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Active interface polarization as a state function
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We prove three exact sum rules that relate the polarization of active Brownian particles to their one-body
current: (i) The total polarization vanishes, provided that there is no net flux through the boundaries, (ii) at
any planar wall the polarization is determined by the magnitude of the bulk current, and (iii) the total interface
polarization between phase-separated fluid states is rigorously determined by the gas-liquid current difference.
This result precludes the influence of the total interface polarization on active bulk coexistence and questions the
proposed coupling of interface to bulk.
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Systems of active Brownian particles (ABPs) consist of
thermally diffusing spheres that self-propel along an intrin-
sic direction, which itself undergoes free rotational diffusion
[1–3]. ABPs form the prototypical statistical model for active
matter [1–3]. In order to characterize the local orientational
order, the polarization M is a measure of the strength and
direction of the local preferred alignment of the particle orien-
tations. A multitude of relevant situations have been reported
in the literature where ABPs display spontaneous polarization
effects [4–13]. In many of these cases, the spontaneous polar-
ization occurs in the absence of any explicit torques that act
on the particles: No external torques occur when all external
fields depend and act on position only, and no internal torques
arise when the particles are spheres. In equilibrium systems
of spheres, the absence of torques implies local isotropy,
and hence the emergence of nonzero local polarization is
a genuine effect of nonequilibrium, as characterized by a
nonzero spatially and orientationally resolved local one-body
current J.

Important examples of these nonequilibrium situations in-
clude the spontaneous orientational ordering of ABPs against
gravity in the sedimentation profile at large altitudes [4–7],
the ordering upon adsorption against a (hard) wall [10–13],
and the spontaneous polarization of the free interface between
phase-separated active gas and liquid phases [13–17]. There,
M points toward the active liquid in the case of purely
repulsive particles [13–15], but toward the gas in the case of
active Lennard-Jones particles [16,17]. A range of different
mechanisms and descriptions for the occurrence of the bulk
phase separation has been put forward, such as, e.g., kinetic
blocking as a feedback mechanism [18,19], the existence of
a nonequilibrium chemical potential [13,14], and effective
interparticle attraction [20].
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The status of the nonequilibrium interface, however, has
been claimed to be very different from what is known in equi-
librium. Tailleur and coworkers [15,21] find in their approach
interface-to-bulk coupling, i.e., the properties of the free inter-
face affect the gas and liquid bulk states, which are in stable
nonequilibrium coexistence. Further, one can argue that due to
the swim force, any nonvanishing polarization is necessarily
associated with a one-body force distribution γ sM, where
γ is the translational friction constant and s is the speed of
free swimming. It is not inconceivable (and consistent with
simple interface versus bulk dimensional analysis) that this
force density compresses the phase toward which M points at
the expense of the other phase, and hence that it changes the
properties of the coexisting phases.

Here we prove rigorously from first principles that the total
interfacial polarization is a straightforward quantitative con-
sequence of differing bulk currents in the coexisting phases
and the rotational diffusion current Drot. This rules out the
total polarization as an underlying physical mechanism for the
interface-to-bulk coupling [15,21]. Similarly, the total polar-
ization of particles adsorbed at a wall is solely determined by
Drot and the current in the corresponding bulk fluid, and thus
constitutes a state function. Furthermore, we show that in a
system without explicit torques and with no total flux through
the boundaries, the global orientational distribution function
follows a free diffusion equation, so the global polarization
vanishes in steady state; we also address the time-dependent
case below. Figure 1 illustrates the three types of orientational
ordering phenomena that we address in the following. Our
derivation of the corresponding sum rules is based on the exact
rotational equation of motion and on the continuity equation.

We describe ABPs on the level of their position- and
orientation-resolved microscopic one-body density distribu-
tion ρ(r,ω, t ), where r indicates position, ω (unit vector)
orientation, and t time. Then the local polarization M(r, t ) is
a vector field defined as the first orientational moment of the
density profile,

M(r, t ) =
∫

dω ωρ(r,ω, t ), (1)

2643-1564/2020/2(2)/022003(6) 022003-1 Published by the American Physical Society

https://orcid.org/0000-0002-4012-9170
https://orcid.org/0000-0002-5015-2972
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.022003&domain=pdf&date_stamp=2020-04-03
https://doi.org/10.1103/PhysRevResearch.2.022003
https://creativecommons.org/licenses/by/4.0/


SOPHIE HERMANN AND MATTHIAS SCHMIDT PHYSICAL REVIEW RESEARCH 2, 022003(R) (2020)

(c)

(b)(a) 

