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Fluid structure from density-functional theory

Matthias Schmidt
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 11 May 2000!

We treat various common fluid models, like the inverse-power, Asakura-Oosawa, and Lennard-Jones po-
tentials, within the soft fundamental measure theory~SFMT!. We show that this recently proposed density-
functional approach is able to predict the pair correlations in the fluid phase reliably compared to computer
simulations. Explicit expressions for certain quantities of SFMT are given, namely, for the weight functions
and the fundamental measures. These technical tools permit practical calculations for a large class of inhomo-
geneous systems.

PACS number~s!: 64.10.1h, 61.20.Gy
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I. INTRODUCTION

It is desirable that approximative density functionals@1#
be simple. Simple theories are comprehensible and us
Comprehensibility is desirable, because one can learn e
about the physics of the system. A theory is useful,
course, if it can be applied with small~or at least moderate!
effort to an actual problem. The goal of theorists is to co
struct such simple theories, which despite their simplic
give excellent~or at least reasonable! results.

Among the many ways to construct density-function
theories~DFT’s! the fundamental measure theory~FMT! is
special, as it is able to predict the structure of the homo
neous bulk fluid state rather than needing it as an inp
Following Rosenfeld’s pioneering work for hard spheres@2#,
improved hard sphere functionals have been obtained@3–5#
that are capable of describing inhomogeneous situations
e.g., a solid@6,7,5# or depletion potentials in mixtures@8,9#
excellently. For quite some time the FMT for hard sphe
mixtures played a monolithic role, as its structure was~and
still is! quite different from other DFTs. Heavily relying o
insights in the analytic Percus-Yevick solution, scale
particle theory, and integral geometry, it seemed, not onl
first glance, that FMT works only for the special system
hard spheres. However, there have been numerous atte
to broaden the range of models covered by the theory,
the proposal of an extension to general hard convex bo
@10#. The FMT has been generalized to the more tracta
system of hard parallel cubes@11–13#.

It has turned out that the correct dimensional crosso
@3,4# from three dimensions~3D! to lower ones, is an essen
tial test for a DFT. One may even start from 0D situations
extreme confinement and construct 3D functionals system
cally @14,5# using the idea of ‘‘functional interpolation’’@5#
between dimensions.

Surprisingly, the FMT machinery generates the thermo
namics, i.e., free energy, from the very basic situation o
cavity that has the size of one particle. For hard spheres
occupation number is zero or 1, and one can calculate
excess free energy exactly@3,4#. Applying this method to
penetrable spheres, i.e., particles that may overlap at a fi
energy cost, one obtains a reasonable approximation to
exact density functional of this system@15#. Concerning mix-
tures, recently a FMT for a nonadditive model colloi
PRE 621063-651X/2000/62~4!/4976~6!/$15.00
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polymer mixture was found@16#. However, in all these sys
tems, the interactions are still step functions. This is a gr
simplification, as integral geometry can be fully exploite
essentially unchanged to the hard sphere case.

Among the attempts to treat soft interactions@17–19#, the
so-called soft fundamental measure theory~SFMT! @18,19#
is also built on well-defined limiting cases, where the beh
ior of the exact free energy functional is known. These ca
are the virial expansion and the 0D limit. However, two
three cavities, which are exact in hard sphere FMT, are
exact in SFMT. Nevertheless the application to the effect
logarithmic interaction in star polymer solutions yields e
cellent results for the structure and the phase diagram@20#.
Concerning its ease of use, however, the SFMT has
drawback that its weight functions are related to the Ma
function in a nontrivial way. This relation, the so-called d
convolution equation, is an integro-differential equation
second order in the unknown function. As will be discuss
below, straightforward attempts to solve the deconvolut
numerically are cumbersome; one encounters an inv
problem.

The aim of the present work is to give an explicit solutio
to the deconvolution equation. The availability of this sol
tion allows the application of SFMT to a large class of s
tistical systems. Here we calculate the pair distribution fu
tions in the bulk liquid for a variety of common models an
find good agreement with simulation results.

In Sec. II the SFMT density functional is presented. T
solution of the deconvolution equation is given in Sec. I
Examples for fluid structure are considered in Sec. V. R
marks are summarized in Sec. VI.

