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We study dynamic two-body correlation functions, i.e., the two-body density, the current-density
correlator, or van Hove current, and the current-current correlator in Brownian dynamics computer
simulations of a dense Lennard-Jones bulk liquid. The dynamic decay of the correlation shells of the
two-body density is examined in detail. Inner correlation shells decay faster than outer correlation
shells, whereas outer correlation shells remain stable for increasing times. Within a dynamic test
particle picture the mechanism is assumed to be triggered by the dislocation of the self-particle, which
releases the confinement of the surrounding correlation shells. We present a division of the van Hove
current into an adiabatic and a superadiabatic contribution. The magnitude of the adiabatic van Hove
current is found to exceed that of the total van Hove current, which is consistent with dynamic density
functional theory overestimating the speed of the dynamics. The direction of the superadiabatic
van Hove current opposes that of the total van Hove current. The current-current correlator reveals
detailed insight in the collisions of the particles. We find a large static nearest-neighbor peak,
which results from colliding particles and different dynamic peaks, that are attributed to consecutive
collisions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960031]

I. INTRODUCTION

A very powerful tool to determine static equilibrium
properties of a many-body system is classical density
functional theory (DFT).1,2 For a comprehensive introduction
to the field and a gamut of current developments, we refer
the reader to Ref. 3. In DFT the equilibrium one-body density
distribution of a system with arbitrary external one-body
potential is obtained by minimizing the grand potential
functional.2 One major advantage of DFT is the fact that
the grand potential can be split into one part specific for
the interparticle interactions and an additive contribution that
only depends on the external field. This implies that—once a
suitable approximation for the intrinsic free energy functional
is found for a specific model—the theory can be applied to
any external field in order to obtain equilibrium properties.
One extension of DFT to non-equilibrium systems is dynamic
density functional theory (DDFT).4,5 Here the equal-time
two-body density, which, e.g., describes the structure of
the liquid, of a system out-of-equilibrium is assumed to
be equal to a corresponding equilibrium version. Hereby it
is implied that the relaxation of density correlations is faster
than the dynamics of the density profile itself. However the
validity of this approximation is not clear but it provides
a practical solution that allows one to use the equilibrium
grand potential functional to obtain the dynamics of the
density profile in non-equilibrium situations. The method
produces qualitatively good results compared to Brownian
dynamics (BD) simulations but tends to overestimate the
rate of relaxation processes in a variety of situations.4,6–9

When applying the dynamic test particle limit (TPL),8,9

the theory can be used to examine the well-known van
Hove function10 and bulk dynamics. Here the overestimated

dynamics manifest, for instance, in a wrong description of
long-time diffusion. Stopper et al. recently addressed the
problem with an empirically biased version of DDFT.11,12

Another extension of DFT, which aims at an exact
description of non-equilibrium systems, is the recently
presented power functional theory (PFT).13 In PFT the one-
body particle current is treated as the fundamental variable
rather than the density distribution. The current is calculated
from a minimization condition of a free power functional.
The development of concrete approximations of the power
functional for specific models is an ongoing task.13–15 PFT is
exact in the sense that there is no adiabatic assumption and
the full non-equilibrium behavior of the system is captured.
The difference between the adiabatic DDFT current and the
full non-equilibrium current obtained via PFT is defined as
the superadiabatic current. When used in the context of the
dynamic TPL in the PFT framework,16 the superadiabatic
current is related to direct time correlation functions via
a non-equilibrium Ornstein-Zernike equation.14 These direct
correlation functions contain memory of the past motion of
the system and can be represented as functional derivatives of
the excess (over ideal) free power functional with respect to
density and/or current.17 Hence, knowledge of the correlation
functions and memory functions is crucial to obtaining future
explicit approximations to power functionals and making PFT
a readily applicable tool.

In the present work we investigate the dynamic
correlations in an equilibrium bulk Lennard-Jones (LJ) system
via BD simulations. By examining the bulk system we intend
to obtain the inherent features of the correlation functions
that we expect to recover in any inhomogeneous and non-
equilibrium system as well. The choice for this particular
model was made as it is a prime example of a simple
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fluid. The LJ fluid has been widely studied theoretically
and is naturally applied to describe atomic fluids such as
noble gases. Thus, the properties and phase behavior of the
model are well-known (see e.g., Refs. 18 and 19). Between
the triple point temperature and the critical temperature the
phase diagram is separated by the binodal into a low density
gas phase and a liquid phase with intermediate density. We
examine a liquid state point close to the triple point in order
to potentially maximize the influence of the interparticle
forces.

The arguably simplest among the dynamic correlation
functions is the two-body density, which is (up to a
multiplicative constant) equivalent to the van Hove function
and, in the equal time case, to the radial distribution function
(RDF). In colloidal systems the intermediate scattering
function, which is the spatial Fourier transform of the
van Hove function, can be measured in neutron scattering
experiments20 or with video microscopy (see, e.g., Refs. 21
and 22). This makes the van Hove function a useful tool for
comparing theory and experiments and for analyzing complex
phenomena, such as formation of transient networks.23

The fundamental theory for the long-range decay of the
static two-body density24,25 predicts monotonic exponential
decay at low densities and temperatures and oscillatory
exponential decay at high densities and temperatures. The
two regions in the phase diagram are separated by the so-
called Fisher-Widom line.26 Very recent experimental and
simulation work has further validated the theory for asymptotic
decay of correlations for colloidal systems.27 Furthermore, the
universality of the decay was shown in Ref. 28. Although the
decay scenario is well-investigated in the static case, it appears
that it has not been extended to the behavior of dynamic
correlations so far.

The second investigated correlation function is the van
Hove current, which is a density-current correlator and
particularly interesting in the frameworks of DDFT and
PFT.8,9,16 The connection to the van Hove function is via a
continuity equation, which can therefore be used to obtain the
time evolution of the van Hove function. The van Hove current
can be identified with a one-body current via the dynamic
TPL.8 Thus, it acts as the fundamental variable in the PFT
framework applied to bulk fluids.16 A further objective of the
present work is to obtain the adiabatic contribution to the van
Hove current and to compare it to the total van Hove current.
Thereby we aim at determining the accuracy of the adiabatic
assumption for the examined model and state point. The
third correlation function—the current-current correlator—is
in general a tensorial quantity that relates the velocities of
two particles. We present a straightforward implementation
to calculate the non-zero components in bulk. The Fourier
transform of the longitudinal current-current correlator is the
velocity autocorrelation function.20 Recently this function has
been measured via the time derivative of the intermediate
scattering function.29

The paper is organized as follows. In Sec. II we present
the system and the simulation details (Sec. II A) followed
by an introduction of the correlation functions (Sec. II B). In
bulk several symmetries apply, which we exploit to simplify
the examination of the correlation functions (Sec. II C). We

derive continuity relations between the correlation functions
(Sec. II D), which are used to link the behavior of the
different correlation functions and to check the consistency of
our numerical data. A method to calculate the adiabatic and
superadiabatic van Hove current is presented, which combines
the dynamic TPL (Sec. II E) and the explicit construction of
the adiabatic state (Sec. II F). In order to gain deeper insight
into the decay mechanisms of the correlation functions we
study a reference system without particle-particle interactions,
where particles move via ideal diffusive motion (Sec. II G).
The asymptotic expansion24,25 for large distances of the two-
body density is briefly reviewed in Sec. II H; this has so far
been applied only to the static two-body density. Section III
presents the numerical results for the correlation functions.
We show that the self-parts of the correlation functions in the
examined LJ liquid exhibit the same features as in the ideal
gas (Sec. III A). Furthermore we identify the mechanisms
determining the qualitative shapes of the distinct correlation
functions and the relations between those (Sec. III B).
The results of the adiabatic construction that yield the
adiabatic and superadiabatic van Hove currents are presented
in Sec. III C. Concluding remarks and suggestions for further
investigations are given in Sec. IV. In the Appendix we
present supplementary calculations of divergences of isotropic
vector fields and diagonal tensor fields in spherical coordinates
(Subsection 1 of the Appendix). We verify the consistency of
our numerical data for the correlation functions by means of
the continuity equations (Subsection 2 of the Appendix) and
the analytic calculation of the self-correlation functions for
the ideal diffusive motion is performed (Subsection 3 of the
Appendix). These technical results constitute a resource for
carrying out actual computations.

II. THEORY AND METHODS

A. Brownian dynamics and Lennard-Jones model

We simulate a bulk fluid of LJ particles with particle
density ρ in an implicit viscous solvent at temperature T .
Simulations are carried out with N particles in a cubic box of
volume V = N/ρ. Periodic boundary conditions are applied
in all three spatial directions in order to minimize finite size
effects. Numerical results for the correlation functions of
interest (cf. Sec. II B) are obtained as time averages of single
long runs.

The trajectories ri(t), i.e., the position of each particle
i = 1, . . . ,N at time t, are obtained in discrete time steps ∆t,
where

ri(t + ∆t) = ri(t) + ṙi(t)∆t, (1)

with ṙi(t) being the displacement velocity between the times
t and t + ∆t. We consider the overdamped Stokes limit,
which implies that inertia of the particles is neglected. Thus,
the displacement velocity ṙi(t) of each particle is directly
proportional to the force acting on that particle,

ξ ṙi(t) = Fi(t) =
N
j,i

Fi j(t) + Ri(t), (2)
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where ξ is the friction coefficient and the sum is over all
other particles j , i. The total force Fi(t) acting on particle i
consists of pairwise intrinsic contributions Fi j(t) of particle i
with each other particle j and a random force Ri(t) modeling
the interaction with the solvent.

The force Fi j(t), that particle j exerts on particle i, is the
negative gradient of the 6-12-LJ pair potential with respect to
ri(t),

Fi j(t) =



ϵ


48

(
σ

ri j

)12

− 24
(
σ

ri j

)6

ri j
r2
i j

ri j < rc

0 otherwise

, (3)

where ri j ≡
�
ri j

�
≡
�
ri(t) − r j(t)� is the distance between the

particles i and j at time t. In order to minimize computational
cost, we truncated and shifted the pair potential at rc = 4σ,
following Ref. 30.

