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Fluid structure from density-functional theory
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We treat various common fluid models, like the inverse-power, Asakura-Oosawa, and Lennard-Jones po-
tentials, within the soft fundamental measure the@#MT). We show that this recently proposed density-
functional approach is able to predict the pair correlations in the fluid phase reliably compared to computer
simulations. Explicit expressions for certain quantities of SFMT are given, namely, for the weight functions
and the fundamental measures. These technical tools permit practical calculations for a large class of inhomo-
geneous systems.

PACS numbeis): 64.10:+h, 61.20.Gy

[. INTRODUCTION polymer mixture was founfl16]. However, in all these sys-
tems, the interactions are still step functions. This is a great
It is desirable that approximative density functiongly  simplification, as integral geometry can be fully exploited,
be simple. Simple theories are comprehensible and usefugssentially unchanged to the hard sphere case.
Comprehensibility is desirable, because one can learn easily Among the attempts to treat soft interactigag—19, the
about the physics of the system. A theory is useful, ofsO-called soft fundamental measure thet®¢MT) [18,19
course, if it can be app“ed with Smatbr at least moderale is also built on well-defined |Im|t|ng cases, where the behav-
effort to an actual problem. The goal of theorists is to con4or of the exact free energy functional is known. These cases
struct such simple theories, which despite their simplicityare the virial expansion and the 0D limit. However, two or
give excellent(or at least reasonableesults. three cavities, which are exact in hard sphere FMT, are not
Among the many ways to construct density_functiona|exact in SFMT. Nevertheless the application to the effective
theories(DFT’s) the fundamental measure thea§MT) is logarithmic interaction in star polymer solutions yields ex-
special, as it is able to predict the structure of the homogecellent results for the structure and the phase diadizoh
neous bulk fluid state rather than needing it as an inputConcerning its ease of use, however, the SFMT has the
F0||0wing Rosenfeld’s pioneering work for hard Sphe[r@b drawback that its We|ght functions are related to the Mayer
improved hard sphere functionals have been obtajged]  function in a nontrivial way. This relation, the so-called de-
that are capable of describing inhomogeneous situations lik€onvolution equation, is an integro-differential equation of
e.g., a SO"d:G,?,S] or dep|etion potentia]s in mixturd:gyg] second order in the unknown function. As will be discussed
exce”enﬂy_ For quite some t|me the FMT for hard Spherebelow,- Stl‘aightforward attemptS to solve the deconvqlution
mixtures played a monolithic role, as its structure waisd numerically are cumbersome; one encounters an inverse
still is) quite different from other DFTs. Heavily relying on Problem.
insights in the analytic Percus-Yevick solution, scaled- The aim of the present work is to give an explicit solution
partide theory, and integra| geometry, it Seemed’ not 0n|y ap the deconvolution equation. The avallablllty of this solu-
first glance, that FMT works only for the special system oftion allows the application of SFMT to a large class of sta-
hard Spheres_ However, there have been numerous atteméiﬁtical SyStemS. Here we calculate the pair distribution func-
to broaden the range of models covered by the theory, likéions in the bulk liquid for a variety of common models and
the proposal of an extension to general hard convex bodigéd good agreement with simulation results.
[10]. The FMT has been generalized to the more tractable In Sec. Il the SFMT density functional is presented. The
system of hard parallel cubgs1-13. solution of the deconvolution equation is given in Sec. lll.
It has turned out that the correct dimensional crossovelFxamples for fluid structure are considered in Sec. V. Re-
[3,4] from three dimensioné3D) to lower ones, is an essen- Marks are summarized in Sec. VI.
tial test for a DFT. One may even start from 0D situations of
extreme confinement and construct 3D functionals systemati-
cally [14,5] using the idea of “functional interpolation[5] Il. A DENSITY FUNCTIONAL
between dimensions. _ Within SFMT the excess free energy is approximated as
Surprisingly, the FMT machinery generates the thermody-
namics, i.e., free energy, from the very basic situation of a
cavity that has the size of one particle. For hard spheres the ox
occupation number is zero or 1, and one can calculate the F C(T'[P(r)]):kBTf dx®({na(T,X)}), @)
excess free energy exactl®,4]. Applying this method to
penetrable spheres, i.e., particles that may overlap at a finite
energy cost, one obtains a reasonable approximation to thghereT is the temperature, arlg; is Boltzmann’'s constant.
exact density functional of this systdihb]. Concerning mix- The weighted densities,, are obtained by convolutions of
tures, recently a FMT for a nonadditive model colloid- the weight functions with the one-body density profilg),
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The weight functions are related to the Mayer functfon
. =exd —V(r)/kgT]—1, whereV(r) is the pair potential, by

