by

bFexc~r0 ;r1!

V

5
3

ps1
3H 3h1~h01s!3

e2h0~e2h02h1! 2s3

2
3h1h0~h01s!~2212h01s!

eh0~e2h02h1!s3

2
h0„213~221h0!h0…„h01 ln~e2h02h1!…

eh0s3

2h1@312 ln~e2h02h1!#J , ~10!

wheres5s0/s1 .
In order to understand the inhomogeneities caused by the

random matrix better, we find it useful to consider an equi-
librium pure system under the influence of a fictitious deter-
ministic ~nonrandom! external potentialV1

fict that possesses
the same symmetry as the one-body matrix density distribu-
tion; here, r0(z) and hence,V1

fict(z). The benefit is that
V1

fict(z) is a much simpler function than the external potential
corresponding to a given matrix realization that is fully de-

pendent onr . To relateV1
fict(z) to the QA system, we impose

that the corresponding adsorbate density profiles,r1(z), are
the same. In the case of the QA system, this is the average
density profile caused by the random medium. In the ficti-
tious potential description, the density profile is the response
of the system toV1

fict(z). ObtainingV1
fict(z) from r1(z) is

straightforward in the DFT, as within this framework the
one-to-one correspondence between the external potential
and the one-body density distribution is explicit. In the com-
mon case, the external potential is known and one solves for
the one-body density. Here, the situation is reversed. The
one-body density distribution is known@as an output of treat-
ing the matrix on the level of its density field, Eq.~9!#, and
one seeks to obtain the corresponding~fictitious! external
potential. Explicitly, the grand potential and minimization
condition for this situation are given~upon replacing species
index 0 by 1, and settingV0

ext5V1
fict) through Eqs.~6! and

~7!, respectively. Solving for the external potential yields~up
to an irrelevant additive constant!

bV1
fict~r !52 ln@r1~r !L1

3#2
dbFexc

dr1~r !
, ~11!

where the second term on the right-hand side is the one-body
direct correlation functional, for which we take Rosenfeld’s
approximation@10#.

IV. COMPUTER SIMULATIONS

In order to assess the accuracy of the theoretical results
we have carried out canonical Monte Carlo~MC! computer
simulations. The matrix was realized by placingN0 matrix
spheres randomly in one-half of the~cubic and periodic!
simulation box. Hence, we consider a periodic system such
that Eqs.~4! and ~5! describing the matrix distribution are
valid within the simulation box2L/2<z,L/2, whereL is
the box length. This introduces~as usual! a second matrix
surface located atz5L/2 ~and identified withz52L/2).
Strictly speaking, the simulated system is a periodic succes-
sion of slit pores and layers of porous material.

The initial configuration for the adsorbate~species 1) is
such that all particles are in the empty~of matrix particles!
half space. We allow equilibration for half a million MC
steps per adsorbate particle and then perform the same num-
ber of steps for data production. For each state point consid-
ered, we used 30 matrix realizations to perform the average
over the disorder. Particle numbers are fixed toN05N1
5512 and then the system volumeV5L3 is adjusted to ob-
tain the prescribed packing fractions. As an illustration, we
display a snapshot of a configuration in Fig. 2.

V. RESULTS

For simplicity, we restrict ourselves to casesh052h1 and
s05s1. We consider a range of matrix packing fractions
h052h150.2, 0.3, 0.4. To obtain theoretical results at these
state points, we adjustm1 in Eq. ~8! to obtain the prescribed
h1. In Fig. 3, results for the adsorbate density profiles across
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the matrix surface are presented. As mentioned above, we
consider a periodic system with periodicity lengthL. This
length is different for the three state points considered, and
hence, we display also parts of the periodic images in Fig. 3.
These serve also as a guide to assess the actual size of the
simulated system.

As the overall packing fraction of the adsorbateh1 is
prescribed, the partitioning between adsorbed fluid inside the
matrix and bulk fluid outside the matrix is an output both of
the computer simulation and of the theory. For the lowest
packing fraction considered,h052h150.2, there is almost

perfect agreement between simulation and theoretical results.
Both plateau values, inside and outside the matrix, are repro-
duced very well. Also the smooth crossover at the interface
and the damped oscillations outside are reproduced accu-
rately.

Increasing the packing fraction toh052h150.3, both
plateau values also increase, hence, the higher density out-
side presses more adsorbate particles inside. The general
agreement is again quite good, however, there are some dif-
ferences inside the matrix, where the simulation profile is
smaller than the theoretical one and displays irregular oscil-
lations~a precursor of this behavior can be already observed
for the above caseh052h150.2). This behavior may be
partially due to insufficient equilibration of the simulation.
As we start from a situation where all adsorbate particles are
outside the matrix, the MC dynamics needs to migrate the
particles inside the matrix. Using simple single moves as we
do, this can be a slow process at high matrix densities. This
effect then may lead to a slightly higher density outside the
matrix than that in true equilibrium. Moreover, in general,
the matrix can have cavities that are kinetically inaccessible
by the MC dynamics. As the DF is grand-canonical it will fill
such cavities by coupling to the particle reservoir. This con-
stitutes a principle difference between both approaches. For
h052h150.4, the discrepancy grows worse, but still the
agreement is reasonable. Here, pronounced oscillations de-
velop outside, and the situation is more that of a slit pore
than that of decoupled surfaces. Also inside the matrix some
layering is predicted by the theory, which can, however, only
be guessed from the simulation data.

That the theory works well outside the matrix is to be
expected, as our theory reduces in the absence of matrix
particles to the very accurate Rosenfeld hard sphere func-
tional. However, in the present case the inhomogeneity is
caused by the matrix surface and that this is described so
accurately can be rated as a success of the current approach.

We display results for the fictitious external potential in
Fig. 4. Normalization is such thatV1

fict(z)50 outside the ma-
trix ~i.e., z53s). The plateau value inside the matrix~i.e.,
z523s), when reinterpreted in the binary QA system, is
the chemical potential change required to move a particle
from outside to inside. In the binary model, this is solely due
to a reduction of entropy for the particle in the confining
matrix. In contrast to the sharp kink matrix density profile
V1

fict(z) has a smooth, slowly varying shape. Considering the
interface located atz50, one observes deviations from the
plateau values inside and outside the matrix in the range of
about 2s,z,s, consistent with a geometrical picture of
the surface.

As the density is increased not only the vertical scale of
V1

fict(z) changes, but also its shape. To demonstrate this, we
show in Fig. 4 the result forh052h150.2, but multiplied
by a factor of 2.78 to get agreement of the potential strength
inside the matrix for the caseh052h150.4. It can be
clearly seen that the actualV1

fict(z) is a steeper function than
would be expected from the simple rescaling. However,
these differences are still small taking into account the con-
siderable change in densities. In principle, this opens possi-

FIG. 2. Snapshot from computer simulation of the hard sphere
fluid ~dark spheres! adsorbed in a random matrix of freely overlap-
ping spheres~light spheres! of the same size. The matrix particles
are distributed homogeneously in the left half of the simulation box
and possess packing fractionh050.3. The overall adsorbate pack-
ing fraction ish15h0/250.15.

FIG. 3. Density profilesr1(z)s3 of hard spheres at the surface
of a porous medium as a function of the~scaled! coordinatez/s
perpendicular to the matrix surface. The matrix density distribution
r0(z)s3 is a step function~dotted line! and the system is periodic in
the z direction. Results from the DFT~solid lines! and MC simula-
tion ~dashed lines! are shown for packing fractionsh052h1

50.2,0.3,0.4~as indicated!.
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bilities to a simplified description of such systems.
To conclude this section, we present theoretical results for

two further paths along varying density. We will consider a
single surface~without periodic images!. To control the ad-
sorbate, we prescribe its packing fraction in the half space
without matrix,h15(ps1

3/6)r1(z→`). Practically, this acts
as an adsorbate reservoir that is in direct contact with the
porous medium. As a first case, we fix the matrix density at
the highest packing fraction considered above,h050.4, and
increase the bulk packing fraction outside over a rangeh1
50.1,0.2,0.3,0.4, see Fig. 5 for results. Increasing the den-
sity outside increases the plateau density inside the matrix
monotonically. For h150.1, the profile is very smooth
across the surface. Upon increasingh1 pronounced oscilla-
tions outside develop and also somewhat smaller~in ampli-
tude! oscillations are apparent forz,0. The wavelength is
of the order of the particle size, hence, as expected, these
oscillations are due to packing effects of the particles. Figure
5 also shows results for the fictitious external potential. It is
remarkable that the plateau value inside the matrix increases
as a function of theadsorbatedensity. Hence, an adsorbate
fluid at a higher density experiences a higher energy penalty,
although the matrix density is unchanged.

The second path that we investigate is at constant bulk
density outside, h150.4, and increasing h0
50.1,0.2,0.4,0.8,1.5,3, see Fig. 6. For small matrix density,
h050.1, the adsorbate density remains almost constant, only
a slight decrease is observed forz,0. Increasingh0 lowers
r1 inside the matrix considerably. Forh051, it is vanishing
on the scale of the plot. Note that as the matrix consists of
freely overlapping spheres,h151 does not correspond to
space filling, rather there remain occasional free voids inside
the matrix. The surface of the matrix at such high densities is
hardly penetrable and practically constitutes a rough hard
wall with a random surface structure. Increasing further to

h053 leads to more compact roughness. In the limith0
→`, the matrix becomes asmoothhard wall located atz
5s/2. In Fig. 6, the density profile at a hard smooth wall is
shown, and one can verify, from the structure of the DFT,
that this is indeed the correct asymptotic behavior. As an
illustration, we show in Fig. 7 views in the direction perpen-
dicular towards the matrix surface. The matrices shown in
Figs. 7~a,b! possess packing fractionsh051,3, respectively,
corresponding to the two densest matrices where results are
shown in Fig. 6. It is clear that even in the caseh053, there

FIG. 4. Fictitious external potentialsbV1
fict(z) as a function of

the ~scaled! coordinatez/s for the same state points as in Fig. 3.
V1

fict(z) is constructed to generate the same adsorbate density distri-
butionr1(z) as the inhomogeneous porous matrix with density field
r0(z) ~see Fig. 3!. The dashed line is the result forh052h1

50.2, but multiplied by a factor of 2.78; compare with the case
h052h150.4.

FIG. 5. Adsorbate density profilesr1(z)s3 ~solid lines! and
fictitious external potentialsbV1

fict(z) ~dotted lines, scaled by a fac-
tor of 0.1! as a function of the distance from the matrix surfacez/s
for matrix packing fractionh050.4 and different reservoir adsor-
bate packing fractionsh150.1,0.2,0.3,0.4~from bottom to top!.
The matrix particles are homogeneously distributed in the half
spacez,0. The fictitious external potentials generate the same
r1(z) in a pure hard sphere fluid as the porous matrix. The thin
dotted line is the fictitious external potential forh150.1, but mul-
tiplied by a factor of 2.6; compare with the caseh150.4.

FIG. 6. Same as Fig. 5, but for fixed reservoir packing fraction
h150.4 and different matrix packing fractions h0

50.1,0.2,0.4,0.8,1.5,3~from bottom to top!. The dashed line indi-
cates the hard wall result forr1(z); this is approached ash0→`.
The thin dotted line is the fictitious external potential forh050.2,
but multiplied by a factor of 2.9; compare with the caseh053.
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are considerable voids in the surface. The matrix packing
fraction needs to be increased further in order to level out
these voids, see Figs. 7~c,d! for h510,100, respectively.
Even forh05100, there remains residual surface roughness,
although clearly the smooth wall is almost obtained.

VI. CONCLUSIONS

In conclusion, we have considered the behavior of an ad-
sorbate hard sphere fluid at the surface of a porous matrix.
The matrix is modeled by freely overlapping spheres with a

step function density distribution that models the surface~to-
wards an adsorbate reservoir! of a porous medium. We have
applied for the first time a recent DFT approach to such an
inhomogeneous situation and have performed computer
simulations in order to provide benchmark results. The the-
oretical results for the adsorbate one-body density distribu-
tion across the matrix interface are found to be in good
agreement with simulation results up to considerably high
matrix packing fractions, i.e., low porosities. The benefit of
the theoretical approach is that the required double average
over the equilibrated fluid configurations and the quenched
disorder is already taken@11#; no subsequent averaging ‘‘by
hand’’ is necessary. Within the DFT framework, we relate the
QA model to a pure system exposed to a fictitious external
potential that only depends on the perpendicular distance
from the interface. Although the matrix surface has a sharp
kink shape, the fictitious potential is found to be a smooth
function that crosses over from its plateau values inside and
outside the matrix over about two sphere diameters.

As an outlook to possible future work, we mention the
possibility of a further explicit external potential, such as a
gravitational field or confinement by walls. Furthermore, as
we have shown, the important problem of surface roughness
can be treated. Also the behavior for more asymmetric sizes
and hence, the effect of size selectivity in porous media is an
interesting topic.
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We investigate an annealed hard sphere fluid in contact with a rigid, random fiber network modeled
by quenched, vanishingly thin hard needles. For this model a quenched-annealed density functional
theory is presented that treats arbitrary spatially inhomogeneous situations, in particular anisotropic
and spatially varying needle distributions. As a test case we consider the structure of the hard sphere
fluid at the surface of an isotropic fiber network and find good agreement of the theoretical density
profiles with our computer simulation results. For high needle densities the surface acts like a rough
impenetrable wall. In the limit of infinite needle density the behavior near a smooth hard wall is
recovered. Results for the partition coefficient agree well with existing data. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1588993#

I. INTRODUCTION

The properties of fluids adsorbed in porous media can be
drastically different from those of the same substance in
bulk.1 Among the wide range of disordered adsorbents one
particular class are aggregates of mesoscopic fibers, such as
those present in paper and in colloidal suspensions.2,3 Due to
their geometrical properties the solid volume fraction of fiber
networks can be remarkably low. Experimentally, suspen-
sions of rods can be prepared such that the particles are prac-
tically immobilized ~e.g., by sedimentation or coagulation!
producing a random network of fibers. The resulting gels or
clusters of colloidal rods or fibers were found to exhibit both
homogeneous and heterogeneous~i.e., fractal! structures.4

One prominent material where the structure of the rod gel
has been investigated is aqueous dispersions of colloidal
boehmite.5 Other examples of gels of fairly well-defined col-
loidal rods are iron hydroxide rods, clay particles, and imo-
golite rods~see Ref. 4!. Further very promising particles are
etched silicon rods.6

Fiber networks provide genuine model porous media
that can be used to address various relevant physical ques-
tions like the self-diffusion and sedimentation of~tracer!
spheres.7 Particularly striking is the efficiency of randomly
distributed thin rods to cage a test sphere.8 Sphere caging is
relevant for the random dense sphere packing.9 Dense rod
packing has been investigated and a random contact equation
was found to be relevant,10 and packings of spherocylinders
were simulated recently by mechanical contraction.11 Fur-
thermore, the spatial statistics of pore sizes in stochastic fiber
networks was investigated.12,13

Experimental rod aspect ratios~of length-to-thickness!
can be as high as 25 for silica coated boehmite rods, and the

rod densities are typically well below the Onsager nematic–
isotropic transition.3 Under equilibrium conditions~i.e., such
that rods are mobile! also mixtures have been considered,
e.g., silica spheres3 were added and also immersed in suspen-
sions of rod-like fd bacteriophage viruses.14 For a simple
theoretical model of hard spheres and vanishingly thin
needles the phase behavior was obtained with computer
simulations and perturbation theory.15 Fluids in contact with
a single16,17 and several strictly aligned18 rod-like obstacles
were treated theoretically finding intriguing adsorption
behavior.18 A molecular model of adsorption in a semiflex-
ible porous network was simulated19 taking into account
structural response of the adsorbent.

The pore size distribution in a random fiber network was
derived by Ogston in his classical work20 ~see Ref. 21 for
brief personal recollections!. This solution rules the adsorp-
tion probability of an infinitely diluted hard sphere fluid in a
bulk fiber network. In the present work we are interested in
the adsorption of a dense fluid in a random network of rods.
We treat an annealed hard sphere fluid immersed in a
quenched network of vanishingly thin hard needles. This
model can be viewed as the quenched-annealed~QA! analog
of the above equilibrium sphere-needle mixture.15 In particu-
lar we address the question how the geometry of the
quenched particles affects the properties of such a network to
act as an adsorbent.

We use density-functional theory~DFT!,22,23 which is a
powerful tool to study inhomogeneous fluids. In particular,
Rosenfeld’s fundamental measure theory~FMT! for hard
sphere mixtures24 is known for its high accuracy~for very
recent work see, e.g., Refs. 25 and 26!. Rosenfeld general-
ized his approach to nonspherical particles,27,28 albeit with-
out incorporating the exact low-density~second virial! limit.
Introducing angular convolutions into the theory enabled this
exact limit to be recovered in binary mixtures of hard sphere
and hard rods with either ideal~vanishing!29 or residual ex-
cluded volume interactions~Onsager limit!.30 Using this

a!On leave from: Institut fu¨r Theoretische Physik II, Heinrich-Heine-
Universität Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Ger-
many; Electronic mail: mschmidt@thphy.uni-duesseldorf.de
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theory interesting orientational order at the free fluid–fluid
interface between demixed phases was found,30 and later
supported by computer simulation results.31

To investigate the response of fluids to external confine-
ment there are two main theoretical routes: First, one relies
on idealized pore geometries, i.e., slit-like, cylindrical, or
spherical pores with smooth walls.32 The insights gained here
are then related to the behavior in random media by identi-
fying typical pore sizes that are characteristic of the amor-
phous void structure. An example of this strategy is Fanti and
Glandt’s investigation of the partitioning of spherical par-
ticles into fibrous matrices16 where the problem of a single
fiber is solved explicitly and then related to a network of
fibers via a superposition approximation. The second ap-
proach is to model the porous medium by immobilized con-
figurations of model fluids. Then an adsorbate component is
equilibrated~i.e., annealed! in the presence of the model po-
rous medium, that acts like an external potential on the ad-
sorbate. One refers to such models as quenched-annealed
~QA! mixtures. While the first approach can be viewed as a
raison-d’être of DFT, the second route was primarily fol-
lowed by use of integral equation theory and application of
the replica trick, e.g., Donget al.derived the inhomogeneous
replica Ornstein–Zernike equations to treat problems like the
adsorption near a plane boundary of a disordered matrix.33

For QA mixtures a DFT framework was proposed
recently.34 The benefit of this QA DFT is that the disorder is
treated on the level of the one-body density distribution of
the quenched species, rather than as a complicated external
field ~like, e.g., in Ref. 18!. The one-body density has~in
typical situations! a much simpler spatial dependence than
the corresponding external potential that is exerted by the
matrix particles on the adsorbate. As an illustration we re-
mark that in a~bulk! matrix that is uniform on average over
the disorder, the matrix one-body density is just a constant.

In this work we propose a QA DFT for the mixture of
annealed spheres and quenched needles and test it against
our computer simulation results. As a generic inhomoge-
neous situation we consider the surface of an isotropic needle
network. We bring a dense hard sphere fluid in contact with
this surface and investigate the structure that is built up as a
response to the quenched needles. Comparing theoretical and
simulated results we find that the plateau values away from
the matrix surface deviate somewhat, but the detailed oscil-
latory structure at the interface is captured very well by the
DFT. For high needle densities the network becomes practi-
cally impenetrable for the spheres, and the surface acts as a
rough wall. Within the QA DFT the surface roughness is
treated very easily, in particular it is not necessary to treat the
lateral structure of the surface explicitly. Hence the compu-
tational effort is similar to that for treating a smooth wall. We
find that the surface roughness decreases with increasing
needle density and effectively a hard smooth wall is obtained
in the limit of infinite needle density. Furthermore we check
that our results for the partition coefficient compare reason-
ably to previous Monte Carlo results.17

The remainder of the paper is organized as follows: In
Sec. II we define the model of hard spheres in a random fiber
network more explicitly. Section III is devoted to an outline

of the density functional theory. Section IV gives details of
the computer simulations. Results are presented in Sec. V
and we conclude in Sec. VI.

II. THE MODEL

We consider annealed hard spheres~speciesS) of diam-
eter s immersed in a quenched matrix of vanishingly thin
needles~speciesN) of lengthL. The model is characterized
by the ~three! pair interactionsVi j between speciesi , j
5S,N. Due to their vanishing thickness~and hence vanish-
ing pair excluded volume! the needles behave as if being
ideal, hence interactions between needles vanish for all sepa-
ration distances and orientations,VNN50. The interaction
between spheres isVSS(r )5` if the separationr between
sphere centers is less thans, and zero otherwise. The pair
interaction between a sphere and a needle isVSN5`, if both
overlap, and zero otherwise.

As thermodynamic variables we use the sphere packing
fraction h5ps3rS/6, and a dimensionless needle density
rNs3, wherer i ,i 5S,N is the number density of speciesi .
The size ratioL/s is a further~geometric! control parameter.
In general the one-body density distributions will be inhomo-
geneous. In the case of spheres, dependence is on space point
r , hencerS(r ). For needles the dependence is also on orien-
tation V ~a unit vector!, hencer~r ,V!.

As a generic inhomogeneity we will consider the surface
of a needle matrix modeled as a step-function density distri-
bution,

rN~r ,V!5rN
inQ~2z!, ~1!

wherez is the spatial coordinate perpendicular to the matrix
surface,rN

in is the needle density ‘‘inside’’ the matrix, and we
consider the~simplest! case where the needles are isotropi-
cally distributed. See Fig. 1 for an illustration of the situa-
tion.

III. DENSITY FUNCTIONAL THEORY

We seek a theory to determine the adsorbate~sphere!
density distributionrS(r ) ~as well as associated thermody-
namic quantities and correlation functions! for given one-
body density distribution of needles,rN(r ,V). As the
needles are treated as being ideal,rN(r ,V) can be trivially
obtained from a corresponding external potential acting on

FIG. 1. Model of an adsorbate fluid of hard spheres with diameters in a
porous matrix of quenched, vanishingly thin hard needles of lengthL. The
needle orientations are assumed to be isotropically distributed and their
midpoints to be confined to the halfspacez,0. This generates a semi-
infinite porous matrix with surface perpendicular to thez axis and located at
z50; the model considered is three-dimensional.
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needles~before quenching!. Within a DFT framework and
following Ref. 34 we write the grand potential of the present
QA mixture as

V@rS ;rN#5kBTE drrS~r !@ ln~rS~r !LS
3!21#

1Fexc@rS~r !;rN~r ,V!#

1E dr rS~r !@VS
ext~r !2mS#, ~2!

wherekB is the Boltzmann constant,T is absolute tempera-
ture, LS is the thermal wavelength,mS is the chemical po-
tential of spheres, andVS

ext(r ) is a deterministic~nonrandom!
external potential acting on the spheres. The first term on the
right-hand side of Eq.~2! is the ideal gas free energy func-
tional for spheres; the second term,Fexc, is the excess free
energy describing the contributions from interparticle inter-
actions. In the present QA case it contains the interactions
between adsorbate particles~spheres and spheres!, as well as
contributions from interactions between adsorbate and ma-
trix particles~spheres and needles!.

To obtain the adsorbate density distribution,rS(r ), in a
given needle matrix,rN(r 8,V), the minimization condition
is

dV

drS~r !
U

rN(r8,V)

50, ~3!

where rN(r 8,V) is treated as a fixed input quantity. Note
that, in contrast to the case of an equilibrium~fully annealed!
binary mixture, the minimization is to be performed only
with respect to the annealed component.

In order to obtain a working theory an approximation for
the unknown quantity in Eq.~2!, the Helmholtz excess free
energy functionalFexc, is required. Recently, this was ac-
complished for spherical particles in a geometrical frame-
work. This provides a means to generate a three-dimensional
excess free energy functional from an idealized strongly con-
fined situation, the zero-dimensional~0D! limit. The 0D limit
can be envisaged as a cavity situation that leads to strongly
localized particle positions. The simplification that is due to
the localization enables one to solve the many-body problem
exactly and to obtain the corresponding 0D free energy. For
the present case, it was shown that for a binary system of
hard spheres~one annealed and one quenched species!, Fexc

is ~practically! equal to the fully equilibrated case with only
annealed species. The only difference is a shift by a trivial
constant, Fexc

QA@r0 ,r1#5Fexc
EQ@r0 ,r1#2Fexc

EQ@r0#, where the
subscript 0~1! refers to the quenched~annealed! component.
Note that the presence of2Fexc

EQ@r0# on the right-hand side is
necessary to fulfillFexc

QA@r0 ,r1→0#50, i.e., the~over disor-
der averaged! free energy vanishes in the absence of adsor-
bate particles. However, this does not change the minimiza-
tion condition, as the functional derivative is only performed
with respect to theannealedcomponent, cf. Eq.~3!.

For the present case of quenched needles and annealed
spheres an additional simplification arises, because the
needles behave as ideal particles due to their geometry. The
excess free energy of an ideal gas of rotators vanishes, hence

we find that the FMT approximation forFexc is equal to the
excess free energy of the fully annealed sphere-needle mix-
ture given in Ref. 29. The main features of this theory are
density-independent, geometrically motivated weight func-
tions that are used to build weighted densities by convolu-
tions with the bare one-body densities. The excess free en-
ergy is then obtained as an integral that runs over space and
orientation, the integrand being an excess free energy density
that is a function of the weighted densities. For explicit ex-
pressions we refer the reader directly to the~compact! pre-
sentation in Ref. 29; many more technical details and explicit
calculations in simple geometries can be found in Ref. 30.

IV. COMPUTER SIMULATIONS

In order to assess the quality of the DFT results we have
carried out canonical Monte Carlo~MC! simulations. We
used particle numbersMS5MN5128, 512, and a cubic
simulation box with lengthL and periodic boundary condi-
tions. The size ratio was fixed toL/s52. Needle configura-
tions were generated by randomly and isotropically placing
needles in the left (2L/2,z,0) half of the simulation box.
Due to the periodic boundary conditionstwo matrix surfaces
are generated. As an illustration we display in Fig. 2 a ray-
traced snapshot from the simulation. For the state points con-
sidered the two surfaces are not completely decoupled, hence
we merely deal with a periodic succession of slabs filled
with needles and slabs free of needles. Hence the ‘‘free slab’’
has thicknessL/2 and the ‘‘matrix slab’’ has also thickness
L/2. For MS5128 and h50.15, 0.3, the box lengths
are L/s57.644 91, 6.067 77, respectively. ForMS5512,
and h50.15, 0.3 the box lengths areL/s512.1355,
9.631 98, respectively. As we consider equal numbers of
particles, MS5MN , the relation between densities isrN

in

FIG. 2. Snapshot from computer simulation of the adsorbate hard sphere
fluid in contact with a random fiber network. The fiber network is modeled
as randomly and isotropically distributed vanishingly thin hard needles.
Only the left part of the~periodic! simulation box is filled with needles; this
acts as a model for the surface of a porous medium. The size ratio of needle
lengthL and sphere diameters is L/s52; particle numbers areMS5MN

5512.
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52hS /(s3p/6), where the factor 2 comes from the fact that
only one half of the box is occupied by needles; hence
rNs350.572 958, andrNs351.145 92.

In the starting configuration all spheres are placed in the
half-spacez.0, then half of the total number of particle
moves are discarded for equilibration and subsequently data
are collected for the sphere density profile. Typical run
lengths are 106 MC moves per particle and averages over the
disorder are taken by using about 100 matrix realizations. In
the case ofh50.3, MS5128 we performed 107 MC moves
for 100 independent needle configurations totaling in 109

MC moves per particle.

V. RESULTS

To obtain the same situation as in the simulation we
imposed the same periodicityL on the DFT profiles. The
sphere packing fraction was matched to that in the
simulation by adjusting the sphere chemical potential,
mS in Eq. ~2!, such that the integrated sphere density
corresponds to the simulated packing fraction, i.e.,
h5(ps3/6)L21*2L/2

L/2 dzrS(z), whereh50.15,0.3.
In Fig. 3 we show results for the smaller system with

MS5MN5128 particles. Forh50.15 there occurs a smooth
crossover from the plateau value inside (z,0) to the plateau
value outside (z.0) the matrix. There is almost perfect
agreement between the simulated and the theoretical density
profiles. Forh50.3 there occur oscillations both outside and
also inside the matrix, albeit smaller in amplitude inside. The
wavelength of oscillations is of the order ofs, hence caused
by sphere packing effects. The shape of the theoretical re-
sults outside is very similar to the simulation result, however,
it is shifted toward lower density. The opposite behavior is
found inside the matrix, where the theoretical profile lies
above the simulation result. Part of this may be due to still
insufficient equilibration in the simulations, despite the con-
siderably large number of MC moves performed.

In Fig. 4 we show results at the same state points, but for
a larger system withMS5MN5512 particles. Forh50.15
again the agreement between simulation and theory is very
good. Forh50.3 there is an increased number of layers

outside. The theory predicts weak oscillations inside the ma-
trix, those cannot be identified from the simulation profiles—
the statistical uncertainties being too large.

Having gained confidence in the theory, we consider a
single surface of the fiber network, hence consider the case
where the needles are distributed homogeneously and isotro-
pically in the halfspacez,0. We bring this surface into con-
tact with a hard sphere fluid of bulk packing fractionh
50.4 at z→`. The size ratio is, as before, fixed toL/s
52. For needle densityrNs3510 practically no spheres can
enter inside the matrix, andrS(z,0) vanishes on the scale
of the plot, Fig. 5. The behavior ofrS(z) near the surface,
0,z,s/2, is reminiscent of that of the hard sphere fluid at
a soft repulsive wall. For largerz typical oscillations that
decay withz are observed. Those possess a small amplitude,
given the relatively high sphere packing fraction. Increasing
the needle density~results forrNs35100, 1000, 10 000 are
shown in Fig. 5! gradually shiftsrS(z) to largerz and in-
creases the amplitude of the oscillations. These effects can be
attributed to the denser, more ‘‘hairy’’ needle structure at the
surface. It is evident that in the limitrN→` the situation of
an effective hard wall is encountered. The position of this
effective hard wall is such thatrS(z) drops to zero atz
5(L1s)/2 ~for the present size ratioz51.5s), which is the
limiting distance where spheres touch needles~those with
orientation strictly perpendicular to the surface!.

FIG. 3. One-body density distribution of spheres,rS(z)s3, as a function of
the ~scaled! distance from the matrix surface,z/s. Results from DFT~solid
lines! and MC simulations~dashed lines! are shown forh50.15, 0.3~from
bottom to top!. The particle numbers in the simulated system areMS5MN

5128.

FIG. 4. Same as Fig. 3, but for larger systems withMS5MN5512 particles.

FIG. 5. Theoretical results for the density profilesrSs3 as a function ofz/s
from DFT for h50.4, L/s52, andrNs3510, 100, 1000, 10 000~from left
to right!. Also shown is the result at a hard smooth wall~dashed line!.
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We emphasize that the high needle densities considered
here are somewhat artificial and only allowed by the present
idealization of vanishing particle thickness. Networks of
more realistic fibers with small, butfinite thickness possess
an upper bound in density for random isotropic packings.10,11

This upper bound was estimated asrNL2Dp/4'5.4, where
D is the rod thickness.10 In experimental realizations aspect
ratios are typically limited11 to L/D,100. If we assume this
boundary ~and L/s52) then realistically ~about! rNs3

,100. So the higher densities should be seen merely as an
idealized crossover to the smooth hard wall behavior provid-
ing a convenient check for the theory.

We finish with a discussion of the adsorption of the hard
sphere fluid deep inside the fiber network, i.e., away from the
surface. The hard sphere fluid outside the matrix acts as a
reservoir, and we denote its packing fraction byh r . We seek
to obtain the corresponding equilibrium sphere packing frac-
tion h inside the matrix. Applying the DFT to constant den-
sity fields we find that the free energy per system volume is

bF5rS~ ln~rSLS
3!21!1bFHS~h!

1rNS 2 ln~12h!1
3Lh

2s~12h! D , ~4!

whereb51/kBT, andFHS is the excess free energy density
in the Percus–Yevick compressibility~and scaled-particle
theory! approximation, given by

bFHS5
9h2~22h!

ps3~12h!2 2
6h

ps3 ln~12h!. ~5!

Then the sphere chemical potential is obtained bymS

5]F/]rS . Clearly, the situation is determined by chemical
equilibrium of spheres outside and inside the matrix, hence
we solvemS(h,rN)5mS(h r ,rN50) for h onceh r and rN

are prescribed. This is an easy numerical task. Before pre-
senting results for high packing fractions we investigate the
behavior for h→0. It is straightforward to show that the
leading order in this limit is bmS5 ln(rSLS

3)1prNs3(2
13L/s)/12. This is equivalent to Ogston’s exact result,20 i.e.,
the free volume fraction of a sphere in the needle matrix is
obtained as the ratio of fugacitiesrSLS

3/exp(bmS)
5exp(rNESN), where ESN is the pair-excluded volume be-
tween sphere and needle, given asESN5ps3/61pLs2/4.
~In Ref. 20 the derivative with respect tos is given.! We next
turn to the case of a dense adsorbate.

A common measure is the partition coefficient, that is
defined as the ratio of adsorbed density and that in bulk,K
5h/h r . We first consider the case of infinitely long needles,
L/s→0, where benchmark results exist in the literature.16,17

In Fig. 6 we plotK as a function ofh r for scaled needle
densitiesrNLs250.1, 0.5, 1, 2, 3. For all densities consid-
eredK is a monotonically increasing function ofh r , hence
the partitioning decreases~i.e., the densities in the network
and in bulk become more similar! with increasing adsorbate
density. Clearly the partitioning increases for denser matri-
ces, i.e., with increasingrNs3. Also shown in Fig. 6 are the
MC simulation results of Fanti and Glandt.16 Reasonable
agreement with the current theoretical curves can be ob-
served. Deviations exist for highh r , where the theoretical

curves overestimate the MC results forK. This effect, that
the DFT gives slightly too weak partitioning, was also appar-
ent in the plateau values of the inhomogeneous density pro-
files above. The agreement of our results with the MC data of
Ref. 17 and that of the results from single-fiber superposition
approximation of Ref. 16 is comparable, although the current
approach fares somewhat better in predicting the curvature
correctly, especially at high matrix densities.

We return to the case of fibers with finite length and
display results in Fig. 7 forK as a function ofh r for size
ratio L/s52 and over a broad range of densities,rNs3

50.1, 0.2, 0.5, 1, 2, 5, 10. For high needle densities remark-
able crossover behavior is observed. ConsiderrNs355,
where for small packing fractions (h,0.1) practically no
spheres will enter, but forh.0.2 a pronounced increase with
h r occurs. Using such a porous medium as an efficient filter
for the hard sphere fluid would require one to keep the res-
ervoir fraction below this crossover region.

It turns out that a natural measure for the needle density
is rNESN. For the needle densities above corresponding nu-

FIG. 6. Partition coefficientK5h/h r of spheres of packing fractionh in the
random fiber network in chemical equilibrium with a pure hard sphere res-
ervoir of packing fractionh r for size ratioL/s5` and scaled needle den-
sitiesrNs2L50.1, 0.5, 1, 23~from top to bottom!. Results from the current
theory ~solid lines! are compared to MC simulation data of Ref. 17~sym-
bols! and the single-fiber superposition approximation of Ref. 16~dashed
lines!.

FIG. 7. Same as Fig. 6 but for size ratioL/s52 and needle densities
rNs350.1, 0.2, 0.5, 1, 2, 5, 10~solid lines, from top to bottom!. For
comparison also the corresponding results forL/s50 and L/s5` are
shown; densities are such that the needle density times the sphere-needle
pair excluded volume,rNESN , is the same as for the curves forL/s52.
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merical values arerNESN50.209 44, 0.418 879, 1.0472,
2.0944, 4.188 79, 10.472, 20.944. We now change the size
ratio L/s while keepingrNESN constant. An almost complete
data collapse is obtained, see Fig. 7 for results for the ex-
treme casesL/s50,̀ . The size ratioL/s50 corresponds to
a matrix of randomly distributed hard point particles. Inter-
estingly, the corresponding adsorption,h, is only slightly
larger than that forL/s52 over the entireh r range consid-
ered. The curves for infinitely long needles,L/s5`, lie
slightly below the corresponding results forL/s52, but this
is also only a small effect. We conclude that the adsorption
behavior of the hard sphere fluid inside a random fiber net-
work is ruled by the needle density,rN , scaled with the
sphere-needle pair excluded volume,ESN.

VI. CONCLUSIONS

In conclusion, we have developed and tested a DFT for
the hard sphere fluid adsorbed in a quenched matrix of van-
ishingly thin needles. We find that theoretical density profiles
near the surface of a needle matrix agree well with results
from our computer simulations. This demonstrates that
within the geometrically based DFT different extensions~ori-
entational degrees of freedom29,30 and treating quenched-
annealed mixtures34! can be systematically combined.

We have dealt with the most simplistic model in the
context using randomly placed needles and disregarding their
explicit connectivity. In a real fiber network, contacts be-
tween neighboring fibers lead to mechanical stability,
whereas in the present model, the needles are somewhat ar-
tificially frozen in space. Nevertheless, we expect this simple
model to capture the main effects. Note that the excluded
volume that is not accessible to a test sphere will have a
connected pore structure due to overlapping sphere-needle
excluded volumes from different needles. Furthermore we
have also ignored correlations between rods that stem from
finite rod diameter and hence finite rod–rod excluded vol-
ume. This is a common assumption. One could however,
treat rod–rod interactions on the Onsager~second virial!
level using the techniques developed in Ref. 30, i.e., angular
convolutions to build weighted densities.

Our theory can treat nonisotropic fiber distributions. By
assuming a needle one-body distribution that explicitly de-
pends on orientation one could model, e.g., brush-like struc-
tures. Also mixtures of needles with different lengths should
be readily accessible. Further very interesting questions con-
cern phase transitions like the demixing phase behavior of a
binary fluid confined in random fiber networks. We expect
this to be accessible within the current DFT framework~see
Ref. 35!. Another interesting question concerns the size se-
lectivity that should occur when immersing two~or more!
differently sized hard sphere fluids in the random fiber net-

work. This opens further possibilities to study fiber networks
acting as mesoscopic filters.
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We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous
matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental mea-
sure density functional theory is employed, where the matrix particles are quenched and the colloids and
polymers are annealed, i.e., allowed to equilibrate. We study capillary condensation of the mixture in a small
sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal
to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of
matrices are considered:~i! colloid-sized matrix particles at low packing fractions and~ii ! large matrix particles
at high packing fractions. These two cases show fundamentally different behavior and should both be experi-
mentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be
experimentally accessible. We find that in case~ii !, even at high packing fractions, the main effect of the matrix
is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without
matrix via a simple rescaling.
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I. INTRODUCTION

Bringing a fluid in contact with a porous medium has a
profound influence on its characteristics and phase behavior
@1,2#. Due to abundance of surfaces and their necessary prox-
imity, surface-fluid interactions as well as capillarity effects
play a prominent role. Moreover, the system may be trapped
in locally stable states, and its behavior governed by hyster-
esis. Apart from the above fundamental questions, the study
of adsorbates in porous media is also of great interest in
applied fields ranging from industrial and geophysical to bio-
medical and pharmaceutical systems@2,3#.

Many natural porous materials are tremendously complex
on a microscopic scale: irregularly shaped pores build a con-
nected void space that percolates throughout the sample
@4,5#. In contrast, to facilitate systematic studies, one often
relies on model pores like slitlike, cylindrical or spherical
pores ~see Refs.@1,2# and references therein!. The pore is
then described conveniently in terms of a single parameter—
its size. A different class of idealized system makes use of
immobilized arrangements of fluid particles~i.e., a quenched
hard sphere fluid! to model a porous medium~see Ref.@2#
and references therein!. In turn, this is characterized through
its density and the size of the spheres. However, the relevant
difference to idealized pores is the presence ofrandomcon-
finement.

The study of porous media has been focused so far mainly
on atomic liquids. In a colloidal fluid, length and time scales
are much larger, facilitating, e.g., studies in real space and
time @6#. We believe that the use of colloidal suspensions as
model systems to study the behavior of adsorbates in porous
media can be as beneficial as their use to study many other
phenomena in condensed matter. However, the experimental
challenge lies in constructing three-dimensional porous me-
dia suitable for colloidal suspensions.

