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Abstract: We apply the formally exact quantum power functional framework (J. Chem. Phys. 2015,
143, 174108) to a one-dimensional Hooke’s helium model atom. The physical dynamics are described
on the one-body level beyond the density-based adiabatic approximation. We show that gradients
of both the microscopic velocity and acceleration field are required to correctly describe the effects
due to interparticle interactions. We validate the proposed analytical forms of the superadiabatic
force and transport contributions by comparison to one-body data from exact numerical solution
of the Schrödinger equation. Superadiabatic contributions beyond the adiabatic approximation are
important in the dynamics and they include effective dissipation.

Keywords: superadiabatic effects; density functional theory; time-dependent density functional
theory; Hooke’s atom; power functional theory

1. Introduction

While the dynamical behaviour of a non-relativistic quantum many-particle system is given by
the Schrödinger equation, obtaining in practice the time-dependent wave function by direct solution
often comes at prohibitive computational cost. A reformulation on the one-body level helps to
systematically approximate the physical behaviour and to gain deeper insights into the fundamental
physical processes at play. For groundstate properties, density functional theory (DFT) [1] provides
such formally exact reformulation, see reference [2] for a recent account of DFT. In DFT the external
potential is established as a unique functional of the one-body density. The DFT framework has been
extended to include both the current density and the spin density in order to describe groundstate
properties of inhomogeneous electronic systems in magnetic fields [3,4].

The Runge-Gross theorem [5] forms the basis of time-dependent DFT; see, e.g., references [6–8]
for recent accounts. In subsequent fundamental work Vignale and Kohn [9] introduced the
current density as the basic variable in a generalized time-dependent Kohn-Sham scheme. Vignale,
Ullrich and Conti [10] went beyond the adiabatic local density approximation. In their formulation,
dynamical exchange and correlation effects appear as viscoelastic stresses in the electron fluid.
Ghosh and Dhara [11] had originally developed a time-dependent DFT scheme for arbitrary time
dependence. Vignale [12] went beyond their work in formulating a mapping from current densities
to vector potentials in time-dependent current DFT. In his general case, the functional map is
onto a system with a different two-particle interaction potential. The Runge-Gross theorem is
then obtained as a mere special case, see reference [12]. In typical applications one is often
limited to the adiabatic approximation, i.e., using an instantaneous corresponding groundstate as a
means to investigate non-equilibrium phenomena [6,7,13–15]. While much research effort has been
directed to overcome this limitation [16–23], there is no clear consensus on how to go beyond
the adiabatic approximation. Reference [24] presents an in-depth comparison of two primary
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approaches, i.e., time-dependent current DFT [9,10] and Tokatly’s Lagrangian quantum fluid mechanics
approach [16–18]. In reference [22] Ullrich applies and scrutinizes the former framework for charge
oscillations in quantum strip with two electrons.

The situation in the classical realm is similar: Classical density functional theory [25] provides
a formally exact framework for the finite-temperature statistical physics of (classical) liquids and solids.
The dynamical extension to overdamped Brownian dynamics [25–27] is an adiabatic approximation
restricted to forces that can be derived from the equilibrium free energy functional. However,
recent work has established power functional theory as a formally exact variational framework
for capturing the genuine non-equilibrium (“superadiabatic”) effects [28] in Brownian dynamics.
Here both the density and the current profiles act as the central variables. The one-body internal
force field is systematically split into an adiabatic and a superadiabatic contribution [28–30]. Based
on the gradient of the velocity field, approximations of the superadiabatic forces were systematically
constructed, and shown to describe both viscous [31] and structural effects [32].

For overdamped Brownian dynamics, the (power) functional [28] that generates the exact equation
of motion is technically a current-density functional, similar in mathematical structure to what is
used in the description of quantum systems based on current-density-functional theory [3,4,9,10,12].
However, the role of the one-body current in overdamped (classical) motion is very different from that
in the inertial (quantum) case. For Hamiltonian dynamics, the exact power functional minimization is
rather with respect to the time derivative of the current, as has been shown both for classical Newtonian
many-body dynamics [33] and for (time-dependent) quantum systems [34].

Investigating model systems with two electrons is a common means for addressing fundamental
questions in time-dependent DFT, such as, e.g., the occurrence of dynamical step structures
in the time-dependent exchange–correlation potential [35], initial-state dependence [36], the sign
of the time-dependent correlation energy [23], the exact exchange potential [37] (as obtained via
the time-dependent optimized effective potential method [38–40]), an exact condition for time-resolved
spectroscopy [41], the kinetic and interaction components of the exact time-dependent correlation
potential [42], the dynamics of charge-transfer processes [43], field-induced tunneling [44] and
Rabi oscillations [45].

