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Density functional for additive mixtures

Matthias Schmidt
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~Received 30 March 2000!

We present a density functional theory for mixtures of particles interacting with a radially symmetric pair
potential. The approach is suitable for systems with soft or hard interactions between like species. The cross
interactions between unlike species are restricted to obey an additivity constraint. The functional is a gener-
alization of the soft fundamental measure theory~SFMT! for one-component systems and reduces to Rosen-
feld’s functional in the case of hard sphere mixtures. It respects both, the zero-dimensional limit and the virial
expansion. The structure of the homogeneous fluid phase is an output. As an application, we calculate the pair
distributions of colloidal hard spheres mixed with star polymers and find good agreement with computer
simulation results.

PACS number~s!: 64.10.1h, 61.20.Gy, 61.25.Hq, 05.20.Jj
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I. INTRODUCTION

One way of proceeding from simple to complex fluids
by increasing the number of different components in a s
tem. Many new physical phenomena arise, like mixing a
demixing, depletion effects or freezing into complicat
crystalline structures. Hence it is fair to say that mixtures
intriguing systems.

One theoretical tool for studying mixtures is densit
functional theory~DFT! @1#. In particular for hard body mix-
tures powerful approaches are known@2–5#. Recently, a den-
sity functional theory for soft interactions was proposed@6#.
This soft fundamental measure theory~SFMT! is based on
the dimensional crossover from zero to three dimensio
and does not require input from the bulk liquid. Instead,
correlation functions in the homogeneous fluid are an ou
of the theory. SFMT was applied successfully to struct
and freezing of star polymer solutions@7#.

Here we demonstrate that the theory can be generalize
mixtures in a straightforward way. The generalization kee
the simplicity of the approach, as well as its desirable f
tures, namely an exact zero-dimensional limit, exact vi
expansion up to second order in density andpredictionof the
correlations and thermodynamics of the bulk liquid.

There is, however, an additivity constraint. This mea
that only the pair interactions between like species can
prescribed. The cross interactions between unlike specie
not at our disposal. Nevertheless, these interactions turn
to have a physically reasonable form. For example, for m
tures of hard and soft spheres, a hard core is preserved. A
application we calculate pair distribution functions for a m
ture of star polymers and colloids. When compared to sim
lation results, we find nice agreement.

In Sec. II the SFMT density functional is described; w
give its definition Sec.~II A !, explain the additivity con-
straint Sec.~II B !, summarize the properties of the function
Sec. ~II C!, and treat mixtures of hard spheres and s
spheres Sec.~II D ! as one special case. As an application
consider star polymers mixed with colloidal particles in S
III. We define the theoretical model~Sec. III A!, set up the
density functional~Sec. III B!, and show results for the fluid
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structure~Sec. III C!. We finish with concluding remarks in
Sec. IV.

II. DENSITY FUNCTIONAL THEORY

A. Definition

Consider a system withm components that interact with
pair potentialsV( i j )(r ), and possess density fieldsr ( i )(r ),
i , j 51, . . . ,m. The discrete picture of mixtures is adopte
all consideration equally apply to polydisperse systems. T
excess free energy functional is expressed as

Fexc@$r
( i )~r !%#5kBTE d3x F„$na~x!%…. ~1!

The density profiles are convolved with weight function
summation over all species yields weighted densities as

na~x!5(
i 51

m E d3r r ( i )~r !wa
( i )~x2r !. ~2!

Within the set of weight functions, the following relation
hold:

w2
( i )~r !52

]

]r
w3

( i )~r !, ~3!

wv2
( i )~r !5w2

( i )~r !r /r , ~4!

w1
( i )~r !5w2

( i )~r !/~4pr !, ~5!

wv1
( i )~r !5w1

( i )~r !r /r , ~6!

w0
( i )~r !5w1

( i )~r !/r , ~7!

where wa
( i )(r ),a50,1,2,3 are scalar quantities an

wv1
( i )(r ),wv2

( i )(r ) are vectors. The weight functions are quan
ties with dimension of length scale to the power ofa23.

The weight functions for speciesi are determined so tha
the Mayer bond f ( i i )(r )5exp„2Vii (r )…21 between par-
ticles of the same species is obtained. This intraspecies
convolution is
3799 ©2000 The American Physical Society
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2 1
2 f ( i i )~r !5w0

( i )* w3
( i )1w1

( i )* w2
( i )2wv1

( i )* wv2
( i ) , ~8!

where the convolution product, denoted by *, also impl
scalar products between vectors.

The free energy density isF5F11F21F3, with the
contributions

F152n0 ln~12n3!, ~9!