The effect of collisions of particle i with (implicit) solvent
molecules is modeled as a random force Ri(t). The collisions
are assumed to be uncorrelated with each other at different
times. Furthermore, the forces that act on different particles
are uncorrelated with each other. The strength of the random
force is determined via its autocorrelation function,



Ri(t)R j(t ′)� = 2kBTξδi jδ(t − t ′)I. (4)

Here the angles denote an average over realizations of the
random forces, the product of vectors (without dot) denotes
the dyadic product yielding the 3 × 3 unit matrix I, kB is
Boltzmann’s constant, δ(·) is the Dirac delta distribution, and
δi j is the Kronecker delta symbol. In order to attain these
properties the random force is chosen to be a random vector
with Gaussian probability distribution p(Ri(t)),31 where each
component has a variance of σ2

R = 2ξkBT/∆t,

p(Ri(t)) = (2πσ2
R)−3/2 exp *

,
−

R2
i (t)

2σ2
R

+
-
. (5)

The probability distribution is normalized to unity as its
integral over all random forces is a Gaussian integral,

dRi(t)p(Ri(t)) = 1. Note that the factor 1/∆t acts as a
discretized version of δ(t − t ′) in Eq. (4).

We use the particle diameter σ as the unit of length, the
energy constant ϵ as the unit of energy, and the friction constant
ξ as the unit of friction. This implies a time scale of τ0 = ξσ2/ϵ
which is used as the unit of time. Note that a corresponding
Brownian time scale is τB = ϵτ0/(kBT). One-body density
and current are then measured in units of σ−3 and τ−1

0 σ−2,
respectively. The two-body density, the van Hove current,
and the current-current correlator are measured in units of
σ−6, τ−1

0 σ−5, and τ−2
0 σ−4, respectively. For convenience we

set σ ≡ 1, ϵ ≡ 1, and τ0 ≡ 1 when presenting our numerical
data in Sec. III below. Simulations are carried out with
N = 500 particles at temperature T = 0.8ϵ/kB and number
density ρ = 0.84/σ3. This state point is a fluid state close to
the coexisting liquid at the LJ triple point Ttr = 0.7ϵ/kB and
ρtr,l = 0.84/σ3.32 Leote de Carvalho et al. have examined the
liquid structure of a supercritical LJ fluid with rc = 2.5 at the
state point T = 1.2ϵ/kB and ρ = 0.715/σ3.40 We choose the
time step ∆t = 5 · 10−5τ0.

B. Dynamic two-body correlation functions

We define the one-body density operator as

ρ̂(r, t) ≡
N
i=1

δ(r − ri(t)), (6)

which describes the (unnormalized) probability density to find
a particle at position r at time t in microstate (r1(t), . . . ,rN(t)).
The operator of the associated particle current is

Ĵ(r, t) ≡
N
i=1

vi(t)δ(r − ri(t)), (7)

describing the (vectorial) current of particles at position r
at time t. Here we use the velocity vi(t) as the symmetric
derivative of the position of particle i with respect to time,7,33

vi(t) ≡ ri(t + ∆t) − ri(t − ∆t)
2∆t

. (8)

The symmetrical velocity is related to the displacement
velocity ṙi(t), defined in Eq. (1), via

vi(t) = ṙi(t) + ṙi(t − ∆t)
2

. (9)

For brevity we introduce the shorthand notation (1) ≡ (r1, t1)
and (2) ≡ (r2, t2) for space-time points. Here r1 and r2 (without
time arguments) denote two fixed points in the system rather
than the positions of particles ri(t) with i = 1,2. Two-body
correlation functions can now be formed by multiplying two
of the one-body operators (6) and (7) above and averaging.

The (scalar) two-body density ρ2 is formed by two density
operators,20

ρ2(1,2) ≡ 

ρ̂(1) ρ̂(2)�

=

 N
i=1

N
j=1

δ(r1 − ri(t1))δ(r2 − r j(t2))

, (10)

where the angles denote an average over initial conditions
and realizations of random forces. ρ2 measures the joint
probability to find a particle at position r1 at time t1 and a
particle at position r2 at time t2. The two-body density is
proportional to the van Hove function GvH(1,2),10 which can
be viewed as the local and time resolved particle density at
space-time point 1, given that there is a particle located at
space-time point 2.

Following the notation of Ref. 17 we denote the averaged
product of a density operator and a current operator as van
Hove current JvH. We use the convention that t2 denotes the
earlier point in time, i.e., t2 ≤ t1. Therefore, we can define two
different correlation functions—a backward van Hove current
Jback

vH and a forward van Hove current Jfor
vH—via

Jback
vH (1,2) ≡ 


ρ̂(1)Ĵ(2)�

=

 N
i=1

N
j=1

δ(r1 − ri(t1))v j(t2)δ(r2 − r j(t2))

, (11)

Jfor
vH(1,2) ≡



Ĵ(1) ρ̂(2)�

=

 N
i=1

N
j=1

vi(t1)δ(r1 − ri(t1))δ(r2 − r j(t2))

. (12)
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The (tensorial) current-current correlator J2 is formed
by the average of a dyadic product of two current operators
(see e.g., Ref. 17 for the present case of BD and Ref. 20 for
molecular dynamics),

J2(1,2) ≡


Ĵ(1)Ĵ(2)�

=

 N
i=1

N
j=1

vi(t1)δ(r1 − ri(t1))v j(t2)δ(r2 − r j(t2))

.

(13)

The trace of this tensor reads

Tr J2(1,2) =


Ĵ(1) · Ĵ(2)�

=

 N
i=1

N
j=1

vi(t1)δ(r1 − ri(t1)) · v j(t2)δ(r2 − r j(t2))

.

(14)

Each of the four correlation functions (10)–(13) and the
trace of the current-current correlator (14) can be separated
into a self and a distinct part by dividing the double sum
into two sums—one sum with terms where i = j and one sum
with terms where i , j. Taking the two-body density as an
example, this reads

ρ2(1,2) ≡ ρself
2 (1,2) + ρdist

2 (1,2), (15)

where

ρself
2 (1,2) =

 N
i=1

δ(r1 − ri(t1))δ(r2 − ri(t2))

, (16)

ρdist
2 (1,2) =

 N
i=1

N
j,i

δ(r1 − ri(t1))δ(r2 − r j(t2))

. (17)

Analogous splittings hold for the van Hove currents Jback
vH ,

Jfor
vH, the current-current correlator J2, and its trace Tr J2.

Henceforth we indicate self and distinct parts of functions with
a superscript α ≡ self,dist. The splitting into self and distinct
parts allows to discriminate between the behavior of a single
(tagged) particle in the presence of its surrounding particles
(self part) and the behavior of the surrounding particles in the
neighborhood of the tagged particle (distinct part).

For the two-body density the normalization condition
dr1


dr2ρ2(1,2) =


dr1 ρ̂(1)


dr2 ρ̂(2)


= N2 (18)

holds, where the integrals are performed over the system
(i.e., the simulation box) volume. For the second equality
in Eq. (18) we employ the normalization condition for the
one-body density operator,


dr ρ̂(r, t) = N . For the self and

distinct parts we obtain in analogy to Eq. (18)
dr1


dr2ρ

self
2 (1,2) = N, (19)

dr1


dr2ρ

dist
2 (1,2) = N(N − 1). (20)

C. Symmetries and choice of coordinate system

In case of an equilibrium bulk fluid, temporal transla-
tional, spatial translational, and rotational symmetries apply.

The translational symmetries imply that the correlation
functions of Sec. II B will not depend explicitly on positions
r1 and r2 and points in time t1 and t2, but only on the difference
vector r ≡ r1 − r2 and time difference τ ≡ t1 − t2. The partial
derivative with respect to τ is related to the partial derivatives
with respect to t1 and t2 via

∂τ = ∂t1 = −∂t2. (21)

The gradient with respect to r is related to the gradients with
respect to r1 and r2 via

∇ = ∇1 = −∇2. (22)

Furthermore the two-body density depends only on the
distance r ≡ |r| but not on the orientation of r because of
the rotational symmetry. Hence, we sample ρα2 as a function
of r and τ.

The bulk van Hove current is an isotropic vector field,
which implies that Jα

vH(r, τ) is parallel (or antiparallel) to r and
its magnitude only depends on r and τ. In order to exploit this
symmetry we use spherical coordinates with radial unit vector
er ≡ r/r , azimuthal unit vector eϕ ≡ er × ez/ |er × ez | (where
ez is the unit vector z-direction of the simulation box), and
polar unit vector eθ ≡ er × eϕ. (The case er ∥ ez is sufficiently
unlikely.) In this coordinate system the van Hove current reads

Jα
vH(r, τ) = Jα

r (r, τ)er . (23)

This equation holds both for the forward and for the
backward van Hove current. Due to the symmetry arguments
given above, the transversal components Jα

ϕ and Jα
θ vanish.

Nevertheless we have sampled these components as a
consistency check and found them to be zero within the
statistical fluctuations.

The bulk current-current correlator is an isotropic
tensor with only radial-radial non-zero component Jα

rr(r, τ)
≡ erer : Jα

2 (r, τ) and two equal transversal-transversal non-
zero components Jα

t t(r, τ) ≡ eϕeϕ : Jα
2 (r, τ) = eθeθ : Jα

2 (r, τ);20

here the colon indicates a double tensor contraction. Hence,
in the spherical coordinate system Jα

2 reads

Jα
2 (r, τ) = Jα

rr(r, τ)erer + Jα
t t(r, τ)(eϕeϕ + eθeθ). (24)

We checked the validity of the symmetry arguments by
sampling each of the nine components Jα

kl
, with k, l = r, ϕ, θ,

individually. The off-diagonal components (with k , l)
were found to be zero and the two transversal-transversal
components Jϕϕ and Jθθ were found to be equal, yielding a
current-current correlator of the form of Eq. (24). The results
presented below for the transversal-transversal component
(Sec. III) are the arithmetic mean of the azimuthal-azimuthal
component and the polar-polar component Jα

t t = (Jα
ϕϕ + Jα

θθ)/2
to reduce noise of the data.

