
J. Chem. Phys. 150, 074112 (2019); https://doi.org/10.1063/1.5061764 150, 074112

© 2019 Author(s).

Power functional theory for active
Brownian particles: General formulation
and power sum rules
Cite as: J. Chem. Phys. 150, 074112 (2019); https://doi.org/10.1063/1.5061764
Submitted: 23 September 2018 . Accepted: 28 January 2019 . Published Online: 21 February 2019

Philip Krinninger, and Matthias Schmidt

https://doi.org/10.1063/1.5061764
https://doi.org/10.1063/1.5061764
https://aip.scitation.org/author/Krinninger%2C+Philip
https://aip.scitation.org/author/Schmidt%2C+Matthias
https://doi.org/10.1063/1.5061764
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5061764
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5061764&domain=aip.scitation.org&date_stamp=2019-02-21


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Power functional theory for active Brownian
particles: General formulation and power
sum rules

Cite as: J. Chem. Phys. 150, 074112 (2019); doi: 10.1063/1.5061764
Submitted: 23 September 2018 • Accepted: 28 January 2019 •
Published Online: 21 February 2019

Philip Krinninger and Matthias Schmidta)

AFFILIATIONS
Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

a)Electronic mail:Matthias.Schmidt@uni-bayreuth.de

ABSTRACT
We generalize power functional theory [Schmidt and Brader, J. Chem. Phys. 138, 214101 (2013)] to Brownian many-body systems
with orientational degrees of freedom. The framework allows the study of active particles in general inhomogeneous and time-
dependent nonequilibrium. We prove for steady states that the free power equals half the negative dissipated external work
per time, and is hence trivially related to the average forward swim speed of the particles. The variational theory expresses
the free power as a functional of the microscopic one-body density and current distribution. Both fields are time-, position-
and orientation-dependent, and the total current consists of translational and rotational parts. Minimization of the free power
functional with respect to the current(s) yields the physical dynamics of the system. We give a simple approximation for the
superadiabatic (above adiabatic) contribution which describes excess dissipation in homogeneous bulk fluids due to drag. In
steady states, we evaluate the free power using Brownian dynamics simulations for short-ranged soft repulsive spheres. We
describe the necessary sampling strategies and show that the theory provides a good account of the simulation data.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5061764

I. INTRODUCTION

The class of active systems covers a wide variety of bio-
logical and physical systems. Activity refers to an intrinsic
motility of the individual units, such as cells, bacteria or par-
ticular colloids. The growing interest in active systems over
the last decade is poignantly illustrated by the large num-
ber of review articles that address the topic.1–18 A variety
of collective phenomena has been addressed in e.g. systems
of microorganisms,2,19 cells,20 and bacteria.6,8,21–30 Further
examples include the collective motion of flocks,1,31–33 school
of fish,34 and opinion formation in social science.35

One of the most successful model to describe collec-
tive behavior is the Viscek model,36 and its variations.37–45
The Viscek model has been used for example to study
lane formation,39,43,46 soft deformable particles,47 order-
disorder transition,37 and swarming turbulence.41 A pop-
ular application is the description of active nematics. For

active rods the collective properties48,49 and swarming
behavior50 were studied. In active nematics velocity cor-
relations,51 orientational order and fluctuations have been
investigated.52–54

There exists a variety of experiments and applications,
such as active glasses and gels55–60 and the collective motion
of vibrated polar disks and granular materials.61–64 Experi-
ments dealing with active colloidal particles use e.g. Janus
particles65,66 or other colloids whose surface suitably is
manipulated. Janus particles are built by e.g. by coating one
hemisphere of SiO2 beads with a thin layer of graphite onto
one hemisphere.65 When illuminated with a widened laser,
the light is absorbed by the graphite hemisphere. This locally
heats up the solvent above the critical temperature, causing
a local demixing, which generates a phoretic force that pro-
pels the Janus particle. In Ref. 67 a polymer sphere encap-
sulated most of an anti-ferromagnetic cube, which was then
only partially exposed to the solvent. Illumination with blue
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light caused the hydrogen peroxide solvent to dissociate and
as a result the colloids to self-propel and form clusters. A
variety of further propulsionmechanisms is based on chemical
gradients.66,68,69

A body of work has been based on hydrodynamic frame-
works,7 addressing the behavior of flocks,70 phase coexis-
tence,71 pattern formation,72 confined collective motion,73
andmicroorganisms.2 Furthermore hydrodynamic approaches
give the opportunity to study e.g. self-propulsion mecha-
nisms,74,75 synchronization of anisotropic particles,76–78 and
dynamics near a wall.79

Active Brownian particles (ABP) form a simple micro-
scopic model for active matter. These types of particles
undergo Brownianmotion with a built-in orientation degree of
freedom, which itself diffuses freely, and gives the direction of
the self-propulsion. In particular spherical particles serve as a
minimal model for active colloids. The ABP model is very pop-
ular for studying phase separation of active particles, which is
based on the particles’ motility. This motility-induced phase
separation (MIPS) occurs between non-equilibrium steady
states in systems with purely repulsive interparticle interac-
tions. The simplicity of the ABP model has led to a thriving
number of publications based on computer simulations and
theoretical approaches to describe MIPS.80–103 Recent the-
oretical developments include a mode coupling theory for
ABP,104–106 a field theory for phase separation,107 and how
swimmer-swimmer correlations affect the collective behavior
of active suspensions.108

Approaches for describing MIPS were based on contin-
uum theory95,96 and a hydrodynamic, coarse-graining the-
ory.82,94 In both approaches the average propulsion speed as
a function of bulk density, v(⇢b), plays an important role. Using
continuum theory95,96 v(⇢b) is obtained by microscopic esti-
mations of a random walk hindered by collisions. The authors
of Refs. 95 and 96 argue that using v(⇢b) it is possible to con-
struct an effective free energy, which predicts the existence
of phase separation. Furthermore they present a formalism
which allows the detailed study of phase separation dynam-
ics. The approach introduced in Refs. 82 and 94 is based
on the microscopic many-body Smoluchowski equation. The
authors derive coarse-grained equations for one tagged par-
ticle, in which again an effective (density-dependent) swim-
ming speed v(⇢b) enters. From the effective hydrodynamics the
authors identify an instability region of the homogeneous sys-
tem, causing a dynamic instability. The fact that this indeed
leads to phase separation can be demonstrated by comparison
to computer simulations. Recent work showed109 that v(⇢b)
can also be obtained by Green-Kubo relations, which might in
a next step be used as an input for coarse-grained frameworks.
Summarizing, both theoretical approaches are able to predict
the onset and existence of MIPS (with reasonable approxima-
tions), but a detailed description of stable phase coexistence is
still missing.