II. A DENSITY FUNCTIONAL

Within SFMT the excess free energy is approximated

Fexc
„T,@r~r !#…5kBTE dxF~$na~T,x!%!, ~1!

whereT is the temperature, andkB is Boltzmann’s constant
The weighted densitiesna are obtained by convolutions o
the weight functions with the one-body density profiler(r ),
4976 ©2000 The American Physical Society



l-
or

s
s

s
l
a-

s

d

lso
us-

the

re

n-
he

s

ns

rm,
n

us

rt
ne.
k
s,

oot-

t a

le

PRE 62 4977FLUID STRUCTURE FROM DENSITY-FUNCTIONAL THEORY
na~T,x!5E drr~r !wa~T,x2r !, ~2!

wherea labels the type of the weight function. In the fo
lowing we assume that the pair potential diverges at the
gin. Then the free energy density is given byF5F11F2
1F3, with the contributions

F152n0 ln~12n3!, ~3!

F25~n1n22nv1•nv2!/~12n3!, ~4!

F35

1
3 n2

32n2nv2•nv21
3
2 ~nv2n̂m2nv223detn̂m2!

8p~12n3!2
, ~5!

where the caret denotes a second-rank tensor, and det i
determinant. The introduction of tensorial weighted den
ties, first done for hard spheres@5#, leads to superior result
in inhomogeneous situations@20# compared to the vectoria
form @3,4,18#. The bulk fluid free energy and direct correl
tion functionc(r ) are unaffected.

III. THE WEIGHT FUNCTIONS

The weight functions are given by the hierarchy

w2~r !52
]w3~r !

]r
, ~6!

wv2~r !5w2~r !r /r , ~7!

wm2~r !5w2~r !~rr /r 221̂/3!, ~8!

w1~r !5w2~r !/~4pr !, ~9!

wv1~r !5w1~r !r /r , ~10!

w0~r !5w1~r !/r , ~11!

wherew2 ,w1 ,w0 are scalar quantities;wv1 ,wv2 are vectors,
and ŵm2 is a traceless matrix~whererr is a dyadic product
and 1̂ is the identity matrix!. Dimensional analysis show
that the weight functionswa carry the dimension of length to
the power ofa2d, whered53 is the dimensionality of the
physical space. The hierarchy of weights~6!–~11! is built to
recover the FMT weight functions@2,5# in the hard sphere
limit. See Fig. 1 for a sketch; hard spheres are represente
sharp objects, soft spheres are washed out.

FIG. 1. Visualization of the weight functions describing sing
particles.~a! Hard spheres,~b! soft spheres.
i-
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The weight functions are related to the Mayer functionf
5exp@2V(r)/kBT#21, whereV(r ) is the pair potential, by

2 1
2 f ~r !5w0* w31w1* w22wv1* wv2 , ~12!

where the three-dimensional convolution, denoted by *, a
implies scalar products between vectors. More explicitly,
ing Eqs.~6!–~11!, this can be written~in r space! as

12exp@2bV~r !#5
1

2p S 2
w38~r !

r 2 * w3~r !1
w38~r !

r * w38~r !

2
w38~r !

r 2
r* r

w38~r !

r D , ~13!

where the prime denotes differentiation with respect to
argumentr, andb51/kBT. This deconvolution equationhas
to be solved for the unknown functionw3(r ) once a pair
potential V(r ) is prescribed. The boundary conditions a
w3(0)51 andw3(`)50 ~see Appendix D!. However, a di-
rect numerical solution turns out to be impractical. Any u
certainties inw3 become completely washed out under t
convolution operation. Hence, iterative solution algorithm
are unstable.

However, we can construct an explicit solution. It tur
out that the Mayer function and the weight functionw2 have
the simple relation

] f ~r !

]r
5E

2`

`

dr8w2~r 8!w2~r 2r 8!, ~14!

where we formally setw2(r ,0)50 to simplify the limits of
integration. See Appendix A for the derivation of Eq.~14!. In
reciprocal space, we can write

w̃2~k!56Aik f̃ ~k!, ~15!

where the tilde denotes a one-dimensional Fourier transfo
f̃ (k)5*2`

` dr f (r )exp(ikr). Care has to be taken with the sig
in Eq. ~15!. It may change depending on the value ofk. As a
physically meaningful prescription, we chose a continuo
and differentiable function ink space.

