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We develop a general theory for describing phase coexistence between nonequilibrium steady states in
Brownian systems, based on power functional theory [M. Schmidt and J. M. Brader, J. Chem. Phys. 138,
214101 (2013)]. We apply the framework to the special case of fluid-fluid phase separation of active soft
sphere swimmers. The central object of the theory, the dissipated free power, is calculated via computer
simulations and compared to a simple analytical approximation. The theory describes well the simulation
data and predicts motility-induced phase separation due to avoidance of dissipative clusters.
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Phase transitions in soft matter occur both in equilibrium
and in nonequilibrium situations. Examples of the latter
type include the glass transition [1], various types of shear-
banding instabilities observed in colloidal suspensions [2,3],
shear-induced demixing in semidilute polymeric solutions
[4], and motility-induced phase separation in assemblies of
active particles [5,6]. In contrast to phase transitions in
equilibrium, which obey the statistical mechanics of
Boltzmann and Gibbs, very little is known about general
properties of transitions between out-of-equilibrium states.A
corresponding universal framework for describing nonequi-
librium soft matter is lacking at present.
Theoretical progress has recently been made for the case

of many-body systems governed by overdamped Brownian
dynamics, encompassing a broad spectrum of physical
systems [7]. It has been demonstrated that the dynamics of
such systems can be described by a unique time-dependent
power functional Rt½ρ; J", where the arguments are the
space- and time-dependent one-body density distribution,
ρðr; tÞ, and the one-body current distribution, Jðr; tÞ, in the
case of a simple substance [8,9]. Both these fields are
microscopically sharp and act as trial variables in a
variational theory. The power functional theory is regarded
to be “important, [as it] provides (i) a rigorous framework
for formulating dynamical treatments within the [density
functional theory] formalism and (ii) a systematic means of
deriving new approximations” [10].
The physical time evolution is that which minimizes

Rt½ρ; J" at time t with respect to Jðr; tÞ, while keeping
ρðr; tÞ fixed. Hence,

δRt½ρ; J"
δJðr; tÞ

¼ 0 ð1Þ

at the minimum of the functional. Here the variation is
performed at fixed time t with respect to the position-
dependent current. The density distribution is then
obtained from integrating the continuity equation,
∂ρðr; tÞ=∂t ¼ −∇ · Jðr; tÞ, in time. The power functional

possesses units of energy per time and can be split
according to

Rt½ρ; J" ¼ Pt½ρ; J" þ _F½ρ" − Xt½ρ; J"; ð2Þ

where Pt½ρ; J" accounts for the irreversible energy loss
due to dissipation, _F½ρ" is the total time derivative of the
intrinsic (Helmholtz) free energy density functional [7,11],
and Xt½ρ; J" is the external power, given by

Xt½ρ; J" ¼
Z

dr½Jðr; tÞ · Fextðr; tÞ − ρðr; tÞ _Vextðr; tÞ"; ð3Þ

where _Vextðr; tÞ is the partial time derivative of the external
potential Vextðr; tÞ, and Fextðr; tÞ is the external one-body
force field, which in general consists of a sum of a
conservative contribution, −∇Vextðr; tÞ, and a further
nonconservative term. The power dissipation is conven-
iently split into ideal and excess (above ideal) contribu-
tions: Pt½ρ; J" ¼ Pid

t ½ρ; J" þ Pexc
t ½ρ; J", where Pexc

t ½ρ; J" is
nontrivial and arises from the internal interactions between
the particles. The exact free power dissipation of the ideal
gas is local in time and space and given by

Pid
t ½ρ; J" ¼

γ
2

Z
dr

Jðr; tÞ2

ρðr; tÞ
; ð4Þ

where γ is the friction constant of the Brownian particles
against the (implicit) solvent. This framework is formally
exact and goes beyond dynamical density functional theory
[11–13]; the latter follows from neglecting the excess
dissipation, Pexc

t ½ρ; J" ¼ 0.
In this Letter, we apply the general framework of power

functional theory to treat phase coexistence of nonequili-
brium steady states. Such a state of N particles in a volume
V at temperature T is characterized by a value of the
total power functional taken at the (local) minimum,
R0
t ðN;V; TÞ≡ Rt½ρ0; J0", where the superscript 0 indicates

a quantity at the minimum. We define the chemical power
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derivative ν and the (negative) volumetric power derivative
π via partial differentiation,

