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Density Functional for a Model Colloid-Polymer Mixture
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We present a density functional theory for mixtures of (hard sphere) colloidal particles and ideal
polymers. For this extreme nonadditive system we employ a fundamental measures approach to construct
a functional which incorporates the correct dimensional crossover and the exact low density limit. In bulk
fluid mixtures the functional yields the same free energy and, therefore, the same gas-liquid (demixing)
transition as given by free-volume theory. It generates consistent pair correlation functions; the partial
structure factors Sij�k� diverge, as k ! 0, at the critical point obtained from the free energy. Our results
for the structure agree well with those from simulation and Percus-Yevick theory.

PACS numbers: 82.70.Dd, 61.20.Gy, 64.10.+h, 64.60.Fr
Much of soft condensed matter science is concerned
with simplifying a complex, multicomponent system to its
bare bones so that a tractable theoretical model can be de-
vised which will incorporate the essential physical mecha-
nisms determining the properties of the system. Colloidal
suspensions provide an excellent example of this strategy.
A monodisperse suspension of colloidal particles can of-
ten be treated as a one-component fluid since the details
of the solvent and colloid-solvent interactions are not of
great importance in determining the equilibrium colloid-
colloid structure or the phase behavior. In favorable cir-
cumstances, these properties are close to those of the hard
sphere fluid.

Moving up one degree in complexity, one knows that the
addition of nonadsorbing polymer significantly enriches
the phase behavior of the colloidal system. For sufficiently
large values of the size ratio Rg�Rc, where Rg is the radius
of gyration of the polymer and Rc is the radius of the col-
loid, theory predicts stable colloidal gas, liquid, and solid
phases with the fugacity of the polymer reservoir playing
a role similar to that of inverse temperature for a simple
substance. The theoretical [1–3] and simulation studies
[3] are based on an idealized model introduced by Asakura
and Oosawa (AO) [4] and independently by Vrij [5], which
treats the colloids as hard spheres with radius Rc and the
polymer coils as interpenetrating, noninteracting particles
as regards their mutual interactions. The polymer particles
are excluded from the colloids to a center of mass distance
Rc 1 Rp , where the polymer radius Rp � Rg. This AO
model thus describes an extreme nonadditive binary hard
sphere mixture. The assumption of ideal polymer is, of
course, a gross oversimplification which can be valid only
near the theta point. Nevertheless, the main features of
the bulk phase behavior arising from this simple model are
found in experimental studies [6,7] which confirm the pre-
dicted trends of the phase behavior with increasing size
ratio q � Rp�Rc.
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Given the richness of the bulk phase behavior exhibited
by the binary AO model it is somewhat surprising that very
little attention has been paid to the equilibrium properties
of inhomogeneous colloid-polymer mixtures described by
this model. One might expect the same entropic deple-
tion mechanism [4,5] that leads to an effective attraction
between two colloidal particles and that is responsible for
bulk gas-liquid separation [1–3] to yield a wide variety of
interfacial and adsorption phenomena. However, we are
aware of only one systematic treatment of the inhomoge-
neous AO mixture, that of Ref. [8], where it was shown
that for q , 2�

p
3 2 1 � 0.1547 one could derive an ex-

plicit effective Hamiltonian for the colloids by integrating
out the degrees of freedom of the polymer.

The aim of the present Letter is to introduce a density
functional theory (DFT) designed specifically for the bi-
nary AO model that will treat arbitrary inhomogeneities
and size ratios. We are motivated by DFT studies of simple
fluids and their mixtures which have provided much insight
into a wide range of interfacial phenomena such as surface
phase transitions, wetting, and confined fluids [9]. Our
approach has its origins in the fundamental measures the-
ory (FMT) of Rosenfeld [10] which has proved, together
with its recent extensions and modifications [11–13], very
successful for describing the inhomogeneous hard sphere
fluid and additive hard sphere mixtures. FMT has also
been applied successfully to hard cubes [14], penetrable
spheres [15], and has been generalized to soft interactions
[16]. The functional we propose here is exact for zero-
dimensional situations of extreme confinement and reduces
to the functional for pure hard spheres (no polymer) intro-
duced recently by Tarazona [13] in his treatment of freez-
ing. The bulk fluid equation of state which emerges from
the theory is the same as that which results from the free-
volume approach of Ref. [2]. Thus, our functional yields
the same gas-liquid coexistence curve. Moreover, it pro-
vides a means of determining the correlation functions of
© 2000 The American Physical Society
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bulk mixtures as well as the density profiles and thermo-
dynamic properties of inhomogeneous systems. Here we
outline the theory and focus on its application to the struc-
ture of the bulk colloid-polymer mixture. Applications
to interfaces and adsorption problems will be given else-
where. We present results for the partial pair correlation
functions gij�r� from the Ornstein-Zernike (OZ) route and
show that these agree well with the results of simulation
and the Percus-Yevick (PY) integral equation theory. Our
theory provides a consistent treatment of the fluid-fluid
transition in that it predicts that all three partial structure
factors diverge, as k ! 0, at the critical point and on the
spinodal given by the bulk mixture equation of state. To
the best of our knowledge this is the first nonperturbative
DFT (other than that for the somewhat artificial parallel
hard cube system [14]) based on purely repulsive interpar-
ticle forces which describes directly fluid-fluid separation.