Colloidal two-dimensional~2D! porous media have been
prepared by Cruz de Leo´n and co-workers@7,8# by confining
a suspension of large colloids between parallel glass plates.
Then, these served as a porous matrix to a fluid of smaller
particles which remained mobile and of which they mea-
sured the structure and effective potentials. To our knowl-
edge, no experiment similar in spirit has been performed in
three dimensions to date. On the other hand, Kluijtmans and
co-workers constructed 3D porous glasses of silica spheres
@9,10# and silica rods@11#, but studied the dynamics of iso-
lated tracer colloids in these media. Weron´ski et al. studied
transport properties in porous media of glass beads@12#.
Still, such glassy arrangements of spherical colloids are a
direct candidate for porous media suitable for colloidal sus-
pensions. Sediments of large and heavy colloids as used in
Refs.@9,10,12# could be brought in contact with a suspension
of smaller density-matched~to the solvent! colloids of which
the local structure could be determined@7,8#. However, the
size ratio of the two species is a crucial control parameter: It
has to be large enough (*10) such that the small particles
can penetrate the void space, but should still be small enough
such that no complete separation of length scales occurs.
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Another way to realize such porous media would be to use
laser tweezers. In a binary colloid mixture of which one of
the species possesses the same index of refraction as the
solvent~via index matching! and the other type has a higher
index of refraction, the second species could be trapped
while the first would still remain mobile. Using multiple
traps at random positions in space~mimicking a fluid! one
could then realize a model porous matrix@13#. The advan-
tages of this method are the accessibility of very low matrix
packing fractions and the full control of the confinement.
However, the number of trapped colloids in such setups is
typically limited to the order of 100—probably too little to
approach real macroscopic porous media, but in the right
regime to be able to compare to computer simulations, where
similar numbers are accessible. The crucial advantage of
these setups over the use of ‘‘natural’’ porous media is their
model character arising from the use of well-defined mono-
disperse matrix spheres, while these still possess the essential
features of random confinement and a highly interconnected
void structure.

One prominent phenomenon that is induced by confine-
ment is capillary condensation: A liquid inside the porous
medium is in equilibrium with its vapor outside the medium.
In order for a substance to phase separate into a dense liquid
and a dilute gas phase, a sufficiently long-ranged and suffi-
ciently strong attraction between the constituting particles is
necessary. It is well known that the addition of nonadsorbing
polymers to colloidal dispersions induces an effective attrac-
tion between the colloids. The polymer coils are depleted
from a shell around each colloid and overlap of these~deple-
tion! shells generates more available volume to the polymers,
yielding an effective attraction between the colloids. Conse-
quently, these colloid-polymer mixtures may separate into a
colloid-poor~gas! phase and a colloid-rich~liquid! fluid @14#.

The most simplistic theoretical model that has been ap-
plied for the study of such colloid-polymer mixture is the
Asakura-Oosawa~AO! model@15–17# that takes the colloids
to be hard spheres and the polymers to be ideal spheres that
are excluded from the colloids. The bulk phase behavior of
this model was studied with a variety of techniques, such as
effective potentials@18,19#, free volume theory@20#, density
functional theory~DFT! @21,22#, and simulations@19,23,24#.
Recent work has also been devoted to inhomogeneous situ-
ations, i.e., the free interface between demixed fluid phases
@25–28# and the adsorption behavior at a hard wall, where in
particular a novel type of entropic wetting was found
@24,27,28# and the behavior in spatially periodic external po-
tentials@29#. The surface tension between demixed colloid-
polymer systems has been measured experimentally and es-
tablished to be much lower than for atomic systems@30–33#.
Further, recent experiments confirm wetting of the colloid-
rich liquid at a hard wall@34,35#.

DFT @36# can be used in two ways to treat adsorbates in
porous media. The first is the~conceptually! straightforward
approach via treating the porous medium as an external po-
tential ~see, e.g., Refs.@37–39#! and to solve for the one-
body density distributions of the fluid species. Those can be
complicated spatial distributions, hence this approach is
computationally demanding, but also yields information on

out-of-equilibrium behavior, such as hysteresis in adsorption
and desorption curves@40–42#.

A recently proposed alternative is to describe the
quenched component on the level of its one-body density
distribution@43#. Following the fundamental measure theory
~FMT! of hard spheres@44–46#, an explicit scheme was ob-
tained to generate an approximate excess free energy for~not
necessarily additive! hard-sphere mixtures in contact with
hard-sphere matrices@43#. Applied to the AO model, the re-
sults were compared with those from solving the so-called
replica-Ornstein-Zernike~ROZ! equations @47–50# and
found to be in good agreement@51#. Meanwhile, this
quenched-annealed~QA! DFT has been compared to com-
puter simulations@52# and extended to hard-rod matrices
@53# and lattice fluids@54,55#. FMT in combination with
mean field theory has also been applied to fluids inside
model pores@56,57#.

In this paper, we revisit the AO model in contact with a
hard-sphere matrix using the QA DFT of Refs.@43,51#. We
study capillary condensation in a small sample of matrix as
well as the fluid-fluid interface inside a bulk matrix. For both
these phenomena, we distinguish two cases of matrices:~i!
matrix particles having the same size as the colloids and~ii !
where they are much larger. These correspond to the two
possible experimental realizations we discussed earlier in the
Introduction, but also serve as representative cases because
their behavior is fundamentally different. Concerning capil-
lary condensation, we focus on the possible experimental
realization and consider a bulk mixture in contact with a
small sample of matrix. Furthermore, we elaborate if and
how capillary condensation could be observable in such ex-
periments. Concerning the fluid-fluid interface, we study the
interfacial profiles as well as the surface tensions inside the
matrix. For the case of small matrix particles~i!, we deter-
mine the nature of decay~monotonic or periodic! of the in-
terfaces which we compare with the bulk pair correlations.
For the case of large matrix particles~ii !, we observe a
simple rescaling of the bulk as well as the interface results
with respect to the case without matrix. Inhomogeneous situ-
ations such as the fluid-fluid interface are treated within QA
DFT in a direct fashion, in contrast to, e.g., the ROZ equa-
tions. Fluid-fluid interfaces have been studied before in
Lennard-Jones systems in contact with porous media using
the Born-Green-Yvon equation as well as computer simula-
tions @58,59# and we briefly compare to results of our pro-
files.

The paper is organized as follows. In Sec. II we define our
theoretical model explicitly. The QA DFT approach is re-
viewed in Sec. III, and the results are presented in Sec. IV.
We first consider capillary condensation in a small sample
and then demixing the interfacial profiles and tensions inside
a matrix. We conclude with a discussion in Sec. V.

II. MODEL

We consider a three-component mixture of colloids~de-
noted byc), polymers (p), and immobile matrix particles
(m). Each of these particles are spherical objects with radii
Ri and i 5c,p,m and corresponding number densitiesr i
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5Ni /V, whereNi is the total number of molecules of species
i and V is the system volume. All of these components are
modeled as hard bodies, meaning that they cannot overlap
but otherwise do not interact with each other, except for the
polymer-polymer interaction, which is taken to be ideal, see
Fig. 1. Consequently, whenr is the mutual distance, the pair
potentials become

ui j ~r !5H ` if r ,Ri1Rj

0 if r>Ri1Rj

for i , j 5c,p,m except for i 5 j 5p, ~1!

and concerning the polymer-polymer interaction, this simply
becomes

upp~r !50 for all r . ~2!

As all interactions are either hard core or ideal, the~phase!
behavior is governed by entropic~packing! effects and the
temperatureT does not play a role. The only thermodynamic
parameters are the colloid and polymer packing fractions
hc54pRc

3rc/3 and hp54pRp
3rp/3, respectively. The re-

maining model parameters are two size ratiosq5Rp /Rc and
s5Rm /Rc and the packing fraction of matrix particles (hm

54pRm
3 rm/3). It has to be mentioned that due to the fact

that the polymers can freely overlap, the ‘‘polymer packing
fraction’’ can easily be larger than one~Fig. 1!. The mixture
of hard spheres with these last-mentioned ideal polymers
~i.e., without the matrix particles! is called the AO mixture
@15,16#.

III. DENSITY FUNCTIONAL THEORY

A. Zero-dimensional limit

In this section we derive the zero-dimensional~0D! Helm-
holtz free energy for the three-component system of the AO
colloid-polymer mixture in contact with quenched hard
spheres. This 0D free energy is used as an input to construct
the fundamental measure theory in the following section.
Here, we give only a brief derivation, a more extensive ver-
sion with more comments is given in Refs.@43,51#. The es-

sential ingredient is that we need to perform the so-called
‘‘double average’’ which refers to the statistical average over
all fluid configurations and subsequently over all matrix re-
alizations. To that end we consider a 0D cavity which either
does or does not contain a matrix particle. Hence, the 0D
partition sum is that of a simple hard-sphere fluid,

J̄m511 z̄m , ~3!

where z̄m5z exp(bm̄m) is the fugacity of the hard spheres.
Further,b51/kBT with kB Boltzmann’s constant andm̄m the
chemical potential. The irrelevant prefactorz scales with the
vanishing volume of the cavity but has no effect to the final
free energy and will not be discussed further. In general, we
use an overbar to refer to quantities of 0D systems. With the

grand potential,bV̄m52 ln J̄m, the average number of ma-

trix particles ish̄m52 z̄m]bV̄m /] z̄m5 z̄m /(11 z̄m).
Next, we consider the colloid-polymer mixture in contact

with the matrix in zero dimensions. If the cavity is occupied
by a matrix particle, no colloid, or polymer can be present.
On the other hand, if there is no matrix particle, it can either
be empty, occupied by a single colloid, or an arbitrary num-
ber of polymers. Hence,

J̄5H 1 ~matrix particle in cavity!

z̄c1exp~ z̄p! ~no matrix particle in cavity!,
~4!

where z̄c and z̄p are the colloid and polymer fugacities, re-

spectively. Then, the contribution2 ln J̄ to the grand poten-
tial should contain the appropriate statistical weight for each

of the cases, i.e.,z̄m /J̄m for the first and 1/J̄m for the sec-
ond,

bV̄52
ln@ z̄c1exp~ z̄p!#

11 z̄m

. ~5!

Average particle numbers are again readily obtained viah̄ i

52 z̄i]bV̄/] z̄i for i 5c,p ~not for m). The Helmholtz free
energy can then be calculated using a standard Legendre

transformationbF̄5bV̄1( i 5c,ph̄ i ln(z̄i), and we obtain for
the excess part,bF̄exc5bF̄2( i 5c,ph̄ i@ ln(h̄i)21#,

bF̄exc~ h̄c ,h̄p ;h̄m!5~12h̄c2h̄p2h̄m!ln~12h̄c2h̄m!

1h̄c2~12h̄m!ln~12h̄m!. ~6!

This result can be shown to be equal from that which would
be obtained using the so-called ‘‘replica trick’’@50#.

B. Fundamental measure theory

FMT is a nonlocal density functional theory, in which the
excess part of thethree-dimensionalfree energyFexc is ex-
pressed as a spatial integral over the free energy densityF,

bFexc@$r i~r !%#5E dr F„$nn
i ~r !%…. ~7!

FIG. 1. Sketch of the ternary mixture of mobile colloids~dark!,
mobile polymers ~transparent!, and immobile matrix particles
~gray!. The polymer coils can freely overlap. There are three model
parameters, i.e., the packing fraction of matrix particles (hm), and
two size ratiosq5Rp /Rc ands5Rm /Rc , whereRi is the radius of
particles of speciesi. The packing fractions of colloids and poly-
mers,hc andhp , respectively, are the thermodynamic parameters.
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This free energy density in turn is assumed to depend on the
full set of weighted densities$nn

i (r )%,

nn
i ~r !5E dr 8 wn

i ~r2r 8!r i~r 8!,

5~wn
i

^ r i !~r !, ~8!

which are convolutions~denoted with^ ) with the single-
particle distribution functionsr i(r ) for speciesi 5c,p,m.
The weight functions are obtained from the low-density limit
where the virial series has to be recovered,

w3
i ~r !5u~Ri2r !,

w2
i ~r !5d~Ri2r !, wv2

i ~r !5d~Ri2r !r /r ,

w1
i ~r !5d~Ri2r !/~4pr !, wv1

i ~r !5d~Ri2r !r /~4pr 2!,

w0
i ~r !5d~Ri2r !/~4pr 2!, ~9!

with again i 5c,p,m being one of the three components,u
the Heaviside function, andd the Dirac delta function. There
are four scalar weight functions, with 3 to 0, corresponding
to the volume of the particles, the surface area, the mean
curvature, and the Euler characteristic, respectively, and
these are the so-called ‘‘fundamental measures’’ of the
sphere. The two weights on the right-hand side of Eq.~9! are
vector quantities. Often a seventh tensorial weight is used in
the context of freezing but this will not be used here
@21,22,46#. The dimensions of the weight functionswn

i are
(length)n23.

Then, the sole approximation made is thatF is taken to
be afunctionof the weighted densitiesnn

i (r ) whereas most
generally one would expect this to be afunctional depen-
dence. This approximation totally sets the form ofF and
following Refs. @22,43,51# we give the expression forF
5F11F21F3 in terms of the zero-dimensional free energy
derived in the preceding section,

F15 (
i 5c,p,m

n0
i w i~$n3

l %!, ~10!

F25 (
i , j 5c,p,m

~n1
i n2

j 2nv1
i
•nv2

j !w i j ~$n3
l %!, ~11!

F35
1

8p (
i , j ,k5c,p,m

S 1

3
n2

i n2
j n2

k2n2
i nv2

j
•nv2

k Dw i jk~$n3
l %!,

~12!

with

w i 1 , . . . ,i t
~$h̄ j%!5] tbF̄exc~$h̄ j%!/]h̄ i 1

¯ ]h̄ i t
. ~13!

All w i 1 , . . . ,i t
of which more than one indices equalp are zero

due to the form ofbF̄exc. Together, Eqs.~6! to ~13! consti-
tute the excess free energy functional for this QA system.

C. Minimization

Having constructed the excess free energy, we can now
immediately move on to the grand-canonical free energy
functional of the colloid-polymer mixture in contact with a
matrix,

V@rc~r !,rp~r !;rm~r !#

5Fexc@rc~r !,rp~r !;rm~r !#1kBT (
i 5c,p

E dr r i~r !

3@ ln„r i~r !D i…21#1 (
i 5c,p

E dr r i~r !@Vi~r !2m i #.

~14!

Here,D i is the ‘‘thermal volume’’ which is the product of the
relevant de Broglie wavelengths of the particles of speciesi.
Further,m i is the chemical potential andVi is the ~external!
potential acting on componenti. In this paper, we study bulk
phase behavior and the free fluid-fluid interfaces, so we use
Vi50. The equilibrium profiles are the ones that minimize
the functional,

dV

drc~r !
50 and

dV

drp~r !
50. ~15!

This yields the Euler-Lagrange or stationarity equations (i
5c,p),

r i~r !5zi exp@ci
(1)
„$r j~r !%…#, ~16!

with zi5D i
21 exp@bmi# the fugacity of componenti and the

one-particle direct correlation functions given by

ci
(1)~r !52b

dFexc@$r j~r !%#

dr i~r !
52(

n
S ]F

]nn
i

^ wn
i D ~r !.

~17!

Obviously, the functional is not minimized with respect to
the matrix distributionrm(r ) as this serves as aninput pro-
file. In principle, as we are dealing with a quenched-annealed
system in which the matrix is initially~before quenching! a
hard-sphere fluid,rm(r ) should still minimize the hard-
sphere functional@43,51#. However, as density functional
theory allows us to generate any distributionrm(r ) by ap-
plying any suited external potential~which we can then re-
move after quenching!, we do not need to go into the scheme
of generating matrix profiles. Moreover, in the present paper
we use fluid distributions of the matrix particles which mini-
mize ~at least locally! the hard-sphere functional without ex-
ternal potential for any packing fraction. This restricts the
matrix distribution to be homogeneous, i.e., constant in
space,rm(r )5const.

IV. RESULTS

In this section, we show results of the effect of the hard-
sphere matrix on the AO colloid-polymer mixture concerning
capillary condensation in a small sample of matrix, and
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phase behavior and free fluid-fluid interfaces inside a bulk
matrix. Throughout this section, we distinguish between the
colloid-sized matrix particles (s51) and the large matrix
particles~we uses550). In the first case, as we will see, one
is limited to small matrix packing fractions~up to hm of the
order of 0.2) as for high packing fractions the pores become
too small for the colloids and the polymers to constitute a
real fluid in the matrix. For the large matrix particles, higher
matrix packing fractions are accessible~up to hm50.5). Fi-
nally, in all cases we useq50.6, for which size ratio the AO
model has a stable fluid-fluid demixing area~with respect to
freezing, which we do not consider!.

A. Bulk fluid free energy

In the fluid phase, the densities are spatially homoge-
neous, and the constant distributionsr i(r )5r i solve the sta-
tionarity Eqs.~16! and ~17!. Therefore, we only have to in-
tegrate the weights over space,*dr wn

i , and the weighted
densities become

n3
i 5h i ,

n2
i 53h i /Ri ,

n1
i 53h i /~4pRi

2!,

n0
i 53h i /~4pRi

3!,

nv2
i 5nv1

i 50, ~18!

with i 5c,p,m. Substituting these expressions in the free en-
ergy density, Eqs.~10!–~12!, we obtain an analytical expres-
sion for the bulk excess free energy. Defining the dimension-
less bulk free energy density,f 5bFVc /V, with Vc

54pRc
3/3 the volume of a colloid, this becomes

f ~hc ,hp ;hm!5hc~ ln hc21!1
hp

q3
~ ln hp21!1 f 0~hc ,hm!

2
hp

q3
ln a~hc ,hm!, ~19!

with the last two terms being the excess free energy. We have
separated the excess free energy in two terms wheref 0 is the
excess free energy density of a fluid of hard spheres in con-
tact with a hard-sphere matrix anda is the fraction of free
volume for the polymers in the presence the hard sphere
colloidal fluid and the hard sphere matrix@20,22#. The ex-
pressions forf 0 and a are quite extensive and given in the
Appendix. In going from Eq.~7! to ~19! we have discarded
two terms,hc ln(Dc /Vc) and (hp /q3)ln(Dp /Vp), linear in the
colloid and polymer packing fractions. These have no effect
on the phase behavior. Due to the ideal interactions of the
polymers, the excess free energy density is only linear inhp
and the polymer fugacity becomes simply

zpVp5hp /a~hc ,hm!. ~20!

This relation is trivially invertible, so switching from system
representation@using f (hc ,hp ;hm)] to the polymer reser-
voir representation @in terms of ṽ(hc ,zp ;hm)5 f
2mphp /q3] is straightforwardly done. Moreover, for zero
packing fractions of colloids and matrix particles, the poly-
mer free volume fraction is trivial,a(0,0)51. Consequently,
the fugacity equals the packing fraction of polymers in the
polymer reservoir,zpVp5hp,r ~where there are no colloids
and matrix particles!, and often, we usehp,r when referring
to the fugacity. Finally, we mention that in the absence of
matrix particles,hm50, this theory is equivalent to the free-
volume theory for the AO model@20–22#.

Concerning the fluid-fluid demixing, the spinodals are cal-
culated in the canonical representation, by solving
det@]2f /]h i]h j #50 with i , j 5c,p, which can be done ana-
lytically. Binodals are determined by constructing the com-
mon tangents of the semigrand potentialṽ(hc ,hp,r ;hm) at
fixed fugacityhp,r .

When the matrix particles are very large, it is expected
that the excluded volume effects dominate over other~sur-
face or capillary! effects. In particular, if one considers only
one infinitely large particle, still corresponding to a nonzero
matrix packing fraction, one would expect normal bulk be-
havior of the mixture as most of the mixture is ‘‘far’’ away
from the matrix particle. Equivalently, for very large matrix
particles, the total volume of the surrounding depletion lay-
ers that are responsible for the surface effects, compared to
the actual volume occupied by the matrix particles, scales
with @4p(Rm1Rc)

3rm/32hm#/hm}3/s for the colloids and
@4p(Rm1Rp)3rm/32hm#/hm}3q/s for the polymers, and
these both go to zero fors→`. However, in this limit, we
still need to correct for the volume as this is partly occupied
by infinitely large matrix particles, i.e.,V→(12hm)V. In-
deed, applyings→` to the bulk free energy of Eq.~19!, we
reobtain the bulk behavior of the plain AO colloid-polymer
mixture without matrix, i.e., it can be shown that

lim
s→`

f ~hc ,hp ;hm!5~12hm! f S hc

12hm
,

hp

12hm
;0D ,

~21!

where the free energy density has to be rescaled as well. This
term can be considered to be the zeroth in a 1/s expansion of
the free energy of which higher order terms should corre-
spond to effects due to surfaces, capillarity, curvature, etc.
However, because of the formidable form of the free energy
it is a daunting task to connect every term to a certain phe-
nomenon and we leave this to future investigation. It is worth
mentioning that a power series in 1/s is only a simple model
dependence. In general, there can be nonanalyticities, e.g.,
arising from wetting phenomena around curved surfaces@60#
of matrix particles.

B. Capillary condensation in a small sample of porous matrix

A porous matrix of quenched hard-spheres stabilizes the
colloid-rich phase with respect to the colloidal gas phase
@51#. This is called capillary condensation and it is due to the
attractive depletion potential between the colloids, which
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also acts between colloids and matrix particles. In this sec-
tion we present capillary condensation in a representation
which is appropriate to compare with experiments. In an ex-
perimental setup one typically has a canonical ensemble, i.e.,
a test tube, of colloid-polymer mixture. By adding a small
sample of porous material, the bulk mixture in the test tube
acts as a colloid-polymer reservoir to the sample, but vice
versa, if the sample is small enough, its state will not have
any effect on that of the bulk mixture@see Fig. 2~inset!#. In
the colloid-poor~and polymer-rich! part of the phase dia-
gram, on approaching bulk coexistence, the conditions for
coexistence in the porous sample are reached before those in
bulk, i.e., capillary condensation in the sample occurs.
Hence, capillary condensation appears as a line in the system
representation terminating in a capillary critical point. This is
shown in Figs. 2 and 3 for the case ofs51 and s550,
respectively, and various densities of the matrix. The coex-
istence of the bulk colloid-polymer mixture appears in the
usual system representation, where tie lines connect coexist-
ing states. For each of the matrix densities, a capillary line
runs along the bulk binodal in the colloid-poor part of the
phase diagram.

First, we determine the conditions for coexistence inside
the matrix, i.e., we compute the combinations of chemical
potentialsmc,coex

porous and mp,coex
porous, for which demixing occurs

within the porous sample. These are fixed by the chemical
potentials of the bulk colloid-polymer mixture,mc

bulk and
mp

bulk , so solving

mc
bulk~hc ,hp!5mc,coex

porous,

mp
bulk~hc ,hp!5mp,coex

porous ~22!

for hc and hp , we obtain the capillary lines in the phase
diagram in system representation. The trend can be spotted
from Figs. 2 and 3, increasing the matrix packing fraction in
the sample, the capillary line moves away from the bulk
binodal but at the same time the capillary critical point shifts
away from the bulk critical point. Qualitatively, this applies
to both thes51 and s550 cases. However, in thes550
case the capillary lines extend to much closer to the bulk
critical point, but they are hardly distinguishable from the
bulk binodal. Concerning the colloid-sized matrix particles,
s51, these capillary lines are well separated from the bulk
binodal, but the capillary critical points are located much
deeper into the colloidal gas regime.

Next, we briefly discuss the implications this has for pos-
sible experiments. Focusing on the case of the large matrix
particles,s550, we take as an examplehm50.5. In this case
the difference in chemical potential at coexistence of the
mixture in bulk and inside the porous sample at constant
polymer fugacity is of the order,bDmc

coex;0.1, and it scales
roughly with 1/s. This difference is very small and brings up
the question if this~i.e., capillary condensation! is observable
in experiments. Typically, the effect of gravity is reduced by
density matching the colloids with the solvent, i.e., canceling
gravity by means of buoyancy. However, this density match-
ing is never perfect, and the length scale (bmcg)21 is a
measure for its success~at infinity it is perfect!. Hereg is the
gravitational acceleration andmc5(rcolloid2rsolvent)Vc the
effective mass of the colloid in solution, withrcolloid and
rsolvent the mass densities inside the colloid and of the sol-
vent, respectively. Therefore this length scale is strongly de-
pendent on the colloid size, (bmcg)21}Rc

23 , and can range
from micrometers~large colloids! to meters~small colloids!
in experiments@32#. Typically, polymers are much less sen-

FIG. 2. Phase diagram of a bulk AO colloid-polymer mixture
(q50.6) in chemical contact with a small sample of porous mate-
rial (s51). Concerning the bulk mixture: the thick full curve is the
binodal, the dashed is the spinodal, the large filled circle~where
they meet! is the critical point, and the straight~thin! lines are the
tie lines connecting coexisting state points. The capillary lines~full
curves! appear in the upper left~colloid-poor! part of the phase
diagram and each terminates in a capillary critical point~small filled
circles!. From lower right to upper left, the curves correspond to an
increasing packing fraction of the matrix,hm50.05,0.1,0.15,0.2
~the last one is practically on the vertical axis nearhp50.8). The
inset shows a sketch of the setup: a test tube is sealed at the top and
filled with the colloid-polymer mixture~densitieshc andhp) and at
the bottom lies the small sample of porous matrix.

FIG. 3. Same as in Fig. 2, but now for a sample of porous matrix
with s550. Here the matrix packing fractions increase as follows:
hm50.1,0.2,0.3,0.4,0.5~again from lower right to upper left!. The
inset is the magnification of the area with the capillary critical
points.
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sitive to gravity as long as the solvent is good. When there is
coexistence inside a test tube, there is only real coexistence
at the liquid-gas interface, whereas below and above, the
colloids have slightly different chemical potentials due to
their gravitational energy. Consequently, moving upward
from the interface, sayDz, the colloid chemical potential is
(bmcg)Dz lower than at coexistence. By placing the porous
sample withinDz* 5bDmc

coex/(bmcg) of the interface, cap-
illary condensation should take place. Taking as an example,
bDmc

coex;0.1 and (bmcg)21;1 m, it becomes clear that,
within the context of this~idealized! model, values ofDz*
;0.1 m should be accessible in experiments, meaning that
capillary condensation could in principle be observed. Using
smaller matrix particles, with size similar to the size of the
colloids ~our cases51), the effect of capillary condensation
becomes much more pronounced and it should therefore be
observable in a similar way as for large matrix particles.
From an experimental point of view, however, we think that
it is a much larger effort to produce such matrices with low
enough packing fractions~see Fig. 4, where we discusshm
&0.2) in order to be penetrable to the mobile colloids and
polymers. We recall the possible realization given in Sec. I
using laser tweezers.

C. Phase behavior inside a bulk porous matrix

We now return to the full ternary mixture in bulk, i.e.,
where in the preceding section, the matrix was only a small
sample immersed in a large system of colloid-polymer mix-
ture, in this and the following sections we consider the
colloid-polymer mixture in a system-wide matrix. In this sec-

tion, we revisit the demixing phase behavior which we need
in the following sections where we study the fluid-fluid in-
terface inside a matrix. Figure 4 is the phase diagram in the
polymer-reservoir representation for colloid-sized matrix
particles,s51, for various matrix densities. Increasing the
matrix packing fraction, there is less volume available to the
colloids and the critical point shifts to smaller colloid pack-
ing fractions. At the same time, the porous matrix acts to
keep the mixture ‘‘mixed’’ and therefore, the critical point
shifts to higher polymer fugacities. For the case ofs51, we
cannot go to much higher packing fractions thanhm;0.2 as
then the critical fugacity shoots up dramatically to unphysi-
cally large values. This may be partly due to the relatively
large depletion shells around the matrix particles which
cause the pore sizes to become too small for the colloids and
polymers to enter the matrix. In case of large matrix particles
(s550, see Fig. 5!, the latter effect is negligible and the pore
sizes are always large enough. Consequently, only the ex-
cluded volume remains and rescaling the binodals with (1
2hm) is very effective practically mapping the binodals
onto each other, Fig. 5~inset!. This rescaling is unsuccessful
for s51 as can be directly seen from the fact that the critical
fugacities in Fig. 4 are different for each of the matrix den-
sities.

In addition, we have determined the nature of the
asymptotic decay of pair correlations of the fluid inside the
matrix @61#. These can either be monotonic or periodic and
the corresponding regions in the phase diagram are separated
by the Fisher-Widom~FW! line, at which both types of de-
cay are equally long range. This line can be determined by
studying the pole structure of the total correlation functions
hi j in Fourier space@61#. In the present case of QA systems,
rather than using the usual Ornstein-Zernike equations, one
has to use the replica-Ornstein-Zernike~ROZ! equations
@50#. Neglecting correlations between the replicas, these are

hmm~r !5cmm~r !1rm~cmm^ hmm!~r !,

hi j ~r !5ci j ~r !1 (
t5c,p,m

r t~cit ^ ht j !~r !, ~23!

FIG. 4. Fluid-fluid binodals of an AO colloid-polymer mixture
(q50.6) inside a bulk porous matrix (s51). Tie lines connecting
coexisting state point are not drawn but run horizontal. The lower
~thicker! curve is the result in the absence of any matrix,hm50.
For the other curves, the matrix packing fraction increases from
bottom to top,hm50,0.05,0.1,0.15,0.2. The filled circles are the
critical points~large,hm50). The dotted line is the Fisher-Widom
line for hm50, below which the decay of correlations in the fluid is
oscillatory and above which these are monotonic. The point where
the FW line hits the binodal is marked by a~large! star. The FW
lines for the other matrix packing fractions are not shown, only their
crossings with the binodals~small stars!.

FIG. 5. Same as in Fig. 4, but now fors550. Matrix packing
fractions increase from right to left,hm50,0.1,0.2,0.3,0.4,0.5. In-
set: same curves now rescaled, i.e.,hp,r vs hc /(12hm).
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with i , j 5c,p,m except i 5 j 5m. Here, for i j Þmm, the
ci j (r )52d2Fexc/dr i(r )dr j (r ) are the direct correlation
functions for which we obtain analytic expressions by differ-
entiating Eq.~7!. The matrix structure is determined before
the quench, socmm and hmm are those of the normal hard-
sphere fluid at densityrm ~Percus-Yevick-compressibility
closure, see Refs.@43,51#!. This analysis follows closely that
of Ref. @22# in which more details are given. In view of our
subsequent interface study, we focus on the point where the
FW line meets the binodal. In Fig. 4 (s51), these are de-
noted by stars, and we observe that the shifts due to the
matrices follow the same trend as the critical points. In case
of s550, we have not determined the FW lines, but there is
no reason to expect the simple rescaling of the case without
matrix to fail in this case. Furthermore, concerning the den-
sity profiles~in the following section,s550), we stay well
within the oscillatory regime.

D. Fluid-fluid profiles inside a bulk porous matrix

We have calculated density profiles at coexistence normal
to the colloidal gas-liquid interface. In this case of planar
interfaces, the density distribution is only a function of one
spatial coordinatez; i.e., r i(r )5r i(z). The only dependence
on the other two degrees of freedom is in the weights and
this can be integrated out, to obtain projected weights,
w̃n

i (z)5*dx dy wn
i (r ) ~see, e.g., Ref.@62#!. The profiles are

discretized and calculated via an iteration procedure, i.e., we
insert profiles on the right hand side of Eq.~16! and then
obtain new profiles on the left hand side, which are then
reinserted on the right. Using step functions as iteration
seeds, this procedure converges in the~local! direction of the
lowest free energy. We normalize the densities as in bulk,
i.e., we plotr i(z)Vi so thatr i(6`)Vi5h i

(I,II) , with I and II
referring to the coexisting phases. The zero ofz is set at the

location of the interface, defined through the Gibbs divid-
ing surface of the colloids: *2`

0 dz@rc(z)2rc(2`)#
1*0

`dz@rc(z)2rc(`)#50.
In Figs. 6 and 7, we have plotted the colloid profiles nor-

mal to the interface fors51 ands550, respectively. Colloid
profiles are shown for increasing densities of the matrix at
fixed fugacity,hp,r51, corresponding to the bulk binodals
in Figs. 4 and 5. For the case ofs51, this means that, as the
critical point shifts to higher fugacities, the profiles are ef-
fectively taken at fugacities closer to the critical value. We
observe this well-known behavior in Fig. 6; close to the criti-
cal point the profiles are smoother and modulations less pro-
nounced. Away from the critical point, the interface is sharp
but the periodic modulations due to the surface extend far in
the bulk fluid. The inset of Fig. 6 shows the corresponding
polymer profiles. In Ref.@58#, the main result is that the
interface widens due to the porous medium. The same hap-
pens here and is due to fact that one is effectively closer to
the critical point.

In Fig. 7, as we saw for the bulk phase diagram, there is a
simple rescaling at work and the profiles merely differ by a
factor (12hm). The inset in Fig. 7 shows the same colloid
profiles but now rescaled, and we have zoomed in on the
region close to the interface. Clearly, even the modulations
follow the case without matrix with the same accuracy as the
bulk coexistence values in the inset of Fig. 5.

We have also studied the asymptotic decay of correlations
with the interface via the density profiles. These must be of
the same nature as the decay of the direct correlations in bulk
~determined via the ROZ equations, see the preceding sec-
tion!, i.e., either monotonic or periodic@61#. However, deter-
mining the crossing points of the FW line with the binodals
using the interfacial profiles yields a systematic shift away
from the critical point, compared to the bulk calculation
(;5%). Probably, this is due to numerical limits. Close to
this crossing point both~the periodic and the monotonic!
modes of decay are equally strong, so only far away from the

FIG. 6. Colloid density profiles (Vc5
4
3 pRc

3) normal to the free
fluid-fluid interface for increasing matrix packing fractions at fixed
polymer fugacity. Parameters areq50.6, s51, andhp,r51 ~see
Fig. 4!. The matrix packing fraction increases from top~thick pro-
file, hm50) to bottom:hm50,0.05,0.1,0.15,0.2. Inset: correspond-
ing polymer profiles (rpVp vs z/Rc , with Vp5

4
3 pRp

3) for the same
values of the matrix packing fractions~also increasing from top to
bottom!.

FIG. 7. Same as in Fig. 6 but now fors550. Other parameters
are q50.6 andhp,r51 ~see Fig. 5!. The matrix packing fractions
increase from top ~thick profile, hm50) to bottom: hm

50,0.1,0.2,0.3,0.4,0.5. Inset: magnification of therescaledprofiles
for the same curves, i.e.,rcVc /(12hm) vs z/Rc ~where again, ma-
trix packing fractions increase from top to bottom!.
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interface truly asymptotic behavior may be observed. How-
ever, there, the periodic modulations may have become too
small to be observable. Furthermore, our numerical routine
has no real incentive to minimize the tails of the profiles as
the gain in free energy is very low.

E. Fluid-fluid surface tension inside a bulk porous matrix

The presence of the matrix also affects the surface tension
between the colloidal liquid and gas phases. The interfacial
or surface tensiong of planar interfaces in the grand canoni-
cal ensemble is defined through

gA5V inh1PV, ~24!

where A is the amount of surface area,V inh is the grand
potential for the inhomogeneous system, andP the pressure
~i.e., 2PV is the grand potential for the homogeneous bulk
system!. With our numerical scheme we calculate density
profiles inz direction so it makes sense to write the surface
tension as an integral,

g5E dz@v~z!1P#, ~25!

with

v~z!5kBT (
i 5c,p

r i~z!@ ln„r i~z!D i…21#2 (
i 5c,p

m ir i~z!

1kBTF„$nn
i ~z!%…. ~26!

The quantityv(z) is a ‘‘local’’ grand potential density whose
average over space yields the actual grand potential per unit

of volume V inh /V. In Figs. 8 and 9 we have plotted the
surface tension versus the colloidal density difference in the
two phases fors51 ands550, respectively. In both cases
the effect of the matrix is that the surface tensions increase
faster with the differenceuhc

(II) 2hc
(I) u which is of course due

to the fact that the coexistence area becomes less wide as the
coexisting packing fractions themselves become smaller. In
the inset of Fig. 9, we show the same curves rescaled with
(12hm), and the rescaled graphs fall almost on top of the
original one without any matrix. Here, we note that also the
surface tension has been rescaled with (12hm); this is
needed from Eq.~21! as the free energy densityv(z) needs
to be rescaled as well. Again, this rescaling procedure is not
successful fors51.

Often, the surface tension is plotted against the relative
distance to the critical point, (hp,r /hp,r

(crit)21) @27#. However,
this does not improve the rescaling fors51 and this can be
seen from the fact that the end points of the curves in Figs. 8
and 9 are all at twice the critical fugacity,hp,r52hp,r

(crit) , and
the surface tensions~rescaled or not! are at quite different
values at the end points.

V. CONCLUSION

We have considered the full ternary system of hard
spheres and ideal polymers~represented by the AO model! in
contact with a quenched hard-sphere fluid acting as a porous
matrix. Using a QA DFT in the spirit of Rosenfeld’s funda-
mental measure approach, we studied capillary condensation
in a small sample of matrix as well as the fluid-fluid interface
inside a bulk matrix. The results have been presented in
terms of two types of matrices:~i! colloid-sized matrix par-
ticles ~size ratios51) being a reference system and~ii ! ma-
trix particles which are much larger than the colloids~size
ratio s550). The case of small matrix particles is limited to
relatively low packing fractions (hm;0.2), whereas in the
second case, much higher matrix packing fractions are acces-

FIG. 8. Fluid-fluid surface tensions vs the difference in colloid
packing fractions of the two fluid phases forq50.6, s51, and
various values of the matrix packing fraction. The matrix packing
fractions increase from right (hm50, thick curve! to left, hm

50,0.05,0.1,0.15,0.2. Each curve is computed from the critical
point, hp,r5hp,r

(crit) ~where g50) until twice the critical fugacity,
hp,r52hp,r

(crit) .

FIG. 9. Same as in Fig. 8 but now fors550. Again, matrix
packing fractions increase from right (hm50, thick curve! to left,
hm50,0.1,0.2,0.3,0.4,0.5. Each curve is computed from the critical
point, hp,r5hp,r

(crit) ~where g50) until twice the critical fugacity,
hp,r52hp,r

(crit) . Inset: the same~but rescaled! curves are shown, i.e.,
bgRc

2/(12hm) vs uhc
(II) 2hc

(I) u/(12hm).
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sible (hm;0.5), the pores of the matrix being much larger.
Additionally, we have suggested that case~i! as well as~ii !
could in principle be realized experimentally in 3D, i.e., us-
ing laser tweezers and colloidal sediments, respectively, to
serve as a model porous medium for colloidal suspensions.

We have shown that in the limit of infinitely large matrix
particles, the standard AO results~without matrix! are recov-
ered via a simple rescaling. In case ofs550 our bulk but
also the interface results can be mapped onto the case with-
out matrix with high accuracy. However, in the case of small
matrix particles (s51) this mapping fails, which is due to
the more complex~and smaller! pore geometry on the col-
loidal scale.

Assuming a more ‘‘experimental’’ point of view, we have
considered a small sample of porous matrix immersed in a
large system of colloid-polymer mixture. When the fluid-
fluid binodal is approached in the colloid-poor region of the
phase diagram, capillary condensation occurs in the sample.
This transition appears as a capillary line in the phase dia-
gram ~in system representation! extending along the binodal
and ending in a capillary critical point. In case of small ma-
trix particles, the capillary lines~for various densities of the
matrix! are well separated from the bulk binodal but the cap-
illary critical points lie deep into the colloidal gas regime.
Concerning the large matrix particles, these capillary critical
points are located closer to the bulk critical point, however,
the capillary lines are also very close to the binodal. Still,
using density-matched colloidal suspensions, we argue that
capillary condensation may be observable in experiments.

We have computed fluid-fluid profiles inside the porous
matrix as well as the corresponding surface tensions. Fors
550, these can be mapped onto the case without matrix but
for s51 the critical point shifts to higher polymer fugacities.
Therefore, increasing the density of the matrix, profiles be-
come smoother due to effective approach of the critical
point. Solving the ROZ equations, we have also determined
the crossover between monotonic and periodic decay of pair
correlations of the mixture inside the matrix fors51. Com-
paring these with the decay of the interfacial correlations we
find a small discrepancy which is probably due to numerical
limits.

It should be noted that we do not expect our current ap-
proach to satisfactorily describe the~subtle! phenomena as-
sociated with wetting of the curved surfaces of the matrix
particles by the colloidal liquid@60,63#. Especially for s
550 close to the critical point in the complete wetting re-
gime, we can well imagine that the growths of thick films of
colloidal liquid on the matrix spheres have a profound influ-
ence on the occurrence and precise location of the capillary
condensation transition and on the structure of the fluid-fluid
interface inside the matrix. We do not expect this effect to be
included in our current treatment. Note that in order to obtain
the wetting transition at a hard wall@27,28# and at a curved
surface@63# inhomogeneous density profiles need to be cal-
culated, which we do not do in our present method of inves-
tigation of the bulk phase behavior.

