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We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-
body systems. The position- and time-dependent one-body density, particle current, and time derivative
of the current act as three variational fields. The generating (power rate) functional is minimized by the
true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity
equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal
one-body forces are generated by the superadiabatic contribution to the functional. The theory applies
to many-electron systems. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934881]

I. INTRODUCTION

In both classical and quantum systems, it is the coupling
of a large number of degrees of freedom that generates the
wealth of equilibrium and dynamical phenomena of condensed
matter. Successful microscopic theoretical descriptions of this
fundamental physical mechanism are often based on simple
model Hamiltonians and corresponding equations of motion
that allow to simplify the complexity of a real system to its
bare bones, while retaining the coupled, correlated nature of
the many-body problem. While the availability of modern
computers and advanced numerical techniques often allows to
simulate the many-body problem directly, often an appropriate
reformulation can provide deeper insights.

For equilibrium properties, the reformulation in a one-
body variational language, which allows to reduce the
complexity of high-dimensional Hilbert space (in the quantum
case) or phase space distributions (for classical systems) to
one-body fields, which depend only on a single space (and
time) coordinate, has proved to be particularly successful.
The framework of density functional theory (DFT) allowed
to put earlier approximations for electronic structure, such as
the Thomas-Fermi and Hartree-Fock theories, on a rigorous
footing, via the Hohenberg-Kohn (HK) theorem,1 which estab-
lishes the ground-state energy as a unique functional of the one-
body density distribution n(r), where r indicates position. Only
one year after HK’s groundbreaking paper, Mermin2 general-
ized their theorem to non-zero temperature, thus introducing
entropic contributions to what becomes the grand potential
functional. The classical version of finite temperature DFT3–5

has enabled us to systematically treat, on a unified footing,
a broad range of equilibrium phenomena in liquids, both in
bulk (freezing) and at surfaces (wetting) and in confinement
(capillary condensation).

Variational treatments of nonequilibrium phenomena,
however, whether in steady state or with full time-dependence,
are currently primarily based on adiabatic extensions of the
corresponding equilibrium framework. For electronic struc-
ture, the Runge-Gross6,7 procedure provides a stationarity

a)Electronic address: Matthias.Schmidt@uni-bayreuth.de

condition on an action functional, which is unknown, such
that one typically has to resort to adiabatic approximations.
The dynamical density functional theory (DDFT)4,5,8 for clas-
sical systems, as first suggested by Evans in 1979, is derived
from approximating the true nonequilibrium two-body den-
sity correlator with a fictitious equilibrium distribution, and
then using an equilibrium sum rule in order to introduce
the (equilibrium) free energy functional into the dynamical
theory,9 hence neglecting any effects beyond the adiabatic
description.

Recent progress allowed to systematically trace the
superadiabatic forces in classical Brownian systems as origi-
nating from functional differentiation of an excess (over ideal
gas) free power dissipation functional.10,11 The importance
of these forces was demonstrated by explicit many-body
simulations.12 In nonequilibrium, the free power functional
plays a role analogous to that of the free energy functional in
equilibrium. This (power functional) theory addresses many-
body overdamped Brownian motion, as described by the
Smoluchowski equation, i.e., the Fokker-Planck equation for
the (classical) probability distribution in configuration space.
Although the Smoluchowski equation is entirely real, due to
its drift-diffusion form, it shares many structural similarities
with the Schrödinger equation of nonrelativistic quantum me-
chanics. However, besides the conceptual differences between
quantum and classical motions, there is also a number of
formal distinctions, due to the wave function being complex,
the sandwich form of quantum mechanical expectation values,
and the differences of inertial and overdamped dynamics.

In the present paper, we construct a quantum power
functional theory by systematically addressing all the above
differences. The central generating quantum (power rate)
functional Gint

t is an intrinsic object, in that it depends solely
on the interparticle interactions, but not on the external
fields. The functional dependence is nonlocal in space and
time via three one-body fields, i.e., the density, the current,
and the time derivative of the current. We prove an exact
minimization principle with respect to the time derivative of the
current, which determines the physical dynamics. An explicit
(formal) expression for the corresponding quantum (power
rate) functional is given and its structure is discussed.