Closely related to MIPS is the clustering of self-propelled
particles and active clusters.28,39,65,66,81,110–118 The kinetics of
the formation of the dense phase can be modeled analogously
to classical nucleation theory.119 Supported by simulations, it
has been shown that, within this modeling, some properties,

such as the location of the binodal and nucleation rates, can
be obtained. Another approach is the active phase-field crystal
model.120,121

Given the number of applications and phenomenologi-
cal observations, the attempt at unification via formulating
thermodynamics and statistical mechanics for active matter
seems well justified.29,84,101,122–132 Under special investigation
is the possibility to find an equation of state and a closed form
for the pressure in active systems.89,126,133–139 In particular,
in the context of MIPS the surface tension of the gas-liquid
interface in systemswith phase coexistence has been of signif-
icant interest.140–142 Recent results suggest that the interfacial
tension is negative,140 which violates the physical intuition
earned from equilibrium statistical mechanics.

A fundamentally different approach is the effective equi-
librium description of ABPs. The basic idea behind this frame-
work is to eliminate the orientational degrees of freedom by
integrating them out, resulting in a Langevin equation for
non-Markovian dynamics for the translational coordinates.143
The underlying stochastic process is an Ornstein-Uhlenbeck
process. There are two concepts which allow a represen-
tation of this process using effective Markovian dynamics:
the unified colored noise approximation (UCNA) introduced
by Hänggi and Jung,144,145 and the Fox approximation.146,147
Applying the former to ABPs allows the study of a variety
of problems, e.g. statistical properties such as the velocity
distribution of ABPs.148 Furthermore the UCNA is also used
as a first step to formulate a statistical mechanics theory124
and describe critical phenomena.149 The Fox approximation
is used to study the physics of ABPs.139,143,150,151 Within this
approach an approximated Fokker-Plank equation is derived,
whereby one can define an effective interaction between the
particles, due to activity.143 The existence of such an effective
interaction has been proposed earlier, because of the similari-
ties between MIPS and equilibrium phase transitions.152 The
application of Fox’s approximation143,150 and the UCNA153
gave an explicit formulation. Interfacial properties, pressure
and tension have been studied as well in both approxima-
tions.139,141,154 Very recent work by Wittmann et al.155,156

nicely shows the equivalence of both approaches and gives
insight into previous results. The authors present new find-
ings regarding interaction forces, phase equilibria, structure,
and mechanical properties.

In this work we present a theory for active Brownian par-
ticles with orientational degrees of freedom. Our approach
is based on the recently developed power functional theory
(PFT).157 This framework allows the description of many-body
systems that follow over-damped Brownian dynamics (BD).
These are described by a unique power functional Rt[ ⇢, J] of
the one-body density distribution ⇢ and the one-body current
distribution J, which both depend on position r and time t.157
Minimizing the power functional with respect to the current
gives the physical time evolution of the system. Therefore Rt

can be regarded as an analogue to the free energy functional
in equilibrium statistical physics. One central significance of
the power functional is that its derivative determines the
forces acting in overdamped systems. Therein lies the second
analogy to equilibrium systems, where the thermodynamic

J. Chem. Phys. 150, 074112 (2019); doi: 10.1063/1.5061764 150, 074112-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

potentials appear also as abstract quantities that are only
detectable through their derivatives. The theory is generally
formulated in the Smoluchowski picture, starting from the
many-body probability distribution �.

Dynamical density functional theory (DDFT) is a widely
used approach, e.g. for studying sheared systems,158,159
spinodal decomposition,160 and systems with orientational
degrees of freedom.161 DDFT can be viewed as an exten-
sion to density functional theory (DFT) to nonequilibrium sys-
tems.162,163 However, in contrast to DDFT, PFT is formally
exact in the sense that no adiabatic assumption is involved
in order to describe the time evolution of the density pro-
file. Hence PFT goes beyond the DDFT description and allows
the study of additional forces in the system that are not con-
tained in the adiabatic construction. These forces are called
superadiabatic forces and are accessible via computer sim-
ulations.164–166 Superadiabatic forces, and hence PFT, may
serve therefore as a tool to describe nonequilibrium phe-
nomena which are not fully understood, such as the laning
transition in colloidal systems,167,168 where DDFT only fits
when adding phenomenological terms.169,170 Moreover PFT
potentially gives opportunities to describe a whole class of
nonequilibrium system from first principles in a general and
unified way. Furthermore PFT was also formulated for quan-
tum171 and classical Hamiltonian172 many-body systems. For
an overdamped Brownian system, nonequilibrium Ornstein-
Zernike equations were formulated for two-body dynamic
correlation functions.173,174 Much recent progress has been
made in the development of PFT approximations for simple
fluids175,176 and in corresponding computer simulation tech-
niques.177,178,180

Recently PFT has been used for the description of ABPs179
by taking the orientational degree of freedom of the parti-
cles into account, which can be viewed as a generalization
of the PFT for mixtures.181 Here we give a complete account
of the theory and present further comparisons to computer
simulation results. We also derive several exact sum rules for
nonequilibrium steady states, Eqs. (43), (44), and (49) below.