We also note that the attraction between colloids, as well
as that between colloids and matrix particles~which is gen-
erated by the polymers!, arises naturally from our DFT treat-

ment. This depletion attraction, however, has a many-body
character for the size ratio considered (q50.6) as multiple
overlap between one polymer and three or more colloids can
occur; for a discussion of how to obtain an effective Hamil-
tonian for the colloids by integrating out the polymer degrees
of freedom in the equilibrium binary AO model, see Ref.
@64#. The presence of many-body effective interactions has a
profound influence on phase behavior inside a porous matrix.
For a detailed comparison of the bulk phase behavior ob-
tained via the present treatment including all polymer-
induced many-body interactions, and one, based on the ROZ
equations, that only retains the pairwise contribution to the
effective Hamiltonian, see Ref.@51#. A more detailed study
of the present approach compared to findings for simple flu-
ids interacting with pairwise attractive forces would be very
interesting, but is beyond the scope of the present work.

Concerning the fluid profiles, we have only considered a
homogeneous background of matrix particles in this paper. It
would be interesting to use inhomogeneous matrix realiza-
tions, as, e.g., a step function of zero and nonzero matrix
packing fraction~i.e., the interface of empty space and ma-
trix! or a constant matrix background in contact with a hard
wall. Both types could give rise to interesting and substan-
tially modified wetting behavior. Additionally, one could also
consider other types of matrices, e.g., quenched polymers or
combinations of quenched colloids with quenched polymers
@43,51#. These are maybe less realistic from an experimental
point of view but still interesting due to the competition of
capillary condensation with evaporation.

As we have mentioned in the Introduction, there are no
experiments concerning phase behavior of colloidal suspen-
sions in contact with 3D porous media to our knowledge. We
hope that the accumulating results@7–12,43,51#, including
those in this paper, may encourage more experimental efforts
in that direction. It is important to keep in mind that a suit-
able porous matrix is a compromise between length scales:
large enough to allow penetration of the colloids into the
void space, but small enough to retain significant surface and
capillary effects. In colloidal fluids in general, these last-
mentioned effects are known to be much smaller than in
atomic systems, thus providing a formidable challenge to
experimentalists aiming to observe, e.g., capillary condensa-
tion of a colloidal suspension in a porous matrix.
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APPENDIX: BULK FLUID FREE ENERGY

The bulk free energy of the colloid-polymer mixture in
contact with a homogeneous hard-sphere porous matrix as
given in Eq.~19! is

f ~hc ,hp ,hm!5hc~ ln hc21!1
hp

q3
~ ln hp21!1 f 0~hc ,hm!

2
hp

q3
ln a~hc ,hm!. ~A1!

We note the occurrence of only third and lower powers of 1/s
in both f 0 anda, which are given by

f 0~hc ,hm!5
hm

s3
ln~12hm!2S hm

s3
1hcD ln~12hc2hm!1

3hchm
2 @21hc~hm22!22hm#

2s3~12hm!2~12hc2hm!2

1
3hc

2s3~12hc2hm!2
$hm~222hc1hm!s1hm~21hc22hm!s21hc~22hc22hm!s3% ~A2!

and

ln a~hc ,hm!5 ln~12hc2hm!2
q

2s3~12hc2hm!3
ˆ2hm@11hc

21hm1hm
2 2hc~21hm!#q2

23hmq@221hm1hm
2 12hc

2~211q!2hc~241hm12q14hmq!#s

16hm@~12hc2hm!213hc~12hc2hm!q1hc~112hc2hm!q2#s2

1hc$2hc~12hm!@121~322q!q#12~12hm!2@31q~31q!#1hc
2@61q~2312q!#%s3

‰. ~A3!
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Density-functional theory for soft interactions by dimensional crossover

Matthias Schmidt
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 22 June 1999!

A density-functional theory for spherical particles interacting via an arbitrary soft pair potential is presented.
The derivation is solely based on limits, where the behavior is exactly known, namely, a zero-dimensional
cavity and the low-density virial expansion. The approach generalizes the fundamental-measure theory for hard
bodies and yields the structure and thermodynamics of the homogeneous fluid as an output. We apply the
theory to an ultrasoft logarithmic potential that mimics star polymers in a good solvent. The theory, when
supplemented by a rescaling procedure, reproduces the peculiar features of the pair correlations in this system
that we also find in computer simulations.@S1063-651X~99!50712-5#

PACS number~s!: 61.20.Gy, 64.10.1h, 61.25.Hq, 05.20.Jj

Particles interacting via soft pair potentials build up a
general class of statistical systems ranging from the Cou-
lomb interaction of charged bodies, the screened Coulomb or
Yukawa potential present in suspensions of charged colloidal
particles to inverse-power potentials@1#. Another important
example is the Lennard-Jones potential that describes the
noble gases accurately. In the context of soft matter one is
faced with a zoo of potentials acting on a mesoscopic length
scale. Two examples are the depletion potential that acts be-
tween large spheres immersed in a suspension of small
spheres@2# and the ultrasoft repulsive logarithmic potential
between star polymers@3#. These examples clarify that a soft
potential is a pairwise interaction that is finite everywhere
except for a possible singularity at the origin. The counter-
part of soft potentials are hard-body interactions, as in the
famous hard sphere system. The interaction in these systems
is infinite once two particles overlap. There are elaborate
theories dealing with these purely entropic forces.

We propose a generalization of a successful density-
functional theory ~DFT! for hard bodies, the so-called
fundamental-measure theory~FMT!, to soft potentials. The
FMT approach has proven to describe accurately the struc-
ture and thermodynamics of hard bodies, as hard spheres
@4,5#, or aligned hard cubes@6,7#. It is able to yield the struc-
ture of the homogeneous fluid, namely, the pair correlation
function as an output rather than needing it as an input as
other DFTs do@8#. In the case of hard spheres the resulting
fluid structure is the same as the solution of the Percus-
Yevick closure relation. Also the freezing transition into a
face-centered cubic crystal is captured correctly@4,5#.

The FMT has also been used to deal with soft potentials.
In these approaches it is used to describe the hard spheres as
a reference system for a perturbation theory, e.g., via the
assumption of universality of the bridge functional@9#. Con-
cerning non-FMT approaches for soft potentials there is a
large literature of successful applications; see the reviews by
Singh @10#, Evans@8#, and Löwen @1#. Recently, Kol and
Laird studied the inverse-power potentials@11#.

We attempt to find a generalization of the FMT to soft
potentials. Let us therefore first outline the major features of
the FMT. The FMT is a weighted density approximation
~WDA!. In this approach a smoothing of the density profile

is used to cope with highly inhomogeneous situations, like
the density peaks representing the lattice sites in a crystal. In
a WDA this smoothing is implemented by a convolution of
the one-particle density distribution with appropriate weight
functions yielding weighted densities. To construct a WDA
one has to define the weight functions. It is worth noting that
the FMT uses a set of several weight functions. Another
important feature of the FMT opposed to other WDAs is the
range of the weight functions. While to our knowledge all
other WDAs for hard spheres use weight functions with a
range of the particle diameters, the FMT weight functions
have a range of half the particle diameter, or particle radius
R5s/2. In this way the non-overlap criterion for hard
spheres can be fulfilled exactly. The small range of the
weights is not a drawback in cases where a range of non-
locality of the sphere diameters is needed, e.g., for the pair
correlation function. In this case the arising convolutions of
two weights render the functional non-local with ranges.

One essential ingredient of the FMT is a geometrical view
of hard particles. The basic statistical objects such as the
Mayer function are either zero or unity for hard particles. In
the geometrical picture a function value of unity means ‘‘in-
side the geometrical shape,’’ while a function value of zero
means ‘‘outside of the geometrical shape.’’ Using this corre-
spondence one can exploit powerful results from integral ge-
ometry like the Gauss-Bonnet theorem@12#. In the case of
soft cores the statistically relevant functions take on non-
trivial values different from zero and unity.

The main modification of the FMT we present here is a
generalization of the weight functions to handle soft cores
while keeping their short range. The emerging new weights
are built to

~i! deconvolve the Mayer function,
~ii ! yield the exact zero-dimensional single cavity limit.
~iii ! give a reasonable, albeit not exact, multi-cavity limit.

It turns out that the ‘‘thermodynamic ingredients,’’
namely, the free energy density depending on the weighted
densities remain unaffected and keep their hard body form.

Let us start by introducing a generic form of a DF. The
excess free energy is expressed as
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Fexc
„T,@r~r !#…5kBTE dx F„T,$na~T,x!%…, ~1!

whereT is the temperature, andkB is Boltzmann’s constant.
The integrand is a reduced free energy densityF depending
on T and on a set of weighted densities$na% indexed bya.
Each weighted density is given by a convolution of its
temperature-dependent weight functionwa with the density
profile

na~T,x!5E dr r~r !wa~T,x2r !. ~2!

To summarize, the DF has the following properties:

1. There is asetof weighted densities.
2. The free energy density is a function of the weighted

densities.
3. The weighted densities are obtained by convolutions of

the density profile with appropriate weight functions.
4. The weight functions are explicitly known, i.e., do not

implicitly depend on the density distribution.

The task is to give explicit expressions forF and$na% to
model the DF for a given pair potential. Let us discuss the
range of non-locality of the present functional by considering
the direct correlation function which can be obtained by
functional differentiation

c2~@r#,r1 ,r2!52~kBT!21
d2Fexc

dr~r1!dr~r2!
U

r5r0

, ~3!

wherer0 is the equilibrium density. In the framework of the
FMT, the differentiation of the generic functional results in

c2~@r#,r1 ,r2!5(
a,g

cagna* ng , ~4!

where cag5]2F/(]na]ng) are numerical coefficients not
depending on any spatial coordinate and the convolution of
two weights is defined as

na* ng5E d3x na~r12x!ng~r22x!. ~5!

The crucial point is thatc2 has the double range compared to
that of the weight functionswa . The direct correlation func-
tion is only known in the low-density limit c2→ f
5exp(2bV)21, asr→0, wheref is the Mayer function, and
b51/kBT. The requirement to fulfill this limit will be used
to find the explicit form of the weight functions.

The second requirement is to reproduce the exact free
energy in the zero-dimensional~0D! limit. The 0D limit is
defined through the density distributionr0d5hd(rW). Physi-
cally, it describes a small cavity that can hold only one single
particle. The 0D limit has proven to be a useful construct for
hard spheres@4,5,13#. In this case it can be realized by a
spherical cavity with diameters with hard walls. It has only
two states: Either it is empty, or it holds a single particle.
However, the idea is not restricted to hard bodies. We use it
to model a cavity for a soft particle. As we assume a diver-
gence to infinity of the soft potential under consideration, it

would cost infinite energy to insert a second particle. Hence,
the 0D limit for soft cores is the same as for hard bodies! It
was shown@13# that a functional that fulfills the 0D limit is
given by

F152n0 ln~12n3!, ~6!

if the weight functions have the property

w0~r !52~4pr 2!21
]

]r
w3~r !, ~7!

with boundary conditionsw3(0)51, andw3(`)50. The in-
dex a50,3 is related to the dimension of the weighted den-
sities, which is (length)a23. The emerging integral can be
solved and yields the exact 0d free energyFexc5h1(1
2h)ln(12h) @4,5#, no matter what the functional depen-
dence ofn3 on r is. The freedom can be used to tune the
weight functions to fit a prescribed interaction potential.

We assume that the set of weight functions is related to
the ‘‘generating’’ weight functionw3 through

w2~r !52
]w3~r !

]r
52w38~r !, ~8!

wv2~r !5w2~r ! r /r , ~9!

w1~r !5w2~r !/~4pr !, ~10!

wv1~r !5w1~r ! r /r , ~11!

w0~r !5w1~r !/r , ~12!

wherew2 , w1, and w0 are scalar quantities andwv1 ,wv2
are vectors. What remains is to find an explicit expression for
the generalized local packing fraction weightw3(r ). There-
fore, we consider the low-density limit of the true density
functional,

Fexc→2
kBT

2 E dr1 dr2 f ~ ur12r2u!r~r1!r~r2!,

~13!

and impose that we recover the Mayer-bond,f (r )5exp
@2bV(r)#21, by a sum of convolutions of weight functions

2
1

2
f ~r !5w0* w31w1* w22wv1* wv2 , ~14!

where the convolution product, denoted by* , also implies
scalar products between vectors. Inserting the hierarchical
relations yields

12exp@2bV~r !#5
2

4p S 2
w38~r !

r 2 * w3~r ! 1
w38~r !

r * w38~r !

2
w38~r !

r 2
r * r

w38~r !

r D , ~15!

which is an equation for the determination of the generating
weight w3, once a pair potentialV(r ) is specified. The de-
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pendence ofw3 on temperature has been suppressed in the
notation, and the prime denotes differentiation with respect
to the argumentr.

For the free energy density we take over the hard sphere
expressionF5F11F21F3, with the contributionsF1
52n0 ln(12n3), F25(n1n22nv1•nv2)/(12n3), F3

5n2
3@12(nv2 /n2)2#3/@24p(12n3)2#. As discussed above,

F1 yields the exact single-cavity limit. The additional terms
F2 andF3 correctly vanish in this limit. The two-cavity case
is not reproduced exactly, but a numerical evaluation shows
satisfactory agreement@14#.

We want to apply the theory to star polymer solutions that
are characterized by an ultra-soft repulsive interaction@15#.
This system has two parameters, the functionality or arm
number of the starsf and a length scales* , which are used
to build a dimensionless densityh* 5(p/6)s* 3N/V, where
N is the particle number inside a volumeV. The pair poten-
tial @16# consists of a logarithmic potential for small dis-
tances and an exponentially decaying Yukawa potential for
large distances. In order to keep the present analysis simple
we use a modified form for large distances,

b V~r !55
22q ln~r /R!1 lnS 2q

q D 0<r ,R

fq~r !1 lnS 2q
q D R<r ,2R

0 2R<r ,

~16!

where (q
2q) is the binomial coefficient. The crossover func-

tion between small and large distances is given by

fq~r !52 ln@~11j!2q2jq11Bq 2F1~1,12q;21q;2j!#,
~17!

where j5(r /R)21, Bq52G(112q)G21(q)G21(21q),
and 2F1 is the hypergeometric function. The parameters are
related to Ref.@16# via q5(5/36)f 3/2, and R/s* 5exp@(1
1Af /2)212(2q)21ln( q

2q)#. It is natural to define a dimen-
sionless densityh5(4p/3)R3N/V58h* (R/s* )3. The po-
tential V(r ) given by Eq. ~16! is shorter ranged than the
original one. It is slightly smoother as it isq times differen-
tiable atr 5R and one time differentiable atr 52R.

The specific form of the crossover functionfq(r ) allows
us to deconvolve the Mayer function@Eq. ~14!# and construct
the weight functions analytically. The solution is

w3~r !5H 12~r /R!q if 0>r>R

0 else.
~18!

In the limit q→` we recover hard spheres: The weight func-
tion approaches a step-function,w3(r )→Q(R2r ) and the
potential becomes hard core with range 2R.

The weighted densities, Eq.~2!, when evaluated for the
homogeneous fluid are constant in space,

na54prE
0

a

dr r 2wa~r !, ~19!

with a→`. In particular,n3 is proportional tor. The free
energy densityF, however, is only defined forn3,1, thus
implying an unphysical upper limit of densities. To circum-
vent this problem, we propose to reduce the upper limit of
integration in Eq.~19! to the Wigner-Seitz~WS! radius a
5Rh21/3, so that only the density field within a WS cell
contributes to the weighted density. As usuallyw3<1 holds,
it can be seen that the cutoff ensuresn3<1. When applied to
the hard sphere case no harm is done, as only unphysical
states are affected: Allh.1 are mapped ontoh51. The
validity of the procedure will be checked by comparison with
simulations.

To test the theory, we calculate pair distribution functions
g(r ) in the fluid phase. We choose the extremely soft case
q53, that corresponds to a~noninteger! arm number of
roughly 7.75. To perform a severe test, no use of the test-
particle limit is made, i.e., no minimizing of the functional
with an external field given by the pair potential itself is
done. Instead, we use the direct correlation function given by
the second functional derivative of the excess free energy
functional, Eq.~3!. The Ornstein-Zernike relation yields the
pair correlation functiong(r ). In Fig. 1 we show results for
a large range of densities,h50.05– 10, corresponding to
h* 50.007 97– 1.595. For comparison, Monte Carlo simula-
tion data are shown in Fig. 2. The reasonable agreement is,
however, achieved by an empirical modification. We rescale
heuristically the direct correlation function,l* c2, wherel is
roughly proportional toh21. The particular values are (h
given in parentheses! l51 ~0.05!, 0.7 ~0.5!, 0.2 ~1.0!, 0.05
~2.0!, 0.04 ~4.0!, and 0.02~10.0!. The main effect is a res-

FIG. 1. Pair correlation functionsg(r ) as a function of the
scaled distancer /R obtained from density-functional theory for a
solution of star polymers@Eq. ~16!#. The variation with densityh is
shown.

FIG. 2. Same as Fig. 1, but obtained from Monte Carlo com-
puter simulation.
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caling of the amplitude of the oscillations ing(r ). From a
strict point of view, we have introduced one fit parameter per
curve. We note, that this is only necessary for the extremely
soft caseq53. For q.12 andh50.5 good agreement is
found without rescaling~i.e., l51).

The results are fairly good. Wavelength and phase of the
oscillations are correct. The peculiar shrinking of the first
peak and growing of the second peak upon decreasing the
density is reproduced. For small distances, the theory yields
unphysical negative values ofg(r ) ~not shown in Fig. 1!.
The worst case isg(0)521.11 forh510. Apart from this,
we find a remarkable agreement between theory and simula-
tion.

In conclusion, we have proposed a systematic way to gen-
eralize the fundamental-measure density-functional theory
for hard bodies to soft interactions. This ‘‘soft FMT’’ is
based on the exactly solvable dimensional crossover to a set
of zero-dimensional cavities and on the virial expansion. As

a test case, we studied the ultrasoft logarithmic potential that
mimics the effective interaction between star polymers in
solution. Prominent features such as the anomalous pair cor-
relation function are captured qualitatively correct. An em-
pirical modification leads to good quantitative agreement
with computer simulation results. Concerning future work, it
is highly desirable to apply the soft FMT to the recently
found freezing transitions for star polymers@17# and to in-
homogeneous liquid situations. Furthermore, the perfor-
mance for other soft repulsive interactions like the Yukawa
or inverse-power potentials should be investigated. It would
also be highly interesting to test the current approach for
attractive interactions like the Lennard-Jones potential,
where preliminary investigations have shown that the nu-
merical deconvolution of the Mayer function is possible.

It is a pleasure to thank Hartmut Lo¨wen, Benito Groh, and
Christian von Ferber.
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Density functional for additive mixtures

Matthias Schmidt
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We present a density functional theory for mixtures of particles interacting with a radially symmetric pair
potential. The approach is suitable for systems with soft or hard interactions between like species. The cross
interactions between unlike species are restricted to obey an additivity constraint. The functional is a gener-
alization of the soft fundamental measure theory~SFMT! for one-component systems and reduces to Rosen-
feld’s functional in the case of hard sphere mixtures. It respects both, the zero-dimensional limit and the virial
expansion. The structure of the homogeneous fluid phase is an output. As an application, we calculate the pair
distributions of colloidal hard spheres mixed with star polymers and find good agreement with computer
simulation results.

PACS number~s!: 64.10.1h, 61.20.Gy, 61.25.Hq, 05.20.Jj

I. INTRODUCTION

One way of proceeding from simple to complex fluids is
by increasing the number of different components in a sys-
tem. Many new physical phenomena arise, like mixing and
demixing, depletion effects or freezing into complicated
crystalline structures. Hence it is fair to say that mixtures are
intriguing systems.

One theoretical tool for studying mixtures is density-
functional theory~DFT! @1#. In particular for hard body mix-
tures powerful approaches are known@2–5#. Recently, a den-
sity functional theory for soft interactions was proposed@6#.
This soft fundamental measure theory~SFMT! is based on
the dimensional crossover from zero to three dimensions,
and does not require input from the bulk liquid. Instead, the
correlation functions in the homogeneous fluid are an output
of the theory. SFMT was applied successfully to structure
and freezing of star polymer solutions@7#.

Here we demonstrate that the theory can be generalized to
mixtures in a straightforward way. The generalization keeps
the simplicity of the approach, as well as its desirable fea-
tures, namely an exact zero-dimensional limit, exact virial
expansion up to second order in density andpredictionof the
correlations and thermodynamics of the bulk liquid.

There is, however, an additivity constraint. This means
that only the pair interactions between like species can be
prescribed. The cross interactions between unlike species are
not at our disposal. Nevertheless, these interactions turn out
to have a physically reasonable form. For example, for mix-
tures of hard and soft spheres, a hard core is preserved. As an
application we calculate pair distribution functions for a mix-
ture of star polymers and colloids. When compared to simu-
lation results, we find nice agreement.

In Sec. II the SFMT density functional is described; we
give its definition Sec.~II A !, explain the additivity con-
straint Sec.~II B !, summarize the properties of the functional
Sec. ~II C!, and treat mixtures of hard spheres and soft
spheres Sec.~II D ! as one special case. As an application we
consider star polymers mixed with colloidal particles in Sec.
III. We define the theoretical model~Sec. III A!, set up the
density functional~Sec. III B!, and show results for the fluid

structure~Sec. III C!. We finish with concluding remarks in
Sec. IV.

II. DENSITY FUNCTIONAL THEORY

A. Definition

Consider a system withm components that interact with
pair potentialsV( i j )(r ), and possess density fieldsr ( i )(r ),
i , j 51, . . . ,m. The discrete picture of mixtures is adopted;
all consideration equally apply to polydisperse systems. The
excess free energy functional is expressed as

Fexc@$r
( i )~r !%#5kBTE d3x F„$na~x!%…. ~1!

The density profiles are convolved with weight functions;
summation over all species yields weighted densities as

na~x!5(
i 51

m E d3r r ( i )~r !wa
( i )~x2r !. ~2!

Within the set of weight functions, the following relations
hold:

w2
( i )~r !52

]

]r
w3

( i )~r !, ~3!

wv2
( i )~r !5w2

( i )~r !r /r , ~4!

w1
( i )~r !5w2

( i )~r !/~4pr !, ~5!

wv1
( i )~r !5w1

( i )~r !r /r , ~6!

w0
( i )~r !5w1

( i )~r !/r , ~7!

where wa
( i )(r ),a50,1,2,3 are scalar quantities and

wv1
( i )(r ),wv2

( i )(r ) are vectors. The weight functions are quanti-
ties with dimension of length scale to the power ofa23.

The weight functions for speciesi are determined so that
the Mayer bond f ( i i )(r )5exp„2Vii (r )…21 between par-
ticles of the same species is obtained. This intraspecies de-
convolution is
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2 1
2 f ( i i )~r !5w0

( i )* w3
( i )1w1

( i )* w2
( i )2wv1

( i )* wv2
( i ) , ~8!

where the convolution product, denoted by *, also implies
scalar products between vectors.

The free energy density isF5F11F21F3, with the
contributions

F152n0 ln~12n3!, ~9!

F25
n1n22nv1•nv2

12n3
, ~10!

F35
~n2!3~12~nv2 /n2!2!3

24p~12n3!2
. ~11!

We note that recently, more sophisticated versions ofF3
using tensorial weights have been successfully used@7,8#.

B. Cross interactions

Once the weight functionswa
( i ) are calculated by solving

the deconvolution equation~8!, the interactions between un-
like species are restricted to obey

2 f ( i j )~r !5w0
( i )* w3

( j )1w1
( i )* w2

( j )2wv1
( i )* wv2

( j )1w0
( j )* w3

( i )

1w1
( j )* w2

( i )2wv1
( j )* wv2

( i ) . ~12!

Loosely speaking, the cross interactions are a combination of
the intraspecies interactions. This behavior is also present in
the hard sphere FMT@2#, that is primarily a theory for addi-
tive mixtures of hard spheres.

C. Properties

We show that the functional is exact in the zero-
dimensional limit and gives the virial expansion up to second
order correctly.

The zero-dimensional limit for a mixture is defined by
density distributionsr ( i )(r )5h ( i )d(r ), whereh ( i ) is the av-
erage occupation number of speciesi. We assume that all
pair interactions diverge at the origin. Then the delta-spike
can be occupied by at most one single particle. The excess
free energy is F0d5(12h)ln(12h)1h, where h
5( i 51

m h ( i ) is the total number of particles. In the following
we show that the functional givesF0d exactly. We observe
that F2 and F3 vanish, becauseunv2u5n2, and unv1u5n1,
and the antisymmetry upon exchanging scalar and vectorial
densities.

We still have to evaluate the remainingF1 contribution

F@$h ( i )d~r !%#52E
0

`

dr 4pr 2 n0~r !ln@12n3~r !#,

~13!

na~r !5(
i 51

m

h ( i )wa
( i )~r !. ~14!

From the hierarchy of weight functions, Eqs.~3!–~7!, we
obtain the relation

w0
( i )~r !52~4pr 2!21]w3

( i )~r !/]r . ~15!

Integrating and using the boundary conditionsw3
( i )(0)51,

w3
( i )(`)50 yields the 0d excess free energyF0d .
The correct virial expansion can be checked by Taylor

expanding for low densitiesF→n0n31n1n22nv1•nv2, and
using the deconvolution equations~8! and ~12!.

We finally note that in the case of hard spheres, Rosen-
feld’s functional is recovered.

D. Hard and soft spheres

As an important case we consider the cross interaction
between a hard spherei with radiusR( i ) and a soft spherej
for which the functional is valid. Deconvolution of the step
function yields the well-known hard sphere weights@2# ~also
given in Sec. III B!

From Eq.~12! we obtain the cross-Mayer function with
the particularly simple form

2 f ( i j )5H 1 if r ,R( i )

w3
( j )~r 2R( i )! else.

~16!

We observe that the hard core with radiusR is preserved, and
that the interaction outside the core is given by a shifted
w3

( j )(r ) function.

III. STAR POLYMERS AND COLLOIDS

The star polymer system has attracted considerable recent
interest@9–16#. In this work we investigate a mixture of star
polymers and colloidal hard spheres.

A. The model

We considerNc colloids with radiiRc andNs star poly-
mers with radiiRs within a volumeV. The interaction poten-
tial between colloids is hard,

V(cc)~r !5H ` if r<2Rc

0 else.
~17!

The interaction between the star polymers is logarithmic

bV(ss)~r !55
22q ln~r /Rs!1 lnS 2q

q D 0<r ,Rs

fq~r !1 lnS 2q
q D Rs<r ,2Rs

0 2Rs<r ,
~18!

where q
2q is the binomial coefficient. The crossover function

between small and large distances is given byfq(r )5
2 ln@(11j)2q2jq11Bq2F1(1,12q;21q;2j)#, where j
5(r /Rs)21, Bq52G(112q)G21(q)G21(21q), and 2F1
is the hypergeometric function~see Ref.@7# for a discussion!.

The interaction between colloids and polymers is assumed
to have a hard core due to the excluded volume induced by a
colloid and an additional logarithmic repulsion
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V(cs)~r !55
` if r<Rc

2q lnS r 2Rc

Rs D if Rc,r<Rc1Rs

0 else.

~19!

This form is similar to the result from a microscopic analysis
of the interactions between star polymers and hard spheres
@17#.

The system is governed by the packing fractions of col-
loids, hc54pNc(Rc)3/(3V), and of polymers hs

54pNs(Rs)3/(3V), and the size ratioa5Rs/Rc.

B. The weights functions

The set of weight functions for the colloids is identical to
the pure hard sphere case and is given by

w3
(c)~r !5u~Rc2r !, ~20!

w2
(c)~r !5d~Rc2r !, ~21!

w1
(c)~r !5d~Rc2r !/~4pr !, ~22!

w0
(c)~r !5d~Rc2r !/~4pr 2!, ~23!

wv2
(c)~r !5d~Rc2r !r /r , ~24!

wv1
(c)~r !5d~Rc2r !r /~4pr 2!, ~25!

wherer 5ur u, andQ(r ) is the Heaviside step function,d(r )
denotes the Dirac delta function.

The weight functions for the star polymers are

w3
(s)~r !5@12~r /Rs!q#u~Rs2r !, ~26!

w2
(s)~r !5qrq21~Rs!2qu~Rs2r !, ~27!

w1
(s)~r !5qrq22~Rs!2q~4p!21u~Rs2r !, ~28!

w0
(s)~r !5qrq23~Rs!2q~4p!21u~Rs2r !, ~29!

wv2
(s)~r !5qrq21~Rs!2qu~Rs2r !r /r , ~30!

wv1
(s)~r !5qrq22~Rs!2q~4p!21u~Rs2r !r /r . ~31!

These are the same as for the one-component case consid-
ered in Refs.@6,7#.

C. Results

In order to calculate the partial pair correlation functions
we do not make use of the test-particle limit. Instead, the
partial direct correlation functions are calculated from the
density functional via ci j (r )52(kBT)21d2Fexc/
(dr ( i ) dr ( j )). Using the Ornstein–Zernike relation gives the
partial structure factors in reciprocal space@18# and a Fourier
transform yields the pair correlations. We adopt this method,
because no density profile equation is solved. This is a severe
test for the quality of the density functional. To compare the
results, we have carried out standard canonical Monte Carlo
computer simulations.

We investigate the partial pair distribution functions be-
tween pairs of colloidsgcc(r ), pairs of starsgss(r ) and be-
tween a colloid and a star polymer,gcs(r ) for the intermedi-
ate softnessq512, and for equal number densities of
colloids and stars, hencehca3/hs51. In Figs. 1, 2, and 3
results for the size ratiosa51,0.5,2 are given, respectively.
The general agreement is good. Phase and amplitude are cor-
rect. However, the DFT peaks are slightly to steep. The
worst case isgss(r ), a52, Fig. 3, Also small spurious val-
ues inside the core appear, especially for the cross correla-
tionsgcs(r ). Using the test-particle limit, one could get rid of
these values.

FIG. 1. Pair correlation functionsgcc(r ), gcs(r ), andgss(r ) for
a mixture of hard spheres and star polymers as a function of the
scaled distancer /(2Rs) at packing fractionshc50.25,hs50.25,
and size ratioa51. Full lines are DFT, dashed lines are simulation
results. The curves are shifted upwards one unit for reasons of
clarity.

FIG. 2. Same as Fig.1, but at densitieshc50.35, hs50.04375,
and size ratioa50.5, corresponding to small stars.
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IV. CONCLUSIONS

We have shown that the soft fundamental measure theory
can be formulated for multi-component mixtures. The prop-
erties of the theory are preserved in comparison to the one-

component case. In particular, the virial expansion and the
zero-dimensional limit for the mixture are exact.

The current theory can only be applied to a limited class
of systems, that we call additive. This constraint enforces the
cross interactions to be a combination of the interactions
between the like species. However, for mixtures of soft and
hard spheres the cross interaction was shown to be meaning-
ful, because a hard core is preserved.

As an application, we have investigated the fluid structure
of a mixture of colloidal hard spheres and star polymers.
When compared to simulation results, we find a remarkable
agreement.

It is intriguing that the fluid structure of a multicomponent
system can be understood on the basis of two simple ingre-
dients: First, particles cannot sit on top of each other. Sec-
ond, the Mayerf-bond governs the behavior at low densities.

As possible future applications we mention the investiga-
tion of depletion potentials that has attracted considerable
recent interest@19–22# in the context of hard sphere mix-
tures. The current functional offers the possibility to study
the effects of soft interactions essentially with the same the-
oretical tools as developed in Ref.@19#.
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We treat various common fluid models, like the inverse-power, Asakura-Oosawa, and Lennard-Jones po-
tentials, within the soft fundamental measure theory~SFMT!. We show that this recently proposed density-
functional approach is able to predict the pair correlations in the fluid phase reliably compared to computer
simulations. Explicit expressions for certain quantities of SFMT are given, namely, for the weight functions
and the fundamental measures. These technical tools permit practical calculations for a large class of inhomo-
geneous systems.

PACS number~s!: 64.10.1h, 61.20.Gy

I. INTRODUCTION

It is desirable that approximative density functionals@1#
be simple. Simple theories are comprehensible and useful.
Comprehensibility is desirable, because one can learn easily
about the physics of the system. A theory is useful, of
course, if it can be applied with small~or at least moderate!
effort to an actual problem. The goal of theorists is to con-
struct such simple theories, which despite their simplicity
give excellent~or at least reasonable! results.

Among the many ways to construct density-functional
theories~DFT’s! the fundamental measure theory~FMT! is
special, as it is able to predict the structure of the homoge-
neous bulk fluid state rather than needing it as an input.
Following Rosenfeld’s pioneering work for hard spheres@2#,
improved hard sphere functionals have been obtained@3–5#
that are capable of describing inhomogeneous situations like,
e.g., a solid@6,7,5# or depletion potentials in mixtures@8,9#
excellently. For quite some time the FMT for hard sphere
mixtures played a monolithic role, as its structure was~and
still is! quite different from other DFTs. Heavily relying on
insights in the analytic Percus-Yevick solution, scaled-
particle theory, and integral geometry, it seemed, not only at
first glance, that FMT works only for the special system of
hard spheres. However, there have been numerous attempts
to broaden the range of models covered by the theory, like
the proposal of an extension to general hard convex bodies
@10#. The FMT has been generalized to the more tractable
system of hard parallel cubes@11–13#.

It has turned out that the correct dimensional crossover
@3,4# from three dimensions~3D! to lower ones, is an essen-
tial test for a DFT. One may even start from 0D situations of
extreme confinement and construct 3D functionals systemati-
cally @14,5# using the idea of ‘‘functional interpolation’’@5#
between dimensions.

Surprisingly, the FMT machinery generates the thermody-
namics, i.e., free energy, from the very basic situation of a
cavity that has the size of one particle. For hard spheres the
occupation number is zero or 1, and one can calculate the
excess free energy exactly@3,4#. Applying this method to
penetrable spheres, i.e., particles that may overlap at a finite
energy cost, one obtains a reasonable approximation to the
exact density functional of this system@15#. Concerning mix-
tures, recently a FMT for a nonadditive model colloid-

polymer mixture was found@16#. However, in all these sys-
tems, the interactions are still step functions. This is a great
simplification, as integral geometry can be fully exploited,
essentially unchanged to the hard sphere case.

Among the attempts to treat soft interactions@17–19#, the
so-called soft fundamental measure theory~SFMT! @18,19#
is also built on well-defined limiting cases, where the behav-
ior of the exact free energy functional is known. These cases
are the virial expansion and the 0D limit. However, two or
three cavities, which are exact in hard sphere FMT, are not
exact in SFMT. Nevertheless the application to the effective
logarithmic interaction in star polymer solutions yields ex-
cellent results for the structure and the phase diagram@20#.
Concerning its ease of use, however, the SFMT has the
drawback that its weight functions are related to the Mayer
function in a nontrivial way. This relation, the so-called de-
convolution equation, is an integro-differential equation of
second order in the unknown function. As will be discussed
below, straightforward attempts to solve the deconvolution
numerically are cumbersome; one encounters an inverse
problem.

The aim of the present work is to give an explicit solution
to the deconvolution equation. The availability of this solu-
tion allows the application of SFMT to a large class of sta-
tistical systems. Here we calculate the pair distribution func-
tions in the bulk liquid for a variety of common models and
find good agreement with simulation results.

In Sec. II the SFMT density functional is presented. The
solution of the deconvolution equation is given in Sec. III.
Examples for fluid structure are considered in Sec. V. Re-
marks are summarized in Sec. VI.

II. A DENSITY FUNCTIONAL

Within SFMT the excess free energy is approximated as

Fexc
„T,@r~r !#…5kBTE dxF~$na~T,x!%!, ~1!

whereT is the temperature, andkB is Boltzmann’s constant.
The weighted densitiesna are obtained by convolutions of
the weight functions with the one-body density profiler(r ),

PHYSICAL REVIEW E OCTOBER 2000VOLUME 62, NUMBER 4

PRE 621063-651X/2000/62~4!/4976~6!/$15.00 4976 ©2000 The American Physical Society

406 Soft interaction potentials



na~T,x!5E drr~r !wa~T,x2r !, ~2!

wherea labels the type of the weight function. In the fol-
lowing we assume that the pair potential diverges at the ori-
gin. Then the free energy density is given byF5F11F2
1F3, with the contributions

F152n0 ln~12n3!, ~3!

F25~n1n22nv1•nv2!/~12n3!, ~4!

F35

1
3 n2

32n2nv2•nv21
3
2 ~nv2n̂m2nv223detn̂m2!

8p~12n3!2
, ~5!

where the caret denotes a second-rank tensor, and det is the
determinant. The introduction of tensorial weighted densi-
ties, first done for hard spheres@5#, leads to superior results
in inhomogeneous situations@20# compared to the vectorial
form @3,4,18#. The bulk fluid free energy and direct correla-
tion functionc(r ) are unaffected.

III. THE WEIGHT FUNCTIONS

The weight functions are given by the hierarchy

w2~r !52
]w3~r !

]r
, ~6!

wv2~r !5w2~r !r /r , ~7!

wm2~r !5w2~r !~rr /r 221̂/3!, ~8!

w1~r !5w2~r !/~4pr !, ~9!

wv1~r !5w1~r !r /r , ~10!

w0~r !5w1~r !/r , ~11!

wherew2 ,w1 ,w0 are scalar quantities;wv1 ,wv2 are vectors,
and ŵm2 is a traceless matrix~whererr is a dyadic product
and 1̂ is the identity matrix!. Dimensional analysis shows
that the weight functionswa carry the dimension of length to
the power ofa2d, whered53 is the dimensionality of the
physical space. The hierarchy of weights~6!–~11! is built to
recover the FMT weight functions@2,5# in the hard sphere
limit. See Fig. 1 for a sketch; hard spheres are represented by
sharp objects, soft spheres are washed out.

The weight functions are related to the Mayer functionf
5exp@2V(r)/kBT#21, whereV(r ) is the pair potential, by

2 1
2 f ~r !5w0* w31w1* w22wv1* wv2 , ~12!

where the three-dimensional convolution, denoted by *, also
implies scalar products between vectors. More explicitly, us-
ing Eqs.~6!–~11!, this can be written~in r space! as

12exp@2bV~r !#5
1

2p S 2
w38~r !

r 2 * w3~r !1
w38~r !

r * w38~r !

2
w38~r !

r 2
r* r

w38~r !

r D , ~13!

where the prime denotes differentiation with respect to the
argumentr, andb51/kBT. This deconvolution equationhas
to be solved for the unknown functionw3(r ) once a pair
potential V(r ) is prescribed. The boundary conditions are
w3(0)51 andw3(`)50 ~see Appendix D!. However, a di-
rect numerical solution turns out to be impractical. Any un-
certainties inw3 become completely washed out under the
convolution operation. Hence, iterative solution algorithms
are unstable.

However, we can construct an explicit solution. It turns
out that the Mayer function and the weight functionw2 have
the simple relation

] f ~r !

]r
5E

2`

`

dr8w2~r 8!w2~r 2r 8!, ~14!

where we formally setw2(r ,0)50 to simplify the limits of
integration. See Appendix A for the derivation of Eq.~14!. In
reciprocal space, we can write

w̃2~k!56Aik f̃ ~k!, ~15!

where the tilde denotes a one-dimensional Fourier transform,
f̃ (k)5*2`

` dr f (r )exp(ikr). Care has to be taken with the sign
in Eq. ~15!. It may change depending on the value ofk. As a
physically meaningful prescription, we chose a continuous
and differentiable function ink space.

A simple numerical algorithm works as follows. We start
from k50 and choose one of the signs, say the positive one.
We proceed in small stepsDk. For each step, we check
whetherik f̃ (k) attempts to cross the branch cut. If it does,
we change the sign. Of course, more sophisticated root-
finding algorithms can be used.

IV. FLUID FREE ENERGY

The free energy of the homogeneous fluid phase at a
given densityr and temperatureT is

bFexc

V
52n0 ln~12n3!1

n1n2

12n3
1

n2
3

24p~12n3!2
~16!

The weighted densities becomena5jar, where the funda-
mental measuresja are defined as

FIG. 1. Visualization of the weight functions describing single
particles.~a! Hard spheres,~b! soft spheres.
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ja54pE
0

`

drr 2wa~r !. ~17!

The dimension of the fundamental measureja is the length
scale to the power ofa. For hard spheres, they are the vol-
ume j354pR3/3, surface areaj254pR2, integral mean
curvaturej15R, and Euler characteristicj051. Using the
soft weight functions one generalizes these quantities. The
Euler characteristic is an integer, that is, roughly speaking,
the number of connected portions minus the number of holes
of a geometric shape. We find that the Euler characteristic is
j051, for any pair potential~see Appendixes B and D!. This
is consistent with the intuitive picture of soft spheres.

