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Using Brownian dynamics computer simulations we investigate the dynamics of the one-body density and
one-body current in a one-dimensional system of particles that interact with a repulsive Gaussian pair potential.
We systematically split the internal force distribution into an adiabatic part, which originates from the equilibrium
free energy, and a superadiabatic contribution, which is neglected in dynamical density functional theory. We
find a strong dependence of the magnitude and phase of the superadiabatic force distribution on the initial state
of the system. While the magnitude of the superadiabatic force is small if the system evolves from an equilibrium
state inside of a parabolic external potential, it is large for particles with equidistant initial separations at high
temperature. We analyze these findings in the light of the known mean-field behavior of Gaussian core particles
and discuss a multi-occupancy mechanism which generates superadiabatic forces that are out of phase with
respect to the adiabatic force.
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I. INTRODUCTION

Approximating the time evolution of a physical system
as an adiabatic process, which proceeds through a series
of equilibrium states, has been a helpful approach both in
classical physics and in quantum mechanics [1]. In dynam-
ical density functional theory (DDFT) [2–8], which is a
framework for describing the nonequilibrium evolution of
classical many-body systems, such an adiabatic approximation
is employed on the level of the position-dependent one-
particle density distribution. Thereby the correlations between
particle positions are approximated by those of a fictitious
equilibrium system with the same one-body density profile as
the nonequilibrium system of interest [6]. This substitution
implies the assumption that the relaxation time of particle
correlations is short compared to the time scale of the processes
of interest. However, this assumption is not justified, e.g., for
strongly confined systems, which leads to a failure of DDFT
in those cases [9]. In order to accurately describe the dynamics
of such systems, superadiabatic forces need to be included. In
recent work Fortini et al. [9] have proposed a computational
scheme for systematically dividing internal forces in a system
of Brownian particles into an adiabatic and a superadiabatic
contribution. By applying their method to a system of confined
hard rods in one dimension, which is a common model system
[10,11] for studying dynamical features, these authors found
that the superadiabatic part of the force in that system is not a
small correction and cannot easily be related to the adiabatic
part. Furthermore the results depended sensitively on the
chosen initial condition. The behavior of these superadiabatic
forces is at present not well understood.

In order to gain more insight into the splitting into adiabatic
and superadiabatic forces we apply the simulation scheme of
Fortini et al. to a one-dimensional system that is qualitatively
different from hard rods. We choose the pair potential of
the Gaussian core model (GCM) [12], which constitutes an
approximation to the effective interactions of polymer coils.
We investigate the superadiabatic forces and their temperature
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dependence. We start either from an equilibrium initial state,
for which the strength of an external parabolic potential is
instantaneously altered in order to drive the time evolution,
or from a range of nonequilibrium initial states, in which the
particles are located with equidistant separations. In both cases
we apply a parabolic external potential for confinement.

Our motivation for studying a one-dimensional system
stems from similar studies of equilibrium systems, for, e.g.,
colloid-polymer mixtures [13] or nonadditive hard core mix-
tures [14], where exact solutions are possible in one dimension.
Experimentally, single-file diffusion has been demonstrated
for colloids confined in one-dimensional channels [15]. In the
system of one-dimensional hard rods Penna and Tarazona [10]
investigated the dynamic decay of (imposed) periodic density
oscillations and compared DDFT results with Brownian
Dynamics (BD) simulations. The authors developed a theory
for the dynamics of the two-body density, based on the
equilibrium factorization of the three-body density, that yields
results superior to those from DDFT.

For the GCM we find that the magnitude of the superadia-
batic contribution to the total force depends sensitively on the
initial state of the system. This echoes the observations for the
system of hard rods, where this dependence was also found to
be strong [9]. If the time evolution starts from an equilibrium
state, the adiabatic approximation remains accurate during the
nonequilibrium time evolution, which confirms the validity
of DDFT in this situation. However, for equidistant initial
particle locations we find large superadiabatic forces, which
are out-of-phase with respect to the adiabatic force and tend to
grow with temperature. We identify the occupation of density
peaks, which in reality correspond to individual particles, by
multiple particles [9] to be one of the reasons for the occurrence
of these superadiabatic forces.

Our results stem from explicit many-body BD and Monte
Carlo (MC) computer simulations. We leave the construction
of corresponding theoretical approximations to future work,
based on, e.g., the approach of Ref. [10] or on power functional
theory [16].

The paper is organized as follows. In Sec. II we lay out
the theoretical background, including the underlying Brown-
ian many-body dynamics (Sec. II A), the reduced one-body
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description (Sec. II B), and details about the definition and
the equilibrium density functional description of the GCM
(Sec. II C). In Sec. III we describe the simulation methods
that we use, including an overview of the units and initial
states (Sec. III A), BD in nonequilibrium for obtaining the
full time evolution (Sec. III B), and the MC method and
adiabatic iteration scheme for constructing the adiabatic state
(Sec. III C). We present our results in Sec. IV, including
those for initially equilibrated (Sec. IV A) and equidistant
(Sec. IV B) states. We conclude in Sec. V.