The paper is organized as follows: In Sec. II we formu-
late power functional theory for active particles. We start
from the microscopic (Smoluchowski) many-body description
of the active system and show the representation of PFT on
the one-body level in Sec. II A. We then focus on steady states
and derive an exact non-equilibrium sum rule for the splitting
into internal and external contributions to the free power in
Sec. II B. We give an approximation for the excess dissipation
in Sec. II C and formulate the Langevin dynamics of the ABP
model in Sec. III. Furthermore we give details about the Brow-
nian dynamics computer simulations, and the external power
in the Langevin description is presented. In Sec. IV we present
our results obtained by simulations and theory. We conclude
in Sec. V.

II. POWER FUNCTIONAL THEORY

A. General framework
We consider N active particles with position coordinates

{r1, . . ., rN} ⌘ rN in a d-dimensional space, and orientations

{!1, . . ., !N} ⌘ !N, where particle i at position ri swims with
speed s in direction !i, with |!i| = 1. We consider possi-
bly anisotropic inter-particle interaction potentials u(rN, !N).
The Smoluchowski equation for the time-dependent proba-
bility distribution �(rN, !N, t) of an ensemble of such systems
is

@

@t
�(rN,!N, t) = �

X

i

(ri · v̂i + r!i · v̂
!
i )�(rN,!N, t), (1)

where ri is the derivative with respect to ri, and r!i is the
derivative with respect to !i (acting on the unit sphere); v̂i
and v̂!i are the translational velocity and rotational velocity
operators, respectively. The former is given by

�v̂i = �(riu) � (rivexti ) + Xi + �s!i � kBTri, (2)

where u(rN, !N) is the interparticle interaction potential,
vext(r, !, t) is a position-, orientation-, and time-dependent
external potential, X(r, !, t) is an external non-conservative
force; we use vext

i
= vext(ri,!i, t) and Xi = X(ri, !i, t) as a short-

hand notation; � is the friction coefficient for translational
motion, s = constant is the swimming speed of an isolated
particle, kB is the Boltzmann constant and T is absolute tem-
perature. The vector fields riu and rivexti

act via multiplication
in (1); only the thermal diffusive term [last contribution in (2)]
acts via differentiation. Having the nonconservative force field
X(r,!, t) in (2) can be useful for modeling e.g. shear flow.175,176

The rotational velocity operator is given by

�! v̂!i = �(r!i u) � (r!i vexti ) + X!
i � kBTr!i , (3)

where �! is the rotational friction coefficient, and
X!
i ⌘ X! (ri,!i, t), where X! (r, !, t) is a non-conservative

external torque field.
Following the procedure of Ref. 157, we introduce vari-

ational fields ṽN ⌘ {ṽ1, . . . ṽN } and ṽ!N ⌘ {ṽ!1 , . . . ṽ!N } for
the translational and rotational velocity, respectively. Each
variational field is a function in configuration space, i.e.
ṽi ⌘ ṽi(rN,!N, t) and ṽ!i ⌘ ṽ!i (rN,!N, t) for all i = 1, . . ., N.

We define a generator that depends on the trial fields
via

Rt =

⌅
drNd!N

X

i


�
✓ ṽ2i
2
� ṽi · v̂i

◆
+ �!

✓ (ṽ!i )2

2
� ṽ!i · v̂

!
i

◆�

⇥ �(rN,!N, t). (4)

Due to its quadratic structure, the generator is instanta-
neously (i.e. at fixed time t and fixed distribution �) minimized
by the true value of each of the trial fields, and hence when
evaluated at the minimum

�Rt

�ṽi
= 0, (5)

�Rt

�ṽ!i
= 0, (6)
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which implies that

ṽi� = v̂i�, (7)
ṽ!i � = v̂!i � (8)

at the given time t. Hence the trial fields at the minimum
of the functional can “stand in” for the action of the cor-
responding operators. Clearly the minimum corresponds to
the physical dynamics, as the trial fields possess the “cor-
rect” values that determine the actual time evolution. Here the
translational contribution to the power functional takes on the
value

R0,trans
t = ��

2

⌅
drNd!N

X

i

ṽ2i�(r
N,!N, t), (9)

where the superscript 0 indicates the value at the minimum.
The total value of Rt at the minimum consists of translational
and rotational contributions:

R0
t = �

1
2

⌅
drNd!N

X

i

✓
�ṽ2i + �

! (ṽ!i )
2
◆
�(rN,!N, t), (10)

[As an aside, this formulation is analogous to the one given
in Ref. 157 for spheres. Note that the operator expression v̂i�
in (4) is analogous to that in (5) of Ref. 157 by observing that
v̂i� = ��1Ftoti �, with the configuration space expression Ftoti
for the total force acting on particle i.]

We can further use Rt as a generator for the one-body
fields of interest, via functional differentiation,157

�Rt

�X(r,!, t)
= J(r,!, t), (11)

�Rt

�X! (r,!, t)
= J! (r,!, t), (12)

where the left hand side is evaluated at the physical dynamics,
cf. (7) and (8), after the derivative has been taken. Here the
translational and rotational one-body currents are defined,
respectively, via

J(r,!, t) =
⌅

drNd!N
X

i

�(r � ri)�! (! �!i)v̂i�(rN,!N, t), (13)

J! (r,!, t) =
⌅

drNd!N
X

i

�(r � ri)�! (! �!i)v̂
!
i �(rN,!N, t),

(14)

where �(·) indicates the d-dimensional Dirac distribution and
�! (·) is the Dirac distribution on the unit sphere.