In this paper we demonstrate the validity of the quantum power functional theory (PFT) [34]
using a simple one-dimensional Hooke’s atom (see e.g., [23]) consisting of two electrons interacting
via a repulsive Gaussian pair potential. We demonstrate that in a time-dependent situation (switching
off the confining “nuclear” harmonic potential) three types of superadiabatic contributions occur: (i) A
transport term due to an excess kinetic stress tensor contribution, (ii) a volume viscous force and (iii) a
genuine inertial force contribution. We demonstrate that all three one-body force contributions can be
represented as functionals of the velocity gradient and of the acceleration gradient.

2. Theoretical Background

Quantum PFT is formulated for Hamiltonians of the form

Ĥ = ∑
i

p̂2
i

2m
+ u(rN) + ∑

i
Vext(ri, t), (1)

where p̂i is the kinematic momentum operator of particle i with mass m, u(rN) is the many-body
interparticle interaction, which depends in general on the set of all N particle positions
rN ≡ {r1 . . . rN}, and Vext(ri, t) is the external potential acting on particle i at time t. Quantum
PFT [34] is based on the current J and its time derivative J̇ as further central variables besides
the density n. For the physical dynamics the one-body distributions are given by n = 〈∑i δi〉,
J = 〈∑i(δip̂i + p̂iδi)/2m〉, and J̇ = dJ/dt, where δi ≡ δ(r− ri) is the Dirac distribution, r indicates
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position and 〈·〉 denotes the quantum mechanical average. The density profile and the current
distribution are related by the continuity equation

ṅ = −∇ · J, (2)

where ∇ indicates the derivative with respect to r. Hence it takes two time integrals to obtain n once
J̇ is known; we suppress the dependence on r, t in the notation.

The central object of quantum PFT is the power rate functional Gt[n, J, J̇] which is minimized by
that specific function J̇ at time t that corresponds to the real physical dynamics. The exact one-body
equation of motion connects J̇ to the total force density [46,47] (As shown in [34], Equation (3) can also
be derived on the level of the corresponding single particle operators from the Heisenberg equation of
motion, i.e., from the generic Hamiltonian Equation (1). Thereby, also magnetic fields can be captured,
though excluded here for simplicity).

mJ̇ = ∇ · τ +
h̄2

4m
∆∇n− n∇Vext + Fint. (3)

Here ∆ ≡ ∇2 is the Laplace operator, and h̄ indicates the reduced Planck constant. The first and
second terms on the right hand side of Equation (3) describe transport contributions which arise from
the one-body description; τ is the local kinetic stress tensor (or one-body momentum current) given by

τ(r, t) ≡ −
〈

∑
i

p̂iδip̂i + (p̂iδip̂i)
T

2m

〉
, (4)

where the superscript T indicates matrix transposition.
The third term in Equation (3) represents the external force density generated by the external

potential Vext(r, t); the fourth term is the internal force density Fint(r, t) ≡ −〈∑i(∇iu)δi〉 due to
the interparticle interaction potential u(rN). In the PFT framework, Equation (3) is obtained from
minimization of the power rate functional Gt[n, J, J̇] with respect to the time derivative of the current,
J̇(r, t). The minimization is performed in a “time slice” at time t.

Equations (2) and (3) form a closed and formally exact set of equations which governs the
dynamics of n and J, as quantum PFT guarantees that τ and Fint can be expressed as functionals of
n, J and J̇. Hence as soon as Fint and τ are given as, say, approximate functionals of n, J and J̇, then
one can integrate in time Equations (2) and (3), together expressing J as the time integral of J̇. If the
spatial part of the wave function is symmetric under particle exchange, and the interparticle interaction
potential vanishes, then the kinetic stress tensor reduces to its ideal form [34]

τid = −m
JJ
n
− h̄2

4m
(∇n)(∇n)

n
. (5)

In general, additional contributions arise from (i) the interparticle interaction and (ii) for fermionic
systems also from the exchange interaction due to the antisymmetry of the wave function. These
effects are encapsulated in the excess stress contribution

τexc ≡ τ − τid. (6)

The internal force density splits into adiabatic and superadiabatic contributions:

Fint = Fad + Fsup, (7)

where the adiabatic force density Fad at time t is defined as the internal force density of a hypothetical
(“adiabatic”) ground state system, which has the same one-body density as the real system at time t [14].
Within the adiabatic approximation Fsup is neglected. Here we show how to overcome this restriction.
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3. Hooke’s Atom

We study a Hooke’s model atom [23] with N = 2 electrons in one spatial dimension, which
reduces the numerical effort of solving the Schrödinger equation. The interparticle interaction is
modelled by a repulsive soft-core potential φ(x1 − x2) = ε exp(−(x1 − x2)

2/2α2), where x1 − x2 is
the interparticle distance, ε ≥ 0 the strength and α the length-scale of the repulsion. The initial
state (t = 0) is chosen as the ground state in the external (“nuclear”) potential Vext(x) = mω2x2/2,
i.e., a harmonic oscillator with frequency ω; here x indicates position. We consider the two electrons
to be of opposite spin. The spin part of the wave function is antisymmetric under particle exchange,
and hence the spatial part is symmetric. At time t = 0 we switch off Vext and monitor the resulting
time evolution.