II. THEORETICAL BACKGROUND

A. Many-body dynamics

We consider a system of N interacting Brownian particles.
In an overdamped system with only potential forces the
positions ri (i = 1, . . . ,N) of the Brownian particles satisfy
the Langevin equation [6]

ξ ṙi(t) = −∇iUtot(rN,t) + Ri(t), (1)

where ξ is the friction coefficient, the dot indicates the total
derivative with respect to time t , ∇i is the partial derivative
with respect to ri , and Utot(rN,t) indicates the total potential
energy, which depends on the positions of all N particles. The
vector Ri(t) represents a temperature-dependent, randomly
fluctuating force, which is due to collisions of the Brownian
particles with (implicit) particles of the solvent, which take
place on a far shorter time scale than the relaxation of the
initial velocity of the Brownian particles. The random forces
on two distinct particles are uncorrelated and the correlation
time for forces that act on the same particle is infinitesimally
short; therefore the dyadic product is on average

〈Ri(t)Rj (t ′)〉 = 2πIR0δij δ(t − t ′), (2)

where I indicates the 3 × 3 unit matrix, R0 = 3ξkBT/π

measures the strength of the fluctuating force, δij indicates the
Kronecker delta, and i,j = 1, . . . ,N ; here kB is the Boltzmann
constant and T is absolute temperature.

As an alternative to considering the dynamics of individual
particles, the system can be characterized via the N -particle
probability density ψ(rN,t) for observing a configuration
rN = {r1, . . . ,rN } of positions of all N particles at time t

(irrespective of their momenta). The time evolution of ψ(rN,t)
is described by the Smoluchowski equation [6]:

ξ
∂ψ(rN,t)

∂t
=

N∑
i=1

∇i · [kBT ∇i + ∇iUtot(rN,t)]ψ(rN,t). (3)

If the internal interactions stem from a pair potential φ, then
the total potential energy reads

Utot(rN,t) =
∑

i

∑
j<i

φ(|ri − rj |) +
∑

i

Vext(ri ,t), (4)

where Vext(r,t) is the external potential, which in general
depends on position r and time t .

B. One-body description

The time-dependent one-body density ρ(r,t) and the
two-body density ρ(2)(r,r′,t) are obtained by integrating

ψ(rN,t) over all but one and all but two particle coordinates,
respectively, and multiplying by the appropriate normalizing
factor [9],

ρ(r1,t) = N

∫
dr2...

∫
drN ψ(rN,t), (5)

ρ(2)(r1,r2,t) = N (N − 1)
∫

dr3...

∫
drN ψ(rN,t). (6)

Consequently, by integrating both sides of (3) over N − 1
particle coordinates one obtains an evolution equation for the
one-body density, as shown by Archer and Evans [5]. These
authors also included three- and higher-body interactions,
which are not of interest for the current work. We will therefore
restrict ourselves to pair interactions of the form (4). As a
result of the integration one obtains the continuity equation,

∂ρ(r,t)
∂t

= −∇ · J(r,t), (7)

where the one-body current,

J(r,t) = ξ−1ρ(r,t)F(r,t), (8)

is due to the one-body force,

F(r,t) = −kBT ∇lnρ(r,t) − ∇Vext(r,t) + Fint(r,t), (9)

being the sum of an ideal diffusion part, the external force,
and the internal force, Fint(r,t). For convenience, we define
the internal force density Iint(r,t) via the internal force and
the one-body density as

Iint(r,t) ≡ Fint(r,t)ρ(r,t). (10)

For the present case of internal pair interactions, the internal
force density can be expressed as the integral

Iint(r,t) = −
∫

dr′ρ(2)(r,r′,t)∇φ(|r − r′|). (11)

Archer and Evans derived the DDFT equation of motion by
approximating ρ(2)(r,r′,t) as an “adiabatic” two-body density

ρ(2)(r,r′,t) = ρ
(2)
ad,t (r,r

′), (12)

which is defined as the equilibrium two-body density of a
system with the same internal interactions, but with an external
potential Vad,t (r) that is adjusted such that the corresponding
equilibrium one-body density, ρad,t (r), equals the instanta-
neous one-body density in the nonequilibrium system at time t :

ρad,t (r) = ρ(r,t). (13)

Note that ρ
(2)
ad,t (r,r

′) does not depend on time in the given
adiabatic system, as this is in equilibrium. However, the
adiabatic system itself changes with time as ρ(r,t) changes.
As ρ

(2)
ad,t (r,r

′) is an equilibrium density, Archer and Evans
then proceed using the sum rule [5]

−kBTρad,t (r)∇c(1)(r) =
∫

dr′ρ(2)
ad,t (r,r

′)∇φ(|r − r′|), (14)

which relates the internal force density in equilibrium to the
one-body direct correlation function c(1)(r) in the adiabatic
system. Here the direct correlation function is defined in the
grand canonical ensemble. Very recently, de las Heras et al.
[17] argued that this is at odds with the N -particle character of
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the dynamics. These authors propose a consistent treatment on
the basis of the equilibrium canonical decomposition scheme
of Ref. [18] applied to the adiabatic state. This approach leads
to a particle-conserving dynamical theory [17].