The one-body currents are related to the temporal
change of the one-body density via the continuity equation

@⇢(r,!, t)
@t

= �r · J(r,!, t) � r! · J! (r,!, t), (15)

as can be shown from integrating (1) over the degrees of free-
dom of N � 1 swimmers. Here the one-body density distribu-
tion is defined via

⇢(r,!, t) =
⌅

drNd!N
X

i

�(r � ri)�! (! �!i)�(rN,!N, t). (16)

In order to connect the many-body theory with the one-
body level, we perform a constrained Levy search182,183 as

Rt[ ⇢, J, J! ] = min
ṽN ,ṽ!,N!⇢,J,J!

Rt, (17)

where the constraints are obtained by replacing the operators
on the right hand sides of Eqs. (13) and (14) by their respective
trial fields, i.e.

J(r,!, t) =
⌅

drNd!N
X

i

�(r � ri)�! (! �!i)ṽi�(rN,!N, t), (18)

J! (r,!, t) =
⌅

drNd!N
X

i

�(r � ri)�! (! �!i)ṽ!i �(r
N,!N, t).

(19)

The equalities (18) and (19) represent constraints on the trial
velocities, as the left hand side is considered to be prescribed.
In equilibrium systems, themethod of constrained search pro-
vides an alternative to the more familiar Mermin-Evans foun-
dation of density functional theory.162,184 The advantages of
the Levy method are that no Legendre transform is required
and that the intrinsic free energy functional is given as an
explicit (many-body) expression.

As a consequence of the constrained search (17), the vari-
ational principle is now elevated to the one-body level, such
that both

�Rt[ ⇢, J, J! ]
�J(r,!, t)

= 0, (20)

�Rt[ ⇢, J, J! ]
�J! (r,!, t)

= 0, (21)

hold at the minimum of the functional. Here the (par-
tial) functional derivatives are performed at fixed ⇢(r, !, t).
As we will show below, (20) and (21) constitute a force
balance and a torque balance equation, which together
with the continuity equation (15), completely determine the
dynamics. One advantage of this setup is that the different
contributions to the total force and total torque can be sys-
tematically formulated. In particular, one can identify the gen-
uine nonequilibrium contributions as being superadiabatic,
i.e. above free energy contributions, as we will show in the
following.

The structure laid out so far implies that the intrinsic and
external contributions to the total power functional can be
separated according to

Rt[ ⇢, J, J! ] =Wt[ ⇢, J, J! ] � Xt[ ⇢, J, J! ] (22)

where Wt[ ⇢, J, J! ] is an intrinsic contribution, solely depen-
dent on the interparticle interactions u(rN, !N). The external
power is generated from the external forces and torques (both
of which act local in time and space) according to
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Xt[ ⇢, J, J! ] =
⌅

drd!
f
J · (�rvext + X + �s!)

+ J! · (�r!vext + X! )
g
. (23)

We next split the intrinsic contribution in (22) into ideal and
excess (over ideal) parts

Wt =Wid
t +Wexc

t , (24)

where the intrinsic ideal (i.e. in a system with no internal
interactions) power functional is given by

Wid
t [ ⇢, J, J

! ] =
⌅

drd!
�J2 + �! (J! )2

2⇢

+ kBT
⇣
J · r + J! · r!

⌘
ln ⇢

�
. (25)

Here the right hand side can be split into a sum

Wid
t [ ⇢, J, J

! ] = Pidt [ ⇢, J, J
! ] + Ḟid[ ⇢], (26)

with contributions due to dissipation, Pidt , and adiabatic
(reversible) ideal free energy changes, Ḟid[ ⇢]. Here

Fid[ ⇢] = kBT

⌅
drd!⇢(r,!)(ln( ⇢(r,!)⇤d) � 1) (27)

is the intrinsic Helmholtz free energy functional of an ideal
gas of uniaxial rotators in d spatial dimensions; ⇤ is the (irrel-
evant) thermal de Broglie wavelength, and the overdot in (26)
indicates a derivative with respect to time. Explicitly, the dis-
sipative and reversible ideal intrinsic contributions are given
by

Pidt [ ⇢, J, J
! ] =

⌅
drd!

�J2 + �! (J! )2

2⇢
, (28)

Ḟid[ ⇢]/(kBT) =
⌅

drd!(J · r + J! · r! ) ln( ⇢⇤d), (29)

where (29) is obtained from (27) via the chain rule, replac-
ing the partial time derivative of the density distribution ⇢̇ via
the continuity equation (15), and integration by parts in both
position and orientation.

The functional derivatives of the ideal intrinsic contribu-
tion (25) are then obtained as

�Wid
t

�J(r,!, t)
=

�J(r,!, t)
⇢(r,!, t)

+ kBTr ln ⇢(r,!, t), (30)

�Wid
t

�J! (r,!, t)
=

�!J! (r,!, t)
⇢(r,!, t)

+ kBTr! ln ⇢(r,!, t), (31)

where the arguments of Wid
t [ ⇢, J, J

! ] have been omitted for
clarity. The variational principle (20) and (21) can be then cast
into the form of a force balance and a torque balance equation,
which are given, respectively, by

�J(r,!, t)
⇢(r,!, t)

= �s! � kBTr ln ⇢(r,!, t) �
�Wexc

t

�J(r,!, t)
� rvext(r,!, t) + X(r,!, t), (32)

�!J! (r,!, t)
⇢(r,!, t)

= �kBTr! ln ⇢(r,!, t) �
�Wexc

t

�J! (r,!, t)
� r!vext(r,!, t) + X! (r,!, t). (33)

In order to describe the contribution due to internal
interactions, we assume a splitting of the intrinsic excess
functional into adiabatic and superadiabatic (above “adia-
batic,” i.e. equilibrium) contributions,

Wexc
t [ ⇢, J, J! ] = Ḟexc[ ⇢] + Pexct [ ⇢, J, J! ], (34)

where the total time derivative of the intrinsic excess (over
ideal gas) Helmholtz free energy functional Fexc[ ⇢], which is
due to the intrinsic interaction potential u(rN, !N), is

Ḟexc[ ⇢] =
⌅

drd!
✓
J(r,!, t) · r + J! (r,!, t) · r!