0021-9606/2015/143(17)/174108/4/$30.00 143, 174108-1 © 2015 AIP Publishing LLC
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II. VARIATIONAL THEORY

The Schrödinger equation in position representation is

i~
∂

∂t
Ψ(rN, t) = ĤΨ(rN, t), (1)

where i is the imaginary unit, ~ is the reduced Planck constant,
t indicates time, rN ≡ {r1 . . . rN} denotes the positions of the
N quantum particles, and Ψ(rN, t) is the quantum mechanical
wave function. We consider many-body Hamiltonians of the
form

Ĥ =

i

p̂2
i

2m
+ u(rN) +


i

vext(ri, t), (2)

where the sums run over all N particles, m indicates the
particle mass, u(rN) is the (intrinsic) interparticle interac-
tion potential (i.e., the Coulomb potential in case of elec-
trons), and vext(r, t) is a position- and time-dependent external
one-body potential energy. The (kinematic) momentum oper-
ator of quantum particle i is given in position representation
as

p̂i = −i~∇i − qA(ri, t), (3)

where ∇i indicates the derivative with respect to ri, q is the
electrical particle charge, and A(r, t) is the position- and time-
dependent magnetic vector potentials.13 Applying the general
Heisenberg equation of motion for an operator Ô,

dÔ
dt
=

i
~
[Ĥ ,Ô] + ∂Ô

∂t
, (4)

to the ith position and momentum operator yields

dri
dt
=

p̂i

m
, (5)

dp̂i

dt
= f̂i, (6)

where f̂i is the force operator of particle i, obtained as

f̂i = −(∇iu) − (∇ivext
i ) − qȦi +

q
2m

(p̂i × Bi − Bi × p̂i), (7)

where vext
i = vext(ri, t), the magnetic field acting on particle i

is given by the multiplication operator Bi ≡ B(ri, t), obtained
from the vector potential via B(r, t) = ∇ × A(r, t), which arises
from the fact that [p̂α

i , p̂
β
i ] = iq~


γ ϵαβγBγ

i , where Greek
indices indicate Cartesian vector components and ϵαβγ is the
Levi-Civita symbol; furthermore, Ȧi ≡ ∂A(ri, t)/∂t. Eq. (7)
represents the sum of all forces that act on quantum par-
ticle i, with contributions due to the interparticle interac-
tion potential, the external potential, and the Lorentz force.
Both vector fields −(∇iu) and −(∇ivext) are multiplication
operators, such that the derivative only acts inside of the
brackets.

We turn to a description on the level of space- and time-
dependent one-body fields. Consider first the density operator
n̂i ≡ δi of quantum particle i, where δi ≡ δ(r − ri) indicates
the three-dimensional Dirac distribution. Using (4) yields an
equation of motion of continuity form

dn̂i

dt
= −∇ · Ĵi, (8)

where ∇ indicates the derivative with respect to r and the
current operator of quantum particle i is given by

Ĵi(r, t) = p̂iδi + δip̂i

2m
. (9)

Differentiating in time once more yields, via (4),

m
dĴi

dt
=

f̂iδi + δif̂i
2

+ ∇ · τ̂i +
~2

4m
∆∇n̂i, (10)

where f̂i is defined by (7) and the one-body momentum current
(or local kinematic stress tensor) of particle i is given by

τ̂i(r, t) = − p̂iδip̂i + (p̂iδip̂i)T
2m

. (11)

Here, all pairs of vectors form dyadic products, and the super-
script T denotes the transpose of the Cartesian components of
a three-dimensional matrix. The second and third term in (10)
(where ∆ = ∇ · ∇) describe the transport effects that are due to
the one-body description; these effects are absent in the “bare”
motion (6) and (7).

We build expectation values via the standard procedure,
e.g., for the particle-labelled (Schrödinger) density operator n̂i,
the corresponding average is

n(r, t) = 
i

n̂i


≡


drNΨ∗(rN, t)

i

n̂iΨ(rN, t), (12)

where the asterisk denotes complex conjugation and Ψ(rN, t)
satisfies (1) and is normalized at all times,


drNΨ∗Ψ = 1.

Corresponding expressions for the one-body current J(r, t) and
momentum current tensor τ(r, t) are obtained by using Ĵi and
τ̂i, respectively, instead of n̂i in (12).

Building the expectation value of (8) and integrating in
time yields

n(r, t) = n(r, t0) −
 t

t0

dt ′∇ · J(r, t ′), (13)

J(r, t) = J(r, t0) +
 t

t0

dt ′J̇(r, t ′), (14)

where t0 is an initial time, at which the state of the system
is assumed to be known. The symmetry of the many-body
wave function at this initial time encodes the particle statistics.
Eqs. (13) and (14) allow to determine n and J, provided that the
time derivative of the current, J̇, is known. One way of obtain-
ing J̇ is to build the expectation value of (10) and summing
over i, which yields

mJ̇(r, t) = fint − (qȦ + ∇vext)n + qJ × B

+∇ · τ + ~
2

4m
∆∇n, (15)

where the interparticle interactions generate the intrinsic force
density field,

fint(r, t) = −
i

(∇iu)δi

. (16)

The second and third terms in (15) represent the external
forces; the fourth and fifth terms constitute transport
contributions.
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In the following, we construct an alternative to (15)
and (16), by expressing the physical dynamics via a variational
approach. We start on the many-body level and introduce a set
of (complex) acceleration fields aN ≡ {a1(rN, t) . . . aN(rN, t)},
which act as variational variables. In the spirit of Gauss’
principle of least constraint for classical systems, as formalized
independently by Appell and Gibbs,14 we define an instanta-
neous functional of the acceleration fields as