For an illustration of the symmetries of the van Hove
current, consider a configuration with two particles (or one
and the same particle) at space-time points r1, t1 and r2, t2
with velocities v1 and v2 as sketched in Fig. 1. Consider also a
further configuration with two particles at the same space-time
points but with velocities v′1 and v′2, which are the velocities
v1 and v2 reflected across the difference vector r. Due to the
isotropy of the system the two considered configurations have
the same probability to occur in bulk. Consequently, after
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FIG. 1. Illustration for the canceling of transversal contributions to the van
Hove current in isotropic systems. Symbols are defined in the text.

performing the averages for Jα,for
vH in Eq. (12) (or Jα,back

vH in
Eq. (11)) the contributions of v1 and v′1 perpendicular to r (or
the perpendicular contributions of v2 and v′2) cancel out and
the van Hove current is parallel to r (cf. Fig. 1).

Note that we use the same coordinate system for the
backward and the forward van Hove current with a radial unit
vector pointing from r2 to r1. This convention implies that
Jα,back
r > 0 indicates a current of particle 2 at time t2 towards

the position that would eventually be reached by particle 1 at t1
as seen in Fig. 1. However, Jα,for

r > 0 would indicate a current
of particle 1 at time t1 away from the position particle 2 had
at t2. Similar reasoning applies for Jα

r < 0. For the diagonal
components of Jα

2 it is implied that positive values indicate
aligned motion whereas negative values indicate opposing
motion.

The trace of Jα
2 in spherical coordinates reads

Tr Jα
2 (r, τ) = Jα

rr(r, τ) + 2Jα
t t(r, τ). (25)

Hence, in a simulation all non-zero components of Jα
2 can

be sampled without computing the transversal unit vectors eϕ
and eθ. The radial-radial component reads

Jself
rr (r, τ) =

 N
i=1

er · vi(t1)er · vi(t2)

× δ(r1 − ri(t1))δ(r2 − ri(t2))

, (26)

Jdist
rr (r, τ) =

 N
i=1

N
j,i

er · vi(t1)er · v j(t2)

× δ(r1 − ri(t1))δ(r2 − r j(t2))

, (27)

where, as before, er ≡ (r1 − r2)/ |r1 − r2|. The transversal-
transversal component can be obtained by combining
Eqs. (14) and (25), together with (26) or (27), which yields

Jself
t t (r, τ) = 1

2

 N
i=1

[vi(t1) · vi(t2) − er · vi(t1)er · vi(t2)]

× δ(r1 − ri(t1))δ(r2 − ri(t2))

, (28)

Jdist
t t (r, τ) = 1

2

 N
i=1

N
j,i

[vi(t1) · v j(t2) − er · vi(t1)er · v j(t2)]

× δ(r1 − ri(t1))δ(r2 − r j(t2))

. (29)

D. Continuity relations

The hierarchy of the four two-body correlation functions
(10)–(13) are related by five continuity equations. On the scalar
level there are relations between the temporal derivative of
the two-body density and the divergence of the forward and
of the backward van Hove current,

∂τρ
α
2 (r, τ) = −∇ · Jα,for

vH (r, τ), (30)

∂τρ
α
2 (r, τ) = −∇ · Jα,back

vH (r, τ). (31)

These equations are derived as follows from the continuity
equation for the density operator and the current operator:20

∂t1 ρ̂(1) = −∇1 · Ĵ(1). (32)

After multiplying this relation with ρ̂(2) and performing an
average, one obtains



∂t1 ρ̂(1) ρ̂(2)

�
= −



∇1 · Ĵ(1) ρ̂(2)�. (33)

The partial derivatives ∂t1 and ∇1 can now be taken out of
the average and be replaced by ∂τ and ∇, using Eqs. (21) and
(22), which yields

∂τρ2(r, τ) = −∇ · Jfor
vH(r, τ). (34)

This equation can be split into its self and distinct part in
analogy to Eq. (15), yielding Eq. (30). Equation (31) can
be derived analogously using exchanged space-time points
1 and 2.

On the vectorial level there are relations between the
temporal derivatives of the forward and of the backward
van Hove current and the divergence of the current-current
correlator,

∂τJα,back
vH (r, τ) = −∇ · Jα

2 (r, τ), (35)

∂τJα,for
vH (r, τ) = −∇ · Jα

2 (r, τ). (36)

Equation (35) is obtained by multiplying Eq. (32) with Ĵ(2)
and splitting it into self and distinct parts. Equation (36) is
obtained analogously with exchanged space-time points 1 and
2. Note that Eqs. (35) and (36) imply that the backward and
the forward van Hove current have the same numerical value
in equilibrium, although they describe different processes
(cf. Sec. II C). Therefore, we will drop the forward and
backward label in those cases, and use the notation

Jα
vH(r, τ) ≡ Jα,for

vH (r, τ) = Jα,back
vH (r, τ). (37)

Consequently, Eqs. (30) and (31) and Eqs. (36) and (35) are
equivalent in equilibrium. Equation (37) was also confirmed
by sampling Jα,for

vH and Jα,back
vH individually. The presented

results for the radial component in Secs. III and Subsection 2
of the Appendix are the arithmetic mean of the backward and
forward current Jα

r = (Jα,back
r + Jα,for

r )/2 (cf. Eqs. (23) and
(37)), again to reduce noise of the data.

For the second temporal derivative of the two-body
density and the tensor divergence of the current-current
correlator, we obtain

∂τ∂τρ
α
2 (r, τ) = ∇∇ : Jα

2 (r, τ) (38)

by combining Eqs. (30) and (36) (or (31) and (35)).
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The divergence on the right hand side of each continuity
equation can be calculated from the spherical components
according to Eqs. (A4), (A9), and (A10), as deduced in
Subsection 1 of the Appendix. We verified the consistency of
the numerical results for the correlation functions using the
continuity equations (30), (36), and (38) (see Subsection 2 of
the Appendix for details).

E. Static and dynamic test particle limit

In the static case, τ = 0, the two-body density is related
to the RDF g(r)20 via

ρ2(r,0) = ρδ(r) + ρ2g(r), (39)

where the delta distribution corresponds to the self-part and
the RDF corresponds to the distinct part of ρ2. In the static
TPL the RDF (multiplied by ρ) is identified with the one-
body density of a system exposed to an external potential.34

The external potential has the form of the pair potential
u(r) where r denotes the distance to the origin of a fixed
coordinate system. Hence, the external potential acts as a fixed
particle—denoted as test particle. As long as the test particle
is kept fixed this system is in equilibrium and its equilibrium
density is the same as the average of the instantaneous
particle density around an arbitrarily chosen particle in
bulk.

The dynamic TPL pictures ρα2 as well as Jα,for
vH as functions

describing the relaxation of a non-equilibrium system.8 The
initial state is the static test particle situation with the test
particle fixed at the origin. The test particle is released at time
τ = 0 and starts to diffuse away. The time dependent one-body
density and current (for the test particle and for the fluid of all
other particles) are then proportional to the two-body density
and current in the equilibrium bulk system. The contributions
of the test particle correspond to the self-part (where particle
i = 1 is chosen as the test particle),

ρself
tp (r, τ) ≡ ⟨δ(r − r1(τ))⟩ = ρself

2 (r, τ)/ρ, (40)

Jself
tp (r, τ) ≡ ⟨v1(τ)δ(r − r1(τ))⟩ = Jself,for

vH (r, τ)/ρ. (41)

Recall that r1(τ), with time argument, denotes the coordinates
of particle 1 at time τ. The functions of the other N − 1
particles correspond to the distinct parts,

ρdist
tp (r, τ) ≡

 N
i=2

δ(r − ri(τ))

= ρdist

2 (r, τ)/ρ, (42)

Jdist
tp (r, τ) ≡

 N
i=2

vi(τ)δ(r − ri(τ))

= Jdist,for

vH (r, τ)/ρ. (43)

Note that we only consider the case of the forward van Hove
current, such that a density (not current) operator acts at the
earlier time. For the inhomogeneous one-body functions in
the test particle situation a continuity equation can be obtained
from Eq. (30) or by performing an average of the continuity
equation for the one-body operators (32),

∂τρ
α
tp(r, τ) = −∇ · Jα

tp(r, τ). (44)

In order to obtain the BD results presented below,
instead of explicitly implementing the test particle procedure,
we rather sampled the dynamics of the system during
the equilibrium time evolution. The test particle theory is,
however, conceptually important for the splitting of the
total force density into an adiabatic and a superadiabatic
contribution.

F. Construction of the adiabatic state
and superadiabatic forces

Within the adiabatic approximation the two-body
correlations are assumed to relax faster than the evolution of
the dynamic density profiles. Thus, the state of a system at any
given time can be interpreted as an equilibrium state and the
interparticle forces (which are determined by the two-body
correlations) can be calculated from equilibrium statistical
mechanics, as implemented in DDFT.5 The difference between
the approximated adiabatic two-body correlations and the full
non-equilibrium two-body correlations yields an additional
contribution which is called the superadiabatic force.7,13

We aim to calculate the adiabatic force and thereby the
adiabatic van Hove current by explicitly constructing the
adiabatic state. Therefore we first map the dynamic two-
body density of the equilibrium bulk system to a non-
equilibrium one-body density via the dynamic TPL (see
Sec. II E). Then we construct the adiabatic state by adjusting its
equilibrium density via an external potential as described in the
following.