‘ ‘ ‘ . — 3 F(r)=Wo* W3+ Wx Wy — Wy Wz, (12)
‘ ‘ ‘ where the three-dimensional convolution, denoted by *, also

implies scalar products between vectors. More explicitly, us-

. ‘ . . ing Eqs(6)—(11), this can be writter{in r spacg as
(a) (b)

o . . o 1 ws(r) wy(r)
FIG. 1. Visualization of the weight functions describing single 1—ex;{—,8V(r)]=2— = *Wa(r)+ ; *Wg(r)
particles.(a) Hard spheresb) soft spheres. m r
wy(r) — ws(r)
(T = [ drp(rw,(Tx=n), @ 2 ) 13

where « labels the type of the weight function. In the fol- where the prime denotes differentiation with respect to the
lowing we assume that the pair potential diverges at the oriargument, and 8= 1/kgT. This deconvolution equatiohas
gin. Then the free energy density is given #y=®,+®, to be solved for the unknown functiows(r) once a pair

+ &4, with the contributions potential V(r) is prescribed. The boundary conditions are
w3(0)=1 andw;()=0 (see Appendix [ However, a di-
®;=-ngIn(1-ny), (3 rect numerical solution turns out to be impractical. Any un-
certainties inw; become completely washed out under the
o= (1N —Ny1-N2)/(1—N3), (4)  convolution operation. Hence, iterative solution algorithms
R . are unstable.
In3—n,un,-nuot 3 (NyNmany, — 3detny,) However, we can construct an explicit solution. It turns
37 87(1—na)2 . (3 out that the Mayer function and the weight functien have
77(1 n3) . .
the simple relation
where the caret denotes a second-rank tensor, and det is the
determinant. The introduction of tensorial weighted densi- Jf(r) _ fw dr'wo(r )wa(r—r") (14)
ties, first done for hard sphergs], leads to superior results or — 2 2 '

in inhomogeneous situatioi®0] compared to the vectorial

form [3,4,18. The bulk fluid free energy and direct correla- where we formally setv,(r <0)=0 to simplify the limits of

tion functionc(r) are unaffected. integration. See Appendix A for the derivation of Efj4). In
reciprocal space, we can write

Wo(K) == \ikf(k), (15)

where the tilde denotes a one-dimensional Fourier transform,

(6)  T(k)=/.drf(r)exp(kr). Care has to be taken with the sign
in Eqg. (15). It may change depending on the valuekofs a
_ physically meaningful prescription, we chose a continuous
Waa1) =Wo(r)r/r, (") and differentiable function ik space.

A simple numerical algorithm works as follows. We start
from k=0 and choose one of the signs, say the positive one.
We proceed in small stepAk. For each step, we check
whetherikf(k) attempts to cross the branch cut. If it does,
Wy1(r)=wy(r)r/r, (100 Wwe change the sign. Of course, more sophisticated root-
finding algorithms can be used.

Ill. THE WEIGHT FUNCTIONS

The weight functions are given by the hierarchy

IWs(r)
ar

Wy(r)=

W) =W, (r)(rr /r2—1/3), (8)

Wi (r)=wo(r)/(4mr), ©)

Wo(r)=wy(r)/r, (1D

IV. FLUID FREE ENERGY

wherew,,w,,W, are scalar quantitiesy,; ,w,, are vectors,
andw,,, is a traceless matrigwhererr is a dyadic product

and 1 is the identity matrix Dimensional analysis shows
that the weight functionw, carry the dimension of length to
the power ofa—d, whered=3 is the dimensionality of the
physical space. The hierarchy of weigl@—(11) is built to v
recover the FMT weight functiong2,5] in the hard sphere

limit. See Fig. 1 for a sketch; hard spheres are represented Byhe weighted densities become=¢,p, where the funda-
sharp objects, soft spheres are washed out. mental measure$, are defined as