The conventional derivation involves substituting the
identity

−kBT c(1)(r) = δF ex[ρ]

δρ(r)
(15)

from equilibrium density functional theory, where F ex[ρ] is
the excess (over ideal gas) Helmholtz free energy functional,
in order to obtain the DDFT equation of motion [5]

ξ
∂ρ(r,t)

∂t
= ∇ ·

{
ρ(r,t)∇ δF tot[ρ]

δρ(r)

∣∣∣∣
ρ(r)=ρ(r,t)

}
, (16)

where F tot[ρ] = F exc[ρ] + kBT
∫

drρ(r){ln[ρ(r)	3] − 1} +∫
drVext(r,t)ρ(r) is the total Helmholtz free energy functional

(with the irrelevant thermal wavelength 	).
More recently, however, Fortini et al. [9] showed by using

BD and MC simulations that the adiabatic approximation (12),
even when performed consistently with N particles, produces
qualitatively wrong results for a system of hard rods in one
dimension. Their work was motivated by recent theoretical
progress, where superadiabatic forces arise from the functional
derivative of an excess power dissipation functional [16].
Hence, following Fortini et al. adiabatic and superadiabatic
forces are equally valid contributions to the internal force
density (11), which can explicitly be written as the sum of
the adiabatic force density, defined as

Iad,t (r) = −
∫

dr′ρ(2)
ad,t (r,r

′)∇φ(|r − r′|) (17)

and the superadiabatic force density, defined as

Isup(r,t) ≡ Iint(r,t) − Iad,t (r). (18)

where Iint(r,t) is given by (10) or (11).

C. Gaussian core model and the mean-field approximation

The one-component GCM is a system with pairwise
interactions between particles, where the pair potential as a
function of center-center distance r is given by

φ(r) = ε exp(−r2/σ 2), (19)

where the constant ε is the potential energy at zero separation
of the two particles and the constant σ determines the
length scale. The GCM was first introduced by Stillinger in
1976 [12] and is regarded as a good approximation for the
effective interaction of centers of mass of polymer coils [6]. In
particular, for two isolated nonintersecting chains, ε is of order
2kBT and σ is approximately equal to the radius of gyration of
the polymer coils [19]. In equilibrium the three-dimensional
GCM is known to behave like a mean-field fluid over a broad
range of densities and temperatures [19] and the mean-field
free energy density functional [20–24],

F ex[ρ] = 1

2

∫
dr

∫
dr′ρ(r)φ(|r′ − r|)ρ(r′), (20)

provides a good approximation. Substituting the functional
(20) into (15) and using (14) and the definition of the adiabatic

force density Iad,t (r), (17), yields

Iad,t (r) = −ρad,t (r)∇
∫

dr′φ(|r′ − r|)ρad,t (r′). (21)

Comparing (21) to (17) shows that the two-body density has
been factorized into a product of one-body densities:

ρ
(2)
ad,t (r,r

′) = ρad,t (r)ρad,t (r′). (22)

For obtaining the results presented below, we do not employ
such approximations, but rather solve the full problem(s) using
both explicit BD and (Metropolis) MC many-body computer
simulations [6], which we outline in the following.

III. SIMULATION METHODS

A. Units, physical setup, and initial states

For our simulation work we chose σ , ε, and ξ as the
fundamental units. Time is then given in units of τ0 = σ 2ξ/ε,
which is a time scale that characterizes the dynamics due to
the internal interactions. We indicate the reduced temperature
by T ∗ = kBT/ε. We consider N = 10 particles with position
coordinates xi , i = 1 . . . 10, in one dimension inside of a
parabolic external potential

Vext(x) = k

2
x2, (23)

where x is the space coordinate and the parameter k determines
the curvature of the parabola and hence the strength of
confinement. We investigate the following two different classes
of initial conditions.

(i) Equilibrium initial states: Here the system is equilibrated
in the external potential (23) with k = k0 for times −5τ0 � t �
0. For t > 0 the value of k is then set to k1 < k0, which clearly
changes the equilibrium state in the external potential. We
consider the reduced temperatures T ∗ = 0.02, 0.1, and 0.5.

(ii) Equidistant initial states: At t = 0 the particles are
placed equidistantly and symmetrically around the origin with
a nearest-neighbor distance d. For two values of the reduced
temperature T ∗ = 0.1,0.5 we consider the distance ratios
d/σ = 0, 0.11, 0.22, 0.56, 0.83, 1.11, 1.67, and 2.22.