In BD the one-body current is related to an internal force
Fα

int(r, τ) via the average velocity of the particles,

vα
tp(r, τ) ≡

Jα
tp(r, τ)
ραtp(r, τ)

=
Jα,for

vH (r, τ)
ρα2 (r, τ)

. (45)

Here the second equality follows from the relations between
the one-body functions in the TPL and the equilibrium two-
body correlation functions, (40)–(43). The relaxation velocity
is related to the total internal force in analogy to Eq. (2),

Fα
int(r, τ) = ξvα

tp(r, τ). (46)

Note that Eq. (45) implies that the internal force acting in
the test particle system and in the equilibrium system is the
same. Plugging in Eqs. (46) and (45) into the continuity
equation (44) yields

∂τρ
α
tp(r, τ) = −ξ−1∇ · [ραtp(r, τ)Fα

int(r, τ)]. (47)

The evolution of the density profile can be obtained from
Fα

int(r, τ) by integrating Eq. (47) in time.
In methods that use an adiabatic assumption, such

as DDFT, Fα
int(r, τ) is approximated by an adiabatic force

Fα
ad,τ(r), which can be defined as the force a system would

experience in an equilibrium state with the same instantaneous
particle density as the non-equilibrium system. The difference
between Fα

int(r, τ) and Fα
ad,τ(r) is called the superadiabatic

force Fα
sup(r, τ) and defined by splitting Fα

int(r, τ) via
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Fα
int(r, τ) ≡ Fα

ad,τ(r) + Fα
sup(r, τ). (48)

We construct the adiabatic state following Ref. 7
and calculate the internal adiabatic force via its external
counterforce in the equilibrium situation. For each considered
value of τ we simulate an equilibrium system with N particles,
referred to as the adiabatic system. Note that in this system τ is
not a real time, but a label that specifies the reference state of
the test particle system. One particle (again we chose particle
1) is tagged and denoted as the self-particle. The other N − 1
particles are denoted as distinct particles. The equilibrium self
and distinct one-body densities in the adiabatic system,

ρself
ad,τ(r) ≡ ⟨δ(r − r1(t))⟩ , (49)

ρdist
ad,τ(r) ≡

 N
i=2

δ(r − ri(t))

, (50)

are obtained for convenience also in BD simulations (although
a static method, such as Monte Carlo would suffice). The self-
particle and the distinct particles interact with self and distinct
external adiabatic potentials V self

ad,τ(r) and V dist
ad,τ(r), respectively

(which are not to be confused with the external potential that
creates the static TPL in Sec. II E). The external adiabatic
potential is adjusted in an iterative procedure, such that the
density in the adiabatic system equals the one-body density of
the test particle system,

ραad,τ(r) = ραtp(r, τ). (51)

After an initial guess of Vα,(0)
ad,τ (r), we obtain ρ

α,(0)
ad,τ (r). In

each iteration step n the external potential is adjusted locally
according to

Vα,(n)
ad,τ (r) = Vα,(n−1)

ad,τ (r) + kBT ln
ρ
α,(n−1)
ad,τ (r)
ραtp(r, τ)

, (52)

where ρ
α,(n−1)
ad,τ (r) denotes the equilibrium density obtained

in the (n − 1)th iteration step with the external potential
Vα,(n−1)

ad,τ (r). In practice we use BD simulations with N = 500
particles and 2 × 106 samples in order to calculate the adiabatic
density according to a canonical average. The sampling of
ρ
α,(n−1)
ad,τ (r) and the iteration of Eq. (52) are repeated 10 times.

In the static case, τ = 0, the adiabatic potential is known,
as this case is identical to the static TPL. The self-adiabatic
potential V self

ad,0(r) is an infinitely deep and infinitely narrow
potential well that fixes the self-particle at the origin and
thus generates the static TPL. The distinct adiabatic potential
V dist

ad,0(r) vanishes in this case. We carried out the iteration as
a consistency check for the method. Hereby we represented
the infinitely deep potential well of V self

ad,0(r) by keeping the
coordinates of the self-particle constant at r1(t) = 0. V dist

ad,0(r)
was adjusted as in the dynamic case and was found to vanish
for all distances as expected.

The adiabatic system at each value of τ has a stationary
equilibrium density distribution. Therefore, the external
adiabatic force (given by the negative gradient of the external
adiabatic potential Vα

ad,τ(r)) that generates the inhomogeneous
density distribution balances the internal adiabatic force
Fα

ad,τ(r), that would drive the relaxation if the external field
was switched off, via

Fα
ad,τ(r) − ∇Vα

ad,τ(r) = 0. (53)

The adiabatic van Hove current then reads

Jα
ad(r, τ) = ξ−1ρα2 (r, τ)∇Vα

ad,τ(r) (54)

(in analogy to Eqs. (45) and (46)). The superadiabatic van
Hove current is obtained as the difference between the
adiabatic and the total van Hove current

Jα
sup(r, τ) = Jα

vH(r, τ) − Jα
ad(r, τ). (55)

G. Freely relaxing reference system

In order to assess the dynamical properties of the LJ
liquid we examine a reference system that is equilibrated like
the LJ system described in Sec. II A, but the particle-particle
interactions are switched off at time t = 0. Then we calculate
the two-body correlation functions for t2 = 0 as functions of
τ = t1. Due to the switch off the correlations decay via free
diffusion (as is characteristic of the ideal gas). For τ = 0 and
for τ → ∞ the two-body density of this system equals the one
of the equilibrium LJ system, which makes the system a useful
reference for assessing the influence of the internal interactions
on the dynamic decay. The spatial symmetries described in
Sec. II C still apply. However, the switch off creates a non-
equilibrium situation and the temporal symmetries do no
longer apply for the distinct parts. In particular the symmetry
between the forward and backward van Hove currents is lost.

The self-parts of the correlation functions in this system
equal the ones of an ideal gas. The choice of the random
force in Eq. (5) implies that the random displacement
vector (without particle-particle interactions) ∆ri = ṙi(t)∆t
is also Gaussian distributed. Furthermore the variance of the
displacement vector after a time τ, σ2

τ, (i.e., after τ/∆t time
steps) reads

σ2
τ =

τ

∆t
σ2
∆t = τ∆tσ2

v =
τ∆tσ2

R

ξ2 =
2τkBT

ξ
= 2D0τ. (56)

Here the variance of the displacement vector after one time
step, σ2

∆t, and the variance of the displacement velocity, σ2
v,

are linked to σ2
R via Eqs. (1) and (2) and D0 = kBT/ξ is

the free diffusion coefficient.35 The self-two-body density is
proportional to the probability distribution of displacement
vectors,

ρself
2 (r, τ) =




ρδ(r) τ = 0

ρ(2πσ2
τ)−3/2 exp

(
− r2

2σ2
τ

)
τ > 0

. (57)

The delta distribution at τ = 0 is given by Eq. (39) or can
be calculated by taking the limit τ → 0 of the Gaussian
distribution in the second line. The prefactors are determined
by the normalization condition (19). Also note that Eq. (57)
is the solution of the free diffusion equation ∂τρ2(r, τ)
= D0∇2ρ2(r, τ) with the initial condition ρ2(r,0) = ρδ(r).

For ideal motion the average in Eq. (12) or (13) simplifies
to integrals over all random displacement velocities weighted
with their probability distributions. Hence, Jself

vH and Jself
2 can

be calculated analytically. This calculation is carried out in
detail in Subsection 3 of the Appendix for τ > 0 and yields
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Jself
vH (r, τ) =




0 τ = 0
r

2τ
ρself

2 (r, τ) τ > 0
, (58)

Jself
2 (r, τ) =




2ρkBT
ξ

δ(τ)δ(r)I τ = 0

1
4τ2

�
rr − σ2

τI
�
ρself

2 (r, τ) τ > 0
. (59)

The van Hove current at time τ = 0 vanishes due to the
isotropy in the system. The current-current correlator at time
zero is determined by the self-correlation of the Brownian
forces (4). In the spherical coordinate system Jself

2 is a
diagonal tensor. The radial-radial component and the two
equal transversal-transversal components at non-zero times
are given, respectively, by

Jself
rr (r, τ) = r2 − σ2

τ

4τ2 ρself
2 (r, τ), (60)

Jself
t t (r, τ) ≡ Jself

θθ (r, τ) = Jself
ϕϕ (r, τ) = −

σ2
τ

4τ2 ρ
self
2 (r, τ). (61)

It is laborious but straightforward to show that the analyt-
ical solutions for the ideal two-body correlation functions
satisfy the continuity equations (30), (36), and (38). Note that
the van Hove current has only one non-zero (radial) component
and could also be calculated by integrating the continuity
equation (30). The current-current correlator however has two
independent components. Therefore, it cannot be obtained
from the continuity equation in a simple way.

H. Asymptotic expansion of the two-body density

In fluids the RDF approaches a bulk value of unity for
r → ∞. Fisher and Widom investigated the asymptotic decay
of g(r) in one dimension.26 Further research was carried
out for three dimensional models and different kinds of
inhomogeneous situations (see, e.g., Refs. 36 and 37). The
following presentation follows closely Ref. 38. For short-
ranged pair potentials, such as the truncated and shifted LJ
potential used in this work, the deviation of the RDF from the
bulk value can be expanded in a sum of exponentials,

r
σ
(g(r) − 1) =


n

Aneiqnr . (62)

Here r/σ is a geometrical factor for three-dimensional
systems, qn are the solutions with positive imaginary part of

1 − ρc̃(qn) = 0 (63)

with Fourier transform of the direct correlation function, c̃(q),
and

An = −
qn

2πσρ2

(
dc̃
dq

(qn)
)−1

(64)

are the amplitudes of the components. In general there is
an infinite number of solutions for Eq. (63) and therefore
Eq. (62) is a series. The ultimate long-range decay of g(r) is
then determined by the component(s) that possess the slowest
exponential decay, i.e., the term(s) with the smallest imaginary
part of qn in Eq. (62). There are two possibilities: either this
is purely imaginary, q0 ≡ iα0, yielding monotonic exponential
long-range decay,

r
σ
(g(r) − 1) ∼ Ae−α0r , (65)

or those are a pair of conjugated complex numbers q̃0
≡ ±α̃1 + iα̃0 yielding oscillatory exponentially damped decay,

r
σ
(g(r) − 1) ∼ Ãe−α̃0r cos(α̃1r − θ). (66)

The amplitudes A, Ã, and the phase θ can be calculated
explicitly from c̃(q) (see, e.g., Refs. 25 and 39) and are
specific for the kind of inhomogeneity around r = 0. Here the
inhomogeneity consists of the pair potential of the self-particle
(cf. Sec. II E). However, the inverse decay lengths α0, α̃0, and
the wave number of the periodicity, α̃1, are bulk properties
that only depend on the model and the state point of the
fluid. One expects26 exponential decay for low densities and
temperatures and oscillatory damped decay for high densities
and temperatures. The corresponding regions in the phase
diagram are separated by the so called Fisher-Widom line.
For the state point T = 0.80ϵ/kB and ρ = 0.84/σ3 examined
below, we expect oscillatory damped decay. Hence, we base
our further considerations on Eq. (66).

