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Density functional for additive mixtures
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We present a density functional theory for mixtures of particles interacting with a radially symmetric pair
potential. The approach is suitable for systems with soft or hard interactions between like species. The cross
interactions between unlike species are restricted to obey an additivity constraint. The functional is a gener-
alization of the soft fundamental measure the@¥MT) for one-component systems and reduces to Rosen-
feld’s functional in the case of hard sphere mixtures. It respects both, the zero-dimensional limit and the virial
expansion. The structure of the homogeneous fluid phase is an output. As an application, we calculate the pair
distributions of colloidal hard spheres mixed with star polymers and find good agreement with computer
simulation results.

PACS numbgs): 64.10:+h, 61.20.Gy, 61.25.Hq, 05.20.Jj

[. INTRODUCTION structure(Sec. Il ©. We finish with concluding remarks in
Sec. IV.
One way of proceeding from simple to complex fluids is
by increasing the number of different components in a sys- Il. DENSITY FUNCTIONAL THEORY

tem. Many new physical phenomena arise, like mixing and
demixing, depletion effects or freezing into complicated
crystalline structures. Hence it is fair to say that mixtures are Consider a system witt components that interact with
intriguing systems. pair potentialsVi)(r), and possess density fielgé)(r),

One theoretical tool for studying mixtures is density-i.J=1,....m. The discrete picture of mixtures is adopted;
functional theory(DFT) [1]. In particular for hard body mix- all consideration equally gpply.to polydisperse systems. The
tures powerful approaches are knof@a-5]. Recently, a den- €Xcess free energy functional is expressed as
sity functional theory for soft interactions was propo$éd
This soft fundamental measure thed§FMT) is based on Fexc[{p(i)(r)}]szTj d3x ®({n (x)}). (1)
the dimensional crossover from zero to three dimensions,
and does not require input from the bulk liquid. Instead, theThe density profiles are convolved with weight functions;
correlation functions in the homogeneous fluid are an outpusummation over all species yields weighted densities as
of the theory. SFMT was applied successfully to structure .
and freezing of star polymer solutiohg]. . .

Here we demonstrate that the theory can be generalized to Na(X) :Zl & pO (Wi (x—r). @
mixtures in a straightforward way. The generalization keeps
the simplicity of the approach, as well as its desirable fea- Within the set of weight functions, the following relations
tures, namely an exact zero-dimensional limit, exact virialhold:
expansion up to second order in density anedictionof the

A. Definition

correlations and thermodynamics of the bulk liquid. Opeve 9
: o . . w5’ (r)=——ws3’(r), 3

There is, however, an additivity constraint. This means ar
that only the pair interactions between like species can be _ _
prescribed. The cross interactions between unlike species are w3 =w§(r)rir, (4)
not at our disposal. Nevertheless, these interactions turn out _ _
to have a physically reasonable form. For example, for mix- wd(r)=w(r)/(4ar), 5
tures of hard and soft spheres, a hard core is preserved. As an _ ‘
application we calculate pair distribution functions for a mix- wi(n=w{(r)rr, (6)
ture of star polymers and colloids. When compared to simu- _ _
lation results, we find nice agreement. w§(r) =w{(r)/r, (7)

In Sec. Il the SFMT density functional is described; we .
give its definition Sec(llA), explain the additivity con- Where w(r),«=0,1,2,3 are scalar quantities and
straint Sec(ll B), summarize the properties of the functional W(U'{(r),w(u'z)(r) are vectors. The weight functions are quanti-
Sec. (Il C), and treat mixtures of hard spheres and softties with dimension of length scale to the poweraof 3.
spheres Sedll D) as one special case. As an application we The weight functions for speciesare determined so that
consider star polymers mixed with colloidal particles in Secthe Mayer bondf(!(r)=exp(—V'(r))—1 between par-
lll. We define the theoretical modéSec. Il A), set up the ticles of the same species is obtained. This intraspecies de-
density functionalSec. Il B), and show results for the fluid convolution is
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Integrating and using the boundary condition§’(0)=1,
w{)(%)=0 vyields the 0d excess free energy, .

where the convolution product, denoted by *, also implies The correct virial expansion can be checked by Taylor

scalar products between vectors.
The free energy density i®=d;+ d,+ D5, with the
contributions

®,;=—-ngIn(1—ny), 9
NN = Ny1- Ny
Po= o, 19
n,)3(1—(n,,/n,)?)3
@3:( 2)°(1—(ny2/N3)%) ‘ 11

247(1—ng)?