Gt =


drN

i

|(f̂i − mai)Ψ|2
2m

−


dr
m

2⟨n̂⟩
dĴ

dt

2
, (17)

where n̂ =


i n̂i and the total time derivative of Ĵ is given via
(10) summed over all i. Note that the first term on the right-
hand side of (17) possesses the structure


drN |ÔΨ|2 ≡ ⟨Ô†Ô⟩,

where † indicates the Hermitian adjoint.
Minimizing (17) with respect to aN at fixed time t implies

that
δGt

δai(rN, t) = 0, (18)

for all i = 1 . . . N , and that the trial fields satisfy

mai(rN, t)Ψ(rN, t) = f̂iΨ(rN, t), (19)

at time t. The equality in (18) and (19) is attained for the
specific aN at the minimum. Correspondingly, pN and rN ,
and hence τN via (11), are then determined by integrating (5)
and (6).

As a further central property, Gt acts as a generator for the
one-body field of interest, via functional differentiation,

δGt
δqȦ(r, t) = J̇(r, t). (20)

In order to connect the many-body description with the
one-body level, we introduce a constraint on the acceleration
fields aN via

J̇(r, t) = 
i

�ai + a∗i
2

δi +
∇ · τ̂i

m
+
~2

4m2∆∇n̂i

�
, (21)

where J̇(r, t) is regarded as a prescribed “target” one-body
function. Hence in general, there will be many choices of aN

that are compatible with a given J̇; we indicate this relationship
(21) by aN → J̇.

Performing a constrained search15,16 for the minimum,

Gt[n,J, J̇] = min
aN→ n,J, J̇

Gt, (22)

establishes Gt as a functional of the three one-body fields n,J,
and J̇. If J and n possess those values that correspond to the
physical dynamics, then Gt is minimized by the true J̇(r, t),
and hence possesses vanishing (functional) derivative,

δGt[n,J, J̇]
δJ̇(r, t) = 0. (23)

We proceed by splitting total power rate (22) into intrinsic
and external contributions,

Gt = Gint
t −


dr J̇ ·

(
qJ × B

n
− qȦ − ∇vext

)
, (24)

where the intrinsic functional Gint
t [n,J, J̇] is independent of the

external fields. Due to (20), the splitting constitutes a Legendre

transform from Gt to Gint
t . Inserting (24) into the one-body

variational equation (23) yields an equality of intrinsic and
external contributions,

δGint
t

δJ̇
=

qJ × B
n
− qȦ − ∇vext, (25)

where the left hand side contains the interparticle interactions,
as well as acceleration and transport effects.

We further decompose the intrinsic power rate functional
Gint

t into ideal (i.e., noninteracting, u = 0, single-particle mo-
tion) and excess (above ideal, exchange and correlation) contri-
butions according to

Gint
t = Gid

t + Gexc
t , (26)

where for ideal motion, the intrinsic contribution is

Gid
t [n,J, J̇] =


dr

J̇
n
·
(

mJ̇
2
− ∇ · τid − ~

2

4m
∇∆n

)
, (27)

with the ideal momentum current possessing the factorized
dyadic form

τid(r, t) = −m
JJ
n
− ~

2

4m
(∇n)(∇n)

n
. (28)

The excess (over ideal) contribution Gexc
t in (26) contains the

effects of the intrinsic interactions u. Inserting (26) and (27)
into (25) yields an exact relation for the time derivative of the
current

mJ̇ = −n
δGexc

t

δJ̇
+ ∇ · τid +

~2

4m
∇∆n

+ qJ × B − (qȦ + ∇vext)n, (29)

which together with continuity equations (13) and (14) forms a
closed set of equations of motion for the one-body fields. Note
that the splittings (24) and (26) define Gint

t and Gexc
t , respec-

tively; hence, these relations do not constitute assumptions. In
the non-interacting case, Gexc

t = 0 and (29) reduces to the exact
equation of motion for the ideal system. In the interacting case,
the many-body problem is now encapsulated in the complexity
of the dependence of Gexc

t [n,J, J̇] on its arguments. Comparing
Eqs. (15) and (29) yields the identification

δGexc
t

δJ̇
=

fint + ∇ · (τ − τid)
n

, (30)

where the functional derivative is evaluated at the minimum of
the functional, i.e., for the true value of J̇.