In both cases (i) and (ii) the system subsequently evolves
until the time t = ts where the instantaneous one-body density
ρ(x,ts) and two-body density ρ(2)(x,x ′,ts) as well as the
one-body current J (x,ts) are sampled. The instantaneous
internal force Fint(x,ts) and internal force density Iint(x,ts)
are then obtained by numerically evaluating the integral
(11). Here and throughout our one-dimensional study we
indicate the vectorial quantities, such as the force density
and the particle current, as (effective) scalars in the notation.
Furthermore, the knowledge of ρ(x,ts) allows us to identify
the corresponding adiabatic potential Vad,t (x) and simulate the
adiabatic system (as defined in Sec. II B). Thus, we can obtain
the adiabatic and superadiabatic contributions to the internal
force and force density. The concrete implementation of the
nonequilibrium and the equilibrium simulation as well as the
scheme for identifying the adiabatic potential are described in
the following.
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B. Brownian dynamics in nonequilibrium

Following Ref. [9] we use the BD method to simulate
the nonequilibrium dynamics. The BD simulation consists of
numerical integration of the overdamped Langevin equation
of motion (1) in discrete time steps 
t = 0.0005τ0. The
system was advanced via the Euler algorithm. In order to
perform the average of the stochastic differential equation
(1), 105–107 independent trajectories were generated for each
case considered. At each time step the random forces Ri(t)
are generated according to a Gaussian probability distribu-
tion with standard deviation

√
2
tkBT ξ = √

2
t∗T ∗τ0ε/σ ,
where 
t∗ = 
t/τ0 is the scaled time step. We use one- and
two-dimensional histograms for obtaining results for the one-
and two-body quantities, respectively, with numbers of bins in
each dimension between 300 and 1600 and bin sizes ranging
from 0.02σ to 0.1σ .

C. Monte Carlo and adiabatic iteration scheme

In order to find the adiabatic external potential, for which
the density in the adiabatic system, ρad,ts (x), is equal to ρ(x,ts)
[cf. (13)], we employ an iterative scheme of successive MC
simulations. Here ρ(x,ts) is sampled in the nonequilibrium BD
simulation as described above. Our MC scheme is a standard
many-body (Metropolis) method, where we use single-particle
moves in order to update the particle positions and hence obtain
equilibrium averages. As the GCM can in many equilibrium
situations be well approximated by a mean-field approach [19],
we find it useful to then obtain the initial value of the adiabatic
external potential from the mean-field approximation:

V
(0)

ad,ts
(x) = −kBT ln[ρ(x,ts)	] −

∫
dx ′ρ(x ′,ts)φ(|x ′ − x|).

(24)

Here the thermal wavelength, 	, generates only an additive
constant to the adiabatic external potential and can therefore be
neglected. For the iteration the adiabatic potential is discretized
to one value per histogram bin. In each iteration step we run
an MC simulation under the influence of the adiabatic external
potential and compare the resulting density ρad,ts (x) in each bin
to ρ(x,ts), as known from BD. If ρad,ts (x) > ρ(x,ts), then we
increase Vad,ts (x) in the respective bin; if ρad,ts (x) < ρ(x,ts),
then we decrease Vad,ts (x). In our particular implementation
the potential in the (i + 1)th step follows from the result of the
ith step according to

V
(i+1)

ad,ts
(x) = V

(i)
ad,ts

(x) + α ln

[
ρ

(i)
ad,ts

(x)

ρ(x,ts)

]
(25)

with α as a free parameter, typically chosen as α = 1 or
α = 0.5. Here the superscripts indicate the iteration steps.
We continue the iteration until the cutoff criterion |ρad,ts (x) −
ρ(x,ts)| < 0.01ρ(x,ts) is reached. Each MC run consists of up
to 2 × 109 MC steps (attempted particle updates), as necessary
to obtain adequate statistical quality. The acceptance rate of
attempted single particle moves falls within a range between
20% and 50%. The adiabatic two-body density ρ

(2)
ad,ts

(x,x ′) is
sampled from a separate MC run in the final adiabatic potential.
The adiabatic and superadiabatic force densities and forces are
then calculated from (17) and (18), respectively.

IV. RESULTS

A. Equilibrated initial states

We first consider a system of N = 10 particles confined
inside the parabolic external potential (23) where k0 = ε/σ 2

and k1 = 0.2ε/σ 2 at reduced temperature T ∗ = 0.5. As can be
seen from Fig. 1(a), the equilibrium density profile ρ(x,t = 0)
resembles the Gaussian distribution that an ideal gas would