The ja for a51,2,3, however, need not be calculated
directly from the weight functions. There is an easier way, as
there are straightforward relations to moments of the Mayer
function. We define

ma[E
0

`

drr a21$12exp@2bV~r !#% ~18!

as dimensional quantities. The indexa gives the power of
the length scale. Note thatm1 is the Barker-Henderson ef-
fective diameter@21#. Then the fundamental measures are
related to the moments of the Mayer function via

j051, ~19!

j15m1/2, ~20!

j254p~m22m1
2/4!, ~21!

j352p~m32m2m11m1
3/4!. ~22!

This can be seen by a straightforward calculation~given in
Appendix C!.

V. APPLICATIONS

To test the theory we calculate pair distribution functions
g(r ) for various fluid models. To this end we take the direct
correlation functionc(r ) given as a second functional de-
rivative of the excess free energy, and use the Ornstein-
Zernike relation in Fourier space to obtain the structure fac-
tor S(k). A Fourier transform yieldsg(r ).

This procedure does not imply solving any equation nu-
merically, except for the deconvolution Eq.~14!. In particu-
lar, no density profile is calculated using the test-particle
limit. Hence this is a severe test for the quality of the func-
tional.

The results will be compared to simulations. We have
carried out canonical Monte Carlo~MC! computer simula-
tions with 512 particles and 105 MC moves per particle to
collect data forg(r ). In all examples we have considered
two reduced densitiesrs350.1,0.5, wheres is the length
scale appearing in the corresponding pair potential.

A. Error function model

We first consider a model potential that can be decon-
volved analytically. It is a short-ranged potential with a steep
repulsion given by the Mayer bond

f ~r !52
1

2 F12erfS r 2s

a D G , ~23!

where we use the convention erf(z)5(2/Ap)*0
zdt exp(2t2).

We will assume that the scaled widtha/s is small, so that
we can approximatef (r 50)'21, as erf(r→2`)521
holds. As the Mayer bond equals an error function, we call
this the erf model.

The derivative in real space isf 8(r )5exp@2(r
2s)2/a2#/(aAp). Its Fourier transform is also a Gaussian.
Taking the square root, Eq.~15!, Fourier transforming back,
and integrating yields

w3~r !5
1

2 F12erfS r 2~s/2!

a/A2
D G . ~24!

As expected, the length scale has changed froms to s/2.
This means going from a description in terms of particle
diameters to one in terms of particle radii. The shape of the
two functions, however, is different. The width decreases
only from a to a/A2. See Fig. 2 for a plot of the weight
functions. In Fig. 3 results for the pair correlations are plot-
ted for a/s50.1. We find good agreement with the simula-
tion result. The core condition, however, is not fulfilled ex-
actly; small negative values forg(r ) are found for small
distances. One could get rid of those using the test-particle
limit.

B. Inverse-power potentials

We write the pair potential for ‘‘soft spheres’’@22# as

V~r !5kBT~s/r !p. ~25!

The moments of the Mayer function, Eq.~18!, can be ob-
tained analytically as

ma5
sa

a
GS 12

a

p D . ~26!

FIG. 2. Family of weight functionswa(r ) and the Mayer func-
tion 2 f (r ) for the erf model witha/s50.1 as a function of the
scaled distancer /s.
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Using the relations between thema and the fundamental
measuresja , Eqs.~19! and ~20!–~22!, we get an analytical
expression for the fluid free energy~16!, similar, but not
identical to the Barker-Henderson construction.

For small powers,p<3, the fundamental measures di-
verge. Hence the theory cannot be applied as is. This reason-
ing is valid for any potential that has an inverse-powertail,
i.e., decays asr 2p for r→`. We will stay safely away from
this problem and consider the exponentp512. In Fig. 4 the
pair correlationsg(r ) are shown. The general agreement
with MC data is good. For the moderate densityrs350.5
the DFT result is shifted slightly to larger distances.

C. Asakura-Oosawa potential

The Asakura-Oosawa potential@23# is a prototype for
depletion interactions. Considerable recent work is devoted
to it; see, e.g., Refs.@24–26,16#. We write it as

V~r !5H `, r ,s

kBTzw~r !, s,r ,~11q!s

0, ~11q!s,`,

~27!

w~r !52S 11q

q D 3S 12
3r /s

2~11q!
1

~r /s!3

2~11q!3D , ~28!

where the attraction is ruled by the~reduced! rangeq and the
~reduced! strengthz.

We show results for the state pointq50.15,z50.05 in
Fig. 5. The pair distributionsg(r ) are remarkably good. The
strong peak at contact as well as the second one are captured
correctly. The core condition, however, is violated. A cusp
nearr 50 appears, whereg(r ) has unphysical values that are
forbidden by the hard core.

We emphasize that the deconvolution can be done for
attractive potentials. The inset in Fig. 5 shows a comparison
of f (r ) and the weight functionw3(r ). Apart from the
halved length scale, both look similar, butw3(r ) has a shal-
lower negative well.

D. Lennard-Jones potential

The Lennard-Jones pair potential@22# is

V~r !5V0@~s/r !122~s/r !6#. ~29!

Again the deconvolution is possible for this attractive poten-
tial. The pair correlations shown in Fig. 6 are slightly worse
than in the above examples. Forrs350.5 the height of the
first peak is underestimated. The core is not reproduced, but
has positive values.

The dotted line is the result forrs350.5 using a cutoff in
the integration of the fundamental measures, Eq.~17!. The
upper limit of integration is reduced from infinity to the
Wigner-Seitz radiusa5(4pr/3)21/3. This procedure im-
proves the result, but is somewhat heuristic and requires a
better theoretical foundation.

FIG. 3. Pair correlation functiong(r ) obtained from density-
functional theory~solid lines! compared to simulations~dashed! for
the erf model witha/s50.1, rs350.1,0.5. The negative Mayer
function 2 f (r ) and the weight functionw3(r ) are shown in the
inset.

FIG. 4. Same as Fig. 3, but for the inverse-power potential with
exponentp512.

FIG. 5. Same as Fig. 3, but for the Asakura-Oosawa potential
for q50.15,z50.05.
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VI. CONCLUSIONS

We have shown that soft fundamental measure theory is
capable of predicting the fluid structure for repulsive as well
as attractive interaction potentials. We have tested the pair
correlations from the theory against computer simulation re-
sults at moderate density, moderate softness, and moderate
attraction. We find good agreement, except for small artifacts
inside the core.

We emphasize that the current approach is expected to
work best for potentials that are still dominated by packing
effects, i.e., are sufficiently short ranged. True long-ranged
potentials like the Coulomb or inverse-power potential with
small exponents cannot be tackled. Also, a possible attrac-
tion needs to be sufficiently weak and short ranged, as
present in the example of the Asakura-Oosawa potential
above, to be described correctly.

The utility of SFMT depends crucially on the accessibility
of the functional form of the weight functions. In this work
we give an explicit solution to the deconvolution equation
that relates the Mayer bond to the weight functions. The
solution requires only one-dimensional Fourier transforms
and the handling of a root-finding problem in reciprocal
space. Numerically, both operations are simple.
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APPENDIX A: DECONVOLUTION OF THE MAYER
BOND

From the relation between the weights, Eq.~6!, we obtain

w3~r !5E
r

`

dr8w2~r 8!, ~A1!

which can be turned into a convolution

w3~r !5E
0

`

dr8w2~r 8!Q~r 82r !. ~A2!

Applying the hierarchy of weights Eqs.~6!–~11! to Eq.~A2!
yields the relations

wa~r !5E
0

`

dr8w2~r 8!ha,r 8~r !, ~A3!

where theha,r 8(r ) equal the hard sphere weight functions
with radius r 8 and are given byh3,r 8(r )5Q(r 82r ),
h2,r 8(r )5d(r 82r ),h1,r 8(r )5d(r 82r )/(4pr ), h0,r 8(r )
5d(r 82r )/(4pr 2), hv2,r8(r )5d(r 82r )r /r , hv1,r8(r )
5d(r 82r )r /(4pr 2).

Next we insert Eq.~A3! into the deconvolution equation
~12! to obtain

2
1

2
f ~r !5E

0

`

dr8w2~r 8!E
0

`

dr9w2~r 9!K~r ,r 8,r 9!,

~A4!

K~r ,r 8,r 9!5h3,r 8~r !* h0,r 9~r !1h2,r 8~r !* h1,r 9~r !

2hv2,r8~r !* hv1,r9~r !. ~A5!

We observe that the convolution kernel, Eq.~A5!, is the
well-known deconvolution of the hard sphere Mayer bond
@2#,

K~r ,r 8,r 9!5
1

2
Q~r 81r 92r !. ~A6!

Inserting this into Eq.~A4! and differentiating gives

f 8~r !5E
0

`

dr8w2~r 8!E
0

`

dr9w2~r 9!d~r 81r 92r !,

~A7!

from which we obtain Eq.~14! by a straightforward integra-
tion over r 9.

APPENDIX B: FUNDAMENTAL MEASURES AND THE
VOLUME WEIGHT

Integrating Eq.~17! by parts yields the useful relations

j354pE
0

`

dr r 2w3~r !, ~B1!

j258pE
0

`

dr rw3~r !, ~B2!

j15E
0

`

dr w3~r !, ~B3!

j05w3~0!2w3~`!51. ~B4!

See Appendix D for the justification of the last equality sign.

FIG. 6. Same as Fig. 3, but for the Lennard-Jones potential at
V0 /kBT50.5.

4980 PRE 62MATTHIAS SCHMIDT

410 Soft interaction potentials



APPENDIX C: FUNDAMENTAL MEASURES AND THE
MAYER FUNCTION

Integrating the definition of the moments of the Mayer
function, Eq.~18!, by parts yields

ma5a21E
0

`

dr r a f 8~r !, ~C1!

where the boundary terms vanish, as we assumef (0)521,
f (`)50. Expressing the derivative of the Mayer bond
through the convolution of weights~14! gives

ma5a21E
0

`

dr r aE
0

`

dr8w2~r 8!w2~r 2r 8!. ~C2!

Changing integration variables,r 95r 2r 8, gives

ama5E
0

`

dr8E
0

`

dr9~r 81r 9!aw2~r 8!w2~r 9! ~C3!

5(
i 50

a S a
i D E

0

`

dr8~r 8! iw2~r 8!E
0

`

dr9~r 9!a2 iw2~r 9!.

~C4!

Explicitly treating the casesa51,2,3 yields Eqs.~20!, ~21!,
and ~22!, respectively.

APPENDIX D: BOUNDARY CONDITIONS OF THE
VOLUME WEIGHT

The requirement that the DFT fulfils the 0D limit yields
boundary conditions for the volume weight functionw3.
Consider a 0D density distributionr(r )5hd(r ). The
weighted densities arena(r )5hwa(r ). Symmetry between
the weight functions leads toF25F350. The remaining
term F1 gives

bFexc@hd~r !#5E
0

`

drhw38~r !ln@12hw3~r !#, ~D1!

where we have usedw0(r )52(4pr 2)21]w3(r )/]r @see
Eqs. ~6!–~11!#. We change integration variables tou5hw3
and obtain

bFexc@hd~r !#5E
u0

u`
du ln~12u!, ~D2!

where the limits areu05hw3(0) andu`5hw3(`). If we
assume that the boundary conditions arew3(0)51 and
w3(`)50, then the integral gives the exact 0D excess free
energy@3,4,18#, which isbF 0D5h1(12h)ln(12h).
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We use the soft fundamental measure theory~SFMT! to investigate a system of classical particles
interacting with the pair potential of star polymers in solution. To that end we calculate liquid and
solid structural properties, as well as freezing, solid-to-solid, and remelting phase transitions. Even
subtle physical effects, like deviations from Gaussian crystal peaks and an anomalous peak
broadening upon increasing density as well as a reasonable vacancy concentration are captured
correctly. Good overall quantitative agreement with simulation data is found, however, with a
tendency to overestimate the structural correlations. Furthermore, we demonstrate that all recent
developments of its hard core counterpart can be incorporated systematically into SFMT. ©2001
American Institute of Physics.@DOI: 10.1063/1.1349092#

I. INTRODUCTION

The understanding of classical many-body systems has
received a boost by the development of density functional
theory~DFT!.1 The density functional of a given system is an
extremely powerful object, from which a complete under-
standing of an equilibrium system can be gained. The ther-
modynamics and correlation functions up to an arbitrary or-
der are accessible in principle. Moreover, this is not only true
for the bulk but also for situations where an arbitrary influ-
ence that can be modeled by an external potential energy, is
acting on the system. Apart from externally caused spatial
inhomogeneities, DFT also accounts for self-sustained
density-waves that are present in a crystal. Thus, it is able to
describe the liquid and solid phases on an equal footing, and
hence gives a physical explanation of the existence of the
freezing phase transition.

As the free energy density functional~DF! is such a
powerful object, it may become obvious that it is unknown
for most realistic systems. To construct an approximation to
the exact DF, the common strategy is to require that the
approximative DF yields the correct behavior in situations
where one can solve the system, at least approximatively.
The more conventional approach uses the homogeneous liq-
uid phase as this starting point, and requires that the approxi-
mative DF reproduces known results from liquid state
theory, like the equation of state and correlation functions.
These quantities can be considered asinput to the theory.

A newer approach utilizes situations of reduced spatial
dimensionality as limiting cases that are captured correctly.
There one has the advantage that the system can be solved
exactly in dimensions as low as one or even zero, so no
approximations enter at that stage. The Rosenfeld hard-

sphere functional2 can be derived in this way,3 and improved
versions of it can be systematically obtained,4,5 as well as
functionals for parallel hard cubes.6,7 The approximation one
has to do is to construct a ‘‘functional interpolation’’5 be-
tween spatial dimensions. The fundamental measure func-
tionals yield the Percus–Yevick direct correlation function
and equation of state for the bulk hard sphere liquid, give
excellent results for the coexistence densities and describe
the crystal structure up to close-packing excellently,8 as well
as the vanishingly small vacancy concentration.9 We note
that recently a similar approach was used to find a DFT for
adhesive hard spheres.10

The idea that a three-dimensional functional can be con-
structed by imposing its correct dimensional crossover to
lower dimensions is not limited to hard interactions. It can be
applied to penetrable spheres,11,12 the Asakura–Oosawa
colloid-ideal polymer mixture,13 and has been exploited to
derive a DFT for arbitrary soft pair interactions14,15 and ad-
ditive mixtures.16 This so-called soft fundamental measure
theory~SFMT! was demonstrated to predict the properties of
the homogeneous liquid phase. The fluid equation of state
and pair correlation function are anoutputof the theory.

In this work we apply the SFMT to a system of star
polymers in a good solvent, which has attracted a lot of
recent interest.17–22,24,25 The logarithmic pair interaction17

present in this system leads to an anomalous liquid
structure18 and to a rich phase diagram19,20with various solid
phases and reentrant melting upon increasing density. Pair21

and triplet22 interactions have been investigated. Besides
computer simulations, liquid integral equations17,18 and
Einstein-crystal perturbation theory19,20have been employed.
It is of great interest to investigate the system from the uni-
fying viewpoint that DFT provides. In addition, because of
the richness of physical phenomena, star polymers provide a
severe test to any DFT.

a!Current address: Fachbereich Physik, Bergische Universita¨t Wuppertal,
D-42097 Wuppertal, Germany.
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Our results show that the SFMT stands this test. In par-
ticular, the predicted bulk pair correlations are in good agree-
ment with simulations over the whole range from hard-
sphere-like to ultrasoft behavior. The DFT yields
thermodynamically stable face-centered cubic~fcc! and
body-centered cubic~bcc! crystals and reentrant melting. We
find that the lattice peaks have broader wings than Gauss-
ians. A peculiar decreasing of the Lindemann parameter
upon increasing the density is captured correctly.

In Sec. II the SFMT functional is described. We also
give its refinements according to the latest developments in
FMT for hard spheres, and discuss briefly its properties. Sec-
tion III defines the theoretical model for star polymer solu-
tions and gives explicit expressions for the quantities in-
volved in SFMT. In Sec. IV we present results for the liquid
and solid structure as well as the phase diagram. The present
approach is discussed in the concluding Sec. V.

II. THE DENSITY FUNCTIONAL

A. Definition

The SFMT is a weighted density approximation. It em-
ploys a set of weight functions which are independent of the
density profile. The free energy density is a function of the
weighted densities and is analytically given.

The excess free energy is expressed as

Fexc~T,@r~r !# !5kBTE dxF~$na~T,x!%!, ~1!

whereT is the temperature, andkB is Boltzmann’s constant.
The integrand is a reduced free energy densityF depending
on a set of weighted densities$na% indexed bya. Each
weighted density is given by a convolution of its
temperature-dependent weight functionwa with the density
profile,

na~T,x!5E drr~r !wa~T,x2r !. ~2!

Within the set of weight functions there is a hierarchy,

w2~r !52
]w3~r !

]r
, ~3!

wv2~r !5w2~r !r /r , ~4!

ŵt2~r !5wv2~r !r /r , ~5!

w1~r !5w2~r !/~4pr !, ~6!

wv1~r !5w1~r !r /r , ~7!

w0~r !5w1~r !/r , ~8!

wherew2 , w1 , w0 are scalar quantities,wv1 , wv2 are vec-
tors, andŵt2 is a second rank tensor given by a dyadic prod-
uct of a vector density and a unit spatial vector. The intro-
duction of the tensorial weightŵt2 is justified below. The
‘‘generating’’ weight functionw3 is determined so that a
deconvolution of the Mayer bondf (r )5exp@2bV(r)#21,
whereb51/kBT, is generated,

2 1
2 f ~r !5w0* w31w1* w22wv1* wv2 , ~9!

where the convolution product, denoted by* , also implies
scalar products between vectors.

The free energy density is given byF5F11F21F3 ,
with the contributions

F152n0 ln~12n3!, ~10!

F25
n1n22nv1•nv2

12n3
. ~11!

The third term exists in various refined forms,

F3
FMT15

1

24p

n2
3~12~nv2 /n2!2!3

~12n3!2 , ~12!

F3
FMT25

9

8p

detn̂t2

~12n3!2 , ~13!

F3
FMT35

nv2•n̂t2•nv22n2nv2•nv22tr~ n̂t2
3 !1n2 tr~ n̂t2

2 !

~16p/3!~12n3!2 ,

~14!

where tr denotes the trace, and det is the determinant of a
second-rank tensor.

FMT1 ~Ref. 3! is the form that first gave a freezing
transition for hard spheres and was used in the proposal of
SFMT14 FMT2 ~Ref. 8, 4! produces a far better description
of the hard sphere solid, but gives less accurate direct corre-
lations for the liquid. FMT3~Ref. 5! is the latest improve-
ment combining the power of both ancestors. Each of these
forms is taken over from the corresponding hard sphere func-
tional. Our modification is the replacement of the hard
sphere weight functions with those for the soft potential.
This requires the introduction of a tensorial soft weight, done
in Eq. ~5!. The form of ŵt2 is unique in the current frame-
work. This can be seen as follows. The numerator ofF3

FMT2

and F3
FMT3 is of third order in weighted densities. Hence a

single weighted density has to have the dimension of inverse
length to give an overall inverse volume, which is the dimen-
sion of the free energy density. Hence the tensorial weight
carries the indext2. The simplest way to construct such a
weight function, so that the hard sphere case is respected, is
by multiplying wv2 by a spatial unit vector, and Eq.~5! is
obtained.

B. Properties

The density functional defined above is exact in two ex-
treme limiting cases, the zero-dimensional~0D! and the low-
density limit. The 0D limit is a an extremely confined situa-
tion, represented byr(r )5hd(r ). We note that as the excess
free energy functional does not depend on the external po-
tentialVext, there is no need to specify aVext that causes the
0D distribution. Nevertheless it might be useful to think of a
small cavity that immobilizes a particle. There can be at most
one particle, because the pair interaction diverges at the ori-
gin. The free energy can be calculated exactly.3 The SFMT
reproduces this solution.14

In the low-density limit, the functional becomes exact up
to second order in the virial expansion. The reason is that the
weight functions restore the Mayer function upon convolu-
tion. Details of the calculation can be found in Ref. 14.
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III. STAR POLYMERS

Star polymers are macromolecular entities consisting of
a functional center to whichf polymeric arms are attached.
The arm-number or functionalityf is an integer ranging from
2 to values as high as 256. When soluted in a good solvent,
star polymers can be regarded as colloidal particles on a
mesoscopic length scale, that is much larger than the micro-
scopic scale of individual monomers building up the arms.
The colloidal picture involves an effective pair21 or even
triplet22 interaction between the stars, which arises from en-
tropic effects due to reduction of the number of accessible
states if the stars are very close to each other. The resulting
interaction is repulsive with a logarithmic law. For large dis-
tances it decays faster and a hybrid between logarithmic and
a Yukawa form was proposed17 and validated by
simulations.21 The arm-number governs the softness ranging
from ultra-soft for smallf to practically hard spheres for
large f.

A. The potential

As a model interaction between star polymers we use the
modified potential of Ref. 14 given by

bV~r !55
22q ln~r /R!1 lnS 2q

q D 0<r ,R

fq~r !1 lnS 2q
q D R<r ,2R

0 2R<r

, ~15!

where (q
2q) is the binomial coefficient. The crossover func-

tion between small and large distances is given by

fq~r !52 ln@~11j!2q2jq11Bq 2

3F1~1,12q;21q;2j!#, ~16!

wherej5(r /R)21, Bq52G(112q)G21(q)G21(21q), G
is the Euler gamma function, and2F1 is the hypergeometric
function. For integerq the crossover function can be simpli-
fied to a polynomial,fq(r )52 ln@(11j)2q2(j50

q (j
2q)jq#. The

parametersq and R are related to the arm-numberf and
length scale s of the log-Yukawa potential17 via q
5(5/36)f 3/2, and R/s5exp@(11Af /2)212(2q)21 ln(q

2q)#.
We define a dimensionless densityr* 5(2R)3N/V. The re-
lation h* 5(p/6)(2R/s)23r* holds, whereh* is the den-
sity of Ref. 17.

The log-hypergeometric form~15! for the potential is not
chosen on physical grounds. It only simplifies the actual cal-
culations, because the weight functions can be obtained ana-
lytically. This makes the numerical work easier, as no inac-
curacies enter at that stage. We plot both interactions in Fig.
1. The forceF52dV/dr as well as the potential itself are
shown for both functional forms and are compared to the
simulation data by Jusufiet al.21,26 Both functions are math-
ematically identical forr /R,1. On the scale of the plot,
however, both forces coincide for larger distances up to
r /R'1.5, where the cusp in the log-Yukawa force appears.
The cusp is absent in the present case of the hypergeometric
crossover. However, it falls off too quickly for larger dis-
tances and even vanishes forr /R.2. There the simulations

indicate a finite force that is well described by the log-
Yukawa potential. Nevertheless, we conclude that the gross
features are the same for both models and the use of the
log-hypergeometric potential is justified for our investiga-
tions.

B. Setting up the density functional

The weight functions for star polymers are obtained by
solution of the deconvolution Eq.~9!, and are explicitly
given by

w3~r !5u~R2r !@12~r /R!q#, ~17!

w2~r !5u~R2r !qrq21/Rq, ~18!

wv2~r !5u~R2r !@qrq21/Rq# r̂ , ~19!

ŵt2~r !5u~R2r !@qrq21/Rq# r̂ r̂ , ~20!

w1~r !5u~R2r !qrq22/~4pRq!, ~21!

wv1~r !5u~R2r !@qrq22/~4pRq!# r̂ , ~22!

w0~r !5u~R2r !qrq23/~4pRq!, ~23!

where r̂5r /r is a unit vector, andu is the Heaviside step
function. The weight functions do not depend on tempera-
ture, because the pair interaction, Eq.~15!, is of entropic
origin, henceV(r )/kBT is constant with respect to tempera-
ture. As a quasithermodynamic quantity the softness param-
eter q tunes the shape of the interaction and of the weight
functions.

C. Computer simulation

To provide data for comparison with the DFT results, we
have carried out Monte Carlo~MC! computer simulations of
the log-hypergeometric pair potential, Eq.~15!. Canonical
simulations with 108–864 particles and 105– 106 MC moves
per particle were performed. We collect data for the pair
correlation function in the fluid state and crystal density dis-

FIG. 1. Comparison of two functional forms for the star polymer pair inter-
actions. The main plot shows the scaled forceFR/(kBT), the inset indicates
the scaled potentialV/(kBT) itself. Both are plotted as a function of the
scaled distancer /R. The solid lines represent the log-Yukawa potential by
Likos et al. ~Ref. 17!, the dotted lines indicate where the log-
hypergeometric potential used in this work differs. The symbols are the
computer simulation results by Jusufiet al. ~Ref. 21!, Fig. 3~b! therein~Ref.
26!. From top to bottom the arm number changes asf 550, 30, 18, corre-
sponding toq549.1, 22.8, 10.6.
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tributions. For the latter the usual subtraction of the center-
of-mass movement was done. The actual data presented are
from a system with 256 particles. We checked that the finite
size dependence is negligible at one state point,q5100,
r* 5A2.

IV. RESULTS

A. Liquid structure

The SFMT has the ability topredict the properties of the
homogeneous liquid. The thermodynamics and correlation
functions can be derived from the functional and are not put
in by hand, say from liquid state theory. In the following, we
calculate the bulk liquid free energy and pair distribution
functions. The latter are compared to simulations.

For a liquid state with homogeneous densityr(r )5r,
the weighted densities becomena5jar, where the soft fun-
damental measuresja are given byja54p*0

`drr 2wa(r ).
We obtainja5ja

HSq/(q1a), where the fundamental mea-
sures of a hard sphere of radiusR are the Euler characteristic
j0

HS51, integral mean curvaturej1
HS5R, surface areaj2

HS

54pR2, and volumej3
HS54pR3/3. For the star polymers

the Euler characteristic remains unity,ja51, the other fun-
damental measures arej15Rq/(q11), j254pR2q/(q
12), j35(4p/3)R3q/(q13). We emphasize that the flex-
ibility contained in ja , a51,2,3 cannot be obtained by a
mapping onto a reference hard sphere system.

The vector densities vanish,nv15nv250, and (n̂t2) i j

5d i j n2/3. The excess free energy is

bFexc

V
52n0 ln~12n3!1

n1n2

12n3
1

n2
3

24p~12n3!2 ~24!

in all three approximations forF3 . The liquid equation of
state is easily derived by differentiation and reduces to the
hard sphere Percus–Yevick compressibility result for
q→`.

To calculate pair correlations from a density functional
there are various ways to go. They differ in the number of
test particlesthat one inserts. A test particle corresponds to
an external potential coinciding with the pair potential itself.
For one test particle the pair correlations are proportional to
the density profile itself. This is a widely used approach; the
profile depends on the radial coordinate. Without a test par-
ticles,g(r ) can be computed via the direct correlation func-
tion given by the second functional derivative of the excess
free energy using the Ornstein–Zernike relation. We employ
this strategy because we consider it as the tougher test for the
functional itself, as no oscillating density profile is mini-
mized.

We will investigate the crossover behavior of the pair
correlations from soft to hard sphere behavior for the density
r* 53/p50.955. The ultrasoft case,q53, was already con-
sidered in Ref. 14. In Fig. 2 the theoretical results are shown
together with simulation data for different softness param-
etersq56,12,24. We observe that the phase and amplitude
of the oscillations are reproduced nicely by the DFT. The
only deficiencies are an overshooting of the first peak forq
56 and negative values for small distances for allq. On
physical grounds, these values may be disregarded, asg(r )

is a non-negative function. They present a shortcoming of
the current approach, but incorporating the featureg(r )>0
on the level of the density functional itself is not an easy
task. Of course, one could get rid of the negative values
using the test-particle method where the ideal gas free energy
ensures non-negative results.

B. Solid structure

A general crystalline density has the form,

r~r !5(
R

rD~r2R! ~25!

with identical lattice peaksrD(r ) centered at the lattice sites
$R%. A corresponding decomposition is induced for the
weighted densities,

na~r !5(
R

nD
~a!~r2R! ~26!

with

nD
~a!~r !5E d3r 8rD~r 8!wa~r2r 8!. ~27!

In the following we assume spherical density peaksrD(r )
5rD(r ), but, for the time being, do not restrict their shape
further, in contrast to the common approximation by
Gaussians.1 For the scalar weight functions this leads to

nD
~a!5

2p

r E
0

`

dr8r 8rD~r 8!E
ur 2r 8u

r 1r 8
dr12r 12wa~r 12!. ~28!

Since the second integral can easily be performed for our
polynomial weight functions only a one-dimensional numeri-
cal integration is necessary to compute the weighted densi-
ties. Similar, slightly more complex expressions result for
the vector and tensor weighted densities.

Usually rD(r ) is zero~or negligible small! for distances
r beyond a cutoffr c , which implies an upper cutoff for

FIG. 2. Pair distribution functiong(r ) as a function of the scaled distance
r /(2R). Results for various softness parameters are shown,q56, 12, 24
~from top to bottom! and densityr* 53/p50.955. The lines are the DFT
results, the symbols are Monte Carlo data. The curves are shifted upwards
one unit for reasons of clarity. For small distances the theoretical result
becomes negative~indicated by a dashed line!.
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nD
(a)(r ) at r 5R1r c . ~In contrast to the hard sphere case

there is no lower cutoff.! Therefore only a few lattice sitesR
contribute in Eq.~26! to the full weighted densities at any
point. For the determination of the free energy we have em-
ployed two different numerical methods, depending on the
width of the density profile. Method I applies to narrow pro-
files, for which only either one or two lattice sites contribute
at every point. By taking advantage of the resulting symme-
tries the integration in Eq.~1! can be reduced to a one- and a
two-dimensional numerical integral. Details can be found in
Ref. 8. In method II we perform a full three-dimensional
integration over an asymmetric unit, i.e., the smallest region
with which space can be filled by applying the space group
symmetries. For fcc and bcc crystals this corresponds to 1/48
of the Wigner–Seitz cell. For a given profile width we first
make a list of the relevant lattice sites whose distance to the
integration region is smaller thanR1r c . This approach fails
for too narrow peaks because then the integration routine
cannot reliably sample the integrand which takes on consid-
erable values only in a narrow quasi-two-dimensional subset
of the integration region.

The functional derivativedFexc/dr(r ) is determined as
demonstrated for hard spheres in Ref. 8, using analytical ex-
pressions fordnD

(a)(r 8)/drD(r ) and the same integration
method as for the functional itself. In order to solve the sta-
tionarity equation

rD~r !5
exp$2~1/4pr 2!d f exc/drD~r !%

4p*dr8r 82 exp$2~1/4pr 2!d f exc/drD~r 8!%
~29!

with f exc5bFexc/N the profile is discretized over a mesh in
r. Then Eq.~29! is iterated starting from a reasonable initial
guess until the maximum relative change ofrD(r ) in one
iteration is less than 1025.

In Fig. 3 we show the results for different softness pa-
rametersq at a fixed densityr* 5&, equal to the close

packing density for hard spheres. As expected the profiles
become wider when the interaction potential softens. The
shaperemains essentially the same; if distance is scaled byq
~and correspondingly density byq23) all curves practically
coincide, as shown in the inset. Using a logarithmic plot ofr
vs r 2 moreover demonstrates that the peaks are almost
Gaussian but have wider wings than a Gaussian fitted to the
central part. In Fig. 4 we provide a direct comparison with
computer simulations for the same parameters. They exhibit
the same scaling behavior, but are slightly narrower~about
30%!. Even the deviations from the Gaussian shape agree
with the density-functional result. Note that strictly speaking,
simulation and theoretical profiles differ in the following re-
spect. The theoretical profiles minimize the DFT, if radially
symmetric profiles are assumed. In principle, this is different
from a spherical average of the minimizing profile with an-
gular anisotropy. In the simulation, clearly, the equivalent of
the latter is obtained. The difference, however, is expected to
be small, because anisotropy of lattice sites is small~see,
e.g., Ref. 23 for hard sphere results!.

Here and in the following we always used the most ad-
vanced DFT version FMT3. We checked one state point
(r* 51.4127,q5100) for the older versions. The peak
width is measured by

w5F8p

3 E
0

`

drr 4rD~r !G1/2

~30!

so that for Gaussian peaks

rD~r !5
1

p3/2w3 exp@2~r /w!2#. ~31!

It differs only by 5% between FMT3 and FMT2, whereas the
FMT1 result is narrower by a factor 5. Also the shapes are
very similar for the first two cases, but a peculiar long tail
arises in FMT1.

In Fig. 5 we present the dependence of the profile width
on the nearest neighbor distanceRnn52R(&/r* )1/3 in an
fcc crystal with q5100. The lower and upper part of the
solid line are obtained by methods I and II, respectively.
There is no overlap range where both methods can be ap-

FIG. 3. Density functional results for the density peaks in an fcc crystal as
a function of the distancer from the lattice site. Results for different soft-
ness are shown,q524, 48, 100, 200, 400; at the densityr* 5& corre-
sponding to a close-packed hard-sphere (q→`) crystal. Note the logarith-
mic ordinate extending over eight decades in density. The inset shows the
same data scaled as (2R/q)3r as a function of the scaled and squared
distancer 2q2/(2R)2.

FIG. 4. Same as Fig. 3, but obtained from Monte Carlo computer simula-
tions.
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plied, but the results connect nicely with each other. In both
cases Gaussian profiles@Eq. ~31!# were assumed. The widths
from the radial minimization, indicated by diamonds, are not
distinguishable from the Gaussians on the scale of the figure.
Upon compression from the low density side the peaks first
become narrower. However, just aboveRnn52R surpris-
ingly the width increases again. This increase is found both
in simulation and theory, but is much steeper in DFT. The
same behavior occurs for smallerq, even for the bcc crystal,
but the minimum shifts towards higherRnn and larger widths
w.

The occurrence of vacancies can be taken into account
within DFT by allowing non-normalized density peaks, i.e.,
less than one particle per lattice site on average, and treating
the normalization constant as an additional minimization pa-
rameter. The FMT is the first DFT for which this procedure
yields reasonably small vacancy concentrations9 for hard
spheres.

Determining the average occupancy number in this way
for star polymers, we find that SFMT also predicts almost
normalized density peaks. There is a tiny negative vacancy
concentration of the order of 1025 near melting. This would
mean that there are more double occupied sites than empty
ones. Whether this is an artifact of the DFT or a feature of
the peculiar logarithmic interaction of star polymers remains
an open question.

C. The phase diagram

In order to compute the phase diagram of our star poly-
mer model we determined the free energy in the Gaussian
approximation for a large number of densities and softness
parameters. Phase coexistence densities then follow by the
usual common tangent construction. Our results are dis-
played in Fig. 6. For relatively hard interactions the fluid
freezes into an fcc crystal, for soft interactions (q&4) into a
bcc crystal. Upon further compression both crystals eventu-
ally remelt. The broadening of the profile discussed in the

previous section is a precursor of this remelting transition.
Note that formally hard spheres (q5`) also remelt, because
the solid but not the liquid free energy diverges at close
packing. However, in this case the coexistence region ex-
tends into the unphysical density range beyond close pack-
ing. It must be stated that the present DFT has intrinsic limi-
tations at high density. Any density distribution, where
locally n3.1 is punished by an infinite energy cost. In real-
ity, such distributions will have large, but finite free energy.

In an intermediate softness range both fcc and bcc solids
occur with the sequence liquid–fcc–bcc–fcc–liquid. The
dotted line denotes the points where the main peak of the
liquid structure factor reaches the value 2.8. This has been
suggested as a general phenomenological freezing criterion
by Hansen and Verlet27 and lies close to the actual phase
transition for not too smallq. This demonstrates the internal
consistency of the theory. Forq&2.9 the solid phase disap-
pears completely.

Freezing and remelting of star polymers have been theo-
retically predicted before28 and were observed experimen-
tally in the closely related system of diblock copolymer
micelles.29,30 In the latter work bcc was observed for softer
interactions and fcc for harder interactions, in qualitative
agreement with our findings. The same trend is known for
simple liquids with inverse power potentials.31–34 The most
direct comparison is possible with the computer simulations
of the log-Yukawa potential by Watzlaweket al.19 These
authors obtained a phase diagram with exactly the same to-
pology at low and intermediate densities. However, for large
arm number the remelting is replaced by transitions to more
‘‘exotic’’ crystal structures at high densities: body-centered
orthogonal~bco! and diamond lattices. A search for body-
centered tetragonal~bct! and diamond crystals within the
present theory produced no thermodynamically stable states.
Especially the diamond lattice requires rather small nearest
neighbor distances in the interesting density range, which is
excluded by the following mechanism. When two neighbor-
ing sites come closer to each other the value ofn3 at their
midpoint increases and eventually approaches unity, which

FIG. 5. Dependence of the width of the crystalline peaks@as defined in Eq.
~30!# on the nearest neighbor distance in a fcc solid forq5100. The solid
line is the DFT result assuming a Gaussian peak shape, obtained with meth-
ods I~lower part! and II ~upper part! described in the text. The diamonds are
obtained by the minimization with radially symmetric peaks. The triangles
are Monte Carlo data.

FIG. 6. Phase diagram of star polymers obtained by density functional
theory as a function of the densityr* and the inverse softness parameter
q21. All phase transitions are first order. The dotted line indicates the esti-
mate of the freezing density by the Hansen–Verlet criterion.
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obviously induces a divergence of the functional. For high
densities the differences between the log-hypergeometric and
the log-Yukawa potential are expected to be small, as the
logarithmic core dominates. We conclude that the absence of
the exotic structures is a shortcoming of the theory. We did
not attempt to determine the phase diagram by simulation
since this would necessitate a large number of expensive free
energy calculations. But the fcc crystal forq5100 is me-
chanically unstable forr* .1.76, slightly above the theoret-
ical remelting transition.

V. DISCUSSION

The proposal of a new DFT has to be accompanied by
examples of successful use. As a meaningful application, one
could choose a well-studied model, e.g., the inverse-power
potentials~see, e.g., Refs. 31–34!, and let the new candidate
compete with established theories. We have postponed this
necessary work and have tackled the star polymer system,
which has a quite young history. Besides the technical ad-
vantage that we can calculate certain quantities analytically,
this system is of great actual interest.

The strategy of the SFMT is to assume a generic form of
a density functional and to impose the correct behavior in
well-defined limiting cases. In its present form, the theory
captures the virial expansion up to second order correctly, as
well as a density distribution given by a single delta peak
times an average occupation number which is called zero-
dimensional limit. The theory has deficiencies: Two delta
functions which are separated within the range of the pair
interaction are not described exactly. In this respect the
SFMT is in a poorer state than the hard sphere FMT, which
describes even three delta spikes exactly.5 Improving the
SFMT along these lines is desirable; also Sweatman’s work35

and Percus’ general rank two representation36 should be use-
ful.

We could show that the recent improvements in hard
sphere FMT using tensorial weighted densities can~and need
to! be done in SFMT to get a good description of the crystal.
This situation is similar for hard spheres.8,9,5 No empirical
rescaling like in Ref. 14 was used in the present work in
order to highlight the power of the approach and its deficien-
cies. The deficiencies occur at high density, where the star
polymers freeze into exotic bco and diamond structures, that
are not found to be stable within our approach. Nevertheless,
intriguing high-density effects, like the broadening of density
peaks upon increasing the density and remelting are de-
scribed by SFMT. The sequence liquid–fcc–bcc–fcc upon
increasing densities is correct. From the investigation of the
star polymer model, we conclude that freezing, liquid and
crystal properties of particles with soft interactions can be
understood on the basis of a density functional that does not
need input from the homogeneous fluid phase.
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We investigate the system ofD-dimensional hard spheres inD-dimensional space, whereD.3. For the fluid
phase of these hyperspheres, we generalize scaled-particle theory to arbitraryD and furthermore use the virial
expansion and the Percus-Yevick integral equation. For the crystalline phase, we adopt cell theory based on
elementary geometrical assumptions about close-packed lattices. Regardless of the approximation applied, and
for dimensions as high asD550, we find a first-order freezing transition, which preempts the Kirkwood
second-order instability of the fluid. The relative density jump increases withD, and a generalized Lindemann
rule of melting holds. We have also used ideas from fundamental-measure theory to obtain a free energy
density functional for hard hyperspheres. Finally, we have calculated the surface tension of a hypersphere fluid
near a hard smooth~hyper-!wall within scaled-particle theory.

DOI: 10.1103/PhysRevE.65.016108 PACS number~s!: 64.60.Cn, 64.70.Dv, 61.20.Gy

I. INTRODUCTION

In the last decades, our understanding of the freezing tran-
sition has greatly advanced@1,2#. Most of the success comes
from the insight that the essential molecular mechanism that
drives freezing can be understood in terms of different kinds
of entropy@3#. This is demonstrated by ordering transitions
that purely entropy-driven hard-core particles exhibit. The
simple model of hard spheres, which has only the sphere
packing fraction as thermodynamical parameter, has played a
key role in a statistical description of freezing; for a recent
review see@4#. Computer simulations@5,6# have shown that
there is a first-order freezing transition from a fluid into a
face-centered-cubic crystal at a packing fraction of around
0.5 with a relative density jump across freezing of about
10%. In two spatial dimensions~hard discs!, the precise na-
ture of freezing is still a matter of debate but there is recent
evidence from computer simulations that the transition is in
accordance with the Kosterlitz-Thouless scenario@7#. The
thermodynamics of the one-dimensional model, namely, hard
rods, can be calculated analytically@8# revealing that there is
no freezing transition at packing fractions away from close
packing.