ν ¼ ∂R0
t

∂N
!!!!
V;T

; π ¼ −
∂R0

t

∂V
!!!!
N;T

; ð5Þ

where ν and π possess units of energy per time and pressure
per time, respectively. In the limit of large N and large V,
the specific free power per volume, rtðρbÞ ¼ R0

t =V, will
depend only on the (bulk) number density ρb ¼ N=V; this
implies the identity R0

t ¼ −πV þ νN, which neglects pos-
sible surface contributions. The simple relations ν ¼
∂rt=∂ρb and π ¼ −rt þ ρbν follow straightforwardly. We
shall demonstrate below that the free power density rtðρbÞ
is the relevant physical quantity for analyzing phase
behavior out of equilibrium.
We assume that two coexisting nonequilibrium steady

states, A and B, are characterized by particle number NA
and NB and by volume VA and VB, respectively. The
density in phase A (B) is ρA ¼ NA=VA ð ρB ¼ NB=VBÞ.
Hence, in a phase-separated state, the total power is a
weighted sum,

R0
t ¼ rtðρAÞVA þ rtðρBÞVB; ð6Þ

where the partial volumes of the two phases are VA=V¼
ðρB−ρbÞ=ðρB−ρAÞ and VB=V¼ðρb−ρAÞ=ðρB−ρAÞ, with
ρA ≤ ρb ≤ ρB.
The task of finding a global minimum of Rt½ρ; J" can now

be facilitated by a Maxwell common tangent construction
on rtðρbÞ, which implies the identities

r 0t ðρAÞ ¼ r 0t ðρBÞ ¼
rtðρBÞ − rtðρAÞ

ρB − ρA
; ð7Þ

where r 0t ðρbÞ ¼ ∂rtðρbÞ=∂ρb. As a consequence, both the
chemical and the volumetric derivatives have the same
value in the coexisting phases:

νA ¼ νB; πA ¼ πB; ð8Þ

and equality of temperature is trivial by construction.
In order to illustrate this framework, we apply it to treat

active Brownian particles, which form a class of systems
attracting much current interest [5,14–16]. We consider
spherical particles in d-dimensional space, with position
coordinates rN ≡ fr1…rNg and (unit vector) orientations
ωN ≡ fω1…ωNg; here the orientational motion of eachωi,
where i ¼ 1…N, is freely diffusive with orientational
diffusion constant Drot. The swimming is due to an
orientation-dependent external force field FextðωiÞ ¼
γsωi, which is nonconservative and does not depend
explicitly on r and t; here s is the speed for free swimming.
We follow Refs. [14,15] and use the Weeks-Chandler-
Andersen model, i.e., a Lennard-Jones pair potential, which
is cut and shifted at its minimum, such that the resulting
short-ranged pair force is continuous and purely repulsive.

For numerical convenience, our Brownian dynamics (BD)
simulations will be performed in d ¼ 2.
Power functional theory provides a microscopic

many-body expression for R0
t [8]. Omitting an irrelevant

rotational contribution, this is given (up to a constant
C) by

R0
t ¼ − γ

2

"X

i

viðtÞ2
#
þ C; ð9Þ

where the sum is over all particles and the angles denote a
steady state average. To directly simulate the dissipated
free power, we use a discretized version of the instanta-
neous velocity [17]: viðtÞ¼½riðtþΔtÞ−riðt−ΔtÞ"=ð2ΔtÞ,
where Δt is the time step of the standard (Euler) computer
simulation algorithm, where riðt þ ΔtÞ ¼ riðtÞ þ
γ−1Δt½−∇iUðrNÞ þ ξiðtÞ þ Fext(ωiðtÞ)", with ξiðtÞ being
a Gaussian-distributed delta-correlated noise term, with
finite-difference, equal-time strength hξiðtÞ · ξjðtÞi ¼
δijkBTd=ðγΔtÞ; C ¼ NkBTd=ð2ΔtÞ is an irrelevant con-
stant, and kB is the Boltzmann constant. The external
power is given by

Xt ¼
"X

i

viðtÞ · Fext(ωiðtÞ)
#
; ð10Þ

and we define the corresponding internal power, due to
interparticle interactions and Brownian forces, as