A simple numerical algorithm works as follows. We sta
from k50 and choose one of the signs, say the positive o
We proceed in small stepsDk. For each step, we chec
whetherik f̃ (k) attempts to cross the branch cut. If it doe
we change the sign. Of course, more sophisticated r
finding algorithms can be used.

IV. FLUID FREE ENERGY

The free energy of the homogeneous fluid phase a
given densityr and temperatureT is

bFexc

V
52n0 ln~12n3!1

n1n2

12n3
1

n2
3

24p~12n3!2
~16!

The weighted densities becomena5jar, where the funda-
mental measuresja are defined as
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4978 PRE 62MATTHIAS SCHMIDT
ja54pE
0

`

drr 2wa~r !. ~17!

The dimension of the fundamental measureja is the length
scale to the power ofa. For hard spheres, they are the vo
ume j354pR3/3, surface areaj254pR2, integral mean
curvaturej15R, and Euler characteristicj051. Using the
soft weight functions one generalizes these quantities.
Euler characteristic is an integer, that is, roughly speak
the number of connected portions minus the number of h
of a geometric shape. We find that the Euler characterist
j051, for any pair potential~see Appendixes B and D!. This
is consistent with the intuitive picture of soft spheres.

The ja for a51,2,3, however, need not be calculat
directly from the weight functions. There is an easier way,
there are straightforward relations to moments of the Ma
function. We define

ma[E
0

`

drr a21$12exp@2bV~r !#% ~18!

as dimensional quantities. The indexa gives the power of
the length scale. Note thatm1 is the Barker-Henderson ef
fective diameter@21#. Then the fundamental measures a
related to the moments of the Mayer function via

j051, ~19!

j15m1/2, ~20!

j254p~m22m1
2/4!, ~21!

j352p~m32m2m11m1
3/4!. ~22!

This can be seen by a straightforward calculation~given in
Appendix C!.

V. APPLICATIONS

To test the theory we calculate pair distribution functio
g(r ) for various fluid models. To this end we take the dire
correlation functionc(r ) given as a second functional de
rivative of the excess free energy, and use the Ornst
Zernike relation in Fourier space to obtain the structure f
tor S(k). A Fourier transform yieldsg(r ).

This procedure does not imply solving any equation n
merically, except for the deconvolution Eq.~14!. In particu-
lar, no density profile is calculated using the test-parti
limit. Hence this is a severe test for the quality of the fun
tional.

The results will be compared to simulations. We ha
carried out canonical Monte Carlo~MC! computer simula-
tions with 512 particles and 105 MC moves per particle to
collect data forg(r ). In all examples we have considere
two reduced densitiesrs350.1,0.5, wheres is the length
scale appearing in the corresponding pair potential.

A. Error function model

We first consider a model potential that can be dec
volved analytically. It is a short-ranged potential with a ste
repulsion given by the Mayer bond
e
g,
s

is

s
r

t

n-
-

-

e
-

e

-
p

f ~r !52
1

2 F12erfS r 2s

a D G , ~23!

where we use the convention erf(z)5(2/Ap)*0
zdt exp(2t2).

We will assume that the scaled widtha/s is small, so that
we can approximatef (r 50)'21, as erf(r→2`)521
holds. As the Mayer bond equals an error function, we c
this the erf model.

The derivative in real space isf 8(r )5exp@2(r
2s)2/a2#/(aAp). Its Fourier transform is also a Gaussia
Taking the square root, Eq.~15!, Fourier transforming back
and integrating yields

w3~r !5
1

2 F12erfS r 2~s/2!

a/A2
D G . ~24!

As expected, the length scale has changed froms to s/2.
This means going from a description in terms of partic
diameters to one in terms of particle radii. The shape of
two functions, however, is different. The width decreas
only from a to a/A2. See Fig. 2 for a plot of the weigh
functions. In Fig. 3 results for the pair correlations are pl
ted for a/s50.1. We find good agreement with the simul
tion result. The core condition, however, is not fulfilled e
actly; small negative values forg(r ) are found for small
distances. One could get rid of those using the test-part
limit.

B. Inverse-power potentials

We write the pair potential for ‘‘soft spheres’’@22# as

V~r !5kBT~s/r !p. ~25!

The moments of the Mayer function, Eq.~18!, can be ob-
tained analytically as

ma5
sa

a
GS 12

a

p D . ~26!