We determine the initial wave function by minimizing the energy expectation value 〈Ĥ〉. Next,
we solve the time-dependent Schrödinger equation by an explicit integration scheme [48,49] based
on discretizing the time evolution operator. The adiabatic system can be constructed explicitly [14]
by numerically finding the suitable external potential that produces the desired one body density.
Such potential is unique according to Hohenberg and Kohn [1]. We find the adiabatic potential using
the method of references [29,30], originally developed for Brownian dynamics (see reference [50]
for an alternative method). The potential that generates a given target density profile is found by
iteratively improving an initial guess. At each iteration the density profile follows from solving the
time-independent Schrödinger equation. The method converges towards the target profile.

An overview of the dynamics is given in Figure 1. The one-body density, Figure 1a, possesses
initially a sharp peak which broadens after switching off Vext. The current, Figure 1b, points away from
the center of the density peak. For t∗ ≡ tω = 3 we show n and J for two different interaction lengths,
α∗ = α

√
mω/h̄ = 1 and 4. The differences between both cases are relatively small. The dynamics are

driven by the different terms on the right hand side of Equation (3); corresponding results for each
of these terms are shown at times t∗ = 0.05 and t∗ = 2 in Figure 1c,d, respectively. At early times
the dynamics are dominated by contributions proportional to h̄2 which arise from spatial variations
from the density and are also referred to as the non-interacting quantum stress tensor [15]. For later
times the contribution of ∇ · τid to the current is the most prominent one. The internal force density is
relevant at both early and late times.

Figure 1. Time evolution of (a) the reduced density n∗ = n
√

h̄/mω and (b) the reduced current density
J∗ = J/ω as a function of the reduced box coordinate x∗ = x

√
mω/h̄ for ε/h̄ω = 0.5 and α∗ = 1.

For comparison, at reduced time t∗ ≡ tω = 3 the curves for α∗ = 4 are also shown (dashed line).
Illustration of the total force density and the different contributions according to Equation (3) for
t∗ = 0.05 (c) and t∗ = 2 (d) given in reduced units as F∗ = F/mω2. The encircled arrows indicate the
force direction at selected space points. The total size of the box is 30

√
h̄/mω.
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We next analyse the stress tensor and the internal force density. We perform the splittings in
Equations (6) and (7) and use the data as a guide to formulate approximate forms for the functionals
τexc and Fsup. The mathematical structure of the proposed functional forms [as given below in
Equations (8), (10) and (11)] is inspired by studies of classical systems [31,32], where superadiabatic
forces in overdamped Brownian dynamics are described by an expansion in terms of the velocity
gradient. Within the framework of quantum PFT also the acceleration field is relevant. In one
dimension, the velocity and the acceleration fields are defined, respectively, as v(x, t) = J/n and
a(x, t) = J̇/n. Hence, our goal is to express τexc and Fsup as functionals of n, v and a.

First we focus on the stress tensor. Splitting Equation (6) into ideal and excess parts is illustrated
in Figure 2a–c. The relative importance of the excess contribution τexc to the total stress depends
on the value of the interaction length and it is most dominant for α∗ = 1, which is comparable to
the initial width of the density distribution. The symmetry and simple shape of τexc suggests that
∂v/∂x is a meaningful variable to describe it. Hence, we approximate τexc by

τexc[n, v] =
t∫

0

dt′
∫

dx′nK0(x− x′, t− t′)n′
∂v′

∂x′
, (8)

where n ≡ n(x, t), n′ ≡ n(x′, t′) and v′ ≡ v(x′, t′), and K0 is a convolution kernel that will in general
be non-local in space and time. For simplicity, we use a Markovian and spatially local approximation
for K0. To compensate for the resulting lack of memory, we let the strength of the Markovian form
depend explicitly on time t. Hence we replace K0(x− x′, t, t′) in Equation (8) by C0(t)δ(x− x′)δ(t− t′),
where the amplitude C0 carries an explicit time dependence, which allows us to match the overall
amplitude of the theoretical spatial profile to the exact numerical data. Figure 2a–c show that the theory
captures the excess contribution to the stress tensor well for the different values of the interaction length
considered here. The value of C0(t) at each time, see Figure 3, is determined by fitting (least squares)
the convolution Equation (8) to the exact numerical solution.