FIG. 1. Overview of the one-body profiles as a function of the
scaled distance x/σ in an initially equilibrated system at reduced
temperature T ∗ = 0.5. (a) Time evolution of the density ρ(x,t)
at times t∗ ≡ t/τ0 = 0 (dashed line), 1 (solid line) and 15 (long-
short dashed line) obtained from BD (lines). For comparison the
equilibrium densities ρ(x) obtained from MC (symbols) are shown
for k = ε/σ 2 and 0.2ε/σ 2. (b) Comparison of the scaled current
J (x,ts)τ0 from direct sampling (symbols) and from evaluation of
the force integral (8) (line). (c) Adiabatic external potential Vad,ts (x)
in units of ε = 2kBT . (d) Total internal, Iint(x,ts), adiabatic, Iad,ts (x),
and superadiabatic, Isup(x,ts), force density in units of ε/σ 2 at t∗ = 1.
Isup(x,ts) is additionally shown multiplied by a factor of 50 (see label).
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produce in the same external potential. However, the actual
width is larger than in the ideal gas case due to the repulsion
between GCM particles. At t = 15τ0 the density profile has
spread outward and relaxed towards the new equilibrium state
for k = k1. For both (initial and final) equilibrium densities
the results obtained from BD are in very good agreement with
MC simulations in the respective external potential.

For investigating the nonequilibrium quantities of interest,
and in particular the superadiabatic force, we chose the sam-
pling time to be ts = τ0. At this time the outward movement
of the density profile is reflected by the sign of the current
J (x,ts = τ0), which is negative for x < 0 and positive for
x > 0; see Fig. 1(b). Furthermore, we have checked that results
for the current, as sampled directly from the particle velocities
ẋi(ts), agree very well with the results for the current calculated
from ρ(x,ts) and ρ(2)(x,x ′,ts) via the integral (8). However, the
direct sampling produces a higher statistical uncertainty, which
we attribute to the presence of the random force in (1).

The result for the adiabatic potential, as shown in Fig. 1(c),
is in this case similar to a parabola with curvature k =
0.39ε/σ 2. Finally Fig. 1(d) shows the total internal force
density Iint(x,ts) as well as its two constituents, the adiabatic
force density Iad,ts (x) and the superadiabatic force density
Isup(x,ts). Considering force densities offers the advantage
over forces that the former feature a smaller statistical error in
regions where the density is small, i.e., in the present case at the
edges of the spatial range that we consider. However, due to the
simple relation (10) all conclusions about the superadiabatic
behavior of the system remain valid when considering forces.
For the case T ∗ = 0.5, the total internal force density and
the adiabatic force density nearly coincide, while Isup(x,ts)
constitutes a small correction, which is roughly two orders
of magnitude smaller than Iint(x,ts) and Iad,ts (x). This finding
suggests that the equilibrium structure of the fluid is preserved
during the particular nonequilibrium time evolution that we
consider here. The reason for this behavior can be connected
to the fact that for the GCM mean-field methods provide a
good approximation in a wide range of equilibrium situations
[19], which includes the adiabatic system considered here. As
mentioned above in Sec. II C, in the mean-field approximation
ρ(2)(x,x ′) is factorized into a product of one-body densities
(22). This implies that if the GCM also has a mean-field-like
structure out of equilibrium, Iint(x,ts) and Iad,ts (x), which are
calculated via (11), must be equal, since ρ(x,ts) = ρad,ts (x) by
construction.

In order to clarify the different physical effects that drive
the dynamics, in Fig. 2 we show the total force F (x,ts) for
T ∗ = 0.5, together with its three constituents: according to (9)
these are the diffusive force, the external force, and the internal
force, which we all find to vary linearly with x in the range
−3σ < x < 3σ in this particular case. Outside of this range
the diffusive force and the external force strongly dominate,
while the internal force becomes less relevant.

The temperature dependence of the force densities is
illustrated in Fig. 3, where we show results for the internal force
density (a) and its adiabatic (b) and superadiabatic (c) contri-
butions. In addition, in Fig. 3(b) we compare the adiabatic
force density Iad,ts (x) to the corresponding mean-field force
density, which is obtained from ρ(x,ts) via (21). We observe
that, first, the mean-field force density provides a very good

FIG. 2. Total force F (x,ts), diffusive force −kBT ∇ ln ρ(x,ts),
external force Fext(x,ts), and internal force Fint(x,ts) for T ∗ = 0.5
at sampling time ts = τ0 in an initially equilibrated system. The
statistical noise in the diffusive force grows for large values of |x| as
ρ(x,ts) approaches zero; cf. Fig. 1.

FIG. 3. Comparison of (a) total internal force density Iint(x,ts), (b)
adiabatic force density Iad,ts (x), and (c) superadiabatic force density
Isup(x,ts) in units of ε/σ 2 for scaled temperatures T ∗ = 0.5, 0.1,

and 0.02 (as indicated) at sampling time ts = τ0 for a system that is
initially in equilibrium. In (b) the adiabatic force densities Iad,ts (x)
(lines) are also compared to the respective mean-field force density
(symbols). Note that the scale on the vertical axis is different in (c).