◆ �Fexc[ ⇢]
�⇢(r,!, t)

,

(35)

and Pexct [ ⇢, J, J! ] is the superadiabatic contribution, which
also originates from the internal interactions, and describes
the difference to the equilibrium physics. Pexct [ ⇢, J, J! ]
depends in general non-locally in time and in space on its
(functional) arguments. The functional derivative in (35) is
taken with respect to an equilibrium density distribution
⇢eq(r, !) (which is independent of time), as is appropriate
for the equilibrium excess free energy functional F[ ⇢eq]. This
functional derivative is then evaluated at the time-dependent
density, i.e. at ⇢eq(r, !) = ⇢(r, !, t). Note that this identity
defines the adiabatic state.164 Similar to the derivation of (29),
one obtains (35) from applying the chain rule, replacing ⇢̇
via (15) and then “reversing” the action of the nabla opera-
tors by partial integration, i.e. building the adjoint operator.
We re-emphasize that the occurrence of the dependence on
the instantaneous density distribution, namely in the adiabatic
contributions Ḟid and Ḟexc does not constitute an approxima-
tion, as all further nonequilibrium effects are contained in the
superadiabatic terms Pidt and Pexct .

Inserting the splitting (24), (25), (28), (29), and (34) into
(22) yields a decomposition which is identical to the case of
systems with only translational degrees of freedom:157

Rt = Pidt + Pexct + Ḟid + Ḟexc � Xt. (36)

Evaluating the functional at the physical time evolution yields

R0
t = R0

t ⌘ Rt[ ⇢, J, J! ], (37)

where R0
t is defined via (10).

In summary, (36) constitutes a splitting into intrinsic
(Pidt +Pexct + Ḟid + Ḟexc) and external contributions (�Xt). Crucially,
all intrinsic terms are independent of the external force and
torque fields, and depend only on the one-body density dis-
tribution and on the one-body current distribution. The non-
interacting motion is described by the ideal terms (Pidt + Ḟid);
together with the external power, these generate the free
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drift-diffusion equation. The contributions due to internal
interactions are contained in the excess parts (Pexct +Ḟexc). Here
Ḟexc arises from adiabatic free energy changes and Pexct con-
tains the genuine nonequilibrium (superadiabatic) effects due
to the motion in the system.

B. Steady state sum rules
The formulation in Sec. II A is general and applies to arbi-

trary time-dependent situations. We will henceforth consider
steady states, i.e. where the one-body distributions carry no
time dependence. This still includes cases with flow, J, J! , 0,
as long as the currents are time-independent and divergence-
free, such that ⇢̇ = 0 follows from (15). We split the value of the
free power (37) into a contribution from internal forces, It, and
an external contribution, Xt, according to

R0
t = �It/2 � Xt/2. (38)

Here the external part of the free power is determined by (23)
at the physical dynamics. On the many-body level, this is given
by

Xt =

⌅
drNd!N

X

i

(fexti · v̂i + f!,ext
i

· v̂!i )�(rN,!N, t), (39)

where fexti = �(rivexti
) + Xi + �s! is the external force and

f!,ext
i

= �(r!
i
vext
i

) +X!
i is the external torque. The internal part

in (38) is given by

It =

⌅
drNd!N

X

i

⇢ f
� riu(rN,!N) � kBTri ln �

g
· v̂i

+
f
� r!i u(rN,!N) � kBTr!i ln �

g
· v̂!i

�
�, (40)

where the arguments of �(rN, !N, t) have been left away for
clarity. Here the operators ri and r!i only act inside of the
brackets. Integration by parts and rearranging gives

It =

⌅
drNd!N

f
u(rN,!N) + kBT ln �(rN,!N, t)

g

⇥
X

i

⇣
ri · v̂i + r!i · v̂

!
i

⌘
�(rN,!N, t). (41)

Using the Smoluchowski equation (1) in order to replace the
sum allows us to obtain

It = �
⌅
drNd!N

f
u(rN,!N) + kBT ln �(rN,!N, t)

g @

@t
�(rN,!N, t).

(42)

In steady state, the partial time derivative of � vanishes and
hence we can conclude that

It = 0. (43)

Using the splitting (38) the free power in steady state is thus
trivially related to the external contribution,

R0
t = �Xt/2. (44)

We next seek to exploit the availability of the two split-
tings of Rt, given by (36) and (38), in steady state. We start by
rewriting (28) as

Pidt =
1
2

⌅
drd!

 
J · �J

⇢
+ J! · �

!J!

⇢

!
. (45)

Inserting the force balance equations (32) and (33) and rear-
ranging yields

Pidt =
1
2

⌅
drd!

"
J ·

⇣
�s! � rvext + X � kBTr ln ⇢

⌘

+ J! ·
⇣
�r!vext + X! � kBTr! ln ⇢

⌘#

� 1
2

⌅
drd!

 
J ·

�Wexc
t

�J
+ J! ·

�Wexc
t

�J!

!
. (46)

Integration by parts of the terms J · kBTr ln ⇢ and
J! · kBTr! ln ⇢ and using the continuity equation (15), gives
the time derivative of the density. As ⇢̇ = 0 in steady state,
the first integral in (46) reduces to the external power Xt, cf.
(23). The second integral in (46) is determined by the supera-
diabatic contribution Pexct , as (34) reduces to Wexc

t = Pexct in
steady state, because then Ḟexc = 0. Thus the free power in
steady state is given by inserting (46) into (36), which yields
upon observing that Ḟid = 0 the result

R0
t = Pexct � Xt

2
� 1
2

⌅
drd!

 
J ·

�Pexct

�J
+ J! ·

�Pexct

�J!

!
. (47)

Comparing to (38) yields

It = �2Pexct +
⌅

drd!
 