We first define the AO colloid-polymer model. There
are Nc colloids with radii Rc and Np polymers with radii
Rp within a volume V . The interaction potential between
colloids is hard, i.e., V cc�r� � `, if r # 2Rc, and is zero
otherwise. The interaction between colloids and polymers
is also hard: V cp�r� � `, if r # Rc 1 Rp , and is zero
otherwise, while the interaction between polymers van-
ishes: Vpp�r� � 0. The state of the system is governed by
the packing fractions of colloids, hc � 4pNc�Rc�3��3V �,
and of polymers hp � 4pNp�Rp�3��3V �, and the size ra-
tio q � Rp�Rc. The diameters are denoted by sc � 2Rc

and sp � 2Rp .
In order to derive a density functional for this system, we

follow [10] and express the excess (over ideal) Helmholtz
free energy as a spatial integral

bFexc�rc�r�, rp�r0�� �
Z

d3x F��nc
n�x��, �np

l�x��� , (1)

where b � 1�kBT . We assume that the (reduced) free
energy density F is some function of a set of weighted
densities ni

n , where index i � c, p labels the species, and
n is an index corresponding to the type of weighted den-
sity. The weighted densities are obtained by convolutions
of the actual colloid and polymer densities, rc�r� and
rp�r�: ni

n�x� �
R

d3r ri�r�wi
n�x 2 r�. The weight func-

tions wi
n�r� are independent of the density profiles and are

given by

wi
3�r� � u�Ri 2 r�, wi

2�r� � d�Ri 2 r� , (2)

w i
v2�r� � wi

2�r�r�r , ŵ i
m2�r� � wi

2�r� �rr�r2 2 1̂�3� ,
(3)

where r � jrj, u�r� is the step function, d�r� is the Dirac
distribution, and 1̂ is the identity matrix. Further, linearly
dependent weights are wi

1�r� � wi
2�r���4pRi�, w i

v1�r� �
w i

v2�r���4pRi�, wi
0�r� � wi

1�r��Ri . The weight functions
are quantities with dimension of length32n . They differ
in their tensorial rank: wi

0, wi
1, wi

2, wi
3 are scalars; w i

v1, w i
v2

are vectors; ŵ i
m2 is a traceless matrix.
It remains to determine the free-energy density F. To
this end, we consider the zero-dimensional limit, which
we define as ri�r� � hid�r�, where hi are the average
occupation numbers. These are also the zero-dimensional
packing fractions [11,12]. For the present model this limit
corresponds to a cavity that can hold at most one col-
loid but can hold an arbitrary number of polymers if no
colloid is present. The grand partition sum reduces to
J � zc 1 exp�zp�, where zi is the fugacity of species
i. Following Ref. [11] we obtain the excess free energy
bF0D�hc, hp� � �1 2 hc 2 hp� ln�1 2 hc� 1 hc. We
now follow recent treatments [12,13] of FMT which con-
sider multicavity limits and express the excess free-energy
density as F � F1 1 F2 1 F3, with contributions

F1 �
X

i�c,p

ni
0wi�nc

3, n
p
3 � , (4)

F2 �
X

i,j�c,p

�ni
1n

j
2 2 ni

v1 ? n
j
v2�wij�nc

3, n
p
3 � , (5)

F3 �
1

8p

X
i,j,k�c,p

�ni
2n

j
2nk

2�3 2 ni
2n

j
v2 ? nk

v2

1 3�ni
v2n̂

j
m2nk

v2 2 tr�n̂i
m2n̂

j
m2n̂k

m2���2�
3 wijk�nc

3, n
p
3 � , (6)

where tr denotes the trace. Derivatives of the 0D free en-
ergy are wi···k�hc, hp� � ≠mbF0D�hc, hp��≠hi · · · ≠hk .
This completes the prescription for the functional. Fur-
ther details will be given elsewhere.