From a more theoretical point of view, it is interesting to
study systems in spatial dimensionD higher than three. The
motivation to do so is twofold. First, the limit of infinite
dimension may lead to enormous simplifications allowing
sometimes even for an analytical solution of the thermody-
namics, fluid structure, and phase transformations. Recent
examples include the hypercube@9# and hypersphere@10#
fluid, the lattice plasma@11#, the Gaussian potential@12,13#
as well as systems with attractions@14,15#. The advantage in
high dimensions is that the third and higher virial coefficients
vanish asymptotically. Once the limitD→` is known, it
may serve as a reference system in order to include finite
dimensions in a perturbative analysis as a function of 1/D,
see e.g., Refs.@13,16# for such discussions. Second, the
crossover between different spatial dimensions imposes
physical consistency constraints on the theories. Understand-
ing a fluid in different dimensions is important for construct-
ing, e.g., density functionals explicitly. For hard spheres, ap-

proximate functionals can be obtained by imposing the
correct crossover to reducedD. This idea was exploited par-
ticularly in the construction of fundamental-measure density
functionals@17,18# in dimensionsD52,3 @19–21#.

Systems composed of hard hyperspheres, being the natu-
ral extension of hard spheres to arbitrary spatial dimensions
D, have, therefore, been considered quite extensively. The
limit of infinite dimensions was studied in relation to the
thermostatistics@10,22,24,23,13# and dynamics@25#. Fur-
thermore, the third and fourth virial coefficients have been
calculated for arbitrary dimensions@26#, and different fluid
state theories for the thermodynamics and structure proposed
based either on an overlap volume approach@27#, the Percus-
Yevick @28#, mean spherical@29#, or hypernetted chain@30#
approximation. ForD54,5, a crystalline phase of hyper-
spheres has been studied with free-volume theory@31#, the
freezing transition has been examined by computer simula-
tion @32#, and density functional theory@33#. Furthermore,
the demixing transition in a binary hypersphere mixture has
been discussed@34,35# on the basis of a Carnahan-Starling-
type equation of state@36,37#.

In this paper we investigate the freezing transition of hy-
perspheres inarbitrary dimension, which has not been ad-
dressed until now. This aim requires a detailed description
for the free energies of the fluid and solid state. For the fluid
free energy, we use several methods such as the virial expan-
sion, scaled-particle theory, fundamental-measure density
functional, and the Percus-Yevick liquid-integral equation.
All these approaches feature the exact second virial coeffi-
cient. For large dimensions, higher-order contributions are
known to vanish, and consequently we obtain similar fluid
free energies from all approaches. To access the free energy
of the solid, we use the free-volume theory together with
geometric results about the close-packed density and the
structure of so-called laminated lattices in high dimension. In
contrast to earlier approaches based on a fluid instability
analysis@13,23#, we obtain a first-order freezing transition
even for high dimensions. We show that the freezing transi-
tion preempts this Kirkwood-type second-order spinodal in-
stability of the fluid. The relative density jump across freez-
ing even increases with rising dimensionD. The Lindemann
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parameter at melting is very robust with respect to a change
of dimensionality such that the Lindemann rule of melting
can be carried over to arbitrary dimensions. As a side product
of scaled-particle theory, we derive an analytical expression
for the surface tension between a smooth hard~hyper-!wall
and a hard hypersphere fluid for anyD. Furthermore, we
develop a density functional for arbitrary spatial dimension
in the spirit of Rosenfeld’s fundamental-measure theory
@17–21#.

The paper is organized as follows. In Sec. II, we briefly
summarize mathematical properties of close-packing densi-
ties. The solid free energy is outlined in Sec. III. In Sec. IV,
we describe different approaches to the fluid free energy.
Section V is devoted to the construction of a density func-
tional for inhomogeneous hard hyperspheres. Results for
freezing are presented in Sec. VI, and we finally conclude in
Sec. VII.

II. HYPERSPHERES, LATTICES, AND CLOSE PACKING

The interaction between hard hyperspheres is pairwise
and given by the potential

u~r !5H `, r ,2R

0, r>2R,
~1!

wherer is the Euclidian center-to-center separation inD di-
mensions andR denotes the hypersphere radius. Thermody-
namical and structural properties of the hard hypersphere
system are independent of temperatureT, which only sets the
energy scalekBT[1/b. The system’s only relevant param-
eter is the number densityr, measuring the number of par-
ticles perD-dimensional volume. A suitable dimensionless
packing fraction is defined viah5rVD(R), whereVD(R)
5RDpD/2/G(11D/2) denotes theD-dimensional volume of
the hypersphere of radiusR andG(x) is the gamma function.
To simplify the notation, we denote the volume of the unit
sphere of radiusR51 as VD[VD(1). We also define the
(D21)-dimensional surface assD21(R)5DVDRD21.

Due to packing constraints,h has aD-dependent upper
limit, which is the so-called close-packing fractionhcp . The
value of hcp is known in a mathematically rigorous sense
only in the casesD51,2,3, see e.g., Ref.@4#. While obvi-
ously hcp51 for D51, the close-packed configuration for
D52 is a triangular lattice withhcp5p/(2A3)50.91 and a
face-centered-cubic lattice forD53 with hcp5p/(3A2)
50.74. The latter structure is degenerate with respect to the
stacking sequence. For higher dimensions, there is Minkow-
ski’s lower bound and Blichfeldt’s upper bound@38# for hcp ,
such that

z~D !

2D21
<hcp<

D12

2 S 1

A2
D D

for D.1, ~2!

wherez(x) denotes the Riemann zeta function. The class of
laminated lattices@38# is defined inductively and gives in
general high packing fractions. The numerical values ofhcp
are shown in Fig. 1 as a function ofD. In particular, for
D,25, their packing is close to the upper bound, Eq.~2!.

Therefore, we restrict our investigation of the solid state to
laminated lattices. However, as we shall show below, the
general methodology can be applied to other crystals as well,
provided their close-packing fraction is known.

III. FREE-VOLUME THEORY FOR THE SOLID STATE

We employ free-volume~or cell! theory in order to calcu-
late free energies of the solid state. This approach, see e.g.,
@39#, was also discussed for arbitraryD recently in Ref.@31#.
Cell theory is based on the common partitioning of physical
space into Wigner-Seitz cells~WSC! of the lattice structure
under consideration. For hard spheres, no overlap between
neighboring particles can occur, provided that each sphere
stays completely within its WSC. Carrying out a partition
sum where only this restricted set of configurations is taken
into account strictly underestimates the full~exact! partition
sum. In detail, leta denote the distance between nearest
neighbors. The boundaries of the WSC are the distancea/2
apart from the lattice site. The spheres are supposed to stay
completely within the WSC, such that each sphere center is
allowed to move only a distancea/22R from its lattice site
towards a neighboring site. We assume that the shape of the
accessible~‘‘free’’ ! volume is the same as that of the WSC.
Then the free volume of each sphere scales with theDth
power of (a22R)/a, and we obtain

Vfree5VWSFa22R

a GD

. ~3!

If one relaxes the assumption of the same shape of free-
volume cell and WSC, the real free volume is still larger than
Vfree. Let the free energy per particle bef s

exc1 f id, where the
ideal contribution isf id5 ln(h)21. One obtains a strict upper
bound for the excess free energy per particle of the solid
state

b f s
exc<12D lnF12S h

hcp
D 1/DG . ~4!

FIG. 1. Close-packing fractionhcp as a function of dimension-
ality D. Blichfeldt’s upper bound~dotted line!, Minkowski’s lower
bound~dashed line!, and the corresponding data for the laminated
lattices~symbols! are shown. Note the logarithmic scale forhcp .
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Note that if one inserts a lower bound forhcp ~as, e.g., for
the laminated lattices considered in this paper! the resulting
expression is still an upper bound for the free energy. An
alternative for obtaining an estimate of the free energy is to
calculate the free volume of each sphere with all the other
spheres kept fixed. This allows each sphere to move twice as
far from its lattice site as in the former approach. Of course,
here one counts also forbidden configurations, so that the
bounding property of the free energy is lost. However, in
D53 this gives a more accurate, albeit empirical estimate of
the exact free energy. For generalD, we obtain

b f s
exc'12D lnF12S h

hcp
D 1/DG2D ln 2. ~5!

IV. THEORIES FOR THE FLUID STATE

A. Virial expansion

Wyler, Rivier, and Frisch@24,10# have considered the
Mayer series of the hard hypersphere fluid, and have shown
that in the limit of infinite dimensionality, the virial expan-
sion up to second order becomes asymptotically exact. The
virial coefficients are defined by the expansion

bp5r1 (
n52

`

Bnrn, ~6!

where p is the pressure. The second virial coefficient is
known analytically asB252D21VD(R). The expansion of
the excess free energy of the fluid state then reads

b f f
exc5

1

2
h2D1

1

2

B3

@VD~R!#2
h21O~h3!. ~7!

The third virial coefficientB3 can be expressed by a quadra-
ture @24# that can be solved analytically in even dimensions
@26#. For odd dimensions we rely on a numerical solution.
Our results forB3 are shown versusD in Fig. 2. Although the
numerical value ofB3 is quite large asD→`, for smallh its
contribution to the free energy may become negligible. This
is indeed the case for the densities relevant for freezing, as
we will demonstrate below. We remark, however, that it is
not proven that the virial expansion converges in the density
region important for freezing@40#. There is thus still the
possibility that the virial expansion does not describe the
fluid state correctly. A similar situation exists in three dimen-
sions, where the convergence of the virial expansion can
only be proven rigorously up toh'0.02 @40#. Numerical
evaluation of the expansion to seventh order, however, show
satisfactory results up toh'0.5.

B. Percus-Yevick integral equation

Integral equations provide a very successful description of
fluids. For hard spheres, the Percus-Yevick closure@41# is
remarkably successful in three dimensions. One of its ap-
pealing properties is that it can be solved analytically for this
system. Leutheusser generalized the solution to all odd di-
mensionsD52k11, k50,1,2, . . . @28# and solved the

equations explicitly forD51,3,5. We follow his approach
and treat the equations numerically for higher~odd! dimen-
sions. We use the Wiener-Hopf factorization of the structure
factor S(q)51/@Q̃(q)Q̃(2q)#, whereq is the wave vector
magnitude. HereQ̃(q) is a regular function, which can be
written as

Q̃~q!512~2p!krE
0

2R

Q~r !eikrdr. ~8!

It can be shown thatQ(r ) is a polynomial of order 2k in r of
the general form

Q~r !5~2R!2k(
n50

k

QnS r

2R
21D n1k

, 0<r<2R. ~9!

The system of integral equations can be reduced to a system
of k11 algebraic equations for the unknownsQ0 , . . . ,Qk .
Two out of these equations are linear

~21!k52k!2kQk1r~2p!k~2R!2k11

3 (
n50

k

~21!n
Qn

~k1n11!
, k>0, ~10!

~21!k52~k21!!2k21Qk211r~2p!k~2R!2k11

3 (
n50

k

~21!n
Qn

~k1n12!
, k>1, ~11!

and the remainingk21 equations are nonlinear

Q(2n11)~0!5
1

2
r~2p!k~21!n11@Q(n)~0!#22r~2p!k

3 (
n50

n21

~21!nQ(n)~0!Q(2n2n)~0!,

0<n,k21, ~12!

FIG. 2. Various approximations for the third virial coefficients
B3 as a function of dimensionD. Shown is the exact result, as well
as the results from scaled-particle theory~SPT!, density-functional
theory ~DFT!, and Percus-Yevick theory~PY!.
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whereQ(k)(0) denotes thekth derivative ofQ(r ) at r 50.
We solve Eqs.~10!–~12! numerically. As the effort quickly
increases with rising dimension@we are faced with (D
11)/2 coupled equations#, we restrict ourselves toD<33.
The functionQ(r ) provides us with all the necessary infor-
mation about the thermodynamics of the fluid state, as it is
related to the contact value of the pair distribution function
g(r ) of the hyperspheres via

g~2R1!5~21!k11Q(k)~2R!/~2R!2k, ~13!

which in turn determines the free energy via the virial route
@28,41#

bp/r5112D21hg~2R1!. ~14!

The second virial coefficient determined in this way is exact
for any dimension. Formally expanding the solution into a
power series with respect toh, we obtain the third virial
coefficient numerically. As can be seen in Fig. 2,B3 obtained
in this way slightly overestimates the exact result.

C. Scaled-particle theory

The key idea of scaled-particle theory~SPT! @42# is to
insert a spherical test particle of variable radius into a bulk
fluid of hard spheres. The test particle is gradually expanded
to the same size as the other spheres. One then obtains the
free energy by thermodynamic integration of the virial equa-
tion. The key function by which all other properties can be
expressed isG(r ), which is the contact value of the pair
distribution function between test particle and the other
spheres, if the radius of the test particle equalsr 2R.

In what follows, we generalize the SPT~which was origi-
nally developed forD53) to arbitrary dimensions. The
probability p0(r ) of a spontaneous appearance of a cavity
large enough to hold the test particle of radiusr is directly
connected to the work required in making it. This probability
is equivalent to the probability of finding a spherical space
with radiusr unoccupied. By elementary statistical reasoning
such as inD53 @42#, one obtains a relation betweenp0 and
G(r ), which is

1

p0~r !

dp0~r !

dr
52rsD21~r !G~r !. ~15!

If the cavity is so small that at most one sphere fits inside,
i.e., r<R, the probability of finding this cavity unoccupied is
clearly p0(r )512rVDr D. Therefore,

G~r !5
1

12rVDr D
for r<R. ~16!

Next we consider a cavity with radiusR,r ,2R/A3. Then
two, but not three spheres fit into the cavity. We have to
correct for double-counting pairs, and obtain

p0512rVDr D1E E
cavity

g~r 1 ,r 2!dr 1dr 2 ~17!

512rVDr D1
r2

2 E
0

2r

g~r 8!Vr~r 8!sD21~r 8!dr8, ~18!

whereg(r1 ,r 2) is the hypersphere pair distribution function
and r 85ur 22r 1u; furthermore Vr(r 8) denotes the overlap
volume of two spheres with radiusr at a distancer 8. We will
restrict ourselves in the following to odd dimensionsD
52k11. From g(r )50 for r ,2R it follows that p0 is k
11 times continuously differentiable atr 5R. SinceG(r )
follows from p0(r ) by differentiation@see Eq.~15!#, G(r ) is
k times continuously differentiable atr 5R. Since we know
the exact behavior ofG(r ) for r ,R, the firstk derivatives of
G(r ) at r 5R are also known.

A further constraint onG(r ) is obtained by noting that
G(`)5bp/r @42#. Equating with the virial expression for
the pressure yields

11
1

2
2DhG~2R!5G~`!. ~19!

Together with thek11 values of the derivatives we have got
k12 constraints onG(r ). Next we expandG(r ) into a series
in 1/r ,

G~r !511a01 (
i 51

k11
ai

~r /R! i
. ~20!

This involvesk12 unknownsai , which must be chosen to
fulfill

1

12h
511a01 (

i 51

k11

ai , ~21!

(
i 51

k11

ai~21! j
~ i 1 j 21!!

~ i 21!!
5h~11a0!

D!

~D2 j !!

1h(
i 51

k11

ai

~D2 i !!

~D2 i 2 j !!
,

~22!

a05
1

2
2DhS 11a01 (

i 51

k11

ai2
2 i D . ~23!

The first two sets of equations~21! and ~22! are linear and
can be used to express thea1 , . . . ,ak11 in terms ofh and
a0. The last Eq.~23! can then be turned into a quadratic
equation fora0, which can be solved analytically. The non-
linear equation~23! has to be solved numerically. Froma0
52111/G(`) we obtain directly the pressure@see Eq.
~19!# and the equation of state. Decomposing the equation of
state into a power law expansion with respect to density, we
get the second and third virial coefficients. The second virial
coefficient is exact. The third virial coefficient is shown as a
function of spatial dimensionD in Fig. 2. As in Percus-
Yevick theory it is larger than the exact value.

It is possible to obtain the surface tensiong between a
hard hypersphere fluid and a hard~hyper! planar wall via
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SPT. In order to accessg, we consider the work required to
form a cavity with a very large radiusR, which can be ex-
pressed as

W~r !5pVD~r !1g̃sD21~r !. ~24!

The quantityg̃ is connected to the physical surface tensiong

via the relationg5g̃1pR, compare, e.g.,@43#. The prob-
ability p0(r ) of observing a fluctuation containing such a
cavity is further given by@10#

p0~r !5exp@2bW~r !#. ~25!

Hence, one finally obtainsg as a function ofD andh as

g5
kBTD

sD21~R!
hS 11a02

a1

D21D , ~26!

which we will discuss as a function ofD in Sec. VI.

V. DENSITY-FUNCTIONAL THEORY

Density-functional theory~DFT! has been very successful
in describing inhomogeneous fluids in three dimensions@2#.
It provides in principle a concept unifying the fluid and solid
state within a single approach. For hard spheres, one particu-
lar approximation, the Rosenfeld functional, has the remark-
able property of describing both the fluid state and the solid
state very well incorporating the limit of close-packing cor-
rectly @44#. Within the Rosenfeld functional, or fundamental-
measure theory, the nonlocal dependency of the excess free
energy F of the densityr is treated via averages of the
density over the sphere volume, surface, and other funda-
mental geometric measures@18#. The Rosenfeld functional
may be formulated in such a way that it gives the correct
zero-dimensional crossover@19,20#. The thermodynamics of
a hard sphere system inside a cavity so small, that at most
one sphere fits into it can be solved exactly. One obtains the
excess free energy@19,20#

bF (D50)@r#5w0~N!5N1~12N!ln~12N!, ~27!

where 0<N<1 denotes the average number of particles in-
side the cavity. The same free energy is obtained from the
Rosenfeld functional, if an external potential corresponding
to the walls of the cavity is introduced. This provides a sys-
tematic way of deriving a similar DFT in arbitrary dimen-
sions@21#. In the sequel we will work this out explicitly.

The general functionalF@r# is assumed to be a sum of
terms of the form

bF @r#5F1
(D)@r#1F2

(D)@r#, ~28!

F1
(D)@r#5E dr w1@h~r !#E dR1wD~R12r !r~R1!,

~29!

F2
(D)@r#5E dr w2h~r !E dR1E dR2

3wD~R12r !wD~R22r !PD~R1 ,R2!. ~30!

Here h(r )5*dr 8 r(r 8)Q(R2ur 8Àr z) is the local packing
density andwD(R1)51/sD21(R)d(R2uR1u) is a measure
over the surface of the sphere. The integral kernel
PD(R1 ,R2), therefore, couples densities averaged over the
sphere surface. In order to make this functional unique we
consider cavities of increasing complexity. These cavities are
sketched in Fig. 3. A simple cavity capable of holding a
sphere in just one place will uniquely determinew1(h) and
thus F1

(D)@r#. It turns out, however, that the exact free en-
ergy is not reproduced in a slightly more complicated cavity
that can hold a sphere at either of two places. The require-
ment that the functional should give the analytically known
value even in this case uniquely determines the functional
form of w2(h) and PD(R1 ,R2). This procedure has been
invented~for D53) in @21#.

The simplest cavity is spherical, and just large enough to
hold one sphere. The single particle density must then be
r(r )5Nd(r ). The local packing densityh(r ) equals N
within a sphere of radiusR and vanishes outside. Introducing
the quantityhR1e(r )5NQ(R1e2ur u), we can write

F1
(D)@r#5E dr w1@h~r !#

1

sD21~R!

]

]e
hR1e~r !ue50

5
1

sD21~R!

]

]eE dr F@hR1e~r !#Ue50

5
1

sD21~R!

]

]e
F~N!VD~R1e!U

e50

5F~N!, ~31!

with F denoting the integral ofw1. Comparing this with the
correct zero dimensional limit, one gets

F1
(D)@r#5E dr w1@h~r !#E dR1wD~R12r !r~R1!,

~32!

with w1(h)[]w0(h)/]h52 ln(12h).
Consider another cavity withr(r )5N1d(r2r1)1N2d(r

2r2),N5N11N2<1, andr 125ur12r2u<2R. For this kind
of cavity the first termF1

(D) of the free energy functional
derived above does not give the correct free energyw0(N)
but

FIG. 3. Geometry of the two cavities used to derive the free
energy functionalF@r#. Indicated are the possible positions of the
sphere (r 1 or r 2) and the local packing fractionh(r ) within the
respective region.
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F1
(D)@r#5w0~N!2j~r 12!@w0~N!2w0~N1!2w0~N2!#,

~33!

j~r 12!512
1

sD21~R!

]

]e
VR1e~r 12!ue50

512
VD21

DVD
~D21!I D22~a!, ~34!

I D~a!5E
0

a

sinD~w!dw, ~35!

R cos~a!5r 12/2. ~36!

VR1e(r 12) denotes the overlap volume of two spheres of
radiusR1e at a distancer 12, see the sketch in Fig. 4.

We next determine the second contributionF2
(D)@r# so

that the deviation of the free energy from the exact zero-
dimensional limit is corrected for. We obtain

F2
(D)@r#5E dr w2@h~r !#E dR1wD~R12r !r~R1!

3E dR2wD~R22r !r~R2!P~R1 ,R2!, ~37!

with

j~r 12!512
VD21

DVD
~D21!I D22~a!, ~38!

PD~r 12!5
j~r 12!D

2VD
2 r 12

2

VD21RD~D21!sinD23~a!cos~a!

for r 12<2R, ~39!

w2~h!5
]w1~h!

]h
5

1

12h
. ~40!

This completes the prescription of our functional. In prin-
ciple, one could go further, and consider cavities that enforce
d density distributions composed of three or mored spikes.
Indeed in the caseD53 @21#, up to three d spikes were
considered. One might speculate that up toD d spikes should

be necessary inD dimensions. Due to the geometrical com-
plexity, we have not followed this~albeit desirable! route in
the present work.

For the homogeneous phase the integrals in Eq.~40! can
be evaluated analytically. One obtains for the excess free
energy per particle

f f
exc5w1~h!1

1

2
hw2~h!~2D22!, ~41!

which we will also use as an estimate for the fluid free en-
ergy. Expanding into a power series with respect toh, one
obtains

f f
exc5

1

2
2Dh1

1

2
~2D21!h21O~h3!, ~42!

hence, the correct second virial coefficient is reproduced by
our density functional. The third virial coefficient is shown
versusD in Fig. 2. It is significantly smaller than the exact
result. We attribute this failure to the restricted set of cavities
considered.~Note that inD53 threed spikes are needed to
get B3 correctly.! However, our functional has all terms that
are important near close packing inD53 @44#, and we be-
lieve that this holds also forD.3. We further emphasize
that this functional has much more predictive power than just
giving the equation of state of the fluid. In principle, it could
further be used to derive structural fluid correlations and in-
homogeneous situations including freezing. We have not
considered such applications here but leave them for future
studies.

VI. RESULTS AND DISCUSSION

With the theories described above, we calculated freezing/
melting coexistence densities using Maxwell’s double tan-
gent construction. We find a first-order freezing transition
occurring at densities well below close packing. In Fig. 5, we
plot the coexisting fluid (h f) and solid (hs) packing frac-
tions obtained by using either third-order virial expansion or
scaled-particle theory for the fluid and free-volume theory
with unfixed neighbors@Eq. ~4!# for the solid as a function of
dimensionD. Close-packing fractionshcp are included for
comparison. It might seem from this graph that the fluid and
solid coexisting densities are not affected very much by the
variation of the close-packed density with dimension but this
is due to the logarithmic density scale.

We note that the coexistence densities do only depend
weakly on the particular solid state theory for largeD. If the
virial expansion up to third order is used for the fluid free
energy~Fig. 5!, a freezing transition shows up forD.11. On
the other hand, Percus-Yevick, scaled-particle and density-
functional theory~all of which are more reliable for smaller
dimensionalities! result in a freezing transition at anyD>3.
We have compared our theoretical results to computer simu-
lation data in the special casesD53,5 @32#, ~see Table I!. For
D55, we find reasonable agreement within the statistical
error of the simulation.

The agreement between the different fluid state theories
becomes better with increasing dimensionality. This is ex-
pected, since the virial expansion becomes exact forD→`
and all our approaches reproduce the exact second virial co-

FIG. 4. Geometrical interpretation ofVR(r 12) as the overlap
volume of two spheres of radiusR with distancer 12.
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efficient. The relative density jump in the coexistence densi-
ties, (hs2h f)/hs , is plotted against dimension in Fig. 6.
This quantity approaches its maximal value of unity for large
D. That implies that the transition is strongly first order. On
the basis of our data we conclude thaths /hcp→0 and
h f /hs→0, for largeD.

Let us discuss the relation of this theory to a perturbative
analysis based on the Kirkwood spinodal instability of the
fluid. A second-order freezing transition was predicted@23#
in the case of first taking the limitD→` and then taking the
thermodynamical limit. For finiteD the instability density
has been worked out explicitly by Frisch and Percus@23# as

h'0.871~e/8!D/2D1/6e1.473D1/3
. ~43!

Bagchi and Rice@13# found the same functional dependence
on D, but a different prefactor such that

h'0.239~e/8!D/2D1/6e1.473D1/3
. ~44!

These densities are compared to our fluid coexisting densi-
ties based on the virial expansion and free-volume theory in
Fig. 7. Ourh f are smaller than the instability densities. This
implies that the fluid instability is preempted by first-order
freezing at all high dimensions such that the Kirkwood in-

stability only applies for a metastable fluid. This has indeed
been suggested in a recent paper by Frisch and Percus@16#,
where relevant diagram resummations are carried out before
taking the limitD→` resulting in a prior spinodal. The au-
thors suggest that ‘‘at a density less than that of the Kirk-
wood, a first-order transition intervenes.’’ Provided the virial
expansion approaches exactness~as assumed in the instabil-
ity analysis of Refs.@13,24#! @45#, our analysis indicates a
first-order phase transitions for large dimensions, because the
free-volume theory provides a strict upper bound for the
solid free energy~see Sec. III!, which means that the real
coexisting fluid density can only be smaller than in our cal-
culation. As an aside, we apply the same analysis to hard
hypercubesand find a qualitatively different result. The in-
stability densities as calculated analytically by Kirkpatrick
@9# are smaller than the coexisting densities obtained from
our analysis. This implies that for hard hypercubes the fluid
instability can be real. Of course, this system is qualitatively
different form hard hypersheres. The close-packing fraction
of hard hypercubes is unity, independent of dimension, and
the fluid is anisotropically ordered due to the fixed orienta-
tions of the particles. Apparently, this makes it easier for the
solid to step in via a second-order phase transition.

The Lindemann parameter is defined viaL

TABLE I. Results for the coexistence densitiesh f ,hs for small
dimensionalityD53 and 5 obtained from cell theory~CT! with
fixed and unfixed neighbors compared to simulation results. We
estimated the simulation values forD55 from the results given in
Ref. @32#.

D Method h f hs hcp

3 CT, unfixed 0.74048
CT, fixed 0.562138 0.601772
simulation 0.494 0.545

5 CT, unfixed 0.27353 0.348053 0.465258
CT, fixed 0.202184 0.258753

simulation@32# '0.19 '0.29

FIG. 5. Fluid (h f) and solid (hs) coexistence packing fractions
and the close packing fractionhcp of the corresponding laminated
lattice versus dimensionD.

FIG. 6. Relative jump in coexistence densities (hs2h f)/hs ver-
sus dimensionD.

FIG. 7. Comparison of the freezing densitiesh f from different
theories against the Kirkwood instability density obtained by Frisch
and Percus@Eq. ~43!# and Bagchi and Reiss@Eq. ~44!#.
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5A^(DrW)2&/a as the ratio between the root-mean-square dis-
placement of a particle in the solid and the lattice constanta.
Three-dimensional crystal melting is accompanied by a Lin-
demann parameter of roughly 0.1. We test this rule@46#
within our theory for arbitraryD in Fig. 8. Free-volume
theory, where we assume a constant density profile within the
free volume cell, can be used to estimateL. We have used
approaches with both unfixed and fixed nearest neighbors.
The main effect of using the fixed nearest neighbors ap-
proach is a doubling of the available space for the spheres in
each direction. If the coexistence densities were the same,
the difference inL between the fixed and unfixed approach
would be a factor of 2. However, if the approach with the
fixed nearest neighbors is used, the solid coexistence densi-
tieshs change slightly, leading to a differenta in L. Data for
L at coexistence are presented in Fig. 8. For the fluid state we
have used the virial expansion. The difference inL between
the approaches using unfixed and fixed nearest neighbors are
nearly a factor of 2. Within cell theory the Lindemann pa-
rameter at coexistence does not vary dramatically from its
threshold value of 0.1, valid in three dimensions, and it is
rather insensitive to the dimensionality. The data forL ob-
tained within the fixed neighbor approach show that the re-
sult is stable~up to a trivial factor of 2! with respect to a
different solid state theory. Thus the crude melting rule also
holds in higher spatial dimensions. The Lindemann criterion
is thus pretty robust. Note that it is also valid forD52,
provided the relative mean-square displacement@47# is used.
Furthermore it holds inD53 even for interfacial freezing
@48# and freezing of polydisperse spheres both in equilibrium
and nonequilibrium@49#.

We finally show, as a side product, the wall-fluid tension
g of hard hyperspheres, as given by Eq.~26!. In Fig. 9, we
plot g for a fixed scaled packing fractionh5222D versus
dimensionality D. This packing fraction is close to bulk
freezing. For this choice of parameters,g increases withD.
Note that in three dimensions, the scaled-particle expression
was found to be in very good agreement with computer
simulations@43# and density-functional studies@50# for any
packing fraction up to freezing.

VII. CONCLUSIONS

In conclusion, we have studied the fluid and solid free
energies for hard hyperspheres. We have generalized scaled-
particle theory to arbitrary dimensions and solved the
Percus-Yevick liquid integral equation theory numerically in
odd dimensions up toD533. We have further proposed a
free energy density functional for an inhomogeneous hard
hypersphere fluid for arbitrary dimension. Assuming lami-
nated lattice structures for the solid, we have used free-
volume theory for the solid that provides a strict upper bound
to the free energy. As a result, we find a first-order freezing
transition where the density jump approaches the solid coex-
istence density asD grows. We have shown that this first-
order freezing transition preempts the second-order Kirk-
wood spinodal instability of the fluid.

We point out that computer simulations are needed for
D.3 in order to improve the statistics of the simulations
done for D54,5 @32# and to explore the fluid-solid phase
boundaries forD.5. The numerical effort for such simula-
tions, however, increases rapidly with dimension, as the
number of particles in a hypercubic box~with periodic
boundaries! increases significantly withD.

It would also be interesting to access hypersphere freezing
by the unifying concept of density functional theory. The
fluid free energy was derived in this paper. To get the solid
free energy, one could use an ansatz based on Gaussian den-
sity peaks centered on a~laminated or any other! lattice and
minimize the free energy with respect to the width of the
peaks and the lattice structure. One could further extract the
wall-fluid and wall-solid surface tensions from DFT. We
leave these problems for further studies.
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FIG. 8. Lindemann parameterL at melting as a function of
dimensionD.

FIG. 9. Reduced surface tensionbgsD21(2R) according to
scaled-particle theory as a function of the dimensionD at the re-
spective densityh54/2D, which is close to freezing.
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Colloids confined to a flexible container
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A model of hard spheres trapped inside a container of fluctuating shape is proposed to describe colloidal
particles in a vesicle or in an emulsion droplet. The container is assumed to be the convex hull of the particles
and is described by an integral geometric approach including volume and surface terms. In the limit of large
volume coupling, the model reduces to the well-known geometric problem of natural bin packing. Using
computer simulations and cell theory, we calculate equilibrium properties for various finite numbers of con-
fined particles in conformations ranging from clusters to planar and linear structures and identify transitions
between these different conformations.
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I. INTRODUCTION

Clusters are present in a variety of systems, ranging from
atomic systems@1# such as silicon@2# or noble gases@3# to
aggregated colloidal suspensions. Clusters are built up by a
finite number of particles that tend to be closely separated.
The structural organization inside a cluster can be very rich
and originates from the interactions between particles and
the interaction with the surrounding. One simple mechanism
to generate such structures is the packing of hard spheres
~HS! under different boundary conditions.

The efficient packing of spheres is an old problem dating
back to Kepler and Gauss@4#. One question concerns the
densest packing of an infinite number of spheres. Only re-
cently, a mathematical proof stating that no packing denser
than a face-centered-cubic structure~fcc! is possible in three
dimensions was announced and published in parts@5#. Re-
lated problems are optimal shapes of compact strings@6# and
the efficient packing of a finite number of spheres inside a
given container. A particular simple container is thenatural
bin. This is the smallest convex body that contains a given
configuration of spheres. It is canonical to ask for the con-
figuration of spheres that leads to the smallest natural bin.
Contrary to intuition, this is not a spherelike cluster for a
small number of spheres. Up to 56 spheres, a linear configu-
ration in which the sphere centers lie on a straight line~‘‘sau-
sage’’! is denser than any spherelike or platelike configura-
tion. In four dimensions, the crossover from a sausage to a
spherelike cluster happens at about 300 000 spheres. This
effect has become known as the ‘‘sausage catastrophe’’
@4,7#.

Hard spheres are widely used to model dense liquids and
solids and they can be experimentally realized by suspen-
sions of sterically stabilizedPMMA particles@8,9#. Besides
the bulk freezing transition into an fcc crystal, hard spheres
have been considered in a variety of confining situations,
such as confinement between parallel plates@10,11#, inside a
spherical cavity@12–14#, or inside emulsion droplets@15#. In
all these cases, there is rigid confinement: The pores do not
change their shapes.

However, shape fluctuations do exist in nature. Examples
are the deformations of liquid droplets in emulsions, where
the surface tension between the continuous phase, say water,

and the dispersed phase, say oil, tends to keep the droplet
shape spherical and thermal fluctuations tend to deform this
ideal shape. Another system that exhibits many complicated
shapes is vesicles@16,17#, which are closed two-dimensional
membranes@18# that are suspended in a molecular liquid.
Besides the fluctuations of a spherical object, toroidal con-
figurations with holes or even starlike shapes are possible.
They originate from the highly nontrivial membrane struc-
ture itself, including curvature and elasticity contributions.

Colloidal particles can be trapped inside larger objects in
quite a number of ways. Experimentally realized examples
are magnetic beads inside biological cells@19#, liquid drop-
lets inside liquid droplets in double emulsions@20#, small
vesicles inside giant ones@21#, and colloidal particles inside
lipid bilayer vesicles@22#. Vesicles in contact with nanopar-
ticles and colloids were studied also theoretically@23#.

In the present work, we investigate which shape fluctua-
tions can be driven not by the membrane itself but by colloi-
dal particles that are imprisoned inside the object. The shape
fluctuations are coupled to the positions of the colloidal par-
ticles resulting in new cluster structures as well as new
vesicle shapes. One interesting question is whether the pecu-
liar transition from a compact cluster to a linear configura-
tion, the sausage catastrophe, is present in a system that not
only describes close-packed structures, but also accounts for
the entropy due to the positional degrees of freedom of the
particles. We consider particles inside a container, which is
modeled through a coarse-grained approach involving an in-
tegral geometric description. Integral geometry is a powerful
tool that is becoming increasingly popular@24#. There are
applications ranging from microemulsions@25# to complex
fluids @26,27#. The basic ingredients of our model involve a
surface tension and an external pressure acting on the con-
tainer modeled as surface and volume couplings. As a result,
we identify different types of conformations corresponding
to rodlike, platelike, and spherelike vesicle shapes, and we
determine their relative stability as a function of temperature
by using cell theory and computer simulations.

The paper is organized as follows. In Sec. II, we define
our theoretical model for colloids inside a fluctuating object.
A cell theory is developed in Sec. III. Details of the Monte
Carlo computer simulation are given in Sec. IV. Results
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thereof are presented in Sec. V, and compared to cell theory.
We finish with concluding remarks in Sec. VI.

II. MODEL OF COLLOIDS IN A CONTAINER

A. Definition of the model

We considerN hard spheres with diameters with position
coordinatesr i , i 51,...,N in three spatial dimensions that in-
teract with the pair potential,

f~r !5H ` if r ,s

0 otherwise,

wherer is the separation distance between two particles. The
number of particles we consider is finite and small, typically
N52255.

The particles are wrapped into a closed membrane that is
modeled as the convex hull of the set of spheres$r i%. Math-
ematically, the convex hull of one or more geometric bodies
is the smallest convex body that encloses the basic objects. A
body is called convex if for any two points inside the body
all points that lie on a straight line between both points lie
also inside the body. The convex hull is a uniquely defined
object.

The physical motivation for using the convex hull is a
situation in which the surface tension between the inside and
the outside is large enough so that any free deformation of
the membrane can be neglected. On the other side, the ther-
mal energykBT of the colloids is large enough, so that they
can move and squeeze the membrane. To allow for volume
growth, oil may diffuse into the inside of the vesicle.

Once we have established the membrane shape, it is
straightforward to assign a potential energyfHull to it by
considering integral geometry,

fHull5JVV1JAA1JMM1Jxx. ~1!

Here, the Minkowski functionals or Quermass integrals~see,
e.g., Ref.@25#! are volumeV, surface areaA, integral of
mean curvatureM, and the Euler characteristicx of the con-
vex hull. For a convex bodyx54p holds, soJx is an irrel-
evant parameter for the current investigation and is set to
zero without loss of generality. A nonzero value ofJx may
be of interest once fission processes of the container are
taken into account, or, e.g., toroidal shapes are considered.
Furthermore, we set the coupling to the mean curvature to
zero, JM50. This ensures that the model does not favor
spontaneous curvature. The remaining coupling constants are
volume coupling,JV , modeling an external pressure acting
on the container, and a surface tensionJA . We define dimen-
sionless parameters aslV5JVs3/(kBT) and lA
5JAs2/(kBT). See Fig. 1 for a sketch of the model.

B. Computational details

Let us show how the container volume and surface area
can be computed efficiently. We exploit the relation of the
convex hull of a set of spheres and the convex hull of the
corresponding sphere centers. In both cases the crucial point
is to identify which points~or spheres! contribute to the hull,

i.e., lie at the boundary, and which of the points lie inside
and do not contribute to the hull. For a collection of points
this is a well-known problem in geometry and efficient nu-
merical algorithms are available@28#. We start from the setr i

and identify the boundary points, denoted byr j
(0) . The r j

(0)

define the corners of a polyhedron, which we call thecoreof
the container. Elementary geometry is used to calculate the
Minkowski functionalsV0 ,A0 ,M0 of the core. In particular,
the core surface is obtained by summing up the surface areas
of all its faces. The integral mean curvature is

M05
1

2(k
l kak , ~2!

wherel k is the length of ridgek andak is the angle between
the normal vectors of the two faces adjacent to ridgek. As
the actual container is the parallel body of radiusR to the
container core, we can use Steiner’s theorem~see, e.g., Ref.
@25#! to obtain

V5V01A0R1M0R214pR3/3, ~3!

A5A012M0R14pR2, ~4!

M5M014pR. ~5!

C. Relation to the Helfrich Hamiltonian

Concerning the status of the modelfHull introduced
above, we note that the familiar Helfrich Hamiltonian
@29,17# for membranes is recovered if the membrane confor-
mations are restricted to convex hulls of spheres. To see this,
consider

fHelfrich5 R dAFk2 S 1

r 1
1

1

r 2
2

1

r s
D 2

1
k̄

r 1r 2
G , ~6!

where r S is the radius of spontaneous curvature,k is the
bending rigidity,k̄ is the elastic modulus of Gaussian curva-
ture, and the local curvature radii on the surface are denoted
by r 1 and r 2 . If the set of possible surface shapes is re-
stricted to convex hulls ofN spheres of radiusR, we obtain

fHelfrich5
k

2r S
2 A1S k

R
2

2k

r S
DM1~k1k̄ !x, ~7!

FIG. 1. Sketch of the model of colloids inside a container. The
circles represent the particles with diameters; r i andr i are position
vectors. The solid line is the convex hull with surfaceSand volume
V. The model considered in this work is three-dimensional.
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which is a linear combination of Minkowski functionals,
apart from the missing volume term precisely like the con-
tainer energyfHull . The parameters are related byJA
5k/(2r S

2), JM5(k/R)2(2k/r S), andJx5k1k̄.