022105-5



ELIAS BERNREUTHER AND MATTHIAS SCHMIDT PHYSICAL REVIEW E 94, 022105 (2016)

approximation to Iad,ts (x). Second, the small deviations from
the mean-field force density are of the same order of magnitude
as the superadiabatic force density Isup(x,ts). This holds also
for the cases T ∗ = 0.1 and T ∗ = 0.02, where the force density
becomes more structured and develops oscillations on top of
its global slope due to reduced overlap between the particles.
These findings support the conjecture that a dynamical mean-
field behavior [4] is responsible for the agreement of Iint(x,ts)
and Iad,ts (x). Generally, the superadiabatic contribution grows
as T ∗ decreases but remains small for all temperatures that
we investigated; see Fig. 3(c). We conclude that for the
special case of a time evolution between two equilibrium
states the adiabatic approximation gives good results under
all conditions that we considered.

B. Equidistant initial states

In order to examine nonequilibrium initial conditions, we
chose equidistant initial positions with a distance d between
neighboring particles, where each position is occupied by a
single particle. Note that this constitutes a nonequilibrium
situation, due to the absence of multiple occupancy of the
density peaks, as would occur in thermal equilibrium of the
GCM. In the case of hard rods this type of initial condition
produced the largest discrepancies between total and adiabatic
force densities, and thus the largest superadiabatic contribu-
tions were observed [9]. For all times we confine the system by
the external potential (23), where k = 0.2ε/σ 2. The sampling
time is chosen as ts = 0.2τ0 and the reduced temperature is
T ∗ = 0.5, unless stated otherwise. Depending on the value of
d, we can distinguish three different characteristic types of
behavior for small, intermediate, and large initial separations,
as shown in Fig. 4. In the limiting case of small separations,
d = 0, the density profile varies smoothly with distance, as
depicted in the top panel of Fig. 4(a). At time ts the density
profile has expanded and the current J (x,ts) resembles the
current for the equilibrated initial condition [as shown in the
second panel of Fig. 4(a)]. This similarity also extends to
the adiabatic potential, which is shown in the third panel
of Fig. 4(a), as well as the splitting of the internal force
density Iint(x,ts) into Iad,ts (x) and Isup(x,ts). The superadiabatic
contribution is a small correction, as shown in the bottom
panel of Fig. 4(a), with opposite sign to Iint(x,ts) and Iad,ts (x).
This implies that Iad,ts (x) slightly overestimates Iint(x,ts). The
resemblance between the results for the current case and the
above results for the initial parabolic confinement stem from
the fact that the initial state with d = 0 can be viewed as the
limit of equilibrium states in Vext(x) = kx2/2 as k → ∞.

For increased initial separations, d = 0.833σ , the dynamics
change significantly. While the density profile (cf. the top
panel of Fig. 4) still expands for |x| > 3.5σ , it contracts
for |x| < 3.5σ . On top of this large-scale movement, local
oscillations appear, as the interactions between neighboring
particles become more important; cf. the second panel of
Fig. 4(b). The adiabatic potential Vad,ts (x), shown in the third
panel of Fig. 4(b), is considerably deformed compared to
the parabolic shape of Vext(x). Whereas the total internal
force density Iint(x,ts) develops oscillations, Iad,ts (x) remains
smooth. Hence, the superadiabatic part Isup(x,ts) is a relevant
contribution, which adds the oscillatory structure, while the

adiabatic force density determines the global slope; see the
bottom panel of Fig. 4(b).

For large initial separations [see Fig. 4(c) for the case d =
2.22σ ], the density profile consists primarily of well-separated
peaks, where the number of peaks is equal to the number of
particles, N = 10; cf. the top panel of Fig. 4(c). Since the initial
density profile is wider than that for the equilibrium state in
Vext(x), the external force pulls the particles towards the center,
hence the global slope of the current is negative; cf. the second
panel of Fig. 4(c). However, nearest-neighbor interactions are
clearly dominant. The adiabatic potential consists of N wells,
one for each density peak. The force density shown in the
bottom panel of Fig. 4(c) possesses an oscillatory structure
without any global slope. While Iint(x,ts) and Iad,ts (x) oscillate
in phase with each other, the superadiabatic force integral
Isup(x,ts) is out-of-phase with both of these. This qualitative
result was already reported by Fortini et al. for hard rods at
certain densities starting from an equidistant initial condition
[9]. These authors suggested that the out-of-phase behavior
of the adiabatic force density is due to contributions from
microstates in which one potential well is occupied by two
or more particles. In order to investigate this conjecture, we
fix one of the spatial arguments of the two-body density to
the position x0 of one of the peaks in the one-body density
ρ(x,ts) and evaluate the resulting function ρ(2)(x,x0,ts) of
argument x. The density ρ(2)(x,x0,ts) is proportional to the
probability of finding a particle at x, given that there is a
particle at x0, and it also appears in the integral (11) for the
force density Iint(x0,ts). In Fig. 5 we compare ρ(2)(x,x0,ts)
of the nonequilibrium system to ρ

(2)
ad,ts

(x,x0) of the adiabatic
system, as a function of x for x0 = 3.1σ . In the nonequilibrium
system the peak at x0 is missing, which implies that at time ts
no particle has traveled from another peak to the peak at x0.