It ¼
"X

i

viðtÞ · ½−∇iUðrNÞ þ ξiðtÞ"
#
: ð11Þ

This allows us to split (9) into a sum of external and
internal contributions,

R0
t ¼ −It=2 − Xt=2: ð12Þ

By inserting (2) into (1) and observing the structure of
(4), it is straightforward to show that

It ¼ − _F − 2Pexc
t þ

Z
drdωJðr;ω; tÞ · δP

exc
t ½ρ; J"

δJðr;ω; tÞ

!!!!
0

; ð13Þ

where the integrand is evaluated at the minimum and we
included the argument ω, treating the system effectively
as a mixture of different components [18].
To sample (9) efficiently in simulation, we decompose

the velocity as viðtÞ ¼ ½Δriðt − ΔtÞ þ ΔriðtÞ"=ð2ΔtÞ,
where ΔriðtÞ ¼ riðtþ ΔtÞ − riðtÞ, given via the Euler
algorithm as a sum of three contributions, i.e., intrinsic,
Δrinti ðtÞ ¼ −Δt∇iU(rNðtÞ); random, Δrrani ðtÞ ¼ ΔtξiðtÞ;
and external, Δrexti ðtÞ ¼ ΔtFext(ωiðtÞ). Multiplying out
(9) yields 36 contributions, of which we sample only
the three nontrivial types: hΔrinti ðtÞ⋅Δrinti ðtÞi and
hΔrinti ðtÞ⋅Δrexti ðtÞi (where also similar contributions arise
with one or both displaced time arguments), as well as
hΔrrani ðt − ΔtÞ⋅Δrinti ðtÞi. We use N ¼ 1000 and adjust V in
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order to control the density in the square simulation box
with periodic boundaries. The time step is chosen as
Δt=τ0 ¼ 10−5, where the time scale is τ0 ¼ γσ2=ϵ, with
Lennard-Jones diameter σ and energy scale ϵ. We allow the
system to reach a steady state in 107 steps and collect data for
a further 108 steps. The rotational diffusion constant is set to
Drot ¼ 3kBT=ðγσ2Þ, and the external field strength is chosen
as s ¼ 24σ=τ0. The Peclet number [14,15] is Pe≡
3s=ðDrotσÞ ¼ γsσ=ðkBTÞ.
Figure 1(a) shows simulation results for R0

t and Xt, as
respectively given by (9) and (10), as a function of density.
Due to the simple form of the external force, the external
power (10) is trivially related to the (well-studied [14–16])
average forward swimming speed v via Xt ¼ γsvN, where
v ¼ h

P
iviðtÞ · ωiðtÞi=N. Remarkably, we find that R0

t
coincides with −Xt=2 within our numerical precision.
This implies that (i) the internal dissipation is negligible,
It ≈ 0 [cf. (12)] and (ii) that the value of the power
functional for active particles is a known quantity. We
have systematically studied the variation with temperature
(as is analogous to varying Pe [14,15]). While hardly any
effect for low densities is observed, a dip develops for
ρσ2 ≳ 0.5; cf. Fig. 1(a) [19].
We next seek to develop a simple theoretical model to

capture the key features of the simulation data; the

corresponding results shown in Fig. 1(b) will be
discussed below. We assume Pexc

t ½ρ; J" to possess a simple
Markovian, spatially nonlocal form:

Pexc
t ½ρ; J" ¼ γ

2

Z
d1

Z
d2ρð1Þρð2Þ

$
Jð1Þ
ρð1Þ

−
Jð2Þ
ρð2Þ

%
2

Mð1; 2Þ;

ð14Þ

where 1≡ r, ω and 2≡ r0, ω0. Here Mð1; 2Þ is a (dimen-
sionless) correlation kernel that couples the particles at
points 1 and 2, similar to the mean-field form of the excess
free energy functional in equilibrium density functional
theory [7,11]. Note that the term in brackets in (14) is the
(squared) velocity difference between the two points. We
parameterize the current, which in general depends on
particle position r and orientation ω, as Jðr;ω; tÞ ¼ Jbω,
where Jb is a variational parameter that determines the
(homogeneous) bulk current in direction ω. This implies
v ¼ Jb=ρb. Inserting into (14) and observing the general
structure (2), we obtain