The free energy of the homogeneous fluid phase at a
given densityp and temperatur& is

3
BF® NNy N n;

=- —ng)+
Ny In(1—njy) 1-n, 2am(1—a)? (16)
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» 8
§a=4'n'f drrw,(r). (17)

0

The dimension of the fundamental measgreis the length 6L
scale to the power of. For hard spheres, they are the vol-

ume £;=47R%3, surface are&,=4mR?, integral mean
curvatureé;=R, and Euler characteristié;=1. Using the =
soft weight functions one generalizes these quantities. The ~#
Euler characteristic is an integer, that is, roughly speaking,
the number of connected portions minus the number of holes
of a geometric shape. We find that the Euler characteristic is
&0=1, for any pair potentialsee Appendixes B and)DThis

is consistent with the intuitive picture of soft spheres.

The ¢, for «=1,2,3, however, need not be calculated
directly from the weight functions. There is an easier way, as 0
there are straightforward relations to moments of the Mayer
function. We define

FIG. 2. Family of weight functionsv,(r) and the Mayer func-
tion —f(r) for the erf model witha/c=0.1 as a function of the
scaled distance/o.

m,= f:drr“‘l{l—exq—ﬁV(r)]} (18

as dimensional quantities. The indexgives the power of 1 r—o
1—erf(T> , (23

the length scale. Note than, is the Barker-Henderson ef- f(N=-5
fective diametef{21]. Then the fundamental measures are
related to the moments of the Mayer function via

where we use the convention erfe& (2/\/7) [ Zdtexp(—td).

&H=1, (190  We will assume that the scaled widdiio is small, so that
we can approximatd (r=0)~—1, as erf(——o)=—-1
&=my/2, (20) holds. As the Mayer bond equals an error function, we call
this the erf model.
§2=47r(m2—m§/4), (21 The derivative in real space isf'(r)=exg—(r
—o)¥a?)/(ay/7). Its Fourier transform is also a Gaussian.
£3=2m(mg—m,m; + m§/4). (22) Taking the square root, E¢l5), Fourier transforming back,

and integrating yields
This can be seen by a straightforward calculatigiven in
Appendix Q.

1
w(r)= 5 . (24

2

r—(0'/2)>
V. APPLICATIONS a/\/z

To test the theory we calculate pair distribution functionsAs expected, the length scale has changed frorto o/2.
g(r) for various fluid models. To this end we take the direct This means going from a description in terms of particle
correlation functionc(r) given as a second functional de- diameters to one in terms of particle radii. The shape of the
rivative of the excess free energy, and use the Ornsteirfwo functions, however, is different. The width decreases
Zernike relation in Fourier space to obtain the structure faconly from a to a/\2. See Fig. 2 for a plot of the weight
tor S(k). A Fourier transform yieldg(r). functions. In Fig. 3 results for the pair correlations are plot-

This procedure does not imply solving any equation nu-ted fora/oc=0.1. We find good agreement with the simula-
merically, except for the deconvolution E@4). In particu-  tion result. The core condition, however, is not fulfilled ex-
lar, no density profile is calculated using the test-particleactly; small negative values fay(r) are found for small
limit. Hence this is a severe test for the quality of the func-distances. One could get rid of those using the test-particle

1—erf(

tional. limit.
The results will be compared to simulations. We have
carried out canonical Monte CarldIC) computer simula- B. Inverse-power potentials

tions with 512 particles and $aMC moves per particle to
collect data forg(r). In all examples we have considered
two reduced densitiepo®=0.1,0.5, wherer is the length V(r)=kgT(a/r)P. (25)
scale appearing in the corresponding pair potential.