Combining Eqs. (39) and (66) and taking the logarithm
of the absolute value, one obtains

ln
( r
σ

�
ρdist

2 (r,0)/ρ2 − 1
�)
∼ −α̃0r + ln Ã + ln |cos(α̃1r − θ)| .

(67)

The absolute value is used because the cosine attains also
negative values. We calculate the left hand side of Eq. (67)
in the equilibrium bulk described in Sec. II A with N = 6400
particles. From the numerical value we obtain α̃0 and Ã,
as ln |cos(α̃1r − θ)| is always negative and the straight line
−α̃0r + ln Ã is the envelope of the right-hand side. The values
of α̃1 and θ can be obtained from the poles of the function as
these correspond to the zeros of the cosine.

We aim to extend this description of the long-range
decay for dynamic correlation functions by calculating
the left-hand side of Eq. (67) for non-zero times,
i.e., ln

�
r/σ

�
ρdist

2 (r, τ)/ρ2 − 1
��

, and by observing the decay of
the correlations. In order to assess the underlying mechanisms
we also calculate the dynamic long-range decay in the freely
relaxing reference system (see Sec. II G). By comparing both
systems we intend to determine the effect of the particle-
particle interactions on the decay of the correlations.

III. NUMERICAL RESULTS

A. Self-correlation functions

The non-zero components of the self-parts of the two-
body correlation functions, ρself

2 , Jself
r , Jself

rr , and Jself
t t for τ > 0

are shown in Fig. 2 on logarithmic scales. (The case τ = 0
is discussed below.) For the self-two-body density ρself

2 we
obtained a Gaussian-like distribution where the variance of
the distribution grows with increasing time difference τ, as
is known for diffusive motion (cf. Eq. (57)). Our simulation
results are shown in Fig. 2(a).

The radial component of the self-van Hove current, Jself
r ,

is shown in Fig. 2(b). For small distances Jself
r approaches zero.
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FIG. 2. Simulation results for the self-two-body correlation functions plotted on a logarithmic scale as functions of distance r at time differences τ as indicated.
(a) Two-body density ρself

2 and (b) radial component of the van Hove current, J self
r , at time differences from τ = 0.0001 to 1 as indicated. (c) Absolute values of

the radial-radial component,
�
J self
rr

�
, and (d) of the transversal-transversal component of the current-current correlator,

�
J self
t t

�
, at time differences from τ = 0.0001

to 0.01 as indicated. The insets show comparisons between the simulation results in the LJ system “(lines; same styles as in main panels)” and the simulation
results of the freely relaxing reference system (symbols) at τ = 0.0005, 0.002, and 0.01. Symbols of the simulation results for the freely relaxing reference
system lie on top of the analytical solutions (black solid lines) according to Eqs. (57)–(59) at each time.

This indicates that particles close to their original position do
not prefer a certain direction in their motion and reflects
the isotropy of the system. For greater distances Jself

r is
permanently positive, which indicates motion towards higher
distances and is consistent with the broadening Gaussian
distribution of the self-two-body density (cf. Fig. 2(a)). The
decay of Jself

r at large distances is caused by the small number
of particles reaching higher distances as seen in the decay of
the self-two-body density.

Figure 2(c) shows the absolute value of the radial-radial
component of the self-current-current correlator, Jself

rr . For
τ , 0 and small values of r the values of Jself

rr are negative,
which indicates opposing motion of the self-particle at the
two considered times 0 and τ. This indicates that particles
that are found near their original position after some time
τ have moved some distance and turned around, returning
to their original position with oppositely directed velocity.
For greater values of r the values of Jself

rr are positive.
The positive values arise from particles moving in the
same direction at times 0 and τ. The transversal-transversal
component Jself

t t is a Gaussian-like distribution with negative
prefactor. See Fig. 2(d) for a plot of Jself

t t as a function
of r .

The simulation results of the LJ system are compared to
the ideal dynamics of the freely relaxing reference system, as
shown in the insets of Fig. 2. The simulation results of the
freely relaxing system are in good agreement with the results
from the analytic calculations (also shown in the insets) given
by Eqs. (57)–(59). This serves as a consistency check, e.g.,
for the correct magnitude of the random displacements in
the simulations. The qualitative behavior of each correlation
function in both the LJ and in the ideal systems is identical.
For τ < 0.0002 also the numerical values for both systems
are equal. For larger values of τ the correlation functions in
the LJ system broaden more slowly than in the freely relaxing
system, as can be seen in each inset of Figs. 2(a)–2(d).
The dynamics shift from ideal-like short-time diffusion to
long-time diffusion with a reduced diffusion coefficient as the
movement is inhibited by the surrounding particles. For τ = 0
the simulation results for the two-body correlation functions
are not shown in the figures, as the values are zero for r , 0 and
show different singularities at r = 0. As the self-correlation
functions approach the ideal motion in the limit of small times
we assume that the singularities in the LJ system at τ = 0 are
equal to the singularities of the ideal gas, which are given by
Eqs. (57)–(59).
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B. Distinct correlation functions

The numerical results for the distinct two-body density
ρdist

2 are shown in Fig. 3. In the static case, i.e., for τ = 0,
ρdist

2 (see red solid line in Fig. 3(a)) or equivalently the RDF
(cf. Eq. (39)) shows the well-known behavior characteristic
of a dense liquid. The values of ρdist

2 practically vanish for
r < 0.85 due to the repulsive cores of the particles. For larger
distances ρdist

2 shows oscillatory behavior, approaching the
bulk value of the two-body density of ρdist

2 (r → ∞) = ρ2.
The locations of the peaks correspond to correlation shells
around the self-particle with high local particle density. The
corresponding positions of the 1st, 2nd, and 3rd maxima are
rcs

1 = 1.08, rcs
2 = 2.07, and rcs

3 = 2.97. The density oscillations
result from dominance of repulsive over attractive forces in
the system.26 In other words, particles in the first correlation
shell tend to arrange closely around the self-particle due
to confinement by the surrounding particles. Analogously
particles in outer correlation shells arrange closely around the
inner correlation shells. For increasing τ the correlation shells
decay and the depletion zone near r = 0 is filled. The peaks
decay much faster in the freely relaxing system than in the
LJ system (cf. inset of Fig. 3(a)). As we will scrutinize below
not only is the decay rate different in each system but also is
the mechanism. At large τ the two-body density approaches

FIG. 3. (a) Distinct two-body density ρdist
2 as function of distance r at

time differences from τ = 0 to 1 as indicated. The double dashed lines at
ρ2(1−1/N ) correspond to the value of ρdist

2 for τ→ ∞. (b) Absolute loga-
rithmic deviation of the two-body density from the bulk value (left hand side
of Eq. (67)) as function of distance r at time differences from τ = 0 to 1 as
indicated. The logarithmic deviation was obtained with N = 6400 particles.
The straight lines serve as a guide to the eye for the maxima of the oscillations
at each time. Both insets show the same functions as the big plots obtained
in the freely relaxing reference system. r cs

1 indicates the position of the first
maximum of ρdist

2 .

a uniform distribution with ρdist
2 (τ → ∞) = ρ2(1 − 1/N) (also

shown in the diagram). The factor (1 − 1/N) is a finite size
effect arising from the normalization condition for ρdist

2 (20).
In order to reveal more details we plotted the absolute

deviation of the two-body density from its bulk value on a
logarithmic scale (see Fig. 3(b)), as is usually used to examine
the long-range behavior (cf. Sec. II H). Note that maxima in
this plot are equivalent to either maxima or minima of ρdist

2
on the linear plot in Fig. 3(a). At τ = 0 (red solid curve)
we obtain an exponentially decaying oscillating function for
r > 2. The exponential decay is indicated by a linear envelope,
which is also shown in the diagram. The good agreement of
the envelope with the maxima of the oscillations resembles
the finding that Eq. (67) is a very good approximation even
for intermediate distances (see, e.g., Refs. 39 and 40). From
the straight line we obtain a static inverse correlation length
of α̃0 = 0.67 and an amplitude of ln Ã = 0.82. The envelope
of the static two-body correlations then reads

− α̃0r + ln Ã = −0.67r + 0.82. (68)

From the zeros of the oscillations we obtain α̃1 = 6.69 and
θ = 1.3. Leote de Carvalho et al. report values of α̃0 = 1.0041
and α̃1 = 6.4265 for a LJ fluid truncated at rc = 2.5 at a
state point with higher temperature and lower density of
T = 1.2ϵ/kB and ρ = 0.715/σ3.40 The higher value of α̃0
represents a faster exponential decay of the correlations,
which is caused by the lower density. The lower value of α̃1
mirrors slower oscillations of the two-body density and is a
consequence of the higher temperature.