D. Ensembles

The central quantity in the microcanonical ensemble is the
density of states, defined as

V~V8,A8!5E dr1¯E drN

3d@V82V~$r i%!#d@A82A~$r i%!#, ~8!

where the integration only runs over allowed hard-sphere
configurations. The~microcanonical! entropy is obtained as
S5kB ln V. The central quantity in the canonical ensemble is
the partition sum

Z5
1

L3NN! E dr1¯E drNe2bf~r1 ,...,rN!, ~9!

where L is the thermal wavelength of the colloids. The
Helmholtz free energy isF52kBT ln Z. Note that as we are
dealing with a finite system, the canonical and the microca-
nonical ensembles are not equivalent.

III. CELL THEORY

The cell theory~CT! is a simple, yet accurate, approach to
hard-sphere systems. Crystals are well-described in bulk
@30,31# as well as in rigid confined geometries@10,11# and
near walls@32#. Here we generalize the concept to flexible
confinement. The striking feature of yielding an exact upper
bound to the free energy is preserved.

A. General scheme

Our strategy consists of two steps. First, we constrain the
colloids to fixed cells in space. Instead of integrating over all
space, we require the center of each particlei to lie inside its
cell Ci . Thus, the integration region in the partition sum@Eq.
~9!# becomes smaller. Second, we construct a bodyK* that
is larger than any possible containerK in this restricted sys-
tem. Replacing the volume and the surface in the Boltzmann
factor by those ofK* , the Boltzmann factor also becomes
smaller and the approximate partition sumZ* we obtain is a
lower bound to the exact partition sumZ. From that naturally
an upper bound to the free energy is obtained.

In detail we proceed as follows. Let us introduce the no-
tion of cellsCi , i 51,...,N, which are geometric objects that
are constructed such that they have a distance of at least the
particle diameters from each other. If each particlei is
confined to its cellCi , the particles of neighboring cells
cannot overlap. We can then drop the hard-core term in the
Boltzmann factor and obtain

Z>
1

L3N E
C~1!

dr1¯E
C^N&

drN exp@2bfHull~$r i%!#

~10!

5
1

L3N E
C~1!

dr1¯E
C~N!

drN exp@2lVV~$r i%!

2lAA~$r i%!#, ~11!

where the factor 1/N! in the definition ofZ, Eq. ~9!, is can-
celed by the number of possibilities to distributeN particles
on N cells.

In order to obtain a tractable integral, we construct an
approximate container

K* 5 ø
r iPCi

K~$r i%!, ~12!

which is the union of all possibleK that are realized if each
particle moves freely inside its cell. The crucial point is that
K* is independent of the position coordinatesr i . This will
allow us to carry out the integrations over space, Eq.~11!.
K* depends, however, on the shape and positions of theCi .
In particular, it can be computed as the parallel body of
radiusR of the convex hull~C, see also Sec. II A! of the cells,

K* 5GR , ~13!

G5C~C1 ,...,CN!, ~14!

where the subscript denotes the parallel body with radiusR.
If G is known, Steiner’s theorem can be used to calculate the
volumeV* and surface areaA* of K* . Due to the definition
of K* and the fact that only convex bodies are involved,

V* >V~$r iPCi%!, ~15!

A* >A~$r iPCi%! ~16!

hold. Finally, the lower boundZ* ,Z for the partition func-
tion is obtained as

Z* 5
1

L3N E
C~1!

dr1¯E
C~N!

drNe2lVV* 2lAA* ~17!

5exp~2lVV* 2lAA* !)
i 51

N

@v free
~ i ! /L3# ~18!

5exp~2lVV* 2lAA* !~v free/L3!N, ~19!

wherev free
( i ) is the volume of cellCi . The last equality holds

if all cells have the same volumev free5v free
( i ) . The free en-

ergy within CT is readily obtained as

F* 52kBT ln Z* ~20!

52NkBT ln~v free/L3!1kBT~lVV* 1lAA* !,
~21!

where the property of being an upper boundF* .F to the
exact free energy is inherited from the bound to the partition
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sum. The remaining task is to optimize with respect to the
positions of the cells in space, their shape, and their size.
Then V* and A* serve as estimates for average container
volume and average surface area.

B. Application to different structures

The structure of the~crystalline! arrangement of particles
is an input to the CT. We prescribe this by specifying the
positionsci of the cell centers. All cells are chosen to have an
identical shapeC. Calculation of the bodyG @Eq. ~14!# yields
volumeV* and surface areaA* of the approximate container
K* . In the following, this recipe is carried out for the three
types of conformations under consideration, see also Fig. 3.

1. Rodlike shapes (‘‘sausages’’)

We assume a one-dimensional arrangement of cells,ci
5 ide, where the cells are labeled byi 51,...,N, d is the
distance between cell centers, ande is some unit vector that
we refer to as ‘‘sausage axis.’’ The free volume for each
particle is assumed to be rotationally symmetric arounde,
and to have different magnitudes along and perpendicular to
e. Hence the cell is a cylinder with radiusr f and heightl f ,
and is aligned alonge. The distance between the centers of
two neighboring cells must bed5s1 l f , so overlap of
neighboring particles cannot occur. Obviously the convex
hull G of the cells is a cylinder of lengthNl f1(N21)s and
radiusr f . Its Minkowski functionals are

VG5pr f
2@Nl f1~N21!s#, ~22!

AG52pr f@Nl f1~N21!s#12pr f
2, ~23!

MG5p2r f1p@Nl f1~N21!s#. ~24!

The volumeV* and surface areaA* of the approximate
container K* , see Fig. 2, are obtained through Steiner’s
theorem as

V* 5pFNl fr f
21~Nr f

21Nl fr f !s1S N211
p

4 D r fs
2

1
Nl fs

2

4
1S N21

4
1

p

6 Ds3G , ~25!

A* 5p@2r f
212Nl fr f1~2N221p!r fs ~26!

1Nl fs1~N211p!s2]. ~27!

F* can be easily minimized numerically with respect tol f
and r f .

2. Platelike shapes (‘‘Pizzas’’)

The cell centers are assumed to build a portion of a two-
dimensional~2D! hexagonal lattice with lattice spacingd.
Henceci5 jde11()/2)kde2 , where j, k are integers enu-
merating lattice sites, and theei build the basis of the Carte-
sian coordinate system. The cells are assumed to be different
in magnitude within thee12e2 ‘‘pizza plane’’ and perpen-
dicular to it. For simplicity, we assume rotationally symmet-
ric cells arounde3 . Hexagonal shapes could be considered,
but we expect the differences to be small@33#. HenceC
again is a cylinder with radiusr f and height l f , and is
aligned alonge3 . In order to avoid overlap,d5s12r f .

We obtain with straightforward calculus

VG5A9l f , ~28!

AG52A91U9l f , ~29!

MG5
p

2
U91p l f , ~30!

where

A95g2A81gU8r f14pr f
2, ~31!

U 95gU812pr f , ~32!

andA8 andU8 are the surface area and perimeter of the hull
of the cell positionsci . The precise arrangement of cells
only enters throughA8 andU8. This remarkable property is
even true for arbitrary 2D cell arrangements other than por-
tions of the hexagonal lattice.

3. Spherelike shapes (‘‘clusters’’)

In contrast to the above structures, clusters are~approxi-
mately! isotropic in all three spatial directions. Therefore, we
choose spherical cells of radiusr f .

From V8, A8, M 8 of the hull of theci , the bodyK* can
be computed as the parallel body with radiusR1r f . Volume
V* and surfaceA* are directly obtained without the need to
calculateG as

V* 5V81A8~R1r f !1M 8~R1r f !
21

4p

3
~R1r f !

3,

~33!

A* 5A812M 8~R1r f !14p~R1r f !
2. ~34!

IV. COMPUTER SIMULATION

We have performed Monte Carlo~MC! simulations for
particle numbersN54,13,55. These were done in the ca-
nonical ensemble with prescribed~reduced! volume and sur-
face coupling. Each MC consists of a check for possible
overlap with other particles, as well as calculation of the
change in the hull potential energyfHull . For N.4, the

FIG. 2. Cell model for sausage configurations. Shown are par-
ticles ~spheres!, cells ~cylinders!, and the containerK* ~enclosing
cigarlike shape!.
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quick hull algorithm@28# is used to identify the convex hull
of the position coordinates. Using umbrella sampling, we
obtain the microcanonical entropy as a function of volume
and surface. This is a delicate task that we only do for small
N54. Typically, between 107 (N54) and 53105 (N555)
MC moves per particle were done.

V. RESULTS

A. Entropy landscape

As an illustration, let us first show snapshots of typical
configurations including cluster, sausage, and pizza in Fig. 3.
For N54, we have calculated the complete entropy land-
scape as a function of volumeV and surface areaA ~see Fig.
4!. There are three maxima in the entropy, which are indi-
cated by the dark color. These are separated by ‘‘forbidden
regions’’ ~white!, which do not contain any allowed configu-
rations. The gap between the sausage and the pizza state is
considerably bigger than the gap between the pizza and the

cluster states. Figure 5~a! shows intersections of the entropy
landscape with lines of constant volume. One observes that
for V fixed to 3s3, there are three separate regions of finite
entropy, representing the three classes of configurations. For
this fixed volume, it is thus not possible to switch continu-
ously from one class to the other. ForV53.2s3, on the other
hand, there is a connection between the cluster and the pizza
region, while the sausage configurations still appear in a
separate peak. Only forV>3.6s3 is there a continuous con-
nection between all these states. In Fig. 5~b!, intersections
with lines of constant surface area are shown. ForA
511.0125s2, only the cluster state has a finite entropy. For
intermediate valuesA511.5188s2,12.025s2 the pizza also
appears and is separated by a pronounced minimum from the
cluster. ForA513.375s2, this minimum becomes shallower
and shifts towards largerV. An additional maximum appears
for small V due to the sausage conformations.

B. Canonical averages

For largeN, it becomes increasingly hard to perform a
sampling of the complete configuration space using simula-
tions. The computation of the container properties slows

FIG. 3. Different conformations.~a! Spherelike~cluster!, ~b!
platelike ~pizza!, ~c! rodlike ~sausage!.

FIG. 4. Contour plot of the entropyS(V,A)2lVV with lV

515 as a function of the container volumeV and surface areaA for
N54.

FIG. 5. One-dimensional cuts of the entropy landscape.~a! S/kB

at fixed values of volumeV/s3 ~as indicated! as a function of
surface areaA/s2. ~b! S/kB at fixed values ofA/s2 ~as indicated!
as a function ofV/s3.
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down the speed of the simulation. In addition, for many par-
ticles the system has a large number of stable and metastable
states, making the sampling with correct statistical weights
much more difficult.

However, it is possible to study specific structures of the
system. This is similar to the treatment in CT. We will com-
pare results from CT and MC for systems with small (N
54), medium (N513), and large (N555) particle num-
bers. Remember thatN555 is a boundary case, where the
sausage is still denser than any cluster.

We compute canonical averages^V& and^A&, for volume
and surface area, respectively, as a function of the coupling
parameterlV . See Fig. 6~a! for a comparison of simulation
and cell theory forN54. The three structures occurring for
this system—the sausage, the pizza, and the cluster—are
studied separately.

First, note that the CT gives the correct succession of the
structures. The volume of the sausage system is smaller than
that of a cluster system, which in turn is less than the volume
of pizza configurations. On the other hand, the surface area
~see the inset! is largest for sausages, then comes the pizza,
and finally the cluster configurations. Upon increasinglV ,
both volume and area decrease, as expected, and the confor-
mations become more compressed.

Apparently the CT results give larger values for volume
and surface area than the computer simulation. However, the
general dependence of the volume coupling looks very simi-
lar, especially the limiting behavior forlV→0 and forlV
→`. The latter even gives the correct value, since the CT
becomes exact for zero temperature.

Remember that the CT neglects configurations where par-
ticles are located outside their cells. These have larger con-
tainers than those taken into account in CT. Hence one might
be misled to conclude that CT should give too small^V& and
^A&. The fact that both quantities are overestimated is merely
due to the construction of the approximate containerK* .
This object is a superset of all possible containers where
particles are inside cells.

Next, we study the case ofN513 particles@Fig. 6~b!# as
an example of a system with an intermediate number of par-
ticles. In order to apply CT to that system, we have to
specify the configurations under examination. This is clear
for the sausage, and we choose an exemplary pizza. For the
cluster, we pick a regular icosahedron, with an extra particle
at its center. We chose this configuration because it was
found frequently during simulation runs. However, this
structure has some special properties. First, it is not the dens-
est possible cluster forN513. One with smaller volume can
be obtained by cutting a spherical region out of a close-
packed fcc lattice. Second, in this configuration all particles
in the outer shell have enough space to move around freely
on the surface of the central sphere. Therefore, the assump-
tion made in CT that all particles are confined to separate
regions might be critical. The results are plotted in Fig. 6~b!,
which shows the same quantities as before. For the surface
area~inset!, we now see very good agreement between simu-
lation and CT results. At first sight, the plot of the container
volume shows the same tendencies as forN54. The general
behavior is correct, but the CT overestimates the volume.

Here the discrepancy is smaller for sausage and pizza struc-
tures. Note, however, that the order of the lines is shifted.
Here, the CT gives a higher volume for the cluster than for
the pizza configurations. We attribute this failure of CT to
the special properties of the icosahedron cluster. The par-
ticles do not stay in the cells as assumed in the theory, so it
cannot give accurate results.

FIG. 6. Average volumêV&/s3 as a function of volume cou-
pling lV from simulation~MC! and cell theory~CT!. Shown are the
values for sausage, pizza, and cluster configurations. The inset
shows the average surface area^A&/s2 as a function oflV for
different particle numbersN. ~a! N54; ~b! N513; ~c! N555.
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For N555, we cut out a portion of a hexagonal lattice for
a representative pizza configuration. Similarly, we construct
a cluster of 55 particles by cutting a spherical portion out of
an fcc lattice. In Fig. 6~c!, results for average volume and
surface area are given. Excellent agreement between theory
and simulation is found.

Summarizing these results, we find that CT gives the cor-
rect behavior of equilibrium properties of the system. It over-
estimates the mean volume, but this deviation decreases for
larger particle numbers. One exception is the icosahedral
structure of theN513 cluster, which causes a special diffi-
culty due to its geometric properties. As the complete pack-
ing problem is a complicated one, we expect that more such
exceptional cases can be found by varyingN. The fact that
CT predicts more accurate results for higher particle numbers
can be attributed to the relative decrease of the number par-
ticles at the boundary. We believe that the high accuracy for
N555 is preserved whenN is increased, even far beyond
this value. Remember that in the thermodynamical limit,N
→`, CT gives a fair description of the bulk crystal@30,31#.

We next consider the question of how much each particle
contributes to the total internal energy of the system. If the
temperature of the system is increased, the container swells,
which results in an excess volume compared to its close-
packed volumeVCP at zero temperature. This increase in
container volume leads to a gain in internal energy per par-
ticle, which is given ase5JV(^V&2VCP)/N. We plote/kBT
in Fig. 7 as a function of scaled temperature. Shown are the
results from both simulation and CT forN54,13,55 and for
sausage, pizza, and cluster configurations. For comparison,
the exact solution forN52 is also shown. The dependence
on the scaled temperaturekBT/Jvs3 is weak. The simulation
data show a global shift to higher values asN increases, but
only a minor dependence on the conformation. CT fails to
describe the behavior for smallN, but gives the correct re-
sults forN555.

C. Transitions between different shapes

As the CT permits direct access to the free energy, we can
calculate a ‘‘phase diagram’’ as a function of the coupling

parameters. We define a stable phase as the structure with the
smallest free energy, which has the largest statistical weight.
However, as the system is not in the thermodynamical limit,
the probability for conformation with larger free energy does
not vanish. We find that either the sausage or the cluster is
most stable, see Fig. 8. The horizontal axis is the ratio be-
tween volume and surface coupling,lA /lV . The vertical
axis is the inverse volume coupling 1/lV . Remember that
lV5Jvs3/kBT, so that 1/lV can be regarded as a tempera-
ture, whereaslA /lV5JA /(JVs) is independent of tempera-
ture. For fixed temperature, we follow a horizontal path in
the phase diagram by changing the ratiolA /lV . The con-
tainer is in either the sausage or the cluster state. For small
lA /lV the sausage is stable, as this is the most dense struc-
ture in terms of occupied volume. IncreasinglA /lV leads to
stabilization of the cluster, because this more compact object
possesses smaller surface area. The location of the crossover
~phase boundary! shifts towards largelA /lV upon increas-
ing temperature. IflA /lV is sufficiently large, the cluster is
the ground state atT50 and remains stable for smallT.
IncreasingT leads to a transition to the sausage. In both
regions of the phase diagram, there are two metastable states.
The free energies of those can also be compared in order to
conclude which of both is relatively more stable. The result-
ing boundaries show that close to the sausage-cluster transi-
tion, the pizza is least stable, but at extremelA /lV it will be
more stable than the other metastable state. However, the
pizza structure never has the lowest free energy of all three
conformations. For highT, it is expected that the container
does not exert enough pressure on the particles to confine
them to well-defined lattice sites, and melting will occur. In
infinite bulk systems, this phenomenon depends crucially on
dimensionality. It is absent~for short-ranged interactions! in
1D, and the location and even the scenario are different in
2D and 3D. In order to estimate where melting occurs in the
present system, we use the following rough criterion. The
particles will be fluidlike if the nearest-neighbor distance ex-
ceeds the value in the corresponding bulk system, which is

FIG. 7. Excess~over ground-state! internal energye ~in units of
kBT! per particle as a function of temperature. Shown are the simu-
lation ~MC! and cell theory~CT! results for sausage, pizza, and
cluster configurations forN54,13,55, together with the exact solu-
tion for N52.

FIG. 8. Phase diagram forN555 confined colloids as a function
of the ratio between surface and volume coupling,lA /lV , and
inverse volume coupling 1/lV . The solid lines separates stable
states~uppercase!, the dashed lines separate metastable states~low-
ercase!.
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d51.086 in 2D andd51.11 in 3D. Within CT, the nearest-
neighbor distance is directly accessible and the correspond-
ing state point can be obtained. The fluid regions obtained in
this way are indicated in Fig. 8. As expected, the 2D and 3D
fluid appear for large 1/lV ~large temperature!.

VI. CONCLUSIONS

We have investigated a system of spherical particles con-
fined within a fluctuating container. Our model is a hybrid of
colloidal cluster physics and membrane theory and couples
the degrees of freedom of the particles and the membrane
resulting in new vesicle shapes as rodlike, platelike, and
spherelike forms. The container may be physically realized
by a membrane that constitutes a vesicle or by an oil droplet
in an emulsion. We allow this object to change its shape, and
take into account an external pressure and a surface tension
towards the surrounding. Our theoretical model uses a de-
scription of the droplet shape on a coarse-grained level based
on integral geometrical methods. The particles are modeled
as a finite number of hard spheres, ranging from 2 to 55.

For this system, we have demonstrated that a zoo of dif-
ferent particle conformations arises. These fall into different
classes, namely three-dimensional~3D!, planar~2D!, and lin-
ear ~1D! ones, called clusters, pizzas, and sausages, respec-
tively.

The breaking of rotational symmetry is especially strik-
ing, asa priori the model does not contain any anisotropic
interactions. The driving force of these transitions is merely
the highly nontrivial close-packed structure of a finite num-
ber of spheres. Here, this purely geometric packing problem
is cast into a physical one through the consideration of the
entropy of the system. It allows us to investigate the behavior
away from close-packing as a function of container volume
and surface area.

As an outlook, we comment on possible future work.

Within the current model, there are still many open ques-
tions. One could investigate the effect of nonvanishing cou-
pling to the integral mean curvature, i.e.,lMÞ0. This might
be a way to stabilize pizza structures, which were found to be
only metastable in the current investigation. Furthermore,
one could consider insertion and escape of particle, i.e., use
the grand-canonical ensemble with respect toN. A straight-
forward generalization is towards a collection of more than
one container. The coupling to the Euler characteristiclx

plays the role of a chemical potential of the containers. As
the simplest model, one could neglect the steric interaction
between the container hulls themselves, and only take into
account the hard cores of particles of different containers.

Furthermore, it would be interesting to model the con-
tainer in more detail. Using Helfrich’s Hamiltonian and a
microscopic model for the membrane constitutes an interest-
ing as well as demanding perspective. It is in principle pos-
sible to find a suitable experimental setup in which one is
able to observe the predicted transitions. Then one could also
investigate the dynamics of the rare events of the conforma-
tional changes, which is also interesting from a more theo-
retical point of view. We also mention the interesting prob-
lem of crystallization of many of these flexible objects filled
with colloidal spheres. Furthermore, it would be interesting
to investigate tangent hard spheres inside a flexible container
in order to study a polymer chain confined to a vesicle. In
this case, one would expect that the ‘‘pizza’’ conformation is
much less stable. Whether our geometric approach can be
used to study hydrophobicity@34# constitutes a further inter-
esting point.
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Topological defects in nematic droplets of hard spherocylinders
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Using computer simulations we investigate the microscopic structure of the singular director field within a
nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an
overall topological charge, the particles are either confined to a two-dimensional circular cavity with homeo-
tropic boundary or to the surface of a three-dimensional sphere. Both systems exhibit half-integer topological
point defects. The isotropic defect core has a radius of the order of one particle length and is surrounded by
free-standing density oscillations. The effective interaction between two defects is investigated. All results
should be experimentally observable in thin sheets of colloidal liquid crystals.

PACS number~s!: 61.30.Jf, 83.70.Jr, 77.84.Nh

I. INTRODUCTION

Liquid crystals~LC! show behavior intermediate between
liquid and solid. The coupling between orientational and po-
sitional degrees of freedom leads to a large variety of me-
sophases. The microscopic origin lies in anisotropic particle
shapes and anisotropic interactions between the particles that
constitute the material. The simplest, most liquidlike LC
phase is the nematic phase where the particles are aligned
along a preferred direction while their spatial positions are,
like in an ordinary liquid, homogeneously distributed in
space. The preferred direction, called the nematic director,
can be macroscopically observed by illuminating a nematic
sample between crossed polarizers.

There are many different systems that possess a nematic
phase. Basically, one can distinguish between molecular LCs
where the constituents are molecules and colloidal LCs con-
taining mesoscopic particles, e.g., suspensions of tobacco
mosaic viruses@1#. Furthermore, there is the possibility of
self-assembling rodlike micelles@2#, which can be studied
with small-angle neutron scattering@3#.

There are various theoretical approaches to deal with
nematic liquid crystals. On a coarse-grained level one may
use Ginzburg-Landau theories, including phenomenological
elastic constants. The central idea is to minimize an appro-
priate Frank elastic energy with respect to the nematic direc-
tor field @4#. Second, there are spin models, like the
Lebwohl-Lasher model, see, e.g., Refs.@5–7#. There the ba-
sic degrees of freedom are rotators sitting on the sites of a
lattice and interacting with their neighbors. The task is to
sample appropriately the configuration space. The third class
of models consists of particles with orientational and posi-
tional degrees of freedom. Usually, the interaction between
particles is modeled by an anisotropic pair potential. Ex-
amples are Gay-Berne particles, e.g.,@8,9#, and hard bodies,
e.g., hard spherocylinders~HSC! @10#. Beginning with the
classical isotropic-nematic phase transition for the limit of
thin, long needles due to Onsager@11#, our knowledge has
grown enormously for the system of hard spherocylinders.
The bulk properties have recently been understood up to
close packing. The phase diagram has been calculated by
computer simulations@12#, density-functional theory@13#,
and cell theory@14#. There are various stable crystal phases,

like an elongated face-centered-cubic lattice with anABC
stacking sequence, a plastic crystal, smectic-A phase, and
nematic and isotropic fluid. Besides bulk properties, one has
investigated various situations of external confinement, like
nematics confined to a cylindrical cavity@15# or between
parallel plates@16,17#. Also effects induced by a single wall
have been studied, like depletion-driven adsorption@18#, an-
choring @19#, wetting @20#, and the influence of curvature
@21#. Furthermore, solid bodies immersed in nematic phases
experience nontrivial forces@22–24#, and point defects ex-
perience an interaction@25#.

Topological defects within ordered media are deviations
from ideal order, loosely speaking, that can be felt at an
arbitrary large separation distance from the defect position.
Complicated examples are screw dislocations in crystalline
lattices and inclusions in smectic films@26#. To deal with
topological defects the mathematical tools of homotopy
theory may be employed@27# to classify all possible struc-
tures. The basic ingredients are the topology of both the em-
bedding physical space and the order parameter space. For
the case of nematics, there are two kinds of stable topologi-
cal defects in three dimensions~3D!, namely point defects
and line defects, whereas in two dimensions~2D! there are
only point defects. These defects arise when the system is
quenched from the isotropic to the nematic state@28#. Also
the dynamics have been investigated@29# experimentally. On
the theoretical side, there is the important work within the
framework of Landau theory by Schopohl and Sluckin on the
defect core structure of half-integer wedge disclinations@30#
and on the hedgehog defect core@31# in nematic and mag-
netic systems. The latter predictions have been confirmed
with computer simulations of lattice spin models@32#. The
topological theory of defects has been used to prove that a
uniaxial nematic either melts or exhibits a complex biaxial
structure@33#. Sonnet, Kilian, and Hess@34# have considered
droplet and capillary geometries using an alignment tensor
description.

The investigation of equilibrium topological defects in
nematics has received a boost through a striking possibility
to stabilize defects by imprisoning the nematic phase within
a spherical droplet. The droplet boundary induces a non-
trivial effect on the global structure within the droplet. More-
over, it can be experimentally controlled in a variety of ways
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to yield different well-defined boundary conditions, namely
homeotropic or tangential ones. One famous experimental
system is polymer-dispersed LCs. Concerning nematic drop-
lets, there are various studies using the Lebwohl-Lasher
model @5–7#. There are investigations of the droplet shape
@35,36#, the influence of an external field@37#, chiral nematic
droplets@38#, structure factor@39#, and ray propagation@40#.
Also simulations of Gay-Berne droplets have been per-
formed @41#. Other systems that exhibit topological defects
are nematic emulsions@42–44# and defect gels in cholesteric
LCs @45#. The formation of disclination lines near a free
nematic interface was reported@46#.

In this work we are concerned with the microscopic struc-
ture of topological defects in nematics. We use a model for
rodlike particles with a pairwise hard core interaction,
namely hard spherocylinders. It accounts for both the orien-
tational degrees of freedom as well as the positional degrees
of freedom of the particles constituting the nematic. Espe-
cially, it allows for mobility of the defect positions. This
system is investigated with Monte Carlo computer simula-
tions. There exist successful simulations of topological line
defects using hard particles, namely integer@47# and half-
integer line defects@48#.

Here, we undertake a detailed study of the microscopic
structure of the defect cores focusing on the behavior of the
local nematic order and on the density field, an important
quantity that has not been studied in the literature yet. As a
theoretical prediction, we find that the arising half-integer
point defects are surrounded by an oscillating density inho-
mogeneity. This can be verified in experiments. We also in-
vestigate the statistical properties of two defects interacting
with each other extracting the distribution functions of the
positions of the defect cores and their orientations. These are
not accessible in mean-field calculations. We emphasize that
both properties, the free-standing density wave which is due
to microscopiccorrelationsand the defect position distribu-
tion which is due tofluctuations, cannot be accessed by a
coarse-grained mean-field-type calculation.

The paper is organized as follows: In Sec. II our theoret-
ical model is defined, namely hard spherocylinders within a
planar spherical cavity and on the surface of a sphere. For
comparison, we also propose a simplified toy model of
aligned rods. Section III is devoted to the analytical tools
employed, such as order parameter and density profiles. Sec-
tion IV gives details about the computer simulation tech-
niques used. The results of our investigation are given in
Sec. V and we finish with concluding remarks and a discus-
sion of the experimental relevance of the present work in
Sec. VI.

II. MODEL

A. Hard spherocylinders

We considerN identical particles with center-of-mass po-
sition coordinatesr i5(r xi ,r yi) and orientationsni , where
the indexi 51, . . . ,N labels the particles. Each particle has a
rodlike shape: It is composed of a cylinder of diameters and
length L2s and two hemispheres with the same diameter
capping the cylinder on its flat sides. In 3D this geometric
shape is called a spherocylinder, see Fig. 1. The 2D analog is
sometimes called discorectangle as it is made of a rectangle

and two half disks. We assume a hard core interaction be-
tween any two spherocylinders that forbids particle overlap.
Formally, we may write

U~r i ,ni ;r j ,nj !5H ` if particles i and j overlap

0 else.
~1!

The geometric overlap criterion involves a sequence of el-
ementary algebraic tests. They are composed of scalar and
vector products between the distance vector of both particles
and both orientation vectors. The explicit form can be found,
e.g., in Ref.@49#. The bulk system is governed by two di-
mensionless parameters, namely the packing fractionh,
which is the ratio of the space filled by the particle ‘‘mate-
rial’’ and the system volumeV. In two dimensions it is given
by h5(N/V)@s(L2s)1ps2/4#. The second parameter is
the anisotropyp5L/s which sets the length-to-width ratio.
The bulk phase diagram in 3D was recently mapped out by
computer simulation@12# and density-functional theory@13#.
The nematic phase is found to be stable for anisotropiesp
.5. In 2D the phase diagram is not known completely but
there is an isotropic to nematic phase transition for infinitely
thin needles@50#. The nematic phase is also present in a
system of hard ellipses@51,52# verified by computer simula-
tions. In 2D the nematic-isotropic transition was investigated
using density-functional theory@53# and scaled-particle
theory@54#. There is work about equations of state@55#, and
direct correlation functions@56# within a geometrical frame-
work.

B. Planar model

To align the particles near the system boundary homeo-
tropically we apply a suitably chosen external potential. The
particles are confined within a spherical cavity representing
the droplet shape. The interaction of each HSC with the
droplet boundary is such that the center of mass of each
particle is not allowed to leave the droplet, see Fig. 2. The
corresponding external potential is given by

Uext~r i !5H 0 if ur i u,R2L/2

` else, ~2!

whereR is the radius of the droplet and we chose the origin
of the coordinate system as the droplet center. The system

FIG. 1. Two hard spherocylinders with position coordinatesr i

andr j , and orientationsni andnj . The width of the particles iss;
the total rod length is denoted byL.
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volume isV5pR2. This boundary condition is found to in-
duce a nematic order perpendicular to the droplet boundary
as the particles try to stick one of their ends to the outside
@57#. Hence the topological charge is one. In the limit,p
51, we recover the confined hard sphere system recently
investigated in 2D@58# and 3D@59–61#.

C. Spherical model

A second possibility to induce an overall topological
charge is to confine the particles to a non-planar, curved
space, which we chose to be the surface of a sphere in three-
dimensional space. The particles are forced to lie tangentially
on the sphere with radiusR, see Fig. 3. Mathematically, this
is expressed as

ur i u5R, ~3!

r i•ni50. ~4!

The director field on the surface of a sphere has to have
defects. This is known as the ‘‘impossibility of combing a
hedgehog.’’ The total topological charge@27# is two. The
topological charge is a winding number that counts the num-
ber of times the nematic director turns along a closed path

around the defect. It may have positive and negative, integer,
or half-integer values, namely 0,61/2,61, . . . .

D. Aligned rods

To investigate pure positional effects we study a further
simplified model where the orientation of each rod is
uniquely determined by its position. Therefore we consider
an arbitrary unit vector fieldn(r ) describing a given nematic
order pattern. In reality, the particles fluctuate around this
mean orientation. Here, however, we neglect these fluctua-
tions by imposingni5n(r i). In particular, we chose the di-
rector field to possess a singular defect with topological
charget, see Fig. 4. The precise definition of this director
field n(t)(r ) is postponed to the next section@and given
therein in Eq. ~5!#. The case of parallel aligned rods,n
5const, has been used to study phase transitions to higher-
ordered liquid crystals@62#.

III. ANALYTICAL TOOLS

A. Order parameters

In order to analyze the fluctuating particle positions and
orientations, we probe against a director field possessing a
topological defect with charget. It is given by

n(t)~q,r !5D= (t)~r !q, ~5!

where the rotation matrix is

D= (t)~a!5S cos~ tf! 2sin~ tf!

sin~ tf! cos~ tf!
D , ~6!

with f5arctan(ay /ax), and a5(ax ,ay) being a 2D vector.
The vectorq is the orientation of particles if one approaches
the defect along thex direction.

As an order parameter, we probe the actual particle orien-
tationsni against the ideal ones

FIG. 2. Homeotropic boundary conditions for the planar droplet.
The particle centers~points! are not allowed to cross a circle with
diameterR2L/2 ~dashed line!. Then the shape of each particle lies
inside a circle with radiusR.

FIG. 3. Spherical system. Each particle with positionr i and
orientationni is forced to lie tangentially on the surface of a sphere.

FIG. 4. Model of aligned rods. Each particle~discorectangles!
has an orientation according to a prescribed director field~lines!.
The position of the arising 1/2 defect is indicated by a filled circle,
the orientation by an arrow.
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S(t)~c,q;r !52^@ni•n(t)~q,r i2c!#2& r21, ~7!

where the radial average is defined aŝ•••& r

5^( i 51
N d(ur i8u2r ) . . . &/^( i 51

N d(ur i8u2r )&, with r i85r i2c
and ^•••& is an ensemble average. Normalization in Eq.~7!
is such that usually 0<S(t)<1, where unity corresponds to
ideal alignment, and zero means complete dissimilarity with
the defect of charget at positionc and vectorq, Eq. ~5!. ~In
general,21<S(t),1 is possible, where negative values in-
dicate an anticorrelation.!

If c andq are not dictated by general symmetry consider-
ations~e.g.,c50 because of the spherical droplet shape!, we
need to determine both quantities. To that end we measure
the similarity of an actual particle configuration compared to
a defect, Eq.~5!. We probe this inside a spherical region
aroundc with radiusR* using

I (t)~c,q!5
2

~R* !2E0

R*
dr rS(t)~c,q;r !, ~8!

whereR* is a suitably chosen cutoff length. We maximize
I (t)(c,q) with respect toc andq. The value at the maximium
is

l (t)5max
c,q

$I (t)~c,q!%, ~9!

and the argument at the maximum isq(t).
Before summarizing the quantities we compute during the

simulation, let us note thatq(t) andl (t) are eigenvector and
the corresponding~largest! eigenvalue of a suitable tensor.
To see this, we attribute to each particle the general tensor

Qi
(t)52@D= (t)~r i2c!ni ^ D= (t)~r i2c!ni #21= , ~10!

where ^ denotes the dyadic product and1= is the identity
matrix. Summing over particles gives

Q= (t)5(
i

Qi
(t) . ~11!

Note that fort50 the usual bulk nematic order parameter is
recovered.1 The order parameter profile, Eq.~7!, is then ob-
tained as

S(t)~c,q,r !5^q•Q= (t)
•q& r , ~12!

and then the relationl (t)q(t)5Q= (t)q(t) holds, if the sum over
i in Eq. ~11! is restricted to particles located inside a spheri-
cal region of radiusR* aroundc.

Let us next give three combinations oft,c,q that apply to
the current model. First, we investigate the~bulk! nematic
order, t50. We resolve this as a function of the distance
from the droplet center, hencec50. The nematic director
q(0) is obtained from Eq.~9! with R* 5R. The order param-
eter, defined in Eq.~7!, then simplifies to

S(0)~r !52^~ni•q(0)!2& r21. ~13!

Second, we probe for starlike order, hencet51, c50. As
we do not expect spiral arms of the star pattern to occur, we
can setq5ex , whereex is the unit vector in thex direction.
We can rewrite Eq.~7! as

S(1)~r !52^~ni• r̂ i !
2& r21, ~14!

where r̂ i5r i /ur i u.
Third, we investigatet51/2 defects. To that end, we need

to search forc andq, as these are not dictated by the sym-
metry of the droplet. Hence we numerically solve Eq.~9!
with R* 52L ~see Sec. IV B!. We obtain

S(1/2)~r !52^@ni•n(1/2)~q(1/2),r i2c(1/2)!#2& r21. ~15!

The distribution of thepositionsof the particles is ana-
lyzed conveniently using the density profiler(r ) aroundc,
which we define as

r~r !5K ~2pr !21
1

N (
i 51

N

d~ ur i2cu2r !L . ~16!

We consider two cases: the density profile around the center
of the droplet, i.e.,c50, and around the position of a half-
integer defect,c5c1 ,c2.

It is convenient to introduce a further direction of at
51/2 defect by

d5D= (1/2)~q(1/2)!q(1/2). ~17!

The vectord is closely related toq(1/2) by a rotation opera-
tion, where the rotation angle is the angle betweenq(1/2) and
thex axis. The directiond is where the field lines are radial;
see the arrow in Fig. 4.

B. Defect distributions

For a given configuration of particles the planar nematic
droplet has a preferred direction given by the global nematic
directorq(0). Each of the two topological defects has a posi-
tion ci and an orientationdi , i 51,2. These quantities can be
set in relation to each other to extract information about the
average defect behavior and its fluctuations. In particular, we
investigated the following probability distributions depend-
ing on a single distance or angle.

Concerning single defect properties, we investigate the
separation distance from the droplet center,

P~r !5~2pr !21
1

2 (
i 51,2

^d~ uci u2r !&, ~18!

and the orientation relative to the nematic director,

P~u!5
1

2 (
i 51,2

^d„arccos~di•q(0)!2u…&. ~19!

Between both defects there is a distance distribution,

P~c12!5~2pc12!
21^d~ uc12c2u2c12!&, ~20!

and an angular distribution between defect orientations,

1The constants in Eq.~10! depend on the dimensionality of the
system and are different from 3D, where, e.g.,Q= (0)5(3/2)( ini

^ ni21= /2 holds.
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P~u12!5^d„arccos~d1•d2!2u12…&, ~21!

which can equivalently be defined withq1
(1/2),q2

(1/2) by using
the identity arccos(d1•d2)52 arccos(q1

(1/2)
•q2

(1/2)).

IV. COMPUTER SIMULATION

A. Monte Carlo

All our simulations were performed with the canonical
Monte Carlo technique keeping particle numberN, volume
V, and temperatureT constant; for details we refer to Ref.
@63#. To simulate spherocylinders with only hard interac-
tions, each Monte Carlo trial is exclusively accepted when
there is no overlap of any particles. One trial always consists
of a small variation of position and orientation of one HSC.

For the planar case the translation for the particlei is
constructed by adding a small random displacementDr i to
the vector r i , similarly the rotation consists of adding a
small random vectorDni to the directionni with Dni•ni
50.

To achieve an isotropic trial on the surface of the sphere,
the rotation matrixM= is applied simultaneously to the vec-
tors r i andni . It is defined as

M= ªS 12c1a2c gs1abc 2bs1agc

2gs1bac 12c1bc a1bgc

bs1gac 2as1gbc 12c1g2c
D ~22!

with s5sinDu andc512cosDu. a,b,g are for every trial
randomly chosen Cartesian coordinates of the unit vector
specifying the rotation axis,Du is a small random angle.
With this method a simultaneous translation and rotation is
warranted by keeping the vectorsr i and ni normalized and
perpendicularly oriented.

The maximal variation in all cases is adjusted such that
the probability of accepting a move is about 50%. The over-
lap criteria were checked by comparing the second virial
coefficient of two- and three-dimensional HSC with simula-
tion results, where the excluded volume of two HSC were
calculated. Each of the runs I–VII was performed with 5
3107 trials per particle. One-tenth of each run was discarded
for equilibration. Especially the strongly fluctuating distance
distribution between both defects,P(c12), needs good statis-
tics. All quantities were averaged over 25 partial runs, from
which also error bars were calculated.

An overview of the simulated systems is given in Table I.
The systems I–VII are planar. System I is the reference. To
study finite-size effects, system II has half as many particles,
and system III has twice as many particles as I. To investi-
gate the dependence on the thermodynamic parameters, sys-
tem IV has a lower packing fractionh, and system V has a
higher one compared to system I. The other thermodynamic
parameter is the anisotropy, which is smaller for system VI
and higher for system VII compared to the system I. To keep
the nematic phase stable for the short rods of system VI, the
packing fractionh had to be increased. The packing fraction
of the dense system V ish50.4143. The spherical system
has the same number of particlesN, packing fractionh, and
anisotropyp as the reference~I!. The radius of the sphere is

half the radius of the planar droplet. The aligned rod model
has the same parameters as the reference system~I!.

B. Technical issues

We discuss briefly a projection method for the spherical
problem and a search algorithm to find defect positions. In
order to perform calculations for the spherical system all
interesting vectors in three dimensions are projected to a
two-dimensional plane. Imagine a given vectorc from the
middle of the sphere pointing to an arbitrary point of the
surface. We convert a positionr i and orientationni to the
vectorsr i

p andni
p in a plane perpendicular toc through

r i
p5r i2~c•r i !c, ~23!

ni
p5ni2~c•ni !c. ~24!