We write the pair potential for “soft sphereq22] as

_ The moments of the Mayer function, E¢L8), can be ob-
A. Error function model tained analytically as

We first consider a model potential that can be decon- N
volved analytically. It is a short-ranged potential with a steep @
. ; o . (26)
repulsion given by the Mayer bond @
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FIG. 3. Pair correlation functiog(r) obtained from density-
functional theory(solid lineg compared to simulationglashed for
the erf model witha/c=0.1, pa®=0.1,0.5. The negative Mayer
function —f(r) and the weight functiorw;(r) are shown in the
inset. o, r<co

V(r)=1 kgTze(r), o<r<(1+q)o (27

FIG. 5. Same as Fig. 3, but for the Asakura-Oosawa potential
for g=0.15z=0.05.

Using the relations between tha, and the fundamental

measures,, Egs.(19 and(20)—(22), we get an analytical 0, (1+qg)o<oe,
expression for the fluid free enerdit6), similar, but not
identical to the Barker-Henderson construction. 1+q\? 3r/o (tlo)?
For small powersp<3, the fundamental measures di- (p(r):—(—) 1-— + . (28
verge. Hence the theory cannot be applied as is. This reason- 2(1+a)  2(1+q)?

ing is valid for any potential that has an inverse-powet,

i.e., decays as™ P for r—o. We will stay safely away from where the attraction is ruled by tlieeduced rangeq and the
this problem and consider the expongrt 12. In Fig. 4 the  (reduced strengthz.

pair correlationsg(r) are shown. The general agreement We show results for the state poigt=0.15z=0.05 in
with MC data is good. For the moderate dengiy>’=0.5  Fig. 5. The pair distributiong(r) are remarkably good. The

the DFT result is shifted slightly to larger distances. strong peak at contact as well as the second one are captured
correctly. The core condition, however, is violated. A cusp
C. Asakura-Oosawa potential nearr =0 appears, wherg(r) has unphysical values that are

The Asakura-Oosawa potentif23] is a prototype for forbidden by the hard core.

depletion interactions. Considerable recent work is devoted We.emphaS|z.e that the deg:on\_/olutlon can be done. for
to it; see, e.g., Ref§24—26,18. We write it as attractive potentials. The inset in Fig. 5 shows a comparison

of f(r) and the weight functionwg(r). Apart from the
T halved length scale, both look similar, bug(r) has a shal-
lower negative well.

——-MC

S — pFr

D. Lennard-Jones potential
The Lennard-Jones pair potentja?] is

V(r)=Vo[(alr)2—(olr)®]. (29

g(r)

Again the deconvolution is possible for this attractive poten-
tial. The pair correlations shown in Fig. 6 are slightly worse
than in the above examples. Fao>=0.5 the height of the
first peak is underestimated. The core is not reproduced, but
has positive values.
The dotted line is the result fara®= 0.5 using a cutoff in
the integration of the fundamental measures, @qd). The
upper limit of integration is reduced from infinity to the
Wigner-Seitz radiusa= (4mp/3)~ 3. This procedure im-
FIG. 4. Same as Fig. 3, but for the inverse-power potential withproves the result, but is somewhat heuristic and requires a
exponentp=12, better theoretical foundation.

05 -

rlo
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5 [ ——-McC ) ] wy(r)= Jo dr'wy(r")®(r’'—r). (A2)
. —— DFT
I — rescaled
Applying the hierarchy of weights Eq&)—(11) to Eq.(A2)
yields the relations
1 -
’Q — Jw ! !
= Wo(r)= | dr'wy(r')h,(r), (A3)
Q0 0 ’
0.5 | i where theh, ..(r) equal the hard sphere weight functions
A with radius r’ and are given byhg,/(r)=0(r"—r),
hop (1) =8(1" =1),hy (r)=8(r' =1)/(4mr),  ho(r)
=58(r'—r)/(4mr?), hyop(ry=o6(r"—r)rir, hya ()
=8(r"—r)rl(4mr?).
1 > 3 Next we insert Eq(A3) into the deconvolution equation
rlc (12) to obtain
FIG. 6. Same as Fig. 3, but for the Lennard-Jones potential at 1 w w
Vo/kgT=0.5. —Ef(r)=JO dr’wz(r’)fO dr’w,(r")K(r,r',r"),