Although we show only the case x0 = 3.17σ , this behavior
is representative and holds for all other peak positions.
Therefore each of the peaks of the one-body density ρ(x,ts)
is produced by exactly one particle, which started at t = 0 in
the initial position underneath the respective peak; see the first
panel of Fig. 4(c). If the particle around x0 is at a position on
either of the wings of its own peak, it is driven back towards x0

by the repulsion of the particle in the nearest neighboring peak.
Hence, the total internal force density Iint(x,ts) is positive on
the left of the center of each density peak and negative on the
right. However, in the adiabatic system multiple occupation of
each peak is possible, as Fig. 5 demonstrates. If a particle is
located at x > x0, the small peak around x0 produced by other
particles exerts a force that is directed away from x0. This
explains the fact that the sign of Iad,ts (x) is opposite to that
of Iint(x,ts). As a result, Iad,ts (x) is out-of-phase with respect
to Iint(x,ts). Additionally, the forces from other peaks, which
dominate the nonequilibrium system, are still present in the
adiabatic system. The amplitude and phase of the oscillations
of Iad,ts (x) are determined by the relation between forces from
other particles in the same peak and from particles in other
peaks. This mechanism also explains the increased amplitude
of the last oscillations of Iad,ts (x) at x = ±10σ , where forces
from multiple occupation of the last peak are present, while
forces in the opposite direction from a neighboring peak are
absent. This larger amplitude on the outside is not observed in
Iint(x,ts).
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FIG. 4. Overview analogous to Fig. 1, but for equidistant initial states at reduced temperature T ∗ = 0.5 with initial nearest-neighbor
separations (a) d = 0, (b) d = 0.833σ , and (c) d = 2.22σ . Top panels: scaled density ρ(x,ts)σ as a function of the scaled coordinate x/σ with
the initial positions indicated by vertical bars; second panels: scaled current J (x,ts)τ0; third panels: scaled adiabatic potential Vad,ts (x)/ε. Note
that the external potential that acts unchanged throughout the time evolution is equivalent to the adiabatic potential at t∗ = ∞. Bottom panels:
total internal force density Iint(x,ts), adiabatic force density Iad,ts (x), and superadiabatic force density Isup(x,ts) in units of ε/σ 2 at time ts = τ0.

We next investigate the effect of decreasing the temperature
to T ∗ = 0.1. We consider the force densities in the systems
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FIG. 5. Scaled two-body density ρ(2)(x,x0,ts)σ 2C, where x0 =
3.17σ is a peak position of ρ(x,ts), as a function of the scaled
distance x/σ , at time ts = 0.2τ0, temperature T ∗ = 0.5, and initial
nearest neighbor separation distance d = 2.22σ . Shown are results
for the nonequilibrium system (blue solid line) and the corresponding
adiabatic system (red dashed line). The normalization constant C is
chosen such that the x integral of ρ(2)(x,x0) is equal to N − 1 = 9.

with the above three values for the initial separation d; see
Fig. 6. In the case of vanishing separation, d = 0, the total
internal, the adiabatic and the superadiabatic force density all
become larger as T ∗ is decreased; see Fig. 6(a) for comparison
of the results for T ∗ = 0.5 and T ∗ = 0.1. The relaxation
from the initial configuration, where all particles lie on top
of each other, to the equilibrium state proceeds more slowly
for the lower temperature, which results in larger values of
the internal forces at the time ts, because the average distance
between the particles is smaller compared to the case of higher
temperatures. The GCM pair force reaches its maximum
at distance 
x = σ/

√
2, which is well below the width of

the density profile at ts for T ∗ = 0.5. For both temperatures
the respective superadiabatic contributions are small, and the
mean-field force density provides a very good approximation
to the adiabatic and to the total force density.

For d = 0.833σ the total internal force density Iint(x,ts)
and the superadiabatic force density Isup(x,ts) at T ∗ = 0.1
are scaled versions of the respective force densities at T ∗ =
0.5; cf. the first and third panels of Fig. 6. The adiabatic
force density Iad,ts (x), which does not oscillate for T ∗ = 0.5,
becomes more structured when decreasing the temperature
to T ∗ = 0.1. It is also apparent from the second panel of
Fig. 6 and the magnitude of the superadiabatic force density
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FIG. 6. Total internal force density Iint(x,ts) (top panels), adiabatic force density Iad,ts (x) (middle panels), and superadiabatic force density
Isup(x,ts) (bottom panels) in units of ε/σ 2 as a function of x/σ . Shown are results for reduced temperatures T ∗ = 0.5 (thick black lines)
and T ∗ = 0.1 (thin red lines) at ts = τ0 for equidistant initial states with initial nearest neighbor separations (a) d = 0, (b) d = 0.833σ, and
(c) d = 2.22σ . In each of the middle panels the adiabatic force densities Iad,ts (x) (lines) are also compared to the respective mean-field force
density (symbols).

that the mean-field approach describes only the dynamics of
the adiabatic system well, but not that of the nonequilibrium
system. Therefore, mean-field behavior in equilibrium does
not necessarily imply mean-field behavior out-of-equilibrium
for all initial conditions.