After obtaining a set$r i
p ,ni

p% of three-dimensional vectors
this way, we transform them into a set of two-dimensional
vectors by typical algebraic methods. As a reference the pro-
jection of thex unit vector of the fixed three-dimensional
coordinate system is always the x orientation of the ‘‘new’’
coordinate-system in two dimensions. The results show that
curvature effects are small.

To investigate the radial structure and interactions of the
disclinations it is necessary to localize the centers of the two
point defects. As described in Sec. IV, thel (1/2) parameter
measures the degree of order of a half-integer defect in a
chosen area, so the task is to find the two maxima ofl (1/2) in
the droplet. In the planar case, we do this search with the
following algorithm: A circular test-probe samples the drop-
let on a grid with a grid spacing of 5s. At this point all the
particles in the circle are taken to calculatel (1/2) in the de-
scribed way. After sampling the grid both maxima are stored
and for every maximum a refining Monte Carlo search is
performed. The surrounding of the size of the grid spacing is
randomly sampled and the probe is only moved whenl (1/2)

increases. The search is stopped when the probe does not
move for 200 trials. In the spherical case the method is the
same, but the grid is projected onto the sphere surface and
the calculations ofl (1/2) were performed with projected two-
dimensional vectors as described before.

TABLE I. Overview of the simulated parameter range: number
of particlesN, anisotropyp, packing fractionh, scaled droplet di-
ameter 2R/L. Systems I–VII are planar; the system named
‘‘sphere’’ corresponds to spherical geometry.

System N p h 2R/L

I 2008 21 0.3321 19.05
II 1004 21 0.3321 13.41
III 4016 21 0.3321 26.94
IV 1750 21 0.2894 19.05
V 2500 21 0.4143 19.05
VI 1855 16 0.4143 18.75
VII 3050 31 0.3321 19.35
Sphere 2008 21 0.3321 9.53
Aligned 2008 21 0.3321 19.05
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It is important to chose an adequate radiusR* for the
probe. IfR* is too large, the probe overlaps both defects. As
they have opposite orientations on the average, the located
point of the maximum deviates from the point we are inter-
ested in. If theR* is too small, an ill-defined position results,
as fluctuations become more important. The simulation re-
sults show that a good choice isR* 52L. Although this defi-
nition contains some freedom, we find the defect position to
be a robust quantity. A detailed discussion is given in the
following section.

V. RESULTS

A. Order within the droplet

Let us discuss the order parametersS(t) as a function of
the radial distance from the center of the droplet; see Fig. 5.
S(0) is the usual bulk nematic order parameter, but radially
resolved. It reaches values of 0.6–0.75 in the middle of the
droplet, r ,2L, indicating a nematic portion that breaks the
global rotational symmetry of the system. Forr .3L, S(0)

decays to values slightly larger than the isotropic value of 0.
The decrease, however, is not due to a microscopically iso-
tropic fluid state, as can be seen from the behavior ofS(1).
This quantity indicates globally starlike alignment of par-
ticles for r .3L. It vanishes in the nematic ‘‘street’’ in the
center of the droplet. The distance whereS(0) andS(1) inter-
sect is an estimate for the defect positions. In Fig. 5 the
finite-size behavior ofS(t) is plotted for particle numbersN
51004, 2008, 4016 corresponding to systems II, I, and III.
There is a systematic shift of the intersection point ofS(0)

andS(1) to larger values as the system grows; the numerical
values arer /L52.54,2.91,3.87. However, ifr is scaled by
the droplet radiusR, a slight shift to smaller values is ob-
served as the system size grows. Keeping the medium-sized
system I as a reference, we have investigated the impact of
changing the thermodynamic variables. For different packing
fractions,h50.2894~IV !, 0.3321~I!, 0.4143~V!, we found
that the intersection distances arer /L53.90, 2.91, 1.43. In
the bulk, upon increasing the density the nematic order
grows. Here, this happens for the star orderS(1). But this
increase happens on the cost of the nematic street~seeS(0))

at smallr values. Increasingh leads to a compression of the
inhomogeneous, interesting region in the center of the drop-
let. A similar effect can be observed upon changing the other
thermodynamic variable, namely the anisotropyp. The nem-
atic street is compressed for longer rods,p531 ~VII !, r /L
51.33. Shorter rods,p516, need a higher density to form a
nematic phase, so the values for systems~I!, r /L53.16, and
~VI !, r /L52.91, are similar, as both effects cancel out.

The behavior ofS(1) is similar to the findings for a three-
dimensional droplet, where a quadratic behavior nearr 50
was predicted within Landau theory@31#. A simulation study
using the Lebwohl-Lasher model@32# confirmed this finding
and revealed that a ringlike structure that breaks the spherical
symmetry is present. A comparison to the results for a 3D
capillary by Andrienko and Allen@47# seems qualitatively
possible as they find alignment of particles predominantly
normal to the cylinder axis. Their findings are consistent
with the behavior ofS(1). Although our system is simpler as
it only has two spatial dimensions, we could also establish
the existence of a director field that breaks the spherical sym-
metry by considering the order parameterS(0).

Having demonstrated that the system exhibits a broken
rotational symmetry, we have to assure that no freezing into
a smectic or even crystalline state occurs. Therefore we plot
radial density profilesr(r ), wherer is the distance from the
droplet center, in Fig. 6. The density shows pronounced os-
cillations for larger near the boundary of the system. They
become damped upon increasing the separation distance
from the droplet boundary and practically vanish after two
rod lengths for intermediate density and four rod lengths for
high density. Approaching the droplet center,r 50, the den-
sity reaches a constant value for the weakly nematic systems
I, IV, and V. For the strongly nematic systems, V with high
density and VII with large anisotropy, a density decay at the
center of the droplet occurs. This effect is not directly caused
by the boundary as the density oscillations due to packing
effects are damped. It is merely due to the topological de-
fects present in the system. Quantitatively, the relative de-
crease is@r(3L)2r(0)#/r(3L)50.11 ~V!, 0.09 ~VII !. The
finite-size corrections for systems II and III are negligible.

From both, the scissorlike behavior of the nematic order
~Fig. 5! and from the homogeneity of the density profile

FIG. 5. Nematic order parametersS(t) as a function of the radial
distancer from the droplet center, scaled by the rod lengthL. Star
orderS(1) and bulk orderS(0) is shown. System I is reference, II has
halved, and III has a doubled particle number. See Table I for a
compilation of system parameters. Error bars are only given for I.

FIG. 6. Radially resolved density profilesr(r ) as a function of
the distance from the droplet centerr scaled by the particle length
L. System I is reference, compared to the lower~IV ! and higher~V!
packing fractions and lower~VI ! and higher~VII ! anisotropies. The
inset shows the behavior near the origin where a density decrease
for V and VII appears forr ,2L.
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away from the system wall~Fig. 6!, we conclude that the
system is in a thermodynamically stable nematic phase, and
seems to contain two topological defects with charge 1/2.

In a 2D bulk phase, two half-integer~1/2! defects are
more stable than a single integer~1! defect, as the free en-
ergy is proportional to the square of the charge. However, in
the finite system of the computer simulation that is also af-
fected by influence from the boundaries, it could also be
possible that the defect pair merge into a single one@47,34#.

Next we investigate the defect positions and their orien-
tations. To illustrate both, a snapshot of a configuration of
the planar system is shown in Fig. 7~I!. One can see the
coupling of the nematic order from the first layer of particles
near the wall to the inside of the droplet. The particles near
the center of the droplet are aligned along a nematic director
~indicated by the bar outside the droplet!. The two emerging
defects are depicted by symbols. See Fig. 8 for a snapshot of
the spherical system. There the total topological charge is not
induced by a system boundary but by the topology of the
sphere itself.

B. Defect core

The positions of the defects are defined by maxima of the
l (1/2) order parameter; see Sec. III for its definition. In Fig. 9,
l (1/2) is plotted as a function of the spatial coordinatesr x and
r y for one given configuration. There are two pronounced
maxima, indicated by bright areas, which are identified as the
positions of the defect coresc1 and c2. There are several
more local maxima appearing as gray islands. These are
identified as statistical fluctuations already present in the
bulk nematic phase.

A drift of the positions of a defect core was also reported
in @32#. Here we follow this motion, to investigate the sur-
rounding of the defects. The order parameterS(1/2) is radially
resolved around the defect position in Fig. 10. It has a pro-
nounced maximum aroundr 51.2L. For smaller distances it
decreases rapidly due to disorder in the core region. For

larger distances the influence from the second defect partner
decreases the half-integer orderS(1/2). Increasing the overall
density and increasing the anisotropy leads to a more pro-
nounced hump. The finite-size corrections,~II and III! and
the boundary effects~sphere! are negligible. However, the
curves show two artifacts: A rise nearr 50 and a jump at the
boundary of the search probe,r 52L. In the inset the profile
around a bulk defect is shown. It has a plateau value inside
the probe,r ,2L, and vanishes outside. If we subtract this
contribution from the pure data~I!, continuous behavior at
r 52L can be enforced.

However, the model does not account for 3D effects like
the ‘‘biaxial escape,’’ namely the sequence planar uniaxial-

FIG. 7. Snapshot of a typical particle configuration for the pla-
nar system I. The particles are rendered dark. The two black sym-
bols inside the droplet indicate positions and orientations of defects.
The black bar outside the droplet indicates the global nematic di-
rectorq(0).

FIG. 8. Snapshot of a typical particle configuration for the
spherical system. The particles are rendered dark. There is one 1/2
defect on the left side and one on the right side. They point away
from each other.

FIG. 9. Order parameterl (1/2) as a function of spatial coordi-
natesr x ,r y . Bright areas correspond to large values; dark areas
correspond to small values ofl (1/2). The two bright spots near the
center are identified as topological defects, the gray islands as bulk
defects.
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biaxial-uniaxial with increasing distance from the core center
@34#, as the particles are only 2D rotators. Schopohl and
Sluckin @30# found an interfacelike behavior between the in-
ner and outer parts of a disclination line in 3D. In our system
we do not find a sign of an interface between the isotropic
core and the surrounding nematic phase. This might be due
to a small interface tension and a very weak bulk nematic-
isotropic phase transition.

By radially resolving the probability of finding a particle
around a defect center, we end up with density profiles de-
picted in Fig. 11. The defect is surrounded by density oscil-
lations with a wavelength of the particle length. The finite-
size dependence is small. To estimate the influence from the
system wall, one may compare with the spherical system. It
shows slightly weaker oscillations. This might be due to cur-
vature effects, as the effective packing fraction is slightly
smaller as the linear particles may escape the spherical sys-
tem. The toy model of aligned rods also exhibits a nontrivial
density profile, showing a decrease towards small distance
and oscillations compared to rotating rods. In all cases the
first peak has a separation distance of half a particle length
from the defect center. The second peak appears atr 53/2L.
Again the search probe induces an artificial structure nearr

52L. From this analysis, we can conclude that the oscilla-
tions are due to packing effects. The density oscillations be-
come more pronounced at higher density, and for larger an-
isotropy, see Fig. 12.

C. Defect position

In the planar system, each defect is characterized by its
radial distancer from the center, and the angleu between its
orientation and the global nematic directorq(0). We discuss
the probability distributions of these quantities. In Fig. 13 the
distribution for finding the defect at a distancer from the
center is shown. Generally, the distributions are very broad.
This indicateslarge mobility of the defects. Changing the
thermodynamical variables has a large effect. For the stron-
ger nematic systems V and VII, the distribution becomes
sharper with a pronounced maximum atr 51.5L. Decreasing
the anisotropy weakens the nematic phase, so system IV has
a very broad distribution. The inset shows that the distribu-
tion becomes broader upon increasing system size.

D. Interactions between two defects

A complete probability distribution of both positions of
the defect cores can be regarded as arising from an effective

FIG. 10. Order parameter profilesS(1/2) around the defect center
as a function of the scaled distancer /L from the defect center. The
reference system I is to be compared with lower~IV ! and higher~V!
packing fractions and lower~VI ! and higher~VII ! anisotropies. The
inset showsS(1/2) for bulk defects and for the difference between I
and the bulk.

FIG. 11. Density profile as a function of the distance from the
defect center. System I is reference, II has fewer particles, III has
more. The spherical and aligned models are shown.

FIG. 12. Same as Fig. 11, but for lower~IV ! and higher~V!
packing fractions and shorter~VI ! and longer particles~VII ! com-
pared to system I.

FIG. 13. Probability distributionP(r ) for the distance of a de-
fect from the center of the dropletr /L for lower ~IV ! and higher~V!
packing fractions and shorter~VI ! and longer particles~VII ! com-
pared to system I. The inset shows the finite-size behavior for
halved~II ! and doubled~III ! particle numbers.
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interaction potentialVeff(c1 ,c2) between the defects. The lat-
ter play the role of quasiparticles. The effective interaction
arises from averaging over the particle positions while keep-
ing the defect positions constant. The effective interaction
and the probability distribution are related viaP(c1 ,c2)
}exp@2bVeff(c1 ,c2)#.

Instead of the full probability distribution, we show its
dependence on the separation distance between both defects
and on their relative orientation. In Fig. 14 the probability
distribution of finding two defects at a distancec12 is shown.
It has small values for small as well as largec12. Hence at
small distances the defects repel each other. At large dis-
tances their effective interaction is attractive. Increasing the
nematic order by increasing the density~V! or rod length
~VII ! causes the average defect separation distance to shrink.
The rise nearr /L51 is an artifact: These are events where
the search algorithm does not find two different defects, but
merely finds the same defect two times. To avoid the prob-
lem a cutoff atr 5L was introduced. The finite-size behavior
is strong; see the inset. The large system~III ! allows the
defects to move further away from each other, whereas in the
smaller system~II ! they are forced to be closer together.
However, from the simulation data, it is hard to obtain the
behavior in the limitR/L→`.

This is somewhat in contrast to the phase diagram of a 3D
capillary @34# containing isotropic, planar-radial, and planar-
polar structures, if one is willing to identify the dependence
on temperature with our athermal system. There it was found
that the transition from the planar-polar to the planar-radial
structure happens upon increasing the temperature~and
hence decreasing the nematic order!.

The difference angleu12 between both defect orientations
in the planar system, see Fig. 15, is most likelyp, hence the
defects point on average away from each other. However, the
orientations are not very rigid. For the least ordered system
IV there is still a finite probability of finding the defects with
a relative orientation of 90°. Even for the strongly nematic
systems V and VII the angular fluctuations are quite large.
The inset in Fig. 15 shows the distribution of the angleu

between the defect orientation and the global nematic direc-
tor. A clear maximum nearp/2 occurs. Again, the distribu-
tions become sharper as density or anisotropy increase.

E. Outlook

Finally, it is worth mentioning that the spherical system
still contains surprises. See Fig. 16 for an unexpected con-
figuration, namely an assembly of three positive 1/2 defects
sitting at the corners of a triangle and a negative-1/2 defect in
its center. This is remarkable, because the negative defect
could annihilate with one of the outer positive defects.

In all cases, integer defects seem to dissociate into half-
integer defects. The complete equilibrium defect distribution
of hard spherocylinders lying tangentially on a sphere re-
mains an open question.

VI. CONCLUSIONS

In conclusion, we have investigated the microscopic
structure of topological defects of nematics in a spherical

FIG. 14. Probability distributionP(c12) for the separation dis-
tance between both defect positions scaled by the particle length for
lower ~IV ! and higher~V! packing fractions and shorter~VI ! and
longer spherocylinders~VII ! as compared to system I. The inset
shows the finite-size behavior for halved~II ! and doubled~III ! par-
ticle numbers compared to I.

FIG. 15. Probability distributionP(u12) for the difference angle
between both defect orientations. The reference system I is to be
compared with lower~IV ! and higher~V! packing fractions, and
lower ~VI ! and higher~VII ! anisotropies. The inset shows the dis-
tribution P(u) of the difference angle between the direction of one
of the defects and the global nematic director for the same param-
eters.

FIG. 16. Triangular configuration of three positive defects
around a spontaneously formed negatively charged defect~central
dot!.
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droplet with the appropriate homeotropic boundary and for
particles lying on the surface of a sphere. We have used hard
spherocylinders as a model system for a lyotropic nematic
liquid crystal. This system allows us to study the statistical
behavior of the microscopic rotational and positional degrees
of freedom. For this system we find half-integer topological
point defects in two dimensions to be stable. The defect core
has a radius of the order of one particle length. As an impor-
tant observation, the defect generates a free-standing density
oscillation. It possesses a wavelength of one particle length.
Considering the defects as fluctuating quasiparticles we have
presented results for their effective interaction. The micro-
scopic structure revealed by radially resolving density and
order parameter profiles around the defect position is identi-
cal for the planar and the spherical system.

An experimental investigation using anisotropic colloidal
particles@64,65# like tobacco mosaic viruses or carbon nano-
tubes is highly desirable to test our theoretical predictions.
Then larger accessible system sizes can be exploited. Also of
interest is the long-time dynamical behavior of the motion of
topological defects. The advantage of colloidal systems over

molecular liquid crystals is the larger length scale that en-
ables real-space techniques like digital video-microscopy to
be used.

From a more theoretical point of view it would be inter-
esting to describe the microstructure of topological defects
within the framework of density-functional theory. Using
phenomenological Ginzburg-Landau models, one could take
the elastic constants of the HSC model as an input, and could
calculate the defect positions and check against our simula-
tions.

Finally we note that we currently investigate the three-
dimensional droplets that are filled with spherocylinders. In
this case more involved questions appear, as both point and
line defects may appear.

ACKNOWLEDGMENTS

It is a pleasure to thank Ju¨rgen Klaus, Karin Jacobs,
Holger Stark, and Zsolt Ne´meth for useful discussions, and
Holger M. Harreis for a critical reading of the manuscript.

@1# G. J. Vroege and H. N. W. Lekkerkerker, Rep. Prog. Phys.55,
1241 ~1992!.

@2# L. Herbst, J. Kalus, and U. Schmelzer, J. Phys. Chem.97,
7774 ~1993!.
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Topological defects in rod fluids 455



@45# M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A.
Weitz, Science283, 209 ~1999!.

@46# J. Ignés-Mullol, J. Baudry, L. Lejcek, and P. Oswald, Phys.
Rev. E59, 568 ~1999!.

@47# D. Andrienko and M. P. Allen, Phys. Rev. E61, 504 ~2000!.
@48# S. D. Hudson and R. G. Larson, Phys. Rev. Lett.70, 2916

~1993!.
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Colloidal particles in emulsions

Francisco L. Roma´n,* Matthias Schmidt, and Hartmut Lo¨wen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstrasse 1, D-40225 Du¨sseldorf, Germany
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We propose a statistical mechanical model for colloidal particles suspended in an emulsion of liquid drop-
lets. The particles are modeled as hard spheres. The interaction between droplets is also hard, but the particles
are able to penetrate the droplets. A swelling of droplets is taken into account to ensure material conservation
of the droplet liquid. Hence the presence of the colloids generates droplet polydispersity. Using computer
simulation and liquid state theory, we find that the relative polydispersity exhibits nonmonotonic behavior as
a function of the particle packing fraction and can be traced back to hard sphere bulk density fluctuations.

PACS number~s!: 82.70.Kj, 61.20.Gy, 05.20.Jj

I. INTRODUCTION

Soft matter is divided into many subdisciplines dealing
with membranes, polymers, colloidal suspensions, or emul-
sions. These systems have in common that they exhibit struc-
ture on a mesoscopic length scale and that they include many
degrees of freedom, so one is usually interested in the aver-
age, statistical behavior. Nevertheless, the physical phenom-
ena as well as the methods employed to understand them
may differ substantially from, say, polymers to colloidal sus-
pensions. Insight can be gained by investigating systems that
bridge such areas. In the present work we investigate the
interplay between colloidal suspensions and liquid emul-
sions.

Suspensions of colloidal particles are mixtures between a
molecular solvent and mesoscopic solid particles@1#. The
latter are often loosely called ‘‘colloids.’’ Apart from effects
of gravity like sedimentation, the colloids float in their sol-
vent liquid and interact with each other in similar ways to the
interaction of atoms in ‘‘hard’’ condensed matter. The im-
portant and interesting difference is the large variety of in-
teraction potentials present between colloidal particles.
These interactions are effective in the sense that they arise
from underlying microscopic mechanisms like van der Waals
forces, Coulomb forces, or the Born repulsion. One simple
theoretical model for the treatment of these systems is the
hard sphere model, namely, a collection of spherical particles
that cannot interpenetrate each other. It is the generic model
to understand dense fluids and crystalline solids. Surpris-
ingly, it is realized in nature in suspensions of sterically sta-
bilized colloidal particles. By matching the refractive indices
of the solvent with the colloid material, it is possible to turn
down the van der Waals attraction. The particles are coated
with short polymer brushes needed to stabilize the suspen-
sion against coagulation of particles. As the polymer brushes
are tiny compared to the particle diameter, which is of the
order of microns, a repulsive potential emerges that is almost
hard-sphere-like. There is also considerable current activity
in the field of computer simulations of colloids@2#.

Hard spheres are also considered as a model for the sec-
ond area we want to cover, namely, liquid emulsions. These

are mixtures of two~or more! liquid phases, one being the
continuous phase that contains droplets of the dispersed
phase~s!. The droplets can be very well controlled to have
unique sizes@3# so that even freezing occurs. Although both
dispersed particles and dispersed droplets float in a surround-
ing liquid, the important difference is that the dispersed ob-
jects in emulsions are in the fluid rather than in the solid
state.

In the present work, we investigate a mixture of colloidal
particles and emulsion droplets; see Fig. 1 for a schematic
sketch of the physical situation. Therefore we propose and
study a model system. This system is simplified in many
respects, but it keeps the freedom for the particles to choose
between being dissolved in the continuous phase or within a
dispersed droplet. In reality, the surface tensions between the
colloid material and both solvents will determine whether the
colloids tend to aggregate within or become depleted from
the droplets. There is, however, an even more fundamental
mechanism based on material conservation that we aim at.
As we consider the emulsion on a small time scale, where no
coalescence of droplets appears, we are faced with the fact
that the amount of the dispersed phase~oil! and that of the
continuous phase~water! are conserved quantities. These
constraints lead to a nontrivial behavior of the droplet sizes.
As particles penetrate inside an empty droplet, the droplet
size ~diameter! has to grow, in order to keep the oil volume
constant. The present work aims at the study of the emerging
droplet size distribution, its polydispersity, and the structural
correlations present in the system.

There are important phenomena present in emulsions that
are neglected within the current approach. Here, we deal
only with perfect spherical droplets. Fluctuations of the drop-

*Present address: Departamento de Fı´sica Aplicada, Facultad de
Ciencias, Universidad de Salamanca, E-37008 Salamanca, Spain.

FIG. 1. Physical system of colloidal particles suspended in an
emulsion. The different components are colloids~small spheres!,
emulsion droplets~big spheres!, and solvent~wiggles!. Particles can
penetrate inside droplets.
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let shape@4,5# are ignored. Denkovet al. @6# have considered
colloidal particles pinned at the surface of emulsion droplets
and have proposed that this coating may lead to stabilization
of the emulsion against coalescence. Similar to our current
study is the theoretical work on colloids suspended in a two-
phase solvent@7,8# and measurements of the phase behavior
of colloids in binary liquid mixtures@9#. In our system, how-
ever, both liquids are in a metastable emulsion state. This
enables the preparation of spherical droplets of one phase
within the other, which is not the case in the above men-
tioned bulk systems.

The study of polydisperse systems, especially polydis-
perse hard spheres, has attracted a lot of recent interest; see,
e.g., @10–13#. In these studies, the distribution of sphere
sizes is an input quantity, and the impacts on phenomena like
freezing are investigated. In the present work, however, the
polydispersity is generated through material conservation
and hence is an output quantity.

Our system has two components with hard sphere inter-
actions among like species. However, as our results will
show, it is quite dissimilar from a binary additive hard sphere
mixture, which has also attracted a lot of recent interest~see,
e.g., @14#!. We note that this system has been prepared ex-
perimentally using either colloids~see, e.g.,@15#! or binary
emulsions~see, e.g.,@16#!. Hence, it is conceivable that ex-
perimentalists will be able to prepare well-defined mixtures
of droplets and colloids, which are the issue of interest of the
present work.

In Sec. II the model for colloidal particles suspended in an
emulsion is proposed. Then a theoretical approach linking
density fluctuations to polydispersity is presented in Sec. III.
Various limiting cases are discussed. Section IV explains the
Monte Carlo simulation method, and results are given in Sec.
V. We finish with concluding remarks in Sec. VI.

II. THE MODEL

We consider a mixture of two components. One compo-
nent is made ofNC monodisperse hard spheres, called col-
loids, with diameterssC and position vectorsrC,i , wherei
51, . . . ,NC . They interact with a pairwise hard core poten-
tial

fCC~r C,i j !5H ` if r C,i j ,sC

0 otherwise,
~1!

where r C,i j 5urC,i2rC, j u is the separation distance between
colloids i and j.

The second component is constituted ofND droplets with
polydisperse diameterssD,k , k51, . . . ,ND , and position
vectorsrD,k . Again, the interaction between droplets is pair-
wise hard core,

fDD~r D,kl!5H ` if r D,kl,
1

2
~sD,k1sD,l !

0 otherwise,

~2!

wherer D,kl5urD,k2rD,l u is the separation distance between
dropletsk and l. The total system volume isV0 .

For each set of particle positions$rC,i%, the droplet radius
of the kth droplet at positionrD,k is determined by material
conservation, expressed as

p

6
sD,k

3 5
p

6
sD

3 1E d3xQS sD,k

2
2ux2rD,ku D

3(
i 51

ND

QS sC

2
2ux2rC,i u D , ~3!

whereQ(x) is the Heaviside step function. The diameter of
an empty droplet issD . Equation~3! expresses the fact that
the volume of a swollen droplet equals the volume of an
empty droplet plus the volume of particles inside the droplet.
The latter is expressed as an integration over a function that
is unity for space pointsx that are both inside a particle and
inside a droplet, and vanishes otherwise. The total potential
energy is

f total5 (
i , j 51

NC

fCC~r C,i j !1 (
k, l 51

ND

fDD~r D,kl!. ~4!

In Fig. 2 the model is sketched.
Next we introduce dimensionless quantities that govern

the system. The packing fractions of colloids and of droplets
are defined as

hC5
NCp

6V0
sC

3 , ~5!

hD5
NDp

6V0
sD

3 . ~6!

The third reduced parameter is the size ratiosD /sC of the
diameter of colloids and empty droplets.

III. THEORY

As the droplet size distribution is not prescribeda priori
in our model, we have to find means to analyze it. Therefore
we will develop a theory for the calculation of the polydis-
persity of the emulsion. The droplet size distribution is de-
fined by

FIG. 2. Theoretical model of colloids in emulsions containing
colloids ~small circles! with positionsrC,i and diameterssC , and
droplets ~large circles! with positions rD,k . The diameter of an
empty droplet issD ; the actual diameter of thekth droplet is de-
noted bysD,k .
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p~s!5K 1

ND
(
k51

ND

d~s2sD,k!L , ~7!

where~¯! denotes a canonical average with the total poten-
tial energy given in Eq.~4!.

The polydispersitys is the standard deviation of the drop-
let size distribution divided by the mean~see, e.g.,@17,18#!,

s5
A~m22m1

2!

m1
, ~8!

wheremi are moments of the droplet size distributionp(s),

mi5E
0

`

dsp~s!s i . ~9!

The calculation of the polydispersity requires knowledge of
the momentsm1 and m2 of the distributionp(s). Since in
our system the droplet diameters is related~via material
conservation! to the numberN of colloids inside the droplet,
we shall use this relation to obtain approximate expressions
for m1 andm2 . Explicitly, material conservation implies

N5
s32sD

3

sC
3 ~10!

and then

^N&5
m32sD

3

sC
3 ~11!

and

^N2&2^N&25
m62m3

2

sC
6 , ~12!

where we have used the identitymk5^sk&. Expressions~11!
and ~12! are exact but difficult to handle since they involve
the momentsm3 andm6 . These moments can be related to
m1 andm2 if we assume thatp(s) can be approximated by
a Gaussian of meanm1 and standard deviationAm22m1

2

5m1s. We obtain

^N&5
1

sC
3 ~m1

313s2m1
32sD

3 !, ~13!

^N2&2^N&25
1

sC
6 3s2m1

6~3112s215s4!, ~14!

which are our final expressions for linking the polydispersity
s and the first momentm1 to the average number of particles
in a droplet and its fluctuations. In the following subsection
we consider the case of low emulsion density where one can
address suitable approximations for the relative fluctuation
(^N2&2^N&2)/^N& and the momentm1 that will allow us to
obtain the polydispersity of the droplets.

A. The limit of low droplet densities

For low droplet densitieshD→0, the interaction between
emulsion droplets can be neglected. The interaction in our
system is such that the colloidal particles are undisturbed by
the presence of the droplet. Then the colloids form a simple
bulk hard sphere system, which is, of course, monodisperse.
We can therefore obtain the momentm1 ~the mean diameter
of the droplets! from the following material conservation ex-
pression@see Eq.~3!#:

p

6
m1

3~12hC!5
p

6
sD

3 . ~15!

Moreover, if we consider a droplet with volumeV5ps3/6
then it is possible to write the fluctuation in the number of
colloidal particles inside the droplet as

^N2&2^N&2

^N&
511

rC

V E
V
E

V
drdr 8@gCC~ ur2r 8u!21#,

~16!

whererC56hC /psC
3 is the number density of the colloid

andgCC is the uniform fluid pair distribution function of the
colloid. When the sizeV of the droplets becomes very large,
Eq. ~16! can be written in terms of the isothermal compress-
ibility of the colloid xT ,

lim
V→`

^N2&2^N&2

^N&
5rCkBTxT , ~17!

wherekB is Boltzmann’s constant andT is the temperature of
the system. However, for small droplets finite size effects
arise~see, e.g., Refs.@19#, @20#! and one must take into ac-
count the limits of integration in Eq.~16!.

The procedure for the calculation of Eq.~16! follows the
same basic ideas of Refs.@21#, @19#, @20#. First we write Eq.
~16! in Fourier space,

^N2&2^N&2

^N&
511

rC

~2p!3V E dkĜ2~k!ĥ~k!, ~18!

whereĜ(k) is the Fourier transform of a geometry function
that accounts for the limits of integration~it is 1 inside the
droplet and zero otherwise!, and ĥ(k) is the Fourier trans-
form of the total correlation functionh(r )5g(r )21. Then,
taking into account thatG(r ) is a sphere of diameters, we
get

Ĝ~k!5Ĝ~k!5
4p

k3 FsinS ks

2 D2
ks

2
cosS ks

2 D G . ~19!

On the other hand, we use the Ornstein-Zernike relation for
the total correlation function

ĥ~k!5
ĉ~k!

12rCĉ~k!
, ~20!

whereĉ(k) is the Fourier transform of the direct correlation
function. For simplicity, we use the Percus-Yevick solution
for the direct correlation function since in this case we obtain
analytical results forĥ(k) and the fluctuations~18!. In our
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system the diameters is not a constant but depends on the
number of particles inside the droplet. As an approximation
we consider the following effective diameter:

s̄5m11sC , ~21!

wheresC accounts for the size of the colloids. From Eq.~21!
we obtain

V5
p

6
~m11sC!3. ~22!

In summary, the calculation of the polydispersity for the
low density case is as follows. First we use Eq.~15! to obtain
m1 . Then, from Eqs.~22! and~18! we calculate the fluctua-
tions (̂ N2&2^N&2)/^N&. Finally, making use of Eqs.~13!
and ~14! we solve

^N2&2^N&2

^N&
5

1

sC
3

3s2m1
6~3112s215s4!

m1
313s2m1

32sD
3

~23!

to obtain the polydispersitys.

B. Intermediate and high emulsion densities

For high or intermediate densities of the emulsion, the
interaction between droplets cannot be neglected. This inter-
action has an impact on the colloidal fluid. Thus the effective
volume of the droplet used in expression~18! cannot be cal-
culated as in Eq.~15!, since in this case it depends not only
on the mean density of colloidal particles but also on the
density of the emulsion droplets. Because of this inhomoge-
neous character of the density of the colloid, we have not
derived theoretical results for the polydispersity.

However, on the basis of the behavior at low density, it is
possible to argue about the behavior of the polydispersity at
higher emulsion densities. On the one hand, the exclusion
interaction between droplets does not allow for the possibil-
ity of growth, but, on the other hand, at intermediate and
high densities the colloid particles do not allow for the
shrinking of the droplets. As a consequence, we expect that
the probability distributionp(s) should become narrow and
then the polydispersity should decrease. As we shall see be-
low, this will be confirmed from results of computer simula-
tion. These simulation results indicate that, for a given fixed
colloid density, the low emulsion density result provides an
upper bound for the polydispersity of the emulsion.

IV. COMPUTER SIMULATION

A. Monte Carlo technique

From a general viewpoint, the simulation handles two
coupled systems. One is the emulsion droplet system, which
is a polydisperse system of hard spheres of variable diam-
eters$sD,i% i 51,...,ND

. The other is the colloid system, which
consists of a standard monodisperse hard sphere system with
particles of diametersC . Both, the emulsion droplets and
colloidal particles are coupled via the interaction potential
~4!.

The simulation runs with a fixed number of emulsion
dropletsND and a fixed number of colloidal particlesNC . In
accordance with the standard Monte Carlo method, one pro-

ceeds as follows. First, one particle is randomly chosen~it
can be either a droplet or a colloid particle! and a random
displacement is proposed. The test for acceptance or rejec-
tion of the move depends on the energy change. As we are
dealing with a hard potential, the energy change is either
zero~if no overlapping situation is reached! or infinity ~when
there is an overlap!. In the former case the state is accepted,
in the latter it is rejected. The overlapping states can be
reached because of both the simple movement of a particle or
the growth of a droplet due to the inclusion of colloidal
particles.

After proposing a new position for a droplet or colloid, it
is necessary to calculate the new diameters for the droplets in
order to test for possible overlapping situations. This is done
by means of conservation of both the total amount of mate-
rial in the droplets and the positions of the centers of the
droplets. The growth for the droplets is isotropic with respect
to the center of each droplet~see Fig. 3!.

The algorithm for calculating the new proposed diameter
of the droplet is as follows. Let us suppose that a trial move
is proposed for the dropletj with diametersD, j and position
r D, j , and the proposed position for this droplet isrD, j* . In
order to calculate its new diametersD, j* , we solve the equa-
tion

p

6
~sD, j* !32(

i 51

NC

I ~ urD, j* 2rC,i u,sC ,sD, j* !2
p

6
sD

3 50,

~24!

whereI is the intersection volume between particlei and the
displaced dropletj. The geometrical functionI is given for
two intersecting spheres with center separation distancer and
diameterss1 ,s2(s1,s2) by

I ~r ,s1 ,s2!

5H ps1
3/6 if r<~s22s1!/2

L~r ,s1 ,s2! if ~s22s1!/2,r<~s21sC!/2

0 otherwise,

~25!

where the auxiliary functionL is the volume of a lenslike
shape and is given by

L~r ,s1 ,s2!5
p

12r S s21s1

2
2r D 2

3F r 223S s22s1

2 D 2

12r S s21s1

2 D G .
~26!

FIG. 3. Swelling of droplets. If a colloidal particle tries to move
~arrow! inside a droplet, the swelling of the droplet happens against
the pressure of the surrounding droplets.
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In practice, the terms that actually contribute to the sum over
i in Eq. ~24! are selected through a neighbor list.

Once the new diameter is calculated, the next step is to
verify whether an overlapping situation is reached. Fig. 4
shows that it is possible to reject a colloid particle displace-
ment because of droplet growth. This is also possible if a
droplet is displaced in such a way that its growth leads to an
overlap with a neighboring droplet. Then the displacement
has to be rejected. Of course, situations in which a colloidal
particle can interact with two or even more droplets are pos-
sible, and it is necessary to calculate the final diameter of
each droplet before testing for droplet overlaps.

B. Simulation details

Several simulations for different values of the parameters
hC and hD have been performed to obtain the behavior of
the polydispersity of the emulsion droplets. In all of the
simulations the size ratio issD /sC53. A typical run starts
from a face-centered cubic lattice ofND532 droplets and a
given number of colloidal particlesNC ranging from 50 to
1000. The number of Monte Carlo steps~MCS! used to ther-
malize the system is 107. After that the probability distribu-
tion function p(s) as well as the pair correlation functions
are measured during 108 MCS. Finally, the polydispersity is
calculated by using Eq.~8!.

V. RESULTS

A. Intrinsic polydispersity

The behavior of the probability distribution functionp(s)
for several colloid densitieshC50.02,0.09,0.32,0.52 is
shown in Fig. 5. We consider the case of infinite dilution of
droplets, namely, a system with a single droplet. For large
colloid packing fractions, nearly Gaussian behavior forp(s)
emerges. The mean value grows upon increasinghC , reflect-
ing the size of a typically swollen droplet. The width of the
distribution, however, decreases upon increasing the colloid
density fromhC50.32 to 0.52. The underlying mechanism is
the reduction of bulk hard sphere density fluctuations for the
dense colloidal fluid.

The Gaussian picture, however, breaks down for low den-
sities of colloids,hC50.02 and 0.09~see Fig. 6!. A hump-
like shape is still present, but there arise additional spikes.
We find that these spikes appear in the distribution when an
integer number of particlesNin is completely inside the drop-
let so that no particle intersects with the droplet surface. This
happens ats/sC5@(sD /sC)31Nin#1/3, whereNin is an in-
teger or zero. As an explanation for this droplet size distri-
bution, we note that the number of states with one particle

FIG. 4. Overlap due to swelling. A colloidal Monte Carlo move
~indicated by an arrow! may be rejected, because the swollen drop-
let would overlap~shaded region! with another droplet.

FIG. 5. The diameter probability distributionp(s) for a system
with a single emulsion droplet and various packing fractions of the
colloid hC50.02, 0.09, 0.32, 0.52, and size ratiosD /sC53. As the
packing fraction of colloid increases, the width of the distribution
~polydispersity! decreases.

FIG. 6. Detail of Fig. 5. Note the probability spikes correspond-
ing to integer numbersNin of colloid particles inside the droplet.

FIG. 7. Polydispersitys of the droplets versus the packing frac-
tion of the colloidhC . Circles, squares, and diamonds represent the
simulation data obtained for systems of one droplet,hD50.45, and
hD50.53, respectively. The solid line represents the theoretical re-
sults coming from Eq.~18!. The dashed line represents Eq.~17!
~when the size of the droplet is very large!. Note that the very low
density case~one droplet! is an upper bound for the polydispersity.
The size ratio issD /sC53.
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inside the droplet~proportional to the volume of one sphere
of diametersD2sC/2! will be greater than the number of
states with one particle intersecting the surface of the droplet
~proportional to the surface of the droplet!. For higher den-
sities of colloid, the presence of more particles located at the
border of the droplet smooths the behavior of the probability
distribution. This leads to a highly nontrivial size distribution
that consists of finite probabilities at discrete diameter values
with a superimposed continuous probability density that in-
terpolates between the spikes.

In order to condense the information, we study the width
of the distribution as a function of the thermodynamic pa-
rameters. Figure 7 shows the simulation results for the poly-
dispersity versus the packing fraction of the colloid. Circles
correspond to the case of one emulsion droplet in the system,
squares and diamonds correspond, respectively, to packing
fractions of the emulsion dropletshD50.45 andhD50.53.
We observe that the case of low emulsion densities is an
upper bound for the polydispersity. Its behavior is as follows.
All points start from the value zero that corresponds to a
monodisperse emulsion. As the density increases, more col-
loidal particles are added to the system and, as a conse-
quence of that, the polydispersity increases up to a maximum

value. When still more colloid particles are added, the poly-
dispersity decreases since the colloid system approaches a
dense liquid or even solid phase, and fluctuations in the num-
ber of particles inside a droplet decrease. We have found
that, as the density of the emulsion increases, it is not pos-
sible to reach high colloid densities. This is due to the exclu-
sion interaction for the droplets since the more colloid is
added, the bigger the emulsion droplets become, and it is
even possible to freeze the emulsion.

Solid and dashed lines in Fig. 7 represent the theoretical
results obtained from Eqs.~18! and ~17!, respectively. Note
that our incorporation of finite size effects improves on the
result for the thermodynamic limit. We get good agreement
for the case of low emulsion density. Differences between
simulation results and results obtained by using Eqs.~18!
and ~23! have a different origin depending on the colloid
density. For low colloid densities, our Gaussian approxima-
tion for p(s) breaks down~see Fig. 6.! For the high colloid
density case, deviations arise partly because of the Percus-
Yevick form of the total correlation function in Eq.~18! and

FIG. 8. Distribution functions of colloidal pairsgCC(r ) and
droplet pairsgDD(r ). The droplet packing fraction ishD50.452.
Three concentrations for colloids are shown,hC50.026, 0.209,
0.314. Lines are guides to the eye.