Rt

γV
¼ J2b

2ρb
þM0

2
J2b − sJb; ð15Þ

where the right-hand side consists of a sum of contributions
due to ideal dissipation (Pid), excess contribution to
dissipation (Pexc), and external power (Xt). The coefficient
M0 is density dependent and can be expressed as a
moment of the correlation kernel [9] Mð1; 2Þ, as M0 ¼R
drdωdω0ðω − ω0Þ2Mð1; 2Þ, where due to symmetries

Mð1; 2Þ depends only on the differences r − r0 and
ω − ω0, and M0 is hence independent of r0. Clearly, in
steady states _F½ρ" ¼ 0.
The minimization principle (1) implies ∂Rt=∂Jb ¼ 0 for

(15), which yields

Jb ¼ sρb=ð1þM0ρbÞ: ð16Þ

Using (16) in order to eliminate M0 from (15) gives the
value at the minimum

R0
t ¼ −γsJbV=2; ð17Þ

which implies that R0
t ¼ −Xt=2, where here the external

power is Xt ¼ γsJbV. A detailed derivation will be given
elsewhere. The internal contribution It ¼ 0, as _F ¼ 0 in
steady state, and the additional contributions in (13) vanish
for the present form (14) of Pexc½ρ; J", which is quadratic
in Jðr;ω; tÞ.
We assume a simple analytical expression,

M0 ¼ ðρ0 − ρbÞ−1 þ c0ρmb =ρ
mþ1
0 ; ð18Þ
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FIG. 1. (a) Scaled average forward swimming speed v=s
(symbols) and scaled free power −2R0

t =ðNs2γÞ per particle
(lines), as obtained from BD computer simulations via Eqs. (9)
and (10), respectively, for temperatures kBT=ϵ ¼ 0.1–1 (as
indicated). (b) Theoretical results corresponding to (a), as given
by Eqs. (17) and (19), where m ¼ 5, ρ0σ2 ¼ 1.2, and for values
of c0 ¼ 0–25 as indicated.
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where ρ0 is the jamming density at which the dynamics
arrests, c0 ≥ 0 is a temperature-dependent dimensionless
constant, and the exponent m > 0 is a measure for the
number of particles that cause the additional dissipation
due to local cluster formation [second term in (18)]. We
expect the exponentm to grow with d, as clusters consist of
an increasing number of particles upon increasing d.
Furthermore, we expect c0 to decrease to zero with
increasing temperature, as clusters are broken up by
thermal motion. We leave a microscopic derivation of
M0, e.g. starting from the correlation kernelMð1; 2Þ (which
is, in principle, accessible via simulations [20]) to future
work. Equation (18) can be interpreted as describing an
overall increase, and eventual divergence, of dissipation
with density plus a specific dissipation channel due to small
groups of the order of m particles that block each other.
Blocking is relevant only at intermediate densities, high
enough so that the mth density order contributes, but low
enough in order to be not overwhelmed by the singularity.
Inserting (18) into (16) yields

Jb
sρb

¼ 1 − x
1þ c0xmþ1ð1 − xÞ

; ð19Þ

where we have defined the scaled density x ¼ ρb=ρ0. In
case of high temperature, where c0 → 0, this reduces to the
simple and well-known (see, e.g., [14–16]) linear (velocity)
relationship v=s≡ Jb=ðsρbÞ ¼ 1 − x. In Fig. 1(b), we
show the theoretical results for the (scaled) external and
total free power per particle corresponding to the simulation
results in Fig. 1(a). Clearly, despite the simplicity of (18),
the theory reproduces the simulation data very well.
As outlined above, in order to assess phase behavior, the

relevant quantity is the free power per volume rt (rather than
per particle), which we show in Fig. 2, obtained from
simulations [Fig. 2(a)] and theory [Fig. 2(b)]. For low
temperatures kBT=ϵ ¼ 0.1, 0.24, the simulation data clearly
show a change in curvature, which we attribute to a first-
order phase transition in the finite system [21]. (In an infinite
system, we expect no negative curvature to occur and the
coexistence region to be characterized by a strictly linear
variation of rt with ρb.) For kBT=ϵ ¼ 0.3, a quasilinear part
can be observed, which we interpret as being very close to a
nonequilibrium critical point. The theoretical curve displays
the same type of behavior, which we attribute to the mean-
field character of the approximation (14).We can now apply
the general phase coexisting conditions (7) and (8) to the
active system. A representative double tangent is shown in
Fig. 2(b). The low-density (high-density) coexisting phase is
characterized by a high (low) value of Xt.
The phase diagram (cf. Fig. 3) displays two-phase