In the case of the large initial separation d = 2.22σ , the
results at T ∗ = 0.5 are qualitatively different from those at
T ∗ = 0.1. For the lower temperature Iad,ts (x) and Iint(x,ts)
oscillate in phase with each other and have a similar amplitude.
Hence, Isup(x,ts) is small. This is in accordance with the
concept of multi-occupancy generating the superadiabatic part,
since the occurrence of more than one particle in one potential
well is more strongly suppressed at lower temperatures.
Furthermore, at T ∗ = 0.5 the mean-field force density is
a scaled-up version of Iad,ts (x). This can be understood
considering that in mean field ρ(2)(x,x0) = ρ(x)ρ(x0). The
mean-field profile corresponding to those shown in Fig. 5
therefore has a full peak at x0 but only a smaller peak in
the adiabatic profile. Hence, the mean-field force density is in
phase with Iad,ts (x) but has a larger amplitude. This is not the
case for T ∗ = 0.1, where the multi-occupancy mechanism is
suppressed.

Finally, it is remarkable that for all initial separations,
ranging from d = 0 to d = 2.22σ , the superadiabatic force
density Isup(x,ts) remains of the same order of magnitude,
as shown in Fig. 7. In contrast, the total internal force
density Iint(x,ts) decreases by roughly two orders of magnitude
over the range of d considered. This is most striking for
the larger separations between d = 1.11σ and d = 2.22σ ,
where the amplitude of the oscillations in Isup(x,ts) remains
approximately the same. This decrease in the total force density

for higher separations d can be rationalized by the fact that
in the nonequilibrium system the interaction is weakened by
greater distance between the particles, both directly through
the spatial dependence of the GCM force and indirectly,
because particles take more time to come near to each other.
The probability of multiple occupancy of a potential well in the
adiabatic system, however, is not decreased by greater distance
between the wells. Therefore, the superadiabatic force density,
which corrects the additional force density from multiple
occupation, stays roughly of the same magnitude.

FIG. 7. Scaled superadiabatic force density Isup(x,ts)σ 2/ε as a
function of x/σ for different initial separations d/σ = 0, 0.56, 1.11,
1.67, 2.22 (from bottom to top). Curves are shifted upwards by 0.4
units for clarity. Note that the magnitude of the different results is
similar.
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V. CONCLUSIONS

We have investigated the splitting into adiabatic and
superadiabatic contributions of the internal force density in the
one-dimensional GCM for equilibrated initial states as well as
for a range of nonequilibrium initial states. For this purpose we
have applied the computational scheme which was presented
by Fortini et al. [9] to a penetrable soft core system which
differs qualitatively from the hard rod system. Thereby we
have demonstrated the generality of the approach. In particular,
it is computationally feasible to solve the inverse problem
of finding the adiabatic potential for a given density profile.
The magnitude of the superadiabatic force density and thus
the validity of the adiabatic approximation in DDFT depend
strongly on the initial conditions that one considers. We have
found that if the system is initially equilibrated in an external
parabolic potential, then the superadiabatic contribution to
the force density can be regarded as a small correction.
Hence, in this case the adiabatic approximation is justified.
We have found this behavior, independent of temperature in
the examined temperature range.

For equidistant initial configurations we have found large
superadiabatic contributions to the internal force density at
high temperature. We have identified the primary source of
these contributions as multiple occupancy of wells in the
adiabatic potential. If multiple particles occupy the same well,
they exert forces on each other which cause the adiabatic force
density Iad,ts (x) to oscillate out-of-phase with the total internal
force density Iint(x,ts). This results in a large superadiabatic
contribution. This mechanism is less efficient at smaller
temperatures. Since multiple occupancy does not depend on

the exact form of the pair potential, we expect qualitatively
similar results for pair interactions other than the GCM.

Our findings are entirely consistent with those by Reinhardt
and Brader [11], who found unphysical self-interactions of
the tagged particle density fields create an excessively fast
relaxation predicted by DDFT.

For both equilibrated initial states and small separations in
the equidistant initial states we observed dynamical mean-field
behavior [4]. In these cases the superadiabatic force was
small. However, we also found cases where the mean-field
approximation was good in equilibrium, but not in the nonequi-
librium system. Hence the precise relationship between the
mean-field force and the adiabatic and superadiabatic forces
is complex, except in special cases. While we tried to choose
conditions which allow the study of the most relevant effects,
the superadiabatic part might behave unexpectedly for other
initial states, which remains to be explored. Investigation of
the time evolution of superadiabatic forces might clarify the
way towards a theoretical model.

Furthermore, investigating the proposed multi-occupancy
mechanism on the level of dynamical two-body correlation
functions, in the framework of the nonequilibrium
Ornstein-Zernike relation [25,26], the dynamical test-particle
limit [27–31], or explicit many-body simulations [32] should
prove useful.
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