FIG. 2. Family of weight functionswa(r ) and the Mayer func-
tion 2 f (r ) for the erf model witha/s50.1 as a function of the
scaled distancer /s.
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PRE 62 4979FLUID STRUCTURE FROM DENSITY-FUNCTIONAL THEORY
Using the relations between thema and the fundamenta
measuresja , Eqs.~19! and ~20!–~22!, we get an analytica
expression for the fluid free energy~16!, similar, but not
identical to the Barker-Henderson construction.

For small powers,p<3, the fundamental measures d
verge. Hence the theory cannot be applied as is. This rea
ing is valid for any potential that has an inverse-powertail,
i.e., decays asr 2p for r→`. We will stay safely away from
this problem and consider the exponentp512. In Fig. 4 the
pair correlationsg(r ) are shown. The general agreeme
with MC data is good. For the moderate densityrs350.5
the DFT result is shifted slightly to larger distances.

C. Asakura-Oosawa potential

The Asakura-Oosawa potential@23# is a prototype for
depletion interactions. Considerable recent work is devo
to it; see, e.g., Refs.@24–26,16#. We write it as

FIG. 3. Pair correlation functiong(r ) obtained from density-
functional theory~solid lines! compared to simulations~dashed! for
the erf model witha/s50.1, rs350.1,0.5. The negative Maye
function 2 f (r ) and the weight functionw3(r ) are shown in the
inset.

FIG. 4. Same as Fig. 3, but for the inverse-power potential w
exponentp512.
n-

t

d

V~r !5H `, r ,s

kBTzw~r !, s,r ,~11q!s

0, ~11q!s,`,

~27!

w~r !52S 11q

q D 3S 12
3r /s

2~11q!
1

~r /s!3

2~11q!3D , ~28!

where the attraction is ruled by the~reduced! rangeq and the
~reduced! strengthz.

We show results for the state pointq50.15,z50.05 in
Fig. 5. The pair distributionsg(r ) are remarkably good. The
strong peak at contact as well as the second one are cap
correctly. The core condition, however, is violated. A cu
nearr 50 appears, whereg(r ) has unphysical values that ar
forbidden by the hard core.

We emphasize that the deconvolution can be done
attractive potentials. The inset in Fig. 5 shows a compari
of f (r ) and the weight functionw3(r ). Apart from the
halved length scale, both look similar, butw3(r ) has a shal-
lower negative well.

D. Lennard-Jones potential

The Lennard-Jones pair potential@22# is

V~r !5V0@~s/r !122~s/r !6#. ~29!

Again the deconvolution is possible for this attractive pote
tial. The pair correlations shown in Fig. 6 are slightly wor
than in the above examples. Forrs350.5 the height of the
first peak is underestimated. The core is not reproduced,
has positive values.

The dotted line is the result forrs350.5 using a cutoff in
the integration of the fundamental measures, Eq.~17!. The
upper limit of integration is reduced from infinity to th
Wigner-Seitz radiusa5(4pr/3)21/3. This procedure im-
proves the result, but is somewhat heuristic and require
better theoretical foundation.

h

FIG. 5. Same as Fig. 3, but for the Asakura-Oosawa poten
for q50.15,z50.05.
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VI. CONCLUSIONS

We have shown that soft fundamental measure theor
capable of predicting the fluid structure for repulsive as w
as attractive interaction potentials. We have tested the
correlations from the theory against computer simulation
sults at moderate density, moderate softness, and mod
attraction. We find good agreement, except for small artifa
inside the core.

We emphasize that the current approach is expecte
work best for potentials that are still dominated by pack
effects, i.e., are sufficiently short ranged. True long-rang
potentials like the Coulomb or inverse-power potential w
small exponents cannot be tackled. Also, a possible att
tion needs to be sufficiently weak and short ranged,
present in the example of the Asakura-Oosawa poten
above, to be described correctly.

The utility of SFMT depends crucially on the accessibil
of the functional form of the weight functions. In this wor
we give an explicit solution to the deconvolution equati
that relates the Mayer bond to the weight functions. T
solution requires only one-dimensional Fourier transfor
and the handling of a root-finding problem in reciproc
space. Numerically, both operations are simple.
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APPENDIX A: DECONVOLUTION OF THE MAYER
BOND

From the relation between the weights, Eq.~6!, we obtain

w3~r !5E
r

`

dr8w2~r 8!, ~A1!

which can be turned into a convolution

FIG. 6. Same as Fig. 3, but for the Lennard-Jones potentia
V0 /kBT50.5.
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w3~r !5E
0

`

dr8w2~r 8!Q~r 82r !. ~A2!