Figure 2. Reduced kinetic stress tensor τ∗ = τ/
√

mω3h̄ (blue solid line) and its splitting into ideal
(red dashed line) and excess (solid yellow line) parts, Equation (6), and the theoretical prediction (yellow
circles), Equation (8), for interaction lengths α∗ = 0.2 (a), α∗ = 1 (b) and α∗ = 4 (c). Internal (green solid
line), adiabatic (blue dashed line) and superadiabatic (yellow solid line) force densities, cf. Equation (7),
and theoretical prediction (yellow circles), Equation (9), in reduced units, i.e., F∗ = F/mω2 for
interaction lengths α∗ = 0.2 (d), α∗ = 1 (e) and α∗ = 4 (f). Data taken at t∗ = 3. The model parameters
and reduced units are identical to those in Figure 1. The insets in panels (a,c,d) are enlarged views of
the superadiabatic terms. The inset in panel (e) shows the splitting of the superadiabatic force density
(circles) into Fv (pink) and Fa (blue).
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The splitting of the internal force density into adiabatic and superadiabatic components is shown
in Figure 2d–f. The superadiabatic force density is a prominent contribution to the total internal force
density. The superadiabatic component opposes the adiabatic force density, hampering the spreading
of the density peak. As we demonstrate below, the functional dependence on the velocity field is
consistent with the interpretation of a viscous effect. For small interaction lengths, Figure 2d inset
and Figure 2e, the spatial structure of Fsup is more complex with additional peaks that speed up
the dynamics of the wings of the density profile. These findings motivate the mathematical structure
of the approximate form of Fsup, as a sum of two contributions,

Fsup[n, v, a] = Fv[n, v] + Fa[n, a], (9)

where both terms are functionals of the density profile and of either the velocity or the acceleration profiles:

Fv[n, v] =
t∫

0

dt′
∫

dx′nK1(x− x′, t− t′)n′
∂2v′

∂x′2
(10)

Fa[n, a] =
t∫

0

dt′
∫

dx′nK2(x− x′, t− t′)n′
∂2a′

∂x′2
(11)

with a′ ≡ a(x′, t′). Note the structural similarity to Equation (8). As before, the convolution kernels
K1 and K2 are in general non-local in space and time, but we use a Markovian and spatially local
approximation here, and replace Ki(x− x′, t− t′), by Ci(t)δ(x− x′)δ(t− t′), where the prefactor Ci(t)
depends explicitly on time and i = 1, 2. Equation (10) possesses a similar structure as the volume
viscous forces appearing in the Navier-Stokes equation [31,51]. Figure 2d–f shows that the theory
reproduces the shape of the superadiabatic force density very accurately. Both Equations (10) and (11)
are important, as shown in the inset of Figure 2e. The amplitudes of both terms, C1(t) and C2(t), are
again obtained by finding the best fit (least squares) of Equation (9) to the data. The results are shown
in Figure 3.

Figure 3. Scaled amplitudes C∗0 = C0

√
mω/h̄3 (yellow), C∗1 = C1

√
mω/h̄3 (violet)

and C∗2 = C2

√
mω3/h̄3 (blue) of the functional approximations for τexc, Fv and Fa, cf.

Equations (8), (10) and (11), as a function of the scaled time t∗ = tω for three different values of
the interaction length, as indicated. Note the different scales (left and right vertical axes). The data set
C∗1 (α∗ = 4) has been scaled with a factor 0.1, as indicated, for a better visualization.
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4. Conclusions

In conclusion, we have presented a power functional approximation that satisfactorily describes
superadiabatic forces in a prototypical time-dependent quantum system. We have demonstrated
that the microscopic, position- and time-resolved acceleration gradient, ∇(J̇/n), is a crucial field
in the description of superadiabatic quantum effects. The velocity gradient ∇(J/n) is a further
relevant variable, consistent with what is found in time-dependent current DFT, see, e.g., reference [22].
The relatively simple time dependence of the superadiabatic forces, Figure 3, suggest that power
functional theory is a promising approach to investigate memory effects quantitatively. While
Equations (8), (10) and (11) resembles the Vignale-Kohn approximation [9], in our formulation
the acceleration gradient plays a prominent role; moreover, the superadiabatic contributions are
obtained from a generating (power) functional [34]. Further work is required to explore the relationship
of our approach to the time-dependent current DFT [9,10,12,16–18] in more depth. Given the vectorial
character of the forces, a systematic investigation of memory effects and of the superadiabatic forces is
required to go beyond the one-dimensional geometry considered here. The two-dimensional setup of
reference [22] could be a promising candidate for carrying out such work.
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