The (approximate) description of the effects of interpar-
ticle interactions can now be formulated using appropriate
model forms for the excess power rate functional Gexc

t . If we
assume a splitting into a sum of adiabatic and superadiabatic
contributions, then

Gexc
t =


dr J̇ · ∇ δE[n]

δn
+ Gsup

t , (31)

where the first (adiabatic) term originates from the second
time derivative of the (ground state) intrinsic potential energy
functional E[n],
d2E[n]

dt2 =


dr J̇ · ∇ δE

δn
+


drdr′J′J : ∇∇′ δ

2E
δnδn′

, (32)
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where J′ ≡ J(r′, t), n′ = n(r′, t), and the colon indicates a dou-
ble tensor contraction. Hence, we obtain the Euler-Lagrange
equation (29) in the more explicit form

mJ̇ = −n
δGsup

t

δJ̇
− n∇ δE

δn
+ ∇ · τid +

~2

4m
∇∆n

+ qJ × B − (qȦ + ∇vext)n, (33)

where the superadiabatic power rate Gsup
t [n,J, J̇] (as defined via

Eq. (31)) depends in general nonlocally in space and time on
its arguments and describes superadiabatic contributions to the
dynamics. Clearly, the description of the adiabatic reference
state could be extended by using a current-density functional,
instead of E[n]. Furthermore, it is not guaranteed that the
ground state of the fictitious adiabatic system constitutes a
good reference, see, e.g., Ref. 12 for a corresponding classical
study.

III. CONCLUSIONS

The present procedure can readily be applied to the
Kohn-Sham framework of representing the total density by
superposition of noninteracting single-particle orbitals. The
same superposition applies to the current and its time deriva-
tive, and in turn, the forces obtained from the power functional
governs the dynamics of the single-particle orbitals.

Constructing usable approximations for the superadia-
batic contribution to the power rate functional, Gsup

t constitutes
a necessary research task for the future. Similar to the classical
case,10 a low-order functional expansion could constitute a
suitable model, where the convolution kernel M depends in
general functionally on J and n. The resulting superadiabatic
force is then given by

δGsup
t

δJ̇(r, t) =
 t

t0

dt ′


dr′M(r, t; r′, t ′) · J̇(r′, t ′), (34)

which can be further simplified by assuming that M is a
delta function in space and/or time. Generalizing the quantum
version17 of the Ornstein-Zernike equation to the dynamical
case, as has been done for Brownian systems,11 constitutes a
further exciting prospect.

ACKNOWLEDGMENTS

D. de las Heras, Th. M. Fischer, and I. Bauer are acknowl-
edged for useful discussions. This work would not have come
to fruition without the inspiration and encouragement provided
by J. M. Brader.

1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2N. D. Mermin, Phys. Rev. 137, A1441 (1965).
3C. Ebner, W. F. Saam, and D. Stroud, Phys. Rev. A 14, 226 (1976).
4R. Evans, Adv. Phys. 28, 143 (1979).
5J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed.
(Academic Press, London, 2006).

6E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
7Time-Dependent Density Functional Theory, edited by M. A. L. Marques
et al. (Springer, Heidelberg, 2006).

8U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032
(1999).

9A. J. Archer and R. Evans, J. Chem. Phys. 121, 4246 (2004).
10M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013).
11J. M. Brader and M. Schmidt, J. Chem. Phys. 139, 104108 (2013); 140,

034104 (2014).
12A. Fortini, D. de las Heras, J. M. Brader, and M. Schmidt, Phys. Rev. Lett.

113, 167801 (2014).
13We assume that both A(r, t) and vext(r, t) are externally prescribed. The

external potential energy might contain an electric contribution qφext(r, t),
where φext(r, t) is an external electric potential.

14C. F. Gauss, J. Reine Angew. Math. 4, 232 (1829); J. W. Gibbs, Am. J. Math.
2, 49 (1879); P. Appell, J. Reine Angew. Math. 121, 310 (1900); see,
e.g., E. A. Desloge, Am. J. Phys. 56, 841 (1988) for a modern account.

15M. Levy, Proc. Natl. Acad. Sci. U. S. A. 76, 6062 (1979).
16W. S. B. Dwandaru and M. Schmidt, J. Phys. A: Math. Theor. 40, 13209

(2007).
17D. Case and F. R. Manby, Mol. Phys. 108, 307 (2010).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.180.92.155 On: Fri, 06 Nov 2015 13:52:26

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.137.A1441
http://dx.doi.org/10.1103/PhysRevA.14.2264
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1063/1.478705
http://dx.doi.org/10.1063/1.1778374
http://dx.doi.org/10.1063/1.4807586
http://dx.doi.org/10.1063/1.4820399
http://dx.doi.org/10.1063/1.4861041
http://dx.doi.org/10.1103/PhysRevLett.113.167801
http://dx.doi.org/10.1515/crll.1829.4.232
http://dx.doi.org/10.2307/2369196
http://dx.doi.org/10.1119/1.15463
http://dx.doi.org/10.1073/pnas.76.12.6062
http://dx.doi.org/10.1088/1751-8113/40/44/002
http://dx.doi.org/10.1080/00268970903446772