For τ , 0 the oscillations of the two-body density persist
and the correlations decay in time, which is indicated by the
peak heights decreasing. Hereby the peaks start to decrease
faster for small distances, whereas the correlations at larger
distances still persist. Thus, there are two distinct regions
with different behavior; an inner region with a new dynamic
inverse correlation length β̃0(τ) and decreasing amplitude
ln B(τ) and an outer region where the correlations are
unchanged and remain equal to the static value. We aligned
straight lines to the peaks in the inner region (cf. Fig. 3(b))
to estimate values of β̃0(τ) and ln B(τ). Between τ = 0
and 0.7 the value of β̃0(τ) drops from the initial value
β̃0(0) = α̃0 = 0.67 to β̃0(0.7) ≈ 0.28, which implies that the
dynamic correlation length is larger than the static correlation
length. For τ > 0.7 the inverse dynamic correlation length
is approximately constant at β̃0 ≈ 0.28 and the dynamic
amplitude ln B(τ) decreases linearly in time and follows
approximately the law ln B(τ) ≡ −B1τ + B2 ≈ −4τ + 0.2. The
envelope in the dynamic region then reads

− β̃0r − B1τ + B2 ≈ −0.28r − 4τ + 0.2. (69)

The boundary between the dynamic intermediate region and
the static long-range region could be measured with the
distance at the intersection of the two envelopes Eqs. (68) and
(69), rint, which reads

rint =
B1

α̃0 − β̃0
τ +

ln A − B2

α̃0 − β̃0
≈ 10τ + 1.6. (70)

The prefactor of τ, vint ≡ B1/(α̃0 − β̃0) ≈ 10, has the dimension
of a velocity and measures the speed of the dynamic region
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expanding in the fluid. Note that the crossover from dynamic
to static region in our numerical data is not as sharp as Eq. (70)
suggests and the obtained values of rint and vint are estimates
that depend on the utilized procedure.

A possible explanation for this remarkable behavior can
be based on the TPL. Recall that in the static TPL the two-
body density at τ = 0 is interpreted as a static equilibrium
quantity, which means that the oscillations of the static two-
body density ρdist

2 (r,0) are in principle stable as long as the
self-particle stays fixed at its position at the origin of the
coordinate system. As pointed out before, the nth correlation
shell is created by confinement of its particles between the
(n − 1)th and the (n + 1)th correlation shell (or between the
second correlation shell and the self-particle in case of the first
correlation shell). When the self-particle is released at τ = 0—
within the dynamic TPL description—these correlation shells
are still in place and still stabilize each other. When the
self-particle starts to diffuse away, the confinement of the
first correlation shell is broken up. Thus, the first correlation
shell dissolves and therefore no longer confines the second
correlation shell. This effect propagates throughout the system
yielding the behavior observed in the simulations. In this
picture vint ≈ 10 is interpretable as the speed of the “starting
signal” for the decay propagating through the fluid. The
explanation is supported by the comparison with the freely
relaxing reference system. Here the switch off of the pair
forces at τ = 0 instantaneously pushes the whole fluid out of
equilibrium. Consequently, ρdist

2 does not exhibit the delayed
decay of the peaks but the correlations decay concurrently
throughout the fluid (see inset of Fig. 3(b)).

The radial component of the distinct van Hove current,
Jdist
r , is shown in Figs. 4(a) (linear scale) and 4(b) (logarithmic

scale). At τ = 0 the distinct van Hove current vanishes for all
distances, which is a direct consequence of the equilibrium
situation: In equilibrium there is detailed balance. Hence, the
fraction of distinct particles moving towards the self-particle
is balanced by an equal fraction of particles moving away
from the self-particle. For non-zero times, a negative peak
at r . rcs

1 and a positive peak at r & rcs
1 grow and broaden,

and subsequently decay (see Fig. 4(a)). A similar behavior
is observable around r ≈ rcs

2 and r ≈ rcs
3 . Yet these peaks

reach their maximum value at later times and have smaller
maximum values than the nearest neighbor peaks around
r ≈ rcs

1 (see Fig. 4(b)).
When viewing the results as representing the forward

van Hove current Jdist,for
vH , the negative peaks indicate particles

leaving their correlation shell with negative radial velocity
towards smaller distance. The positive peaks arise from
particles that leave their correlation shells with a positive
velocity towards larger distance. This behavior is consistent
with the filling of the low density regions of the distinct
two-body density (cf. Fig. 3(a)). For the backward van Hove
current Jdist,back

vH an analogous interpretation with reversed time
applies.

The situation is different in the freely relaxing system.
Here the backward van Hove current is zero for all times, as
the velocity of one particle at τ = 0 does not correlate with
the positions of the other particles at later times. The forward
van Hove current (shown in the insets of Figs. 4(a) and 4(b))

FIG. 4. Radial component of the distinct van Hove current, Jdist
r , as function

of distance r at time differences from τ = 0 to 0.2 as indicated (a) on a linear
scale and (b) absolute values on a logarithmic scale. The insets show the radial
component of the forward van Hove current, Jdist,for

r , in the freely relaxing
reference system. r cs

1 indicates the position of the first maximum of ρdist
2 .

jumps instantaneously from the static value Jdist,for
r = 0 to

finite non-zero values and the peak values are larger than
in the interacting system. The instantaneous jump is caused
by the switch off of the particle-particle interactions, which
creates a non-equilibrium situation. The behavior is consistent
with the peaks of ρdist

2 decreasing faster in the reference system
than in the LJ system and with the absence of the outer static
region (cf. inset of Fig. 3(b)). However, the signs of the peaks
at corresponding distances are equal and the peaks are shaped
similarly in both systems. Hence, the same interpretation as
for Jdist,for

vH given above for the LJ system applies for the freely
relaxing system, where the peaks correspond to particles
leaving their correlation shells towards a uniform density
distribution.

We next turn to the current-current correlator Jdist
2 which

is shown in Fig. 5. The radial-radial component of the static
distinct current-current correlator, Jdist

rr , (see Fig. 5(a)) has
only a single prominent peak with a maximum value of
Jdist
rr = 374 at r = 1.02. The position of the maximum is

smaller than rcs
1 , which indicates that the peak arises from two

particles undergoing a collision. An explanation is that at the
turning point of the collision (i.e., the time when the distance
is minimal) the particles have an equal velocity in radial
direction, which results in a strong positive correlation. This
notion is supported by the absence of a static peak at r ≈ 2. The
large nearest neighbor peaks of the static correlations decay
within a time of τ ≈ 0.005. During this decay a negative peak
grows within the decaying positive static peak. The maximum
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FIG. 5. Distinct current-current correlator, (a) radial-radial component Jdist
rr

and (b) transversal-transversal component Jdist
t t as functions of distance r

at time differences from τ = 0 to 0.01 as indicated. The inset in diagram
(a) shows the nearest neighbor peak of Jdist

rr around r = 1.02, which is off
scale in the main panel. r cs

1 indicates the position of the first maximum
of ρdist

2 .

amplitude of this dynamic nearest neighbor peak of Jdist
rr ≈ −11

is attained at τ ≈ 0.005. Also a positive peak at r ≈ 2, arising
from particles in the second correlation shell, grows and
attains its maximum of Jdist

rr ≈ 3 at τ ≈ 0.002. The fast decay
of the static peak also indicates that particles are not moving
simultaneously through the fluid for a longer time period,
but their motion is only positively correlated during their
collision. In order to understand the dynamic peaks, imagine
two particles undergoing a collision at τ = 0. One particle (the
self-particle) is located at r = 0 and has a positive velocity
and the other particle is located at r ≈ 1. The second particle
would be pushed towards larger distances and moves towards
a third particle located at r ≈ 2. The collision of these particles
at a later time τ > 0 would push back the second particle at
r ≈ 1 resulting in a negative velocity creating a negative peak
of Jrr at r ≈ 1. The third particle, however, would be pushed
forward resulting in the observed positive peak at r ≈ 2. With
this mechanism the velocity of the self-particle is transferred
across two particle diameters within a time of τ ≈ 0.002,
at which the peak of the second correlation shell attains its
maximum. This would correspond to a propagation speed of
vp ≈ 103. We expect also weaker peaks at outer correlation
shells, which cannot be resolved with the present data due to
the noise. The estimate of the propagation speed is two orders
of magnitude greater than the velocity of the starting signal for
the decay of the density correlations, vint ≈ 10. This difference
indicates that the “starting signal” is not transmitted by a
chain of collisions and supports the notion of transmission via
a slower mechanism, such as the diffusive dislocation of the
self-particle and of the inner correlation shells as described
above.

The transversal-transversal component of the static
distinct current-current correlator, Jdist

t t (shown in Fig. 5(b)),
shows only a single negative static peak with a minimum
value of Jdist

t t = −18 at r = 1.02. In contrast to the radial-radial
component this peak is negative and smaller by a factor of 20.
The peak being negative indicates shearing motion, in which
particles tend to orbit each other rather than moving alongside
of each other. The peak decays within the same time scale as
the peak of the radial-radial component, but we do not find
dynamic peaks here.

C. Superadiabatic van Hove current

In order to discriminate the dynamical effects that
are driven by free energy changes from those that are
purely dissipative, we use the splitting into adiabatic and
superadiabatic forces, as outlined in Sec. II F. We adjusted the
self and distinct adiabatic potentials V self

ad,τ and V dist
ad,τ to obtain an

equilibrium one-body density, which is equal to the one-body
density in the dynamic TPL. Figures 6(a) and 6(b) show the
comparisons of the self and distinct density distributions in the
test particle system and the adiabatic system. At times ranging
from τ = 0 to 0.2 the iterations converged and the densities of
both systems match very well. An exception is the self-particle
density at large distances, as seen on the logarithmic scale in
Fig. 6(a). However, the absolute density deviations in these
regions are smaller than 10−2. Hence, we assume that the
deviations have only little effect on the behavior of the entire
system and conclude that the obtained adiabatic potentials
are valid in the regions where the densities converged. For
τ > 0.2 the iterations did not converge properly with the
iteration parameters used (as exemplarily shown for τ = 1 in
Figs. 6(a) and 6(b)). We attribute this to the high degree of
delocalization of the self-particle.