VI. CONCLUSIONS (A4)
We have shown that soft fundamental measure theory is K(r,r',r")=hg (r)*hom(r)+hy (r)*hyen(r)
capable of predicting the fluid structure for repulsive as well
as attractive interaction potentials. We have tested the pair ~hyzr (1) *hyg (). (A5)
correlations from the theory against computer simulation re- ) )
sults at moderate density, moderate softness, and moderafée observe that the convolution kernel, E&5), is the
attraction. We find good agreement, except for small artifacty/€ll-known deconvolution of the hard sphere Mayer bond
inside the core. '
We emphasize that the current approach is expected to 1
work best for potentials that are still dominated by packing N P e
effects, i.e., are sufficiently short ranged. True long-ranged K(r,r',r)= 2®(r . (A6)
potentials like the Coulomb or inverse-power potential with
small exponents cannot be tackled. Also, a possible attradnserting this into Eq(A4) and differentiating gives
tion needs to be sufficiently weak and short ranged, as
present in the example of the Asakura-Oosawa potential ) S N , S
above, to be described correctly. f (r)=JO dr’w(r )jo dr’w,(r")s(r'+r"—r),
The utility of SFMT depends crucially on the accessibility (A7)
of the functional form of the weight functions. In this work
we give an explicit solution to the deconvolution equationom which we obtain Eq(14) by a straightforward integra-
that relates the Mayer bond to the weight functions. The;sn overr”.
solution requires only one-dimensional Fourier transforms
and the handling of a root-finding problem in reciprocal

space. Numerically, both operations are simple. APPENDIX B: FUNDAMENTAL MEASURES AND THE

VOLUME WEIGHT

Integrating Eq(17) by parts yields the useful relations

ACKNOWLEDGMENTS
I thank Roland Roth and Andreas Lang for useful com- ® s
ments. E3=4m . drrews(r), (B1)
APPENDIX A: DECONVOLUTION OF THE MAYER 52287Tf drrws(r), (B2)
BOND 0
From the relation between the weights, Eg), we obtain
§1=f0 drws(r), (B3)
ws(r)= [ “arwr), (A1)
' &o=W3(0) —wg()=1. (B4)

which can be turned into a convolution See Appendix D for the justification of the last equality sign.
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APPENDIX C: FUNDAMENTAL MEASURES AND THE APPENDIX D: BOUNDARY CONDITIONS OF THE
MAYER FUNCTION VOLUME WEIGHT
Integrating the definition of the moments of the Mayer The requirement that the DFT fulfils the 0D limit yields
function, Eq.(18), by parts yields boundary conditions for the volume weight functioms.
Consider a 0D density distributiorp(r)=»45(r). The
m.= 71f drref'(r), C1 weighted densities are,(r)= nw,(r). Symmetry between
o« 0 " €D the weight functions leads td,=®;=0. The remaining

) term ®, gives
where the boundary terms vanish, as we asstffig=—1,

f()=0. Expressing the derivative of the Mayer bond
through the convolution of weightd4) gives BFexTng(r)]:f drgwi(H)In[1— zws(r)], (D)
0

ma=a‘1f drr”‘f dr'w,(r )wyo(r—r’).  (C2)
0 0 where we have useavy(r)=—(4mr?) towg(r)/or [see

Changing integration variables,=r—r’, gives Egs.(6)—(11)]. We change integration variables tie= 7ws
and obtain
ama:f df'f dr”(r’+r")*w,(r" )wy(r") (C3
0 0 Us
ﬂFeX‘[nﬁ(r)]=f duin(1—u), (D2)
* ) 0 Uo
:2 (a>f drr(r/)iwz(r/)f dr”(r")a_iWZ(r”).
i=o\!/Jo 0

(C4) where the limits araug= nw3(0) andu,= npwz(*). If we
assume that the boundary conditions avg(0)=1 and
Explicitly treating the casea=1,2,3 yields Eqs(20), (21),  wg(»)=0, then the integral gives the exact OD excess free

and(22), respectively. energy[3,4,18, which is BF op= 7+ (1— 7)In(1- 7).
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