J ·

�Pexct

�J
+ J! ·

�Pexct

�J!

!
. (48)

Using (43) the value of the superadiabatic functional in
steady state is determined by the superadiabatic force,
�Pexct /�J(r,!, t), and by the superadiabatic torque, �Pexct /
�J! (r,!, t), via

Pexct =
1
2

⌅
drd!

 
J ·

�Pexct

�J
+ J! ·

�Pexct

�J!

!
, (49)

where all quantities are evaluated at the physical dynamics.
In summary, we have derived the following non-trivial

identities (i.e. “sum rules”) (43) and (44), as well as (47) and (49).

C. Excess dissipation functional
We next assume a model form for the excess dissipation

functional which is instantaneous in time (i.e. Markovian) and
given by

Pexct =
�

2

⌅
d1d2 ⇢(1)⇢(2)

 
J(1)
⇢(1)
� J(2)

⇢(2)

!2
M(1, 2), (50)

where the roman numerals refer to one position and one ori-
entation, i.e. 1 ⌘ r, ! and 2 ⌘ r0, !0, and M(1, 2) is a convolution
kernel, which depends on the differences r � r0 and! �!0. The
form (50) was first proposed in Ref. 179. It constitutes a power
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series up to second order in the velocity difference at two
space points. Physically it models friction (or “drag”) effects
that occur in nonequilibrium due to the internal interactions
in the system.

For a bulk steady state the number density becomes
a constant, ⇢(r, !, t) = ⇢b, and the current reduces to
J(r, !, t) = Jb!, where Jb = constant. Furthermore J! (r, !, t)
= 0, and Ḟ = 0 due to the steady state condition. The power
functional, (36), then reduces to

Rt = Pidt � �s
⌅

d1J(1) ·! + Pexct (51)

=
�

2

⌅
d1

J(1)2

⇢(1)
� �s

⌅
d1J(1) ·!

+
�

2

⌅
d1d2 ⇢(1)⇢(2)

 
J(1)
⇢(1)
� J(2)

⇢(2)

!2
M(1, 2) (52)

which can be simplified to

Rt(Jb)
4⇡V

=
�J2

b

2⇢b
+
�M0

2
J2
b
� �sJb, (53)

where
M0 =

⌅
d2(! �!0)2M(1, 2) (54)

is a density-dependent parameter, which is independent of Jb.
In (53) Jb acts as a variational parameter. In order to apply the
fundamental variational principle (20), we thus minimize (53)
with respect to Jb,

@Rt

@Jb
= �

Jb
⇢b

+ �M0Jb � �s = 0. (55)

As a result we obtain the relationship Jb � s⇢b = �M0Jb⇢b, from
which the bulk current can be obtained as

Jb =
s⇢b

1 +M0⇢b
. (56)

Rearranging yields M0 = (s⇢b � Jb)/⇢bJb. Inserting this result in
(53) leads to

R0
t

4⇡V
= ��s

2
Jb. (57)

where R0
t denotes (as before) the value of the power functional

at the minimum.
The ansatz for the currents, J = Jb!, J! = 0, allows the

calculation of the external power Xt, and the internal power
It. The external power (23) reduces to Xt = �ss d1J(1) · !, in
the absence of further external forces (besides swimming) and
torques. As ! is a unit vector one obtains

Xt

4⇡V
= �sJb. (58)

Hence from comparing (57) and (58) we explicitly verify that
R0
t = �Xt/2 holds, i.e. the present approximation for the excess

dissipation functional respects the sum rule (44).
Evaluating the internal power (48) yields

It
4⇡V

= ��M0J
2
b
+ �M0J2b = 0, (59)

and therefore the exact sum rule (43), It = 0, is also satisfied
within the current approximation.

By inserting (56) in (57) we obtain

R0
t

4⇡V
= � �s2⇢b

2(1 +M0⇢b)
. (60)

It remains to specify the kernel, M(1, 2), in order to arrive
at a closed theory.We assume that the kernelM(1, 2) and hence
its moment M0, (54), increase with density. We choose the
simple functional form179

M0 =
1

⇢0 � ⇢b
+
c0⇢

m
b

⇢m+1
0

, (61)

wherem is a positive integer and ⇢0 and c0 are constants. Here
the value ofM0 increases with increasing bulk density in order
to model the increased collective friction effects that tend to
slow down the dynamics. We show next that this form gen-
erates a decrease of average propulsion speed with increasing
bulk density. For ⇢b ! ⇢0 jamming occurs (such that the bulk
density is restricted to the interval 0  ⇢b  ⇢0) and hence
M0 !1. Insertion into Eq. (56) yields

Jb
s⇢b
=

1 � x
1 + c0xm+1(1 � x) , (62)

where x = ⇢b/⇢0 is a scaled density. For the special case
c0 = 0 the well-known simple linear decrease of the forward
speed with increasing bulk density is recovered.86,95,136

Within the approximation (50) the free power per volume
becomes

R0
t

4⇡V
=

�s2⇢b
2

x � 1
1 + c0xm+1(1 � x) , (63)

which yields the free power per particle via division by
⇢b = N/V as

R0
t

4⇡N
=

�s2

2
x � 1

1 + c0xm+1(1 � x) . (64)

We will show below that this simple functional form can
provide a reliable account of the Brownian dynamics simula-
tion data.