We summarize some of the properties of the functional.
Note first that Fexc�rc, rp� reduces to the exact low-
density limit [10]. This feature results from the properties
of the weight functions, Eqs. (2) and (3), which are con-
structed to restore the correct Mayer functions for the mix-
ture. The next observation is that the functional is linear
in the polymer density profile. This originates from the
linearity of F0D and is preserved by the construction of F,
Eqs. (4)–(6), as an equal number of multiplications and
differentiations are applied. Three important consequences
arise. First, an alternative way of obtaining the functional
can be found. We begin by noting that the free-energy
functional for a binary hard sphere mixture is constructed
by the same procedure as that above (the weight functions
wi

n are unchanged) but with F0D replaced by Fbhs
0D , the

0D excess free energy appropriate to a cavity which can
contain one particle of species 1 or species 2, but not
more particles [17]. If Fbhs

0D is expanded in powers of the
occupation of one of the species (which becomes hp)
and the expansion is truncated at first order in hp , Fbhs

0D
reduces to F0D . It follows that the present functional can
be recovered by an appropriate linearization of the hard
sphere mixture functional. This suggests that a colloid-
ideal polymer functional can be derived from any (FMT)
hard sphere mixture functional, including the original
Rosenfeld functional [10], i.e., ŵ i

m2 � 0. Further justi-
fication for the linearization comes from considering the
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pair direct correlation functions of the bulk mixture, given
by c

ij
2 �jr1 2 r2j� � 2bd2Fexc�rc, rp��dri�r1�drj�r2�.

The c
ij
2 generated by the functional are consistent with the

first two terms in the known low density (diagrammatic)
expansion of these functions. Second, by observing that
the one-body direct correlation function of the polymers
c

p
1 �r� � 2bdFexc�rc, rp��drp�r� depends only on the

weighted densities of the colloid density profile rc�r�, it
follows from the Euler-Lagrange equation that the inho-
mogeneous polymer density profile rp�r� is an explicit
functional of rc�r� (and of the external potential coupling
to the polymers). This feature of the theory constitutes
an important simplification for calculations of the equi-
librium properties as only rc�r� needs to be determined
by numerical minimization. The third consequence of
the linearity in rp�r� is that the pair direct correlation
function for the polymers vanishes, i.e., c

pp
2 � 0, as in the

PY approximation. As a further remark, we note that our
functional generates the correct AO depletion potential
between two colloids in a sea of ideal polymer at arbitrary
density [18].

We now apply the functional to the determination of
some properties of the homogeneous (bulk) mixture.
The excess Helmholtz free-energy density is given by
bFexc�rc, rp��V � bfhs�rc� 2 rp lna�rc�, where
fhs�rc� is the excess free-energy density of pure hard
spheres in the scaled-particle (PY compressibility) ap-
proximation and a � �1 2 hc� exp�2Ag 2 Bg2 2

Cg3�, with g � hc��1 2 hc�, A � q3 1 3q2 1 3q,
B � 3q3 1 9q2�2, and C � 3q3. This result is identical
to that of free-volume theory for the AO model [2], which
is known to yield stable gas-liquid coexistence for size
ratios q * 0.32. For smaller q this fluid-fluid transition
becomes metastable with respect to a broad, in hc, fluid-
solid transition [2,3]. Within DFT there are two routes to
the pair correlation functions gij of the homogeneous fluid.
One is the test-particle route whereby a particle of a given
species is fixed at the origin and the one-body density
profiles of the resulting inhomogeneous fluid determine
the gij�r�.

The other route, which we pursue here, is based on the
OZ relations. The pair direct correlation functions ob-
tained by differentiating the functional are given analyti-

cally by c
ij
2 �

P
n,l c

ij
nlwi

n � w
j
l, where � denotes the

convolution and c
ij
nl � ≠2F�≠ni

n≠n
j
l [19]. The OZ re-

lation then yields the partial structure factors Sij�k� and a
numerical Fourier transform gives the gij�r�.