FIG. 9. Distribution function for colloid-droplet pairsgCD(r ),
for the same parameters as in Fig. 8. The arrow denotes the radius
of an empty droplet. Note the different ordinate scale compared to
Fig. 8.

FIG. 10. Snapshot from computer simulation. The large trans-
parent spheres are droplets, the smaller ones represent colloidal
particles. A colloid is shaded dark if its center is not inside any
droplet. The packing fractions arehC50.026, hD50.452. The
droplet subsystem is in a fluid state.

FIG. 11. Same as Fig. 10, but at a higher particle volume frac-
tion hC50.314. The droplets are frozen on a face-centered cubic
lattice, while the colloids remain liquid.
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mainly because the volumeV in Eq. ~18! is approximated by
that of a sphere of the mean diameter of the droplets.

B. Structural correlations

As the system has two components, one can investigate
three different static pair distributions. First, we discuss the
symmetric correlationsgCC(r ) between colloidal pairs and
gDD(r ) between droplet pairs~see Fig. 8!. The packing frac-
tion of the droplets is high,hD50.452, and there are three
cases of particle packing fractions shown, namely,hC
50.026,0.209,0.314. The behavior of the colloids is similar
to that of monodisperse hard spheres, except for a slight shift
of the second peak toward larger distances compared to the
one-component system. The droplet behavior is also hard-
sphere-like but the intrinsic polydispersity washes out the
first peak. At the largest values ofhC50.314, the droplet
subsystem is found to be in a crystalline state.

A quite different behavior is found for the asymmetric
correlations between pairs of one particle and one droplet,
gCD(r ), Fig. 9. This distribution function can be regarded as
the density profile of particles inside~and around! a fixed
droplet. Of course, it also has the meaning of the density
profile of droplets around a fixed particle. There are weak
oscillations inside one droplet radius, which become rapidly
damped outside. The amplitude of the oscillations is tiny,
even at the highest packing fraction considered. The behav-
ior is dissimilar from that of a hard sphere fluid inside a hard
cavity @22–25#, where much stronger structure emerges.

To illustrate our findings we show snapshots generated
from the simulation. In Fig. 10 the high density droplet liq-
uid phase containing few particles is shown. By adding more
particles, freezing of the droplet system occurs, Fig. 11. The
bare droplet packing fraction ofhD50.452 is well inside the
fluid branch of the hard sphere phase diagram. The swollen
droplets, however, build a nearly close-packed face-centered
cubic crystal.

VI. CONCLUSIONS

A model for the behavior of emulsions in the presence of
colloidal particles has been proposed. It describes colloids as
monodisperse hard spheres and emulsion droplets as polydis-
perse hard spheres. Migration of colloids into and out of the
droplets is allowed. The droplet size distribution is not as-
sumeda priori, but evolves self-consistently. Therefore in-
teractions between colloidal particles and emulsion droplets
are taken into account so that conservation of the emulsion
droplet material is fulfilled. Then the exclusion rule of hard
spheres drives the droplet size distribution. We show that
this distribution has quite a rich structure, ranging from mul-
tispike to Gaussian behavior. By means of the study of the
size dependent fluctuations in the number of particles located
inside the droplets, we found an upper bound for the poly-
dispersity of the emulsion.

Concerning future work, we remark that the present
model may be readily generalized to account for nonvanish-
ing surface tensions. In general, there are three surface ten-
sions between the three materials, colloid, oil, and water.
Within the current approach, the surfaces themselves are
given geometrically by intersections of spheres. Hence one
can take into account the potential energy that comes from
the presence of these interfaces. By tuning the surface ten-
sions, one then has additional control over the colloidal ten-
dency to aggregate inside droplets.
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Do effective interactions depend on the choice of coordinates?
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A common approach to complex systems such as colloidal suspensions or polymer solutions describes the
mesoscopic behavior using effective interactions. These potentials act between the macromolecular entities and
can be derived by integrating out the microscopic degrees of freedom. The remaining macroparticle coordi-
nates need to be chosena priori. Two obvious choices are~i! the centers of mass and~ii ! distinct microscopic
entities, such as special ‘‘tagged’’ monomers. Here we compare both in the framework of the Asakura-Oosawa
colloid-ideal polymer mixture. Using computer simulations, we find that although the effective pair interaction
between colloid and polymer differ markedly, correlation functions are in fair agreement.

DOI: 10.1103/PhysRevE.65.022801 PACS number~s!: 61.25.Hq, 61.20.Gy, 61.20.Ja, 82.70.Dd

Choosing optimal coordinates is often the first step to
solve a physical problem. Optimal coordinates are such that
they exploit the simplifying physical properties, e.g., symme-
tries, of a system, and help to find the relevant degrees of
freedom that are responsible for the physical effect under
consideration. As concerns any exact treatment, changing co-
ordinates is an exact mathematical transformation that pre-
serves all properties of a model. Approximations, however,
usually depend on the variables used. Different results may
be obtained if the same approximation is done in different
coordinates. Approximations are usually necessary if one is
dealing with complex systems. In soft matter systems there is
a hierarchy of relevant variables on different length scales.
While basical microscopic degrees of freedom, namely, the
positions of the atoms, are responsible for the behavior on all
length scales, there exist variables that especially govern the
interesting mesoscopic regime. Colloidal particles have the
positions of their atoms as basic position coordinates; an
obvious choice for the~mesoscopic! degree of freedom of
the colloid is its center of mass. The concept, however, to
derive effective interactions between mesoscopic objects
from an averaging over the microscopic degrees of freedom
extends far beyond colloids and has been applied to systems
like star polymers@1# or linear polymers@2–6#, and mixtures
of colloids and star polymers@7#. The choice of meaningful
position coordinates for such macromolecular entities is not
in all cases as straightforward as it may seem at first glance.
In the case of star polymers, the position of the central mol-
ecule to which the polymeric arms are attached was used to
derive an effective interaction@8,9#. In the context of linear
polymer coils, one can think of tagged monomers~segments!
that are visible in a scattering experiment. Both are, in gen-
eral, different from the position of the center of mass of the
whole object. The question arises: what is the superior vari-
able? Is it the center of mass or the position of the special
microscopic object?

In this paper, we study this question in the context of the
Asakura-Oosawa ~AO! colloid-ideal polymer mixture
@10,11# that consists of a hard-sphere model for the colloids,
and a hard-core exclusion between a colloid and a spherical
polymer coil. The polymers do not interact with themselves;
they are assumed to be ideal. Recently the phase diagram and
structure@12,13#, and the interface between demixed phases

@14# were studied. An effective Hamiltonian was derived
@15#, and a density-functional theory@16# was proposed and
entropic wetting investigated@17#.

Here we supplement this model with a simple prescription
for the behavior of a tagged monomer on each polymeric
chain: The monomer is allowed to move freely inside the
sphere that represents the polymer. It is, however, not al-
lowed to leave the sphere, and hence is bound to its chain
@18#. Although both the AO model and the tagged monomer
prescription are highly approximative as concerns the real
world, there is one feature that makes the model suitable for
the present investigation: The position of the polymer center
of mass differs strongly from that of the tagged monomer.
Hence going from one to the other is not a small change, and
we expect insight into the question raised above.

We treat thisfull modeltwo ways: First by integrating out
the positions of the tagged monomers. This leads to the usual
AO model with colloid positions and polymer center of mass
position, and constitutes ourreferencesystem. The second
treatment is by integrating out the polymer centers. This is
done exactly in the limit of vanishing colloid density and
leads to an effective pair potential between a colloid and a
tagged monomer. We neglect all higher-body interactions be-
tween colloids and tagged monomers, as is usually done.
This constitutes theeffective modelwith colloid and mono-
mer position coordinates. The comparison of the reference
model with the effective model is the purpose of this paper.
As expected, the effective interactions between tagged
monomer and colloid as well as polymer center and colloid
are markedly different. Also, a comparison of the appropriate
correlation functions shows differences. However, only small
deviations exist, as we show by simulations. This leads to the
conclusion that the choice of coordinates matters if high ac-
curacy is reached for, but not if one aims at the gross physi-
cal features of the system.

The model we consider consists ofNc colloids with coor-
dinatesr i

c andNp polymers with centers of massr j
p andNp

tagged monomers~segments! with positionsr j
m in a volume

V0 . The interaction between colloids is

Vcc~r !5H ` if r<2Rc,

0 else.
~1!
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The interaction between a colloid and a polymer center is

Vcp~r !5H ` if r<Rc1Rp,

0 else,
~2!

while a tagged monomer interacts with~its! polymer through

Vmp~r !5H 0 if r<Rp,

` else.
~3!

The total potential energy is given by

Vtotal~r !5(
i , j

Vcc~ ur i
c2r j

cu!1(
i , j

Vcp~ ur i
c2r j

pu!

1(
i

Vmp~ ur i
p2r i

mu!. ~4!

Note that the last summation only includes contributions
from pairs of polymer centers and tagged monomers with
equal indices. This ensures that each tagged monomeri is
uniquely bound to its polymeri. See Fig. 1 for a sketch of the
model. As thermodynamical variables, we use the packing
fractions of colloids,hc54pNc(Rc)3/(3V0), and of poly-
mershp54pNp(Rp)3/(3V0), and the size ratioq5Rp/Rc.
The diameters are denoted bysc52Rc andsp52Rp.

To derive effective interactions, we keep the hard-core
colloid-colloid interaction, and integrate out either the tagged
monomers or the polymer centers. Effective binary models
result that differ in the cross interaction between unlike spe-
cies. In both cases, the polymeric degrees of freedom remain
ideal. The first case, integrating out the monomer positions
r i

m , is especially simple, as each monomer is homogeneously
distributed inside its polymeric sphere. Note that no overlap
between colloid and monomer can occur due toVcp and
Vmp. We end up with a model containingr i

p and r j
c . The

‘‘effective’’ interaction between a polymer center and a col-
loid is the same as the pure interactionVcp(r ). In the second
case, we intend to derive an effective interactionVeff

cm be-
tween a tagged monomer and a colloid. This is done in the
limit hc→0, so that no colloid-colloid interactions need to be
taken into account. Due to the ideality of the polymeric de-
grees of freedom, whether center or monomer, ofdifferent
chains, only a single polymer needs to be considered. Natu-
rally a pair potentialVeff

cm(r) arises. It is given by

Veff
cm~r !52kBT ln J, ~5!

J5E d3x expF2
Vmp~ ur2xu!1Vcp~x!

kBT G , ~6!

wherer 5ur u. The integration variablex is the polymer cen-
ter of mass,r is the position of the tagged monomer, and the
colloid sits at the origin. For small distancesr ,Rc, all con-
figurations are forbidden due to overlap of the colloid and
the polymer,Vcp5`, henceJ50. For large distances,r
.Rc12Rp no overlap with the colloid occurs and we obtain
J54p(Rp)3/3. The contribution forRc<r<Rc12Rp is
given by the overlap volume of two spheres with radiiRc

1Rp andRp, which is

I ~r !5
p

12r
~Rc12Rp2r !2@r 223~Rc!212r ~Rc12Rp!#,

~7!

and J54p(Rp)3/32I (r ) is obtained. In summary, the ef-
fective interaction potential is

Veff
cm~r !5H ` if r<Rc,

2 lnF12
3I ~r !

4p~Rp!3G if Rc<r<Rc12Rp,

0 else,
~8!

where we have shifted the potential by an irrelevant constant
of ln@4p(Rp)3/3#, so that it is vanishes for large separations.
This has no effect on observable quantities. In Fig. 2 we
compare both cross potentialsVcp andVeff

cm as a function ofr.
Both differ considerably.

The full model has three components: colloids, polymer
centers, and tagged monomers; hence one can investigate six
different pair correlation functionsgi j (r ). Both the effective
as well as the reference model have two components, of
which only the colloid-colloid pair distribution function
gcc(r ) can be compared directly. The other two involve poly-
meric degrees of freedom, whether the polymer center or the
tagged monomer, and cannot be compared directly. However,

FIG. 1. Sketch of the Asakura-Oosawa model. Gray spheres are
colloids with radii Rc and positionsr i

c , dashed spheres are ideal
polymers with radiiRp and centers of massr j

p , dots are tagged
monomers with positionsr j

m .

FIG. 2. Comparison of two cross potentialsVcp(r ) ~reference!
and Veff

cm(r) ~effective! for size ratioq51. The arrow denotes the
hard core ofVeff

cm(r).
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we can comparegself
mp

* gcp with gmc, andgself
mp

* gpp* gself
mp with

gmm, where the star denotes convolution. This is equivalent
to multiplying the corresponding structure factors in Fourier
space, where the Fourier transform ofgself

mp plays the role of
the polymer form factor. In order to obtain the pair distribu-
tion functions, we have carried out Monte Carlo~MC! com-
puter simulations with 512 particles and 106 Monte Carlo
moves per particle. To obtain the correlation functions in-
volving monomers for the reference system, instead of cal-
culating the convolutions explicitly, a simulation of the full
model was done. MC moves for the monomers are particu-
larly simple. Any random vectorr i

m within a sphere with
radiusRp aroundr i

p is a valid monomer position.
As an illustration, we first show pair-correlation functions

for the full model in Fig. 3 for equal sizes,q51, and equal
densities, hc5hp50.12. Both, gcc(r ) and gcp(r ) show
hard-sphere-like behavior. They vanish inside the core,r
,sc andr ,Rc1Rp, respectively, and have oscillations out-
side. The behavior ofgpp(r ) is different; polymers tend to
form clusters, as can be seen from the rise for small separa-
tions. Also plotted isgself

mp(r ), which is unity forr ,Rp, and
zero outside. The inset shows the phase diagram from free
volume theory@19# for q51. We pick three statepoints in the
mixed phase, at equal total densityhc1hp50.24. Statepoint
~c! has higher colloid density, and statepoint~b! has lower
colloid density compared to~a!, see Table I. In Fig. 4 we
compare results from the effective model to those from the
reference model. See Fig. 4 for results at statepoint~a!. The
results for the reference model are obtained by appropriateconvolutions withgself

mp . This implies thatgcc is identical to
Fig. 3. A single convolution turns the jump ingcp to the
gradual decrease to zero ofgmp. Via two convolutions the
cusp atr 50 of gpp becomes flat ingmm. The corresponding
results for the effective model are close to those for the ref-
erence model, except for slightly less structured behavior.
Increasing the polymer concentration@statepoint~b!# reduces
the overall structure and reduces the differences between re-
sults for the effective and reference model. As expected, as in
the limit hc→0, the effective model becomes exact by con-

FIG. 3. Full model. Pair-distribution functionsgi j (r ) for pairs of
colloids ~cc!, polymer centers~pp!, colloids and polymer centers
~cp!, and monomers and polymer centers~mp, self-part! for q51,
hc5hp50.12 @statepoint~a!#. The inset shows the phase diagram
from free volume theory@19# with a critical point~dot!, and three
statepoints@~a!, ~b!, ~c!, see Table I# marked.

TABLE I. Summary of statepoints where pair distribution func-
tions are considered.

Statepoint hc hp

~a! 0.12 0.12
~b! 0.06 0.18
~c! 0.18 0.06

FIG. 4. Comparison of an effective and reference model. Pair-
distribution functionsgi j (r ) for pairs of colloids~cc!, tagged mono-
mers ~mm!, as well as colloids and monomers~cm! for q51 at
statepointshc5hp50.12 ~a!; hp50.18, hc50.06 ~b!; and hp

50.06,hc50.18 ~c!.
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struction. If we increasehc @statepoint~c!#, stronger devia-
tions occur. The strong clustering ofgmm is especially under-
estimated by the effective model. The colloid-colloid
structure, however, is affected only a little.

Coming back to the question, whether effective interac-
tions depend on the choice of coordinates, the answer is cer-
tainly yes. However, the more relevant question is: to what
extent does the choice of coordinates affect the structural
properties calculated from the effective interactions? There
the answer is only a little. A few cautionary remarks are in

order. First, it is unclear whether the robustness of correla-
tion functions is also present in more realistic models than
the highly simplified AO colloid-ideal polymer mixture. In
particular, long-ranged forces could lead to different behav-
ior. Second, the present paper covers only bulk fluid states.
In crystals or inhomogeneities caused by external influence,
the situation may also be different.

The author thanks J. Dzubiella, A. Jusufi, C. N. Likos, C.
von Ferber, and H. Lo¨wen for stimulating discussions.
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Decoration lattices of colloids adsorbed on stripe-patterned substrates
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The equilibrium structure of decoration lattices composed of colloidal particles adsorbed on periodic stripe-
patterned substrates is calculated as a function of the stripe width and separation and for different interparticle
interactions. Due to a competition of length scales, a wealth of different stable decoration lattices occurs such
as triangular, quadratic, rhombic, kitelike, and sheared honeycomb lattices, triangular slices as well as triangle
superlattices. This is of relevance for constructing templates that enforce crystal growth of unusual solid
structures.
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I. INTRODUCTION

Recent advances in microfabrication have allowed to pre-
pare chemically or topographically patterned substrates in a
controlled way by using e.g., lithographic printing or other
etching techniques@1,2#. There is a profound influence of
such a substrate pattern on wetting@3–10#, on adsorption of
soft matter@11,12# and biological macromolecules@13,14#,
on crystal nucleation@15#, and on bulk phase transitions such
as freezing@16,17# and fluid-fluid phase separation@18#. Pat-
terned substrates have also been used in so-called microflu-
idics in order to control chemical reactions on a microscale
or nanoscale@19,20#. For this purpose, one-dimensional
channels are considered that carry the reacting material.
These channels can either be attractive stripes or topographi-
cal groves.

In this paper we study the adsorption of colloidal particles
on a sticky periodic stripelike pattern. Our motivation to do
so is first coming from experiments where decorations were
obtained by adsorbing colloidal spheres on a patterned sub-
strate mask@11,21–29#, or in an external laser field@30#, for
a recent review see Ref.@31#. Such a decorated substrate may
be offered as a template to other mobile colloidal particles in
order to nucleate further colloidal crystalline sheets and to
grow ‘‘exotic’’ colloidal bulk crystals@16,32,33#. The colloi-
dal particles can both be sterically stabilized@34# or charge
stabilized. In the former case, the pattern can be prepared by
a different chemical coating while in the latter the surface
pattern is dictated by the inhomogeneous surface charge den-
sity @13,35,36#. Another experimental system to observe
structure formation near interfaces is magnetic bubble arrays
with periodic line pinning@37#. While much experience has
been accumulated in how to prepare the substrate in order to
realize a prescribed mask, a more systematic theoretical un-
derstanding of possible decoration structures as induced by
an underlying sticky periodic pattern is missing. In this paper
we investigate this problem for a periodic stripe pattern
within a simple model calculation including both attractive
and repulsive effective interparticle interactions. In equilib-
rium, we discover a wealth of possible stable decoration lat-
tices. Hence although the substrate pattern is relatively

simple, the decoration can be fascinatingly complex so that a
wide range of decoration structures can be generated in a
controlled and simple way. Even for a single stripe, periodic
decoration structures as buckled alternating superlattices
with a unit cell involving a large triangle of particles and
finite slices of a triangular bulk lattice may become stable.
For a periodic stripe pattern, there are even more stable deco-
ration lattices, involving triangular, quadratic, rhombic, kite-
like, and sheared honeycomb lattices.

The paper is organized as follows: We describe the model
in Sec. II and outline our theory in Sec. III. Results are
presented in Sec. IV, and we conclude in Sec. V.

II. THE MODEL

We consider a periodically stripe-patterned smooth sur-
face, shown schematically in Fig. 1. The width of the sticky
stripes isd, while the distance between neighboring stripes is
b, so that the structure is periodic in a direction perpendicular
to the stripes with periodicity lengthb1d. This patterned
surface is exposed to a suspension of spherical colloidal par-
ticles with hard-core diameters aggregating onto the pat-
tern. An aggregated sphere exhibits a point contact with the
substrate gaining a potential energy2e,0, provided the
contact point is inside a sticky stripe. We assume strongly
attractive substrates, such thate is much larger than the ther-

*Email address: harreis@thphy.uni-duesseldorf.de

FIG. 1. Model of hard spheres of diameters on an attractive
stripe pattern~dark gray! of width d and interstripe distanceb. The
sphere centers~crosses! are constrained to lie inside the stripes.
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mal energykBT. Aggregation on the interstripe regions is
neglected. Aggregation occurs from a dilute bulk solution of
colloids. Here, we do not discuss the dynamics of aggrega-
tion or deposition@38#, but rather focus on the equilibrium
structure present after relaxation of the adsorption process.
Typical pair potentialsV(r ) as a function of separation dis-
tancer between colloids have an inner hard core and a short-
ranged tail. By addition of nonadsorbing polymers or salt
ions to the bulk solution, both attractive or repulsive tails can
be realized@39#. For simplicity, we use a square-well/square-
shoulder potential,

V~r !5H ` for r ,s,

v0 for s<r ,s~11d!,

0 else,

~1!

with a small positive~reduced! ranged. Depending on the
sign of v0, the tail is either repulsive (v0.0) or attractive
(v0,0). Thermodynamics of this system in bulk has been
studied in detail, see e.g., Refs.@40–43# and references
therein. Here, we expose the model to an inhomogeneous
surface, and restrict ourselves to zero temperature, i.e., to the
classical ground state@44#. Let A be the area of the surface,N
be the number of adsorbed particles,r5N/A denote the
~two-dimensional! number density, andh5prs2/4 the cor-
responding area fraction. The whole system is characterized
by four reduced parameters, namely, the reduced widthd/s
of the attractive stripe, the reduced interstripe widthb/s, the
range of the potentiald, and the ratiov0 /e of colloid-colloid
to substrate-colloid interaction.

III. THEORY

For zero temperature the energetically most favorable
configurations of the adsorbate will be attained. Technically,
we need to minimize the total potential energyU per sub-
strate areaA. One may decomposeu[U/A5u11u2, where
u1 stems from substrate-particle attraction, andu2 from
particle-particle interactions. These contributions are

u152er, ~2!

u25A21(
i 51

N

(
j 5 i 11

N

V~ urW ( i )2rW ( j )u!, ~3!

whererW ( i ) denote~two-dimensional! particle positions on the
surface. It will prove useful to rewriteu2 in terms of the
kissing numbers k( i ) ~of particle i ), that equal the number of
touching spheres~i.e., urW ( i )2rW ( j )u5s) for particle i. If we
assume absence of hard-core overlap, and all particle sepa-
rationsr being either at contact (r 5s), or outside the range
of interaction@r .s(11d)#, we can write

u25
v0

2A (
i 51

N

k~ i ![v0rk/2, ~4!

wherek5N21( i 51
N k( i ) is the~over system! averaged kissing

number. Note thatu1 favors optimal packing of spheres,

while u2 couples to the number of sphere contacts. Decisive
for phase behavior is the competition between optimization
of packing and kissing, where the ratiov0 /e is a control
parameter. In practice, we start with different candidate lat-
tices for the colloids, calculateu for each one in order to find
the optimal lattice that minimizesu. The choice of candidates
is motivated by mathematical packing and includes rhombic,
square, triangular, kite, and other structures involving super-
lattices. We disregard the disordered fluid phase, as tempera-
ture is zero. We have not considered nonperiodic structures
as quasicrystals@45#, that are expected to be unfavorable for
a one-component colloidal system, but could become rel-
evant for binary and ternary mixtures. A similar zero-
temperature calculation on structured substrates can be found
in Ref. @44#, for quadratic substrate patterns and Lennard-
Jones interparticle interactions. We further remark that simi-
lar crystalline lattice structures were obtained in Ref.@46# for
a different physical system, namely, flux lattices in layered
superconductors. In contrast to the short-range interactions
employed in the present paper, the interaction between flux
lines is long ranged.

IV. RESULTS

A. Single stripe

For b/s.11d, the spheres adsorbed on neighboring
stripes are decoupled and the problem reduces to that of ad-
sorption onto a single stripe. For simplicity, we letd→0 and
v0<0, so that we deal with sticky hard spheres. Geometrical
considerations as well as numerically checking other struc-
tures makes it possible for us to restrict the actually realized
candidates to twon-layered crystals, namely~i! triangular
lattices (nD), and~ii ! supertrianglestructures (nS), see Fig.
2 for illustrations.nD is a portion of the triangular~bulk!
lattice. ThenS crystal consists of a buckled superlattice of
alternating close-packed triangles.

The relevant properties of both candidates are the follow-
ing. Forn close-packed layers on a stripe of widthd, we find

rD5
n

ds
, ~5!

rS5
n~n11!

ds@~n21!12 cosa#
, ~6!

whereaP@0,p/3) is the mismatch angle between adjacent
supertriangles, see Fig. 2. For close-packed states,a is re-
lated tod via

a~d!5arcsin@d2A3~n21!/2#. ~7!

Note that fora50 ~no mismatch!, nD coincides withnS,
and trivially rD5rS . These configurations define the close-
packed area fractionhcp plotted in Fig. 3~a! as a function of
stripe widthd. For the average kissing number, we obtain via
counting of sphere contacts,

kD562
4

n
, ~8!
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kS562
8

n11
. ~9!

Although in the limit a→0 the structures themselves be-
come identical,kS does not approachkD smoothly, but jumps
at a50. Relevant for the potential energy@Eq. ~4!# is not the
kissing number alone, butrk/2, that is plotted in Fig. 3~b! as
a function of stripe widthd.

In the limit v0→2`, maximal kissingper unit areade-
termines the equilibrium structure, as the dominant contribu-
tion rk/2 @Eq. ~4!# to the energyu is to be maximized. Quite
surprisingly, in each intervalnA3s/2,d,(n11)A3s/2, a
transition nD→nS exists, that is located atd/s5(n
21)A3/21A12@(22n21)/(322n21)#2, where large k
and low r in nD are outperformed by lowk and highr in
nS. Note that asn→`, the transition persists, and the rela-
tive phase transition pointd/s2(n21)A3/2 approaches
A5/350.7454.

Putting things together, we can turn to the full energeti-
cally driven phase diagram for arbitraryuv0 /eu. Asking first
how additional layersn→n11 jump in, we find the simple

answer: A transition nS→(n11)D is located at d
5n(A3/2)s, independentof v0 /e. ThenD→nS transition is
less trivial. We obtain

d5~n21!~A3/2!s1sA12F ~e/v0!221n21

~e/v0!2312n21G 2

.

~10!

In the limiting cases, forv0 /e50, we recover the close-
packing structure of discs between lines, and forv0 /e→
2` the structure with maximal number of kisses. Equation
~10! interpolates smoothly between these limits.

The resulting phase diagram is shown in Fig. 4 as a func-
tion of d and exp(v0 /e). We restrict ourselves ton<4; the
succession ofnS andnD continues for largerd. In the limit
of broad stripes (d→`) and infinitely many layers (n→`),
we considerd2(n21)(A3/2)s, that mapsd/s onto the
@0,1# interval and obtain the universal (n-independent! re-
sult,

d2~n21!~A3/2!s→sA 522~e/v0!

@~e/v0!23#2
. ~11!

Narrow stripes with 0,d,(A3/2)s constitute a special
case, because of dominance of a single phase 1S (1D is

FIG. 2. Crystal structuresnD andnS of hard spheres sticking to
a single stripe of widthd for n51,2,3. The stripe widthd increases
from left to right.aP@0,p/3) is the mismatch angle between adja-
cent supertriangles. Spheres building equilateral~super!triangles are
shaded to guide the eye. For largerd the sequence continues in an
analogous way.

FIG. 3. Relevant densities for close-packed hard spheres of di-
ameters on a stripe of widthd as a function ofd/s for nD ~sym-
bols! and nS ~lines! structures, as well as for the bulk triangular
lattice ~dashed lines!. ~a! Area packing fractionh. ~b! Kissing num-
ber density per unit area,rs2k/2.
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squeezed to a vertical line atd50.! The reason for this be-
havior is that 1D and 1S possess equal kissing numbers.
This is in contrast ton.1, wherekD.kS .

Two remarks are in order: First, the supertriangular phases
nS are the two-dimensional analog of three-dimensional
prism phases@47# found for hard spheres confined between
parallel hard plates. A similar cascade of phases has been
found there, although this is interrupted by other additional
phases such as a rhombic structure@48,49#. Second, in con-
trast to the bulk problem@50,51#, we are not aware of a strict
mathematical proof for close-packed configurations, nor of
any other numerical investigation of the packing problem of
discs between lines. Other confining geometries such as the
square@52–54#, triangles @55,56#, and the circle@57–59#
have been treated in a rigorous way.

B. Coupled stripes

For b/s,11d, particles on adjacent stripes interact. We
limit ourselves to the hard sphere case,d50, and hence deal
with a packing problem. To break possible degeneracy of
close-packed states, we considerv0 /e→02, favoring sphere
contacts.

1. Triangular lattice

We focus on the close-packed triangular lattice, of which
is known that there is no denser structure in bulk. If we
succeed to identify patterns that are compatible~all lattice
sites lie on sticky stripes! with the triangular lattice, we have
then proved that there is no denser decoration lattice. The
task is to determine the (b,d) regimes in which the triangular
lattice is geometrically possible. Let the lattice sites of a
triangular lattice be

AW ~ j ,k!5 jaW 11kaW 2 , j ,k50,61,62, . . . , ~12!

whereaW 15(s,0),aW 25(s/2,A3s/2) are basis vectors. In the
following, we imagine the lattice to be fixed on the surface
and attempt to determine those stripe patterns that are com-

patible with the particle lattice. For givenb,d the pattern is
determined by the orientation along the stripes. This orienta-
tion may be expressed asAW ( j ,k)/uAW ( j ,k)u, with suitably cho-
sen values forj ,k. In order to find stripe patterns that fit the
lattice, we calculate the distancej( j ,k) between adjacent
lattice lines~the analog to latticeplanesin three dimensions!,
that are parallel toAW ( j ,k)/uAW ( j ,k)u. To this end, we intro-
duce a vectorBW ( j ,k), that is orthogonal toAW ( j ,k)/uAW ( j ,k)u
as

BW ~ j ,k!52~ j 12k!aW 11~2 j 1k!aW 2 . ~13!

Projection of (21/k)aW 1 ontoBW gives the lattice line distance

j~ j ,k!52
aW 1•BW

kuBW u
5

A3s/2

Aj 21 jk1k2
. ~14!

Upon varyingj andk, the argumentj 21 jk1k2 generates a
~seemingly irregular when sorted! sequence of integer num-
bers, namely, 1,3,4,7,9,12,13,16,19,21,25,27,28,31,36,37,
39,43,48,49, . . . . Expression~14! gives the lattice line dis-
tance for an orientation of lattice lines~parallel to the stripes!
defined byj ,k. Assuming thatb1d and the lattice structure
j( j ,k) have the same periodicity, a triangular lattice fits,
whenever the stripe widthd ~with the stripe orientation given
by AW ( j ,k)/uAW ( j ,k)u) and the interstripe distanceb have
periodicity j( j ,k), j ,kPZ,

b1d5j~ j ,k!. ~15!

This introduces a linear relationship between stripe widthd
and interstripe distanceb. In the b-d plane, lines joining
(j,0) and (0,j) indicate regions where the triangular lattice
fits the stripe pattern. For smaller values ofj, these lines get
increasingly dense and finally converge into the origin.

The assumption ofb1d periodicity is not mandatory.
Rather, we could let the structure be periodic afterm lattice
spacingsj( j ,k), and afterl stripe spacings (b1d). This re-
lation reads

b1d5
m

l
j~ j ,k!, ~16!

wherem andl must be undivisible integers, in order to avoid
redundances. The periodicity brings about a set of inequali-
ties to be satisfied, expressing the condition that no sphere
may lie outside a stripe,

i j~ j ,k!< j ~b1d!~ i j~ j ,k!> j ~b1d!1b, ~17!

that is to be fulfilled for alli , j . Solving this leads to the
relation

~m21!b<d. ~18!

If we assume equality and use Eq.~16!, we can solve for the
minimal stripe widthdmin and simultaneous maximal inter-
stripe distancebmax. These are

FIG. 4. Phase diagram for sticky hard spheres adsorbed on a
single sticky stripe as a function of reduced stripe widthd/s, and
the ~exponentiated! ratio v0 /e of interparticle versus substrate po-
tential. Lines are phase boundaries betweennD andnS structures.
The 1D phase is a vertical line atd/s50.
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bmax5
1

l
j~ j ,k!, ~19!

dmin5
~m21!

l
j~ j ,k!, ~20!

and fulfill the relation

~m21!bmax5dmin . ~21!

Hence the triangular regimes are lines from (0,j) to
(bmax,dmin). The above case@lines from (0,j) to (j,0)# is
recovered form5 l 51. For each combination ofm and l we
thus get a one-dimensional regime, where the triangular lat-
tice fits. Variation ofj and k, at fixed m and l, then gives
additional lines, shifted on thed axis with their length being
reduced. This is illustrated in Fig. 5~a!, where j and k are
varied with m51 and l 51 fixed ~solid lines! as well asm
54 and l 51 fixed ~dashed lines!. The shift of the lines is
according to Eq.~21!, their upper end points lying on a line
defined by Eq.~19!, whose slope changes withm. In Fig.
5~b!, the lattice line distancesj( j ,k) are fixed via j 50,k
51 ~solid lines!, j 50,k52 ~dotted lines!; and j 51,k52
~dash-dotted lines!, while m and l are varied. Figure 5~b!
illustrates that (j ,k) for a given combination of (m,l ) deter-
mine the height and position of one line, with other combi-
nations of (m,l ) producing replicas that are shifted on thed
axis. Figure 5~c! covers the full range~relevant for the scale
of the plot! of valuesj ,k,m,l . Note how the lines get denser
for b→0, and ultimately approach stripe-free bulk packing.
Although we cannot prove that the triangular lattice doesnot
fit any other parts in the phase diagram, we find that quite
likely.

The geometrical features of the regimes are visually quite
striking and may be unexpected from the outset. It is, how-
ever, known that competition of length scales may induce
fractal structures@60#. One simple tool to analyze these is
box counting@61#. In a two-dimensional situation, one cov-
ers the structure under consideration with a rectangular mesh
with mesh widthW, and counts the number of boxes,B, that
touch ~or are completely inside! the structure. This is per-
formed successive times on smaller length scalesW. For a
fractal, a scaling lawB}W2g holds, where the dimensiong
is not an integer. We have carried out such an analysis and
could confirm quite well power law scaling with a noninteger
exponent. A precise determination ofg, however, turned out
to be subtle. We have restricted ourselves to a physically
reasonable lower cutoffW.1023s. For m5 l 51, we obtain
a g51.5. Superimposing ‘‘fence’’ patterns by varyingm,l
over a broad range of values changes the dimension tog
51.6. Such an increase seems reasonable, as apparently, the
structure gets denser. We leave a more thorough investigation
to possible future research.

2. More general cases

We will approach the general case by considering inter-
acting stripes that are themselves densely packed. Results are
known for b/s.1, periodic arrangement of the stripes will,

however, give rise to special lattices. Forb/s51, the
spheres from different stripes can touch and the stable phase
is determined by the equilibrium structure on the stripes,
together with the degeneracy breaking conditionv0 /e→02.
We thus getquadratic ordering in the interstripe region. A
pure quadratic lattice is stable only in one point:b/s5d and
d50. For lowerb and d50 it gets distorted to a lattice of
alternating rhombi, as illustrated in Fig. 6~a!. For d
,A3s/2 the situation is sketched in Figs. 6~b!–6~d! for de-
creasing values ofb. Figure 6 ~b! shows 1S structures on
decoupled stripes forming kite-structures in a periodic stripe
arrangement. The kite structure of Fig. 6~b!, however, is de-
generated with respect to an arbitrary relative shift of two
single stripe patterns. Upon approach and coupling of the
stripes a honeycomb~HC! in Fig. 6~c!, and eventually a

FIG. 5. Regions of stability of the triangular lattice~lines!. ~a!
m,l kept constant~as indicated!, and j ,k varied. ~b! i , j kept con-
stant~as indicated!, andm,l varied.~c! Full range ofj ,k,m,l ~rel-
evant for the scale of the plot!.
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sheared honeycomb, shown in Fig. 6~d!, emerge. For still
smallerb, we expect another alternating rhombic phase, as
shown in Fig. 6~a!, but with finited.0, to be stable.

For infinitely thin stripes, the situation for decreasing in-
terstripe distancesb is sketched in Fig. 7. A sequence of
triangular lattices and centered rectangular lattices arises.
Similar structures were observed in recent experiments
@29,33#.

For large d.A3s/2, a squeezed honeycomb structure
@Fig. 8~a!# that can also be sheared@Fig. 8~b!# appears. More
complex crystal unit cells involving two supertriangular hon-
eycomb structures, both sheared@Fig. 8~c!# and unsheared
@Fig. 8~d!# occur for even largerd.

The resulting phase diagram of possible decoration lat-
tices as a function ofb/s and d/s is depicted in Fig. 9.
While for b/s.1 supertriangles are stable~compare Fig. 4!,
a cascade of sheared honeycomb phases consisting of super-
triangles occurs forb/s,1 and increasingd. Along coexist-
ence lines~dashed lines in Fig. 9!, these sheared supertri-
angle honeycomb phases degenerate into different special
cases: square lattice (d/s50,b/s50), unsheared honey-
comb, squeezed honeycomb@see Figs. 6~e! and 6~f!#, and
alternating rhombic.

We combine the main results of this investigation with the
regions of stability of the undistorted triangular lattice~Sec.
IV B 1! and display the whole phase diagram of possible

decoration lattices as a function ofb/s andd/s in Fig. 10.
The states between the lines of stability of the triangular
lattice are unexplored in our study. We leave those to future
work.

Figures 9 and 10 prove that even though our model is
relatively simple, competition of different length scales leads
to quite different stable decoration lattice structures. On the
basis of Figs. 9 and 10 one can tailor the attractive stripe
pattern in order to produce a given decoration lattice. This is
of direct importance for further crystal growth on top of the

FIG. 6. Crystal structures ford/s,A3/2. ~a! Alternating rhom-
bic for d50 andA3/2,b/s,1; in ~b!–~d! the situation is shown
for 0,d/s,A3/2 for decreasing values of the interstripe width
b/s; ~b! 1S structures on decoupled stripes giving rise to kite struc-
tures in a periodic stripe arrangement;~c! honeycomb~1HC!; ~d!
sheared honeycomb~sheared 1HC!; ~e! and ~f!: squeezed 1HC for
b/s51, with d/s,0.5 andd/s.0.5, respectively. Solid lines in-
dicate unit cells.

FIG. 7. Crystal structures for infinitely thin stripesd/s50 and
decreasing values ofb/s: ~a! hexagonal lattice (b/s5A3/2); ~b!
centered rectangular (0.5,b/s,A3/2); ~c! hexagonal lattice
(b/s50.5); ~d! centered rectangular (b/s,0.5).

FIG. 8. Crystal structures forA3/2<d/s,A3 andb/s<1: ~a!
2D-square hybrid; ~b! sheared 2D-square hybrid; ~c! two-
honeycomb structure~2HC!; ~d! sheared two-honeycomb~sheared
2HC!. Spheres building equilateral triangles are shaded to guide the
eye. Solid lines indicate unit cells.
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decoration lattice used as a template. One can expect@16#
that quite exotic bulk crystalline structures can be aggregated
on top of such a template@32#. This is of relevance for the
construction of optical band-gap materials such as photonic
crystals@62#.

V. CONCLUSION

In conclusion, we have systematically investigated and
predicted decoration lattices composed of colloidal particles
adsorbed on an attractive stripe-patterned substrate. Our re-
sults show, that due to a competition of various length scales,
a wealth of different decoration lattices can be stable. This
knowledge can be exploited to generate exotic lattice struc-
tures by a tailored surface pattern that could be of relevance
for fabricating photonic crystals grown on such templates.
Our work can be extended into several directions: First, other
periodic patterns such as alternating triangular or chessboard
patterns can be studied, where even more complicated deco-

ration lattices are expected. Second, the effect of finite tem-
perature and longer ranged and more realistic particle-
particle and particle-wall interaction should be investigated.
Still we think that the main possibility of decoration lattices
will be very similar to the results obtained for the more sim-
plistic interactions. Also, the nonequilibrium problem of par-
ticle deposition can produce even much richer nonequilib-
rium fractal and random closed-packing structures@63–66#
that have not been considered in the present equilibrium
study. Finally, proving rigorously the different structures to
be close packed should be an interesting problem in math-
ematical geometry.
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