III. BROWNIAN DYNAMICS SIMULATIONS
The simulated system consists of N = 5000 spheri-

cal Brownian particles in two dimensions. The dynamics of
the particles are represented by the over-damped Langevin
equations

ṙi(t) = s!i(t) + ��1f inti (rN) + ⇠i(t), (65)
'̇i(t) = ⌘i, (66)

where, as before, i = 1, . . ., N labels the particles. The self-
propulsion of each particle is along its unit orientation vector
!i(t) = (sin'i(t), cos'i(t)) with the (free) swim speed s. The
angle 'i(t) then describes the orientation of particle i at time
t. The stochastic vector ⇠i and the stochastic scalar ⌘i are
Gaussian distributed with zero mean and auto-correlations
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h⇠i(t)⇠ j(t
0)i = 2Dtrans1�ij�(t � t0), (67)

h⌘i(t)⌘j(t0)i = 2Drot�ij�(t � t0), (68)

where Dtrans = kBT/� and Drot = kBT/�! are the transla-
tional and the rotational diffusion coefficients, respectively,
and 1 is the 2 ⇥ 2 unit matrix. The inter-particle interac-
tion force f inti (rN) is generated from the potential u(rN) by
f inti (rN) = �riu(rN). Here we restrict ourselves to spherically
symmetric pair interactions u(rN) =

P
i ,j ,i< j�(rij), leading to

forces of the form

f inti (rN) = �ri
X

i,j,i

�(rij), (69)

where rij = |ri(t) � rj(t)|. We use theWeeks-Chandler-Anderson
(WCA)95,185 pair potential, which is a Lennard-Jones poten-
tial that is cut at its minimum and shifted so it remains
continuous:

�(rij) = 4✏
⇣
�/rij

⌘ 12 �
⇣
�/rij

⌘6�
+ ✏ , for rij < 21/6�. (70)

Then (69) creates a purely repulsive interparticle interaction
force and avoids artifacts at the cut-off.

A common measure for the activity of the particles is the
Peclet number, which is defined as (see e.g. Ref. 179)

Pe =
3s

Drot�
. (71)

This dimensionless number relates the two quantities that
characterize the activity of the particles, namely s and Drot.

The discretized dynamics proceed according to the Euler
algorithm

ri(t + �t) = ri(t) + ṙi(t)�t, (72)
!i(t + �t) = !i(t) + !̇i(t)�t, (73)

where ṙi(t) and !̇i(t) are given by Eqs. (65) and (66), respec-
tively. (Note that the noise term carries additional dependence
on �t.) Additionally the orientation vector !i(t) is normal-
ized to unit length at each time step to avoid effects on the
propulsion speed.

We carry out Brownian dynamics (BD) simulations in 2D
with a fixed time step of �t/⌧0 = 10�5, with the natural time
unit ⌧0 = �2�/✏ . The fundamental units of the system are
�, � and ✏ , where � represents the size of the repulsive (LJ)
core and ✏ its energy scale. All simulations are performed
at a fixed ratio between the rotational diffusion constant
and the translation diffusion constant, i.e. the thermal value
Drot/Dtrans = 3��2, and a fixed propulsion speed of
s⌧0/� = 24. The particles are placed in a square, periodic
box with side length L = (N/⇢b)1/2, where ⇢b = N/V, with V
being the (two-dimensional) volume of the simulation box. We
investigate the properties of the system as a function of the
bulk density ⇢b, and of the temperature T. We carried out
simulations with bulk densities in the range of ⇢b�2 = 0.1 to
1.2 in steps of 0.1. In addition we performed simulations with
⇢b�

2 = 0.01 and ⇢b�
2 = 0.05. For each density we consider the

temperatures of kBT/✏ = 0.1, 0.2, 0.3, 0.4, 0.6. We let the sys-
tem reach the steady state for nequi = 107 integration steps,

followed by nsample = 108 steps in which the sampled data are
collected.

With these choices of parameters, the Peclet number (71)
can be re-expressed as

Pe =
s��

kBT
, (74)

and the parameters given above amount to the values
Pe = 40, 60, 80, 120, 240 upon decreasing the scaled tempera-
ture kBT/✏ .

All results presented below are averages over time and
over particles and are calculated according to
hAi(j)i = 1

N

PN
i=1

1
nsample

Pnsample
j=1 Ai(j), where Ai(j) stands for an

arbitrary (sampled) quantity for particle i at each discrete time
point j. Hence this corresponds to the configuration space
average.

An important example is the external power, given by

Xt =

*X

i

f exti (t) · vi(t)
+
, (75)

where the external force is fexti = �s!i and the velocity vi is the
velocity of the particles.

IV. RESULTS
Figure 1 shows the external power Xt as a function

of density for different temperatures. For temperatures
kBT/✏ > 0.4 the external power is practically linear in ⇢b,
where the value for ⇢b ! 0 is purely determined by the
external forces, i.e. collision between the particles occur very
unlikely. The practically linear decrease of the velocity with
increasing bulk density is a well-known phenomenon.86,95,136
When decreasing the temperature, kBT/✏  0.4, the exter-
nal power develops a dip, i.e., a deviation from the linear
shape. This region, where the external power is smaller than
expected from a linear dependence on the bulk density, covers
the range of 0.4 . ⇢b�

2 . 1.2. Hence for those set of parameters

FIG. 1. Scaled external power Xt as a function of density. Temperatures are shown
from kBT /✏ = 0 to 1 as indicated by colors and line styles.
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less external power needs to be provided for the dynamics of
the system. As Rt = �Xt/2 in steady state this dip will develop
also in the free power.

Figure 2(a) shows simulation results for the scaled free
power per particle obtained from the external power, i.e.
using the sum rule (44) and the simulation results obtained
via (75). The free power is the central object in PFT and
occurs in the theory as a consequence of general consider-
ations for nonequilibrium systems. It is thus quite surpris-
ing that for the present case of active Brownian particles
the free power is directly related to the average propulsion
speed per particle v(⇢b), which appears as an important quan-
tity in existing hydrodynamic theories.9,94–96 The average self-
propulsion speed is defined as the part of velocity of a particle
in the direction of its orientation, averaged over the whole
system,9,82,93,95

v =
1
N

*X

i

vi(t) ·!i(t)
+
, (76)

FIG. 2. (a) Scaled free power R0
t /(Ns

2�) obtained from BD simulations via sam-
pling Xt as a function of density. Temperatures are shown from kBT /✏ = 0 to 1 as
indicated by colors and line styles. (b) Theoretical results corresponding to (a), as
given by (64). The jamming density is fixed to ⇢0�

2 = 1.3, m = 5 and values of c0
are 0–100 as indicated.

where vi(t) is the velocity of particle i, which we implement
as a central derivative of the position: vi(t)
= (ri(t + �t) � ri(t � �t))/(2�t).164,179,180 Therefore interparticle
interactions change the velocity of the particles depending on
the value of the bulk density. Thus v is density-dependent,
v(⇢b). In the low-density limit, ⇢b ! 0, interparticle forces play
no role. Hence v( ⇢b ! 0) =

⌦P
i(s!i(t) + ⇠i(t)) ·!i(t)

↵
/N = s.