The obtained self and distinct adiabatic potentials
resulting from the adiabatic construction are shown in
Figs. 6(c) and 6(d). At τ = 0 the self-adiabatic potential
V self

ad,τ(r) is an infinitely deep and infinitely narrow potential
well that fixes the self-particle at the origin and thus generates
the static TPL. The distinct adiabatic potential V dist

ad,τ(r) is zero
in this case. The non-zero values of V dist

ad,τ(r) for r < 1 (i.e., the

FIG. 6. (a) and (b) Comparison between the one-body densities in the adi-
abatic systems, ρα

ad,τ(r ), (symbols) and in the dynamic test particle sys-
tem, ρα

tp(r,τ), (lines) as functions of distance r at time differences from
τ = 0.0001 to 1 as indicated; (a) density of the self-particle on logarithmic
scale and (b) density of the distinct particles. ρα

ad,τ(r ) is obtained from the
adiabatic construction as described in Sec. II F, ρα

tp(r,τ) is obtained from the
data of the bulk equilibrium system via Eqs. (40) and (42). ρα

ad,τ(r ) is shown
only for a selection of distances for clarity. Corresponding (c) self and (d)
distinct external adiabatic potentials V self

ad,τ and V dist
ad,τ as functions of distance

r at time differences from τ = 0.0001 to 0.2 as indicated. Vα
ad,τ is only shown

for values of r , at which we attained good agreement of ρα
ad,τ(r ) and ρα

tp(r,τ).
r cs

1 in panels (b) and (d) indicates the position of the first maximum of ρdist
2 .
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distances, where the pair potential is strongly repulsive) are an
artifact of the spatial discretization of the adiabatic potential.
For τ > 0 the potential well of V self

ad,τ(r) attains finite values
and broadens and consequently generates the broadening
density distribution of the diffusing particle. V dist

ad,τ(r) develops
a repulsive core at small distances that reaches its maximum
strength at τ ≈ 0.002 (see blue dashed line in Fig. 6(d)). For
greater times the core starts to vanish again as the distinct
density approaches a uniform distribution. An oscillatory tail
develops that holds the correlation shells in place, although
the self-particle has already started to move.

The radial components of the adiabatic and superadiabatic
van Hove currents, Jα

ad,r and Jα
sup,r , have been calculated from

Vα
ad,τ via Eqs. (54) and (55). Figure 7 shows the comparison

between the self-parts of the total van Hove current, Jself
r

(cf. Sec. III A), of the adiabatic van Hove current, Jself
ad,r , and of

the superadiabatic van Hove current, Jself
sup,r , for a sequence of

times. Jself
ad,r and Jself

r show the same qualitative behavior for all
times. For τ < 0.002 also the numerical value is approximately
the same, and as a consequence Jself

sup,r is approximately zero.
For larger times Jself

ad,r becomes bigger than Jself
r and Jself

sup,r
attains non-zero negative values.

The adiabatic and superadiabatic distinct van Hove
currents are shown in Fig. 8. The adiabatic van Hove current
Jdist

ad,r (cf. Fig. 8(a)) shows the same qualitative behavior as the
van Hove current Jdist

r : At τ = 0 the current is zero and for
greater times there is a negative peak at r . rcs

1 and a positive
peak at r & rcs

1 (and also at outer correlation shells). Again this
behavior indicates a particle current from the correlation shells
to the depletion zones in between. However, the values of the
adiabatic and the total van Hove currents are not equal and
thus the superadiabatic contribution Jdist

sup,r (shown in Fig. 8(b))
is non-zero.

A detailed comparison between the distinct van Hove
current and its adiabatic and superadiabatic contributions is
shown in Fig. 9. The peaks of Jdist

ad,r have the same signs as

FIG. 7. Comparison between the radial components of the self-parts of the
total van Hove current, J self

r , of the adiabatic van Hove current, J self
ad,r , and of

the superadiabatic van Hove current, J self
sup,r , as functions of distance r at time

differences from τ = 0.0001 to 0.2 as indicated.

FIG. 8. Radial component of (a) the adiabatic distinct van Hove current,
Jdist

ad,r , and (b) of the superadiabatic distinct van Hove current, Jdist
sup,r , as

functions of distance r at time differences from τ = 0 to 0.2 as indicated.
r cs

1 indicates the position of the first maximum of ρdist
2 .

the peaks of Jdist
r at the same distances. However, the peaks

of Jdist
ad,r are larger than the peaks of Jdist

r . Hence, the peaks of
Jdist

sup,r have opposite signs to the peaks of Jdist
ad,r and Jdist

r . For
τ < 0.01 this applies only for the first negative peak at r . rcs

1 .
The other peaks of Jdist

ad,r start to exceed the peaks of Jdist
r

only for larger times. This behavior reflects that the adiabatic

FIG. 9. Comparison between the radial components of the distinct parts of
the total van Hove current, Jdist

r , of the adiabatic van Hove current, Jdist
ad,r , and

of the superadiabatic van Hove current, Jdist
sup,r , as functions of distance r at

time differences from τ = 0.0001 to 0.2 as indicated. r cs
1 indicates the position

of the first maximum of ρdist
2 .
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dynamics overestimate the relaxation speed of the density
profile, which is a well known drawback of the adiabatic
DDFT, found in a variety of situations (see, e.g., Refs. 4, 6,
and 7). The deviations are often attributed to an approximate
free energy functional or discrepancies between canonical and
grand canonical dynamics. However, in our method the total
van Hove current and the adiabatic van Hove current were
both calculated from canonical BD simulations. Thus, both
of these effects are absent. We conclude that the adiabatic
construction itself does not capture all features of the dynamic
behavior of the system. For an explanation of the discrepancy
between the adiabatic and the total van Hove current, consider
the following picture. If a particle has moved in a certain
direction, it is more likely that there are other particles in front
of that particle than behind it. Figuratively speaking, particles
tend to have a high density “bow wave” at front and a low
density “wake” at back. As the adiabatic construction has no
memory of the dynamic trajectories, these kinds of correlations
are not taken into account. We consider the absence of
the repulsive effect of these bow wave particles as one
reason for the overestimated relaxation velocities in adiabatic
theories.

IV. CONCLUSION

We have examined the dynamics of a LJ bulk fluid close
to the triple point by means of dynamic two-body correlation
functions and identified the underlying decay mechanisms.
The comparison with the ideal gas showed that the qualitative
behavior of the self-parts of the correlation functions can
be rationalized in terms of diffusive motion alone. The
interactions between the particles inhibit the diffusion of
particles and therefore lead to stronger localized distributions,
but do not change the functions qualitatively. We find it quite
remarkable that this applies not only for the two-body density
but also for the van Hove current and for the current-current
correlator.

The distinct correlation functions—although linked via
continuity equations—relax on different time scales and thus
are affiliated to different processes. The density correlations
measured with the two-body density decay on the time scale
of the Brownian time. The plotting on a logscale revealed
a novel decay mechanism, characterized by the seemingly
paradoxical situation that the dynamic correlation length is
larger than the static correlation length. The reason for this
relation is the delayed decay of the outer correlation shells.
It remains an open task to develop a theoretical framework
for the dynamic decay of the correlations. One possible route
to this objective is employing the non-equilibrium Ornstein-
Zernike equation.14 Another worthwhile project would be the
comparisons of our findings with experiments of Statt et al.,27

which provide trajectories of dispersed particles, and with a
modified version of DDFT presented by Stopper et al.,11,12

that yields correct long-time diffusion coefficients.
The velocity correlations measured with the current-

current correlator decay on the time scale of single collisions.
We were able to ascribe the different peaks of the current-
current correlator to different kinds of collisions occurring

in the system. Consequently, the current-current correlator is
considered to be useful to examine the microscopic motion of
particles in many-body systems. In the bulk system examined
in this work, particularly information about the transversal
motion is not revealed solely from the two-body density
or the van Hove current. For collective phenomena and
in the long-time limit, BD and molecular dynamics are
known to produce equivalent results. However, this is not
automatically implied for microscopic motion. The current-
current correlator appears to be a promising tool to compare
the two types of dynamics. Further investigations can also
be done by comparing our results for the current-current
correlator to the velocity autocorrelation function measured
by van Megen and coworkers (see e.g., Refs. 29 and 41).

Furthermore, we split the van Hove current in its adiabatic
and superadiabatic contribution by employing the recently
developed adiabatic construction for the test particle situation.
It is quite remarkable that there is a non-zero superadiabatic
contribution to the equilibrium bulk dynamics, that even
exceeds the magnitude of the van Hove current. This finding
suggests that the validity of the adiabatic approximation is
highly questionable in any high density fluid, most likely also
in inhomogeneous and non-equilibrium systems. We want to
reemphasize that all calculations in this work are performed
with canonical simulations. Hence, we conclude that the
quantitative differences between canonical BD and grand
canonical adiabatic DDFT do not only arise from ensemble
differences but rather from the adiabatic assumption in DDFT.
In PFT the superadiabatic contribution is taken into account
via memory effects. Consequently, PFT can be expected to
produce improved results compared to DDFT. A possible
next step in this framework would be to obtain the memory
functions from the two-body correlation functions via the
non-equilibrium Ornstein-Zernike equations.14 Furthermore
it would be worthwhile to pursue the question whether
the methods of obtaining the free power dissipation from
functional line integration42 could be applied to the present
problem. Non-Markovian effects were recently identified (in
a system of one-dimensional hard rods) via memory kernels
acting on the one-body current.43 Also the effects of ensemble
differences of grand canonical versus canonical systems44,45

could be relevant for the correct theoretical description of test
particle situations.
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APPENDIX: ANALYTICAL TOOLS AND NUMERICAL
CHECKS
1. Divergences of vector and tensor fields
in spherical coordinates
a. Divergence of a vector field