F25
n1n22nv1•nv2

12n3
, ~10!

F35
~n2!3~12~nv2 /n2!2!3

24p~12n3!2
. ~11!

We note that recently, more sophisticated versions ofF3
using tensorial weights have been successfully used@7,8#.

B. Cross interactions

Once the weight functionswa
( i ) are calculated by solving

the deconvolution equation~8!, the interactions between un
like species are restricted to obey

2 f ( i j )~r !5w0
( i )* w3

( j )1w1
( i )* w2

( j )2wv1
( i )* wv2

( j )1w0
( j )* w3

( i )

1w1
( j )* w2

( i )2wv1
( j )* wv2

( i ) . ~12!

Loosely speaking, the cross interactions are a combinatio
the intraspecies interactions. This behavior is also prese
the hard sphere FMT@2#, that is primarily a theory for addi-
tive mixtures of hard spheres.

C. Properties

We show that the functional is exact in the zer
dimensional limit and gives the virial expansion up to seco
order correctly.

The zero-dimensional limit for a mixture is defined b
density distributionsr ( i )(r )5h ( i )d(r ), whereh ( i ) is the av-
erage occupation number of speciesi. We assume that al
pair interactions diverge at the origin. Then the delta-sp
can be occupied by at most one single particle. The exc
free energy is F0d5(12h)ln(12h)1h, where h
5( i 51

m h ( i ) is the total number of particles. In the followin
we show that the functional givesF0d exactly. We observe
that F2 and F3 vanish, becauseunv2u5n2, and unv1u5n1,
and the antisymmetry upon exchanging scalar and vecto
densities.

We still have to evaluate the remainingF1 contribution

F@$h ( i )d~r !%#52E
0

`

dr 4pr 2 n0~r !ln@12n3~r !#,

~13!

na~r !5(
i 51

m

h ( i )wa
( i )~r !. ~14!

From the hierarchy of weight functions, Eqs.~3!–~7!, we
obtain the relation

w0
( i )~r !52~4pr 2!21]w3

( i )~r !/]r . ~15!
s
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Integrating and using the boundary conditionsw3
( i )(0)51,

w3
( i )(`)50 yields the 0d excess free energyF0d .
The correct virial expansion can be checked by Tay

expanding for low densitiesF→n0n31n1n22nv1•nv2, and
using the deconvolution equations~8! and ~12!.

We finally note that in the case of hard spheres, Ros
feld’s functional is recovered.

D. Hard and soft spheres

As an important case we consider the cross interac
between a hard spherei with radiusR( i ) and a soft spherej
for which the functional is valid. Deconvolution of the ste
function yields the well-known hard sphere weights@2# ~also
given in Sec. III B!

From Eq.~12! we obtain the cross-Mayer function wit
the particularly simple form

2 f ( i j )5H 1 if r ,R( i )

w3
( j )~r 2R( i )! else.

~16!

We observe that the hard core with radiusR is preserved, and
that the interaction outside the core is given by a shif
w3

( j )(r ) function.

III. STAR POLYMERS AND COLLOIDS

The star polymer system has attracted considerable re
interest@9–16#. In this work we investigate a mixture of sta
polymers and colloidal hard spheres.

A. The model

We considerNc colloids with radiiRc andNs star poly-
mers with radiiRs within a volumeV. The interaction poten-
tial between colloids is hard,

V(cc)~r !5H ` if r<2Rc

0 else.
~17!

The interaction between the star polymers is logarithmic

bV(ss)~r !55
22q ln~r /Rs!1 lnS 2q

q D 0<r ,Rs

fq~r !1 lnS 2q
q D Rs<r ,2Rs

0 2Rs<r ,
~18!

where q
2q is the binomial coefficient. The crossover functio

between small and large distances is given byfq(r )5
2 ln@(11j)2q2jq11Bq2F1(1,12q;21q;2j)#, where j
5(r /Rs)21, Bq52G(112q)G21(q)G21(21q), and 2F1
is the hypergeometric function~see Ref.@7# for a discussion!.

The interaction between colloids and polymers is assum
to have a hard core due to the excluded volume induced
colloid and an additional logarithmic repulsion
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V(cs)~r !55
` if r<Rc

2q lnS r 2Rc

Rs D if Rc,r<Rc1Rs

0 else.

~19!

This form is similar to the result from a microscopic analy
of the interactions between star polymers and hard sph
@17#.

The system is governed by the packing fractions of c
loids, hc54pNc(Rc)3/(3V), and of polymers hs

54pNs(Rs)3/(3V), and the size ratioa5Rs/Rc.