We note that recently, more sophisticated versionsbgf
using tensorial weights have been successfully (2.

B. Cross interactions

Once the weight functionwfj) are calculated by solving

the deconvolution equatio8), the interactions between un-

like species are restricted to obey
—£(r) =w* W+ w* Wi — wlx W) + wi* i)

W ). a2

Loosely speaking, the cross interactions are a combination of

expanding for low densitie® —ngnz;+n,n,—n,,-n,,, and
using the deconvolution equatiof®) and(12).

We finally note that in the case of hard spheres, Rosen-
feld’s functional is recovered.

D. Hard and soft spheres

As an important case we consider the cross interaction
between a hard spherawith radiusR(") and a soft spherg
for which the functional is valid. Deconvolution of the step
function yields the well-known hard sphere weigF2$ (also
given in Sec. Il B

From Eq.(12) we obtain the cross-Mayer function with
the particularly simple form

1 if r<r®

iD= .
£ = Wg)(r_R(i))

else. (16)

We observe that the hard core with radRis preserved, and
that the interaction outside the core is given by a shifted
w{(r) function.

Ill. STAR POLYMERS AND COLLOIDS

the intraspecies interactions. This behavior is also present in The star polymer system has attracted considerable recent

the hard sphere FMT2], that is primarily a theory for addi-
tive mixtures of hard spheres.

C. Properties

We show that the functional is exact in the zero-
dimensional limit and gives the virial expansion up to secon

order correctly.

interest{9-16]. In this work we investigate a mixture of star
polymers and colloidal hard spheres.

A. The model

d We considemN® colloids with radiiR® and N® star poly-

mers with radiiR® within a volumeV. The interaction poten-
tial between colloids is hard,

The zero-dimensional limit for a mixture is defined by
density distribution(r)= " 8(r), where (") is the av-
erage occupation number of speciesNe assume that all
pair interactions diverge at the origin. Then the delta-spike
can be occupied by at most one single particle. The excess

freem energy is Fog=(1—7)In(l=7)+7 where 7  Thg interaction between the star polymers is logarithmic
=3M . »" is the total number of particles. In the following

o jf r<=2R°
V(CC)(r): 0 else

17

we show that the functional givdsy,y exactly. We observe
that @, and ®3 vanish, becausén,,|=n,, and|n,;|=n,,

and the antisymmetry upon exchanging scalar and vectorial

densities.
We still have to evaluate the remainidg; contribution

FLnOsh=— | dr a1y},
13

na<r>=21 7OwP(r). (14)

From the hierarchy of weight functions, Eq®8)—(7), we

obtain the relation

w(r)=—(4mr2) Lawd(r)/ar. (19

2
~2q In(r/RS)+In( qq) O<r<RS

(s9(r)=
ﬂv SS(r) ¢q(r)+|n(2qq) R5$r<2RS
0 2RS<r,
(18)

where ﬁq is the binomial coefficient. The crossover function
between small and large distances is given gy(r)=
—In[(1+9*—&H1B,F (1,1~ q;2+q; — £)],  where &
=(r/R% -1, By=2I'(1+2q)I' " }(q)I' " *(2+q), and ,F;
is the hypergeometric functidisee Ref[7] for a discussion

The interaction between colloids and polymers is assumed
to have a hard core due to the excluded volume induced by a

colloid and an additional logarithmic repulsion
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o jf r<R°

C

V(CS)(r-): _q|n( ) if RE<r=R°+RS (19)

RS
0 else.

This form is similar to the result from a microscopic analysis

of the interactions between star polymers and hard spheres

[17].

The system is governed by the packing fractions of col- 2

loids, 7°=47N°(R%)°%/(3V), and of polymers 7°
=47NS(R%)3/(3V), and the size ratia=R%/RC.