Multiplying both sides of (76) by �s yields

�sv( ⇢b) =
1
N

*X

i

vi(t) · (�s!i(t))
+
. (77)

The term between the angle brackets in (77) is Xt. Thus v(⇢b) is
proportional to Xt as

Xt = N�sv( ⇢b). (78)

We have studied systematically the dependence of the
external, and hence the free, power on temperature. Note
that according to (74) this is analogous to varying Pe.95 Similar
to the external power, the free power increases linearly with
increasing density for kBT/✏ > 0.4, because with increasing
density the dissipation per particle decreases due to colli-
sions. This leads to a linear increase in the free power until
the dynamics arrest and jamming occurs at ⇢0. Within the the-
ory of Sec. II C, we can trace the near-linear behaviour to the
specific form of the moment M0, as given by (61). Clearly, this
provides a good account of the simulation data. However, its
status is that of an ad hoc assumption at present. Clearly, hav-
ing a more microscopic justification constitutes a worthwhile
task for future work.

For temperatures kBT/✏  0.4 the increase of R0
t is non-

linear. While hardly any effect for low densities is observed,
a significant hump develops for ⇢b�2 & 0.4. The physical rea-
son for this hump is an additional dissipation process, which
increases the free power per particle even more than the
excluded volume of the surrounding particles. We interpret
this as a local clustering of the particles, as clustered par-
ticles dissipate less power to the solvent, compared to free
particles. Whether the presence of a hump is related to the
onset of phase separation is an open question.179 A detailed
discussion of motility induced phase separation is beyond
the scope of this work. However, a body of work on this
topic exists.80–102,179 Comparing phase diagrams of different
authors, see e.g. Fig. 6 in Refs. 94 and 96, shows that the onset
of phase separation occurs in the same range as the hump in
R0
t develops.

In Sec. II we defined an excess dissipation functional (50)
and we showed that with a simple approximation an ana-
lytic expression for R0

t can be obtained, cf. (64). Numerical
results for the scaled free power per particle, obtained using
this expression, are shown in Fig. 2(b) as a function of ⇢b for
different values of the parameter c0. In order to fit the sim-
ulation results, we fixed the exponent in (64) to m = 5, the
jamming density to ⇢0�

2 = 1.3, and increased c0 from zero to
100. This corresponds to decreasing the temperature in sim-
ulations, as a comparison with Fig. 2(a) reveals. Investigating
in more detail the exact functional dependence of c0 on tem-
perature remains a task for future studies. This could involve
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a microscopic derivation of the moment, M0, of the correla-
tion kernel, M(1, 2). Nevertheless, we expect c0 to decrease
to zero with increasing temperature, because thermal motion
tends to break up clusters and thus works against phase sep-
aration.179 Comparing Figs. 2(a) and 2(b) it is evident that our
approximate form for the excess dissipation functional, (50),
can reproduce the simulation results quite well, although the
approximation for Pexct describes single-phase fluids, while the
simulation results showMIPS. Hence PFT potentially serves as
a theoretical tool to describe MIPS. This is an open problem
for future work.

V. CONCLUSIONS
In this work we have investigated the steady state

properties of active Brownian particles by applying PFT,157
suitably generalized to deal with orientational degrees of
freedom. We have obtained the value of the power func-
tional, via sampling of the external power, directly from active
Brownian dynamics simulations. A possibility to sample the
free power directly is proposed elsewhere.179 We leave a
detailed formulation of the free power sampling for future
work.

For the system under consideration the free power is
straightforwardly related to the average forward swim speed
of the particles. We have shown that the free power, and hence
the average forward swim speed, exhibit a departure from lin-
earity when dissipative clusters form in the system. However,
the focus here is on clarifying details of the power functional
approach for active particles and simulation method, rather
than the analysis of cluster formation119–121 and nonequi-
librium steady states.82,93,95 Using the constrained search
method, we generate from the many-body starting point of
PFT a one-body variational theory, for which the trial fields
are the density, translational current and rotational current,
respectively. A simple approximation to the dissipation func-
tional generates an analytic variational theory. The one-body
theory enables an intuitive physical interpretation of the sim-
ulation data, although some model input, most notably c0(T),
still remained to be elucidated on themicroscopic level. A pos-
sible way to achieve this is via studying dynamic two-body
(van Hove) correlation functions, either via the nonequilibrium
Ornstein-Zernike route,173,174 or via the dynamical test parti-
cle limit186,187 for which PFT provides an in-principle exact
implementation.181 Note that even within the dynamic den-
sity functional approximation, the dynamic test particle limit
constitutes a valuable computational tool.188,189 Furthermore
the occurrence of phase separation is not yet included in the
approximation presented here, and requires further work.190
Also, a more microscopic treatment would require that bulk
and interfacial contributions are taken into account sepa-
rately. Obtaining microscopically based approximations to the
excess free power functional and applying those to relevant
situations, as e.g. the influence of gravity,191 are useful future
steps. Furthermore we showed that the internal power van-
ishes in steady state. The free power is thus purely deter-
mined by the external power, i.e., the self-propulsion of the
particles.
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