B. The weights functions

The set of weight functions for the colloids is identical
the pure hard sphere case and is given by

w3
(c)~r !5u~Rc2r !, ~20!

w2
(c)~r !5d~Rc2r !, ~21!

w1
(c)~r !5d~Rc2r !/~4pr !, ~22!

w0
(c)~r !5d~Rc2r !/~4pr 2!, ~23!

wv2
(c)~r !5d~Rc2r !r /r , ~24!

wv1
(c)~r !5d~Rc2r !r /~4pr 2!, ~25!

wherer 5ur u, andQ(r ) is the Heaviside step function,d(r )
denotes the Dirac delta function.

The weight functions for the star polymers are

w3
(s)~r !5@12~r /Rs!q#u~Rs2r !, ~26!

w2
(s)~r !5qrq21~Rs!2qu~Rs2r !, ~27!

w1
(s)~r !5qrq22~Rs!2q~4p!21u~Rs2r !, ~28!

w0
(s)~r !5qrq23~Rs!2q~4p!21u~Rs2r !, ~29!

wv2
(s)~r !5qrq21~Rs!2qu~Rs2r !r /r , ~30!

wv1
(s)~r !5qrq22~Rs!2q~4p!21u~Rs2r !r /r . ~31!

These are the same as for the one-component case co
ered in Refs.@6,7#.

C. Results

In order to calculate the partial pair correlation functio
we do not make use of the test-particle limit. Instead,
partial direct correlation functions are calculated from t
density functional via ci j (r )52(kBT)21d2Fexc/
(dr ( i ) dr ( j )). Using the Ornstein–Zernike relation gives th
partial structure factors in reciprocal space@18# and a Fourier
transform yields the pair correlations. We adopt this meth
because no density profile equation is solved. This is a se
test for the quality of the density functional. To compare t
results, we have carried out standard canonical Monte C
computer simulations.
es
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We investigate the partial pair distribution functions b
tween pairs of colloidsgcc(r ), pairs of starsgss(r ) and be-
tween a colloid and a star polymer,gcs(r ) for the intermedi-
ate softnessq512, and for equal number densities
colloids and stars, hencehca3/hs51. In Figs. 1, 2, and 3
results for the size ratiosa51,0.5,2 are given, respectively
The general agreement is good. Phase and amplitude are
rect. However, the DFT peaks are slightly to steep. T
worst case isgss(r ), a52, Fig. 3, Also small spurious val
ues inside the core appear, especially for the cross corr
tionsgcs(r ). Using the test-particle limit, one could get rid o
these values.

FIG. 1. Pair correlation functionsgcc(r ), gcs(r ), andgss(r ) for
a mixture of hard spheres and star polymers as a function of
scaled distancer /(2Rs) at packing fractionshc50.25,hs50.25,
and size ratioa51. Full lines are DFT, dashed lines are simulati
results. The curves are shifted upwards one unit for reason
clarity.

FIG. 2. Same as Fig.1, but at densitieshc50.35, hs50.04375,
and size ratioa50.5, corresponding to small stars.
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IV. CONCLUSIONS

We have shown that the soft fundamental measure the
can be formulated for multi-component mixtures. The pro
erties of the theory are preserved in comparison to the o

FIG. 3. Same as Fig. 1, but at densitieshc50.0625,hs50.5,
and size ratioa52, corresponding to large stars.
.
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component case. In particular, the virial expansion and
zero-dimensional limit for the mixture are exact.

The current theory can only be applied to a limited cla
of systems, that we call additive. This constraint enforces
cross interactions to be a combination of the interactio
between the like species. However, for mixtures of soft a
hard spheres the cross interaction was shown to be mean
ful, because a hard core is preserved.

As an application, we have investigated the fluid struct
of a mixture of colloidal hard spheres and star polyme
When compared to simulation results, we find a remarka
agreement.

It is intriguing that the fluid structure of a multicompone
system can be understood on the basis of two simple in
dients: First, particles cannot sit on top of each other. S
ond, the Mayerf-bond governs the behavior at low densitie

As possible future applications we mention the investig
tion of depletion potentials that has attracted considera
recent interest@19–22# in the context of hard sphere mix
tures. The current functional offers the possibility to stu
the effects of soft interactions essentially with the same t
oretical tools as developed in Ref.@19#.
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@9# C. N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknis

chke, J. Allgaier, and D. Richter, Phys. Rev. Lett.80, 4450
~1998!.

@10# M. Watzlawek, H. Löwen, and C. N. Likos, J. Phys.: Conden
Matter 10, 8189~1998!.
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