In Fig. 1 we compare our results with those from the PY
approximation for a given state point. The structure factors
almost coincide, except for Spp�k� at small k. Note that
the PY results were obtained numerically [20], as there are
no analytical solutions for the AO model. The gij�r� are
also very close to PY. In the case of gcc�r� the DFT result
violates the core condition, i.e., gcc�r� fi 0 at small r , but
this is numerically small.

Performing simulations for highly asymmetric mixtures
is beset by problems of slow equilibration, as huge num-
1936
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FIG. 1. Partial structure factors Sij�k� at q � 0.15, hc � 0.3,
hp � 0.05, for colloid-colloid (CC), colloid-polymer (CP), and
polymer-polymer (PP) pairs. Solid lines are DFT; dashed lines
are PY results [20]. The inset shows the corresponding partial
pair correlation functions gij�r�.

bers of polymers are required per colloidal particle. How-
ever, one can map the binary AO model onto an effective
one-component system, in which the colloids interact via
the AO pairwise depletion potential and for q , 0.1547
the mapping is exact [3,20]. This enables gcc�r� to be ob-
tained by simulation of the one-component system and in
Fig. 2 we compare such results [3] with those of our DFT.
Although the structure factor Scc�k� is a little out of phase
with the simulation result and the DFT underestimates the
very high contact value gcc�sc�, the overall performance is
reasonable, given that the effective AO depletion potential
is very deep and short ranged for this size ratio. Indeed we
expect the binary mixture PY, and other integral equation
closures, to exhibit similar failings for such state points
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FIG. 2. Colloidal structure factor Scc�k� for q � 0.1, hc �
0.25, and hp � 0.107. The solid line is the DFT result; symbols
are simulation data [3]. The inset shows the corresponding pair
correlation function gcc�r�.
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FIG. 3. Partial structure factors Sij�k� at the critical point for
q � 0.8. The inset is the gas-liquid portion of the phase diagram
obtained from DFT plotted in terms of packing fractions hc, hp .
The binodal (thick line), spinodal (dashed line), tielines between
coexisting gas and liquid phases (thin lines) and the critical point
(dot) are shown.

[21]. It is likely that the test-particle route will improve
the accuracy of the gij�r�, albeit at the expense of more
numerical work.

The main advantage of the present route to structure is
that the free energy of the homogeneous mixture is equiva-
lent to that one would obtain from the compressibility
route, i.e., by integrating the Sij�k � 0�, calculated as
above, with respect to density. For example, this ensures
that the thermodynamic and structural routes to the spi-
nodal and critical point are consistent. We illustrate this in
Fig. 3 for q � 0.8, where gas-liquid coexistence is stable.
The inset shows the gas-liquid portion of the phase diagram
in the hc-hp plane, while the main plot shows the three
partial structure factors calculated at the critical point; all
three diverge as k ! 0 (in particular, Scp ! 2`). For
states slightly removed from criticality we expect OZ be-
havior: Sij�k� � Sij�0� �1 2 j2k2 1 O�k4��, where j is
the common correlation length. As our Sij�k� are given
analytically we can confirm explicitly the OZ behavior.
The common correlation length diverges with the mean-
field exponent n � 1�2 and on a path at fixed hc � h

c
crit

we define the amplitude j0 via j � j0��hp
crit 2 hp�1�2.

j0�sc depends only on the size ratio q. It is roughly
proportional to the mean diameter and is conveniently
expressed as j0 � 1

2 �sc 1 sp��K�q�, where typical
values are K�q� � 3.00, 2.36,

p
5, for q � 0.4, 0.8, `,

respectively.
That our DFT generates very satisfactory pair correla-

tion functions in the bulk mixture provides an excellent
indication [9] that it will yield accurate one-body corre-
lation functions for an inhomogeneous AO mixture, e.g.,
for density profiles at walls or in model pores. Its roots in
fundamental measure theory ensure that short-ranged cor-
relations, arising from packing of colloids, are properly
incorporated. Since the DFT describes the bulk gas-liquid
transition we can employ it for investigations of the “free”
interface between the coexisting fluid phases and of deple-
tion induced wetting phenomena at substrates. Moreover,
the DFT is well suited for studies of bulk freezing and of
“local” freezing of colloid layers at walls [22].
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