coexistence between a high-density and a low-density
active fluid. We find the simulation results [Fig. 3(a)]
for the binodal obtained from double tangent construction
[on the results shown above in Fig. 2(a)] as a function of

kBT=ϵ to be consistent with the behavior of the tail
(5 < r=σ < 10) of the radial pair distribution function
gðrÞ. A characteristic slow decay indicates the occurrence
of phase separation (see, e.g., [22]). The corresponding
theoretical phase diagram is shown in Fig. 3(b), where we
also display the spinodal, defined as the point(s) of
inflection of rtðρbÞ. The phase separation vanishes upon
increasing 1=c0 at an upper nonequilibrium critical
point. Although we have not attempted to model the
dependence of 1=c0 on T systematically, the agreement
between simulation and theoretical results is striking. Our
simulation results for the phase behavior underestimate the
boundaries given by Stenhammar et al. [14,15]; this is not
surprising given that these authors investigated signifi-
cantly larger systems. In simulations, we have found
only a slight decrease of the slope of vðρbÞ for increasing
s, and a corresponding increase in the jamming density,
but with little effect on the phase separation itself. This is
consistent with the fact that Pexc½ρ; J", and hence c0,
is an intrinsic quantity. The conditions for spinodal
and binodal both differ from the density “where macro-
scopic MIPS [motility-induced phase separation] is initi-
ated by spinodal decomposition” [6], v0=v ¼ −1=ρb, where
v0¼dvðρbÞ=dρb; this can be rephrased as dðρbvÞ=dρb¼0,
implying, within It ¼ 0, that r0tðρbÞ ¼ 0. This condition is
quite different from the spinodal within power functional
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theory, r00t ðρbÞ ¼ 0, or equivalently v00=v0 ¼ −2=ρb.
Furthermore, for linear variation of v with ρb, i.e.,
c0 ¼ 0, we find phase separation to be absent, in contrast
to Ref. [6]; cf. Eqs. (35)–(37) and Fig. 5 therein.
We have developed a general approach, based on power

functional theory [8], to treat coexistence between non-
equilibrium steady states in Brownian systems. Our theory
is fundamentally different from other approaches to active
systems (e.g., [5,22,23]) which were developed specifically
for phase separation. We rather identify a generating
functional providing a unified, internally self-consistent
description of out-of-equilibrium states. The free power
density plays a role in nonequilibrium systems analogous to
that of the free energy density in equilibrium, although it is
an entirely distinct physical quantity.
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In deriving the nonequilibrium phase coexistence conditions (8) via the double tangent construction (7), as exemplified in
Fig. 2(b) and leading to the results in Fig. 3, we assumed the concept of minimization of free power dissipation, Rt½ρ; J".
However, while minimization of Rt½ρ; J" with respect to the current distribution Jðr;ω; tÞ generates a one-body force
balance equation of motion (1), we had implicitly assumed [1] that the functional is also minimal with respect to the density
distribution ρðr;ω; tÞ. This additional minimization is not present in power functional theory [8], which rather states that

δRt½ρ; J"
δρðr;ω; tÞ ¼ αðr;ω; tÞ; ð20Þ

where αðr;ω; tÞ is a Lagrange multiplier corresponding to the constraint between ρðr;ω; tÞ and Jðr;ω; tÞ that is imposed by
the continuity equation.
For our test case of motility-induced phase separation in active Browian particles, recent simulation data [2,3] very

clearly points to the fact that both π and ν possess different values in the coexisting phases. Hence the conclusion that (8)
offers a shortcut to phase coexistence, bypassing the need to solve the force balance equation (1) across the interface, is not
valid. This does not affect the validity of the excess dissipation functional (14), as demonstrated in Figs. 1 and 2, which
hence offers a practical way to theoretically address the interfacial problem.
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