B. The weights functions

The set of weight functions for the colloids is identical to
the pure hard sphere case and is given by

w(r)=6(R°~r), (20)
wi(r)=8(R°—), (1)
wi9(r) = 8(R°—r)/(4r), (22)
Wi (r)= 8(R°—r)/(4mr?), (23
w(r)=8(Re=r)rlr, (24)
Wi (r)=8(R°=1)r/(4mr?), (25)

wherer =|r|, and®(r) is the Heaviside step functiod(r)
denotes the Dirac delta function.
The weight functions for the star polymers are

w(r)=[1-(r/R9)6(RS~r), (26)
wi(r)=qri (RS 90(R°~r), 27)
wid(r)=qri2(RS)"9(4m) to(RS-1), (28
w(r)=qri3(R9)"9(4m) to(RS-1), (29
w(r)=qri-}(R) GRS 1)r/r, (30)
wS(N=qre 2(R®)"9(4m) " to(RS—r)r/r. (3D

These are the same as for the one-component case consie

ered in Refs[6,7].

C. Results
In order to calculate the partial pair correlation functions

we do not make use of the test-particle limit. Instead, the
partial direct correlation functions are calculated from the

density  functional  via c;;(r)=—(kgT) *6*F9
(8p™ 8p1)). Using the Ornstein—Zernike relation gives the
partial structure factors in reciprocal sp4&8] and a Fourier

DENSITY FUNCTIONAL FOR ADDITIVE MIXTURES
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FIG. 1. Pair correlation functiong“®(r), g°%(r), andg®<r) for
a mixture of hard spheres and star polymers as a function of the
scaled distance/(2R®) at packing fractionsy®=0.25,°=0.25,
and size ratim=1. Full lines are DFT, dashed lines are simulation

results. The curves are shifted upwards one unit for reasons of
clarity.

We investigate the partial pair distribution functions be-
tween pairs of colloidg®“(r), pairs of stargy*3(r) and be-
tween a colloid and a star polyme53(r) for the intermedi-
ate softnessq=12, and for equal number densities of
colloids and stars, hencg®a®/ »°=1. In Figs. 1, 2, and 3
results for the size ratiog=1,0.5,2 are given, respectively.
The general agreement is good. Phase and amplitude are cor-
rect. However, the DFT peaks are slightly to steep. The
worst case i9°r), a=2, Fig. 3, Also small spurious val-
ues inside the core appear, especially for the cross correla-
tionsg®3(r). Using the test-particle limit, one could get rid of
these values.

transform yields the pair correlations. We adopt this method,
because no density profile equation is solved. This is a sever
test for the quality of the density functional. To compare the

3 4 5

r/(2R")

results, we have carried out standard canonical Monte Carlo FIG. 2. Same as Fig.1, but at densitigs=0.35, »°=0.04375,

computer simulations.

and size ratiem= 0.5, corresponding to small stars.
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' ' ' ' component case. In particular, the virial expansion and the
zero-dimensional limit for the mixture are exact.

The current theory can only be applied to a limited class
of systems, that we call additive. This constraint enforces the
cross interactions to be a combination of the interactions
between the like species. However, for mixtures of soft and
hard spheres the cross interaction was shown to be meaning-
ful, because a hard core is preserved.

As an application, we have investigated the fluid structure
of a mixture of colloidal hard spheres and star polymers.
When compared to simulation results, we find a remarkable
agreement.

It is intriguing that the fluid structure of a multicomponent
system can be understood on the basis of two simple ingre-
dients: First, particles cannot sit on top of each other. Sec-
ond, the Mayef-bond governs the behavior at low densities.
25 As possible future applications we mention the investiga-
tion of depletion potentials that has attracted considerable
recent interesf19-22 in the context of hard sphere mix-
tures. The current functional offers the possibility to study
the effects of soft interactions essentially with the same the-
oretical tools as developed in R¢1.9].

FIG. 3. Same as Fig. 1, but at densitig5=0.0625, 7°=0.5,
and size ratiem=2, corresponding to large stars.

IV. CONCLUSIONS
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