Applying the hierarchy of weights Eqs.~6!–~11! to Eq.~A2!
yields the relations

wa~r !5E
0

`

dr8w2~r 8!ha,r 8~r !, ~A3!

where theha,r 8(r ) equal the hard sphere weight function
with radius r 8 and are given byh3,r 8(r )5Q(r 82r ),
h2,r 8(r )5d(r 82r ),h1,r 8(r )5d(r 82r )/(4pr ), h0,r 8(r )
5d(r 82r )/(4pr 2), hv2,r8(r )5d(r 82r )r /r , hv1,r8(r )
5d(r 82r )r /(4pr 2).

Next we insert Eq.~A3! into the deconvolution equation
~12! to obtain

2
1

2
f ~r !5E

0

`

dr8w2~r 8!E
0

`

dr9w2~r 9!K~r ,r 8,r 9!,

~A4!

K~r ,r 8,r 9!5h3,r 8~r !* h0,r 9~r !1h2,r 8~r !* h1,r 9~r !

2hv2,r8~r !* hv1,r9~r !. ~A5!

We observe that the convolution kernel, Eq.~A5!, is the
well-known deconvolution of the hard sphere Mayer bo
@2#,

K~r ,r 8,r 9!5
1

2
Q~r 81r 92r !. ~A6!

Inserting this into Eq.~A4! and differentiating gives

f 8~r !5E
0

`

dr8w2~r 8!E
0

`

dr9w2~r 9!d~r 81r 92r !,

~A7!

from which we obtain Eq.~14! by a straightforward integra
tion over r 9.

APPENDIX B: FUNDAMENTAL MEASURES AND THE
VOLUME WEIGHT

Integrating Eq.~17! by parts yields the useful relations

j354pE
0

`

dr r 2w3~r !, ~B1!

j258pE
0

`

dr rw3~r !, ~B2!

j15E
0

`

dr w3~r !, ~B3!

j05w3~0!2w3~`!51. ~B4!

See Appendix D for the justification of the last equality sig

at
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APPENDIX C: FUNDAMENTAL MEASURES AND THE
MAYER FUNCTION

Integrating the definition of the moments of the May
function, Eq.~18!, by parts yields

ma5a21E
0

`

dr r a f 8~r !, ~C1!

where the boundary terms vanish, as we assumef (0)521,
f (`)50. Expressing the derivative of the Mayer bon
through the convolution of weights~14! gives

ma5a21E
0

`

dr r aE
0

`

dr8w2~r 8!w2~r 2r 8!. ~C2!

Changing integration variables,r 95r 2r 8, gives

ama5E
0

`

dr8E
0

`

dr9~r 81r 9!aw2~r 8!w2~r 9! ~C3!

5(
i 50

a S a
i D E

0

`

dr8~r 8! iw2~r 8!E
0

`

dr9~r 9!a2 iw2~r 9!.

~C4!

Explicitly treating the casesa51,2,3 yields Eqs.~20!, ~21!,
and ~22!, respectively.
.

s.
APPENDIX D: BOUNDARY CONDITIONS OF THE
VOLUME WEIGHT

The requirement that the DFT fulfils the 0D limit yield
boundary conditions for the volume weight functionw3.
Consider a 0D density distributionr(r )5hd(r ). The
weighted densities arena(r )5hwa(r ). Symmetry between
the weight functions leads toF25F350. The remaining
term F1 gives

bFexc@hd~r !#5E
0

`

drhw38~r !ln@12hw3~r !#, ~D1!

where we have usedw0(r )52(4pr 2)21]w3(r )/]r @see
Eqs. ~6!–~11!#. We change integration variables tou5hw3
and obtain

bFexc@hd~r !#5E
u0

u`
du ln~12u!, ~D2!

where the limits areu05hw3(0) andu`5hw3(`). If we
assume that the boundary conditions arew3(0)51 and
w3(`)50, then the integral gives the exact 0D excess f
energy@3,4,18#, which isbF 0D5h1(12h)ln(12h).
v.
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