A vector v in a spherical coordinate system, with local
unit vectors er , eθ, and eϕ defined in Sec. II C, can be written
as
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v = ervr + eθvθ + eϕvϕ. (A1)

The divergence operator ∇· reads

∇· = 1
r2∂r(r2er ·) + 1

r sin θ
∂θ(sin θeθ·) + 1

r sin θ
∂ϕeϕ· (A2)

Combining Eqs. (A1) and (A2) we obtain for the divergence
of the vector field

∇ · v = ∂r(r2vr)
r2 +

∂θ(sin θvθ)
r sin θ

+
∂ϕvϕ

r sin θ
. (A3)

In case of a vector, that has only a non-zero radial component,
this simplifies to

∇ · v = ∂r(r2vr)
r2 . (A4)

b. Divergence of a tensor field

A tensor T can be expressed as a linear combination of
dyadic products of unit vectors,

T = ererTrr + ereϕTrϕ + ereθTrθ

+ eϕerTϕr + eϕeϕTϕϕ + eϕeθTϕθ

+ eθerTθr + eθeϕTθϕ + eθeθTθθ. (A5)

In case of a diagonal tensor, the equation simplifies to

T = ererTrr + eϕeϕTϕϕ + eθeθTθθ. (A6)

Employing the divergence operator (A2) on T, one first
performs a scalar product of the unit vectors of ∇ with the

first vector of each dyadic product, yielding

∇ · T = 1
r2∂r(r2erTrr) + 1

r sin θ
∂θ(sin θeθTθθ)

+
1

r sin θ
∂ϕ(eϕTϕϕ). (A7)

While carrying out the partial derivatives, one should have in
mind that some of the partial derivatives of the unit vectors
are non-zero. The matrix of derivatives is given by

∂rer = 0, ∂θer = eθ, ∂ϕer = eϕ sin θ,
∂reθ = 0, ∂θeθ = −er , ∂ϕeθ = eϕ cos θ,
∂reϕ = 0, ∂θeϕ = 0, ∂ϕeϕ = −er sin θ − eθ cos θ.

(A8)

If furthermore the components of the tensor only depend on
the radial coordinate r but not on the angular coordinates θ
and ϕ, then from Eqs. (A7) and (A8) we obtain

∇ · T = er
r2 ∂r(r2Trr) + eθ

cos θ
r sin θ

Tθθ

− er
Tθθ

r
− er

Tϕϕ

r
− eθ

cos θ
r sin θ

Tϕϕ

= er


1
r2∂r(r2Trr) − Tθθ

r
−

Tϕϕ

r



+ eθ
cos θ
r sin θ

(Tθθ − Tϕϕ). (A9)

c. Tensor divergence of a diagonal tensor

We obtain the second divergence of a diagonal tensor
∇∇ : T by applying the divergence operator (A2) on the
divergence of the tensor given in Eq. (A9),

∇∇ : T = ∇ · (∇ · T)
=

1
r2∂r

(
r2

(
1
r2∂r(r2Trr) − Tθθ

r
−

Tϕϕ

r

))
+

1
r sin θ

∂θ

(
sin θ

cos θ
r sin θ

(Tθθ − Tϕϕ)
)

=
1
r2

�
∂2
r (r2Trr) − ∂r(rTθθ + rTϕϕ) − (Tθθ − Tϕϕ)� . (A10)

Again we assume the components of the tensor to only depend
on r .

2. Continuity equations

We verified the self-consistency of the obtained correla-
tion functions by numerically calculating their derivatives
from our simulation data as appearing in the continuity
equations derived in Sec. II D. As mentioned before, the
divergences of the spherically symmetrical functions can be
calculated from the spherical components as derived in Sec.
1 of the Appendix. The appearing first and second partial
derivatives of a particular function f (s) are computed via
symmetrical differentiation according to

∂s f (s) = f (s + ∆s) − f (s − ∆s)
2∆s

, (A11)

∂2
s f (s) = f (s + ∆s) − 2 f (s) + f (s − ∆s)

∆s2 , (A12)

where ∆s is the width of the spatial or temporal grid of the
numerical data. For τ > 0 we find good agreement of the
numerical data with the continuity equations (30), (36), and
(38) as shown in Fig. 10. Differences of the derivatives of the
self-parts (Figs. 10(d)–10(f)) at low distances arise from the
breakdown of the numerical differentiation near the singularity
of the spherical coordinate system. For τ = 0 we find the
distinct current-current correlator Jdist

2 to be discontinuous.
This is not consistent with the distinct two-body density ρdist

2
and the van Hove current Jdist

vH being continuous at τ = 0, as can
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FIG. 10. Numerical data of the temporal derivatives and divergences of the
two-body correlation functions as functions of distance r as appearing in the
two-body continuity equations. Panels (a)–(c) show distinct parts of functions
at time differences τ = 0, 0.0005, and 0.002, panels (d)–(f) show self-parts
at time differences τ = 0.002 and 0.003. (a) and (d) show the temporal
derivative of ρα

2 and the negative divergence of JαvH (cf. Eq. (30)). (b) and
(e) show the radial components of the temporal derivative of JαvH and of the
negative divergence of Jα2 (cf. Eq. (36)). (c) and (f) show the second temporal
derivative of ρα

2 and the second divergence of Jα2 (cf. Eq. (38)). Lines show
temporal derivatives, symbols show divergences. The black squares in panels
(b) and (c) show the first and second divergences of Jdist

2 (r,0), as extrapolated
from non-zero time arguments. r cs

1 indicates the position of the first maximum
of ρdist

2 .

be seen in Figs. 10(b) and 10(c). The discrepancy is assumed
to be an artifact due to the discretization of time in the BD
simulation. In order to retain the consistency of the correlation
functions we extrapolate the current-current correlator at
τ = 0 from non-zero time arguments. The divergences of
the extrapolated values are also shown in Figs. 10(b) and
10(c) and show good agreement with the related temporal
derivatives of Jdist

vH and ρdist
2 . The presented results for Jdist

2 (r,0)
in Sec. III are the extrapolated values.

3. Self-two-body correlation functions
for non-interacting particles

In order to obtain analytical solutions for the self-van
Hove current Jself

vH (r, t) and the self-current-current correlator
Jself

2 (r, t) for freely diffusing particles at non-zero time
arguments, we consider movement in discrete time steps
∆t after Eq. (1) and perform a limit ∆t → 0 to obtain the exact
solution. We assume that a particle starts at the origin r = 0
at time t = 0 without loss of generality. The particle reaches
position r′ ≡ r − ṙ(t ′)∆t at time t ′ ≡ t − ∆t before it finally
reaches position r at time t with displacement velocity ṙ(t ′)
as shown in Fig. 11(a). From there the particle moves with
displacement velocity ṙ(t).

The probability to reach r′ at time t ′ is given by the
two-body density ρself

2 (r′, t ′). The probability distribution of
random displacement velocities is (according to Eqs. (5)
and (56))

FIG. 11. Sketch of the movement of a particle in discrete time steps. Symbols
are defined in the text.

p(ṙ) = (2πσ2
v)−3/2 exp

(
− ṙ2

2σ2
v

)
. (A13)

The (forward) van Hove current can now be calculated
as an integral over the displacement velocities ṙ(t ′) and
ṙ(t) (weighted with their probability distributions) of the
symmetrical velocity v(t)multiplied with the two-body density
ρself

2 (r′, t ′),

Jself
vH (r, t) = lim

∆t→0


dṙ(t ′)p(ṙ(t ′))

×


dṙ(t)p(ṙ(t))v(t)ρself
2 (r′, t ′). (A14)

In the limit of small time steps ∆t we can make a first order
Taylor expansion of the two-body density around r and t,

ρself
2 (r′, t ′) ≈ ρself

2 (r, t) − ṙ(t ′)∆t · ∇ρself
2 (r, t)

−∆t∂t ρself
2 (r, t). (A15)

The symmetrical velocity is related to the displacement
velocities via Eq. (9), the two-body density ρself

2 (r, t) is given
by Eq. (57). Hence, the integral in (A14) can be calculated
analytically and one obtains

Jself
vH (r, t) = r

2t
ρself

2 (r, t). (A16)

The current-current correlator can also be calculated
with this method as an average of v(0)v(t)ρself

2 (r′′, t ′′) with
r′′ ≡ r − [ṙ(0) + ṙ(t ′)]∆t and t ′′ ≡ t − 2∆t (cf. Fig. 11(b)).
Therefore, integrations over ṙ(−∆t), ṙ(0), ṙ(t ′), and ṙ(t) have
to be carried out yielding

Jself
2 (r, t) = lim

∆t→0


dṙ(−∆t)p(ṙ(−∆t))


dṙ(0)p(ṙ(0))

×


dṙ(t ′)p(ṙ(t ′))


dṙ(t)p(ṙ(t))
× v(0)v(t)ρself

2 (r′′, t ′′). (A17)

The first order terms of the Taylor expansion vanish while
carrying out the integrals. Hence, a second order Taylor
expansion of the two-body density is needed, which reads

ρself
2 (r′′, t ′′) ≈ ρself

2 (r, t) − [ṙ(0) + ṙ(t ′)]∆t · ∇ρself
2 (r, t)

− 2∆t∂t ρself
2 (r, t)

+
1
2
{[ṙ(0) + ṙ(t ′)]∆t · ∇}2ρself

2 (r, t)
+ 2∆t∂t [ṙ(0) + ṙ(t ′)]∆t · ∇ρself

2 (r, t)
+

1
2
(2∆t∂t)2ρself

2 (r, t). (A18)
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Substituting Eqs. (A13) and (A18) into Eq. (A17) and carrying
out the integrals, the current-current correlator reads

Jself
2 (r, t) = 1

4t2

�
rr − σ2

t I
�
ρself

2 (r, t). (A19)

Equations (A16) and (A19) are the analytic solutions for the
van Hove current and the current-current correlator at non-
zero time arguments as used for the freely relaxing reference
system in Eqs. (58) and (59).
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