M
g

FIG. 1. Schematic of systems in which the sum rules (10), (17),
and (18) apply. (a) Sedimentation of ABPs under gravity g, which
acts toward the lower confining wall (hatched area). (b) Adsorption
of active particles at a semi-infinite wall (hatched area). (c) Motility-
induced phase separation of purely repulsive interacting ABPs. The
yellow circles indicate active Brownian particles (ABPs) and the
corresponding yellow arrows show exemplary particle orientations.
The local particle polarization M (white disks) can either vanish,
indicated by a small circle, or point in a specific direction, indicated
by a black arrow. The color gradient displays the density modulation
from high values (dark) to low values (bright).

where the integral is over all orientations ω. The translational
one-body current J(r,ω, t ) is the (microscopically resolved)
measure of the direction and magnitude of the local flow of
particles. As there are no explicit torques, the rotational mo-
tion is purely diffusive. Thus, the (in general) inhomogeneous
density distribution ρ generates a nonzero rotational current

Jω(r,ω, t ) = −Drot∇ωρ(r,ω, t ), (2)

where Drot is the rotational diffusion constant and ∇ω in-
dicates the derivative with respect to orientation ω. As the
dynamics evolve the microstates continuously in time and
the total particle number N remains constant, the one-body
distributions satisfy the continuity equation,

ρ̇(r,ω, t ) = −∇ · J(r,ω, t ) − ∇ω · Jω(r,ω, t ), (3)

where ρ̇ = ∂ρ/∂t with ρ̇ = 0 in steady state and ∇ indi-
cates the derivative with respect to position r. Note that the
continuity equation (3) holds rigorously, independent of the
presence and the type of interparticle interactions, particle-
wall interactions, and external forces. The forces influence
the translational and rotational motion, but not the form of
(3). All occurring terms in (3) can be sampled in computer
simulations; see, e.g., Ref. [22].

We first consider the total polarization for systems with
vanishing total flux through the boundaries of volume V
at all times t , i.e.,

∫
∂V ds · J(r,ω, t ) = 0, where ds denotes

the vectorial surface element and ∂V indicates the surface
of volume V . Here V is arbitrary and can be chosen to be
either the system volume, an enclosing larger volume that
contains the system, or a subvolume of the system. The
number of particles inside V is N = ∫

V dr
∫

dω ρ(r,ω, t ).

We rewrite the spatially integrated density distribution as∫
V dr ρ(r,ω, t ) = N f (ω, t ); this defines the global orienta-

tional distribution function f (ω, t ), which is normalized at all
times t ,

∫
dω f (ω, t ) = 1. Building the time derivative of the

spatially integrated density distribution ρ leads to

N ḟ (ω, t ) =
∫

V
drρ̇(r,ω, t ) (4)

= −
∫

V
dr (∇ · J(r,ω, t ) + ∇ω · Jω(r,ω, t )), (5)

where we used the continuity equation (3) to obtain (5).
Assuming the absence of explicit torques and hence a free ro-
tational diffusion current (2), applying the divergence theorem
to the translational current contribution in (5) yields

N ḟ (ω, t ) = −
∫

∂V
ds · J(r,ω, t ) +

∫
V

dr Drot�
ωρ(r,ω, t )

(6)

= DrotN�ω f (ω, t ), (7)

where the orientational Laplace operator is �ω = ∇ω · ∇ω.
The first term on the right-hand side of Eq. (6) vanishes due to
the vanishing flux boundary condition and the second term can
be rewritten as (7) using the definition of f . Dividing Eq. (7)
by the particle number N yields a free diffusion equation for
the orientational distribution function

ḟ (ω, t ) = Drot�
ω f (ω, t ). (8)

Note that Milster et al. [23] derived an equation similar
to Eq. (8) for the orientational distribution function of two-
dimensional ABPs with negligible translational diffusion. We
consider the system to be in steady state, ρ̇(r,ω, t ) = 0, and
thus also ḟ (ω, t ) = 0, which simplifies the diffusion equation
(8) to

�ω f (ω) = 0. (9)

The only solutions in two and three dimensions (2D and 3D)
of Eq. (9) are constants, f = (2π )−1 for two-dimensional
systems and f = (4π )−1 in three dimensions. Hence, we con-
clude [24] that the global orientational distribution function f
is independent of ω and the total polarization Mtot vanishes,

Mtot =
∫

V
dr M(r) = 0. (10)

In practice, the result (10) can be used as a consistency check
in computer simulations and in theoretical descriptions. It
is trivially satisfied in equilibrium systems without explicit
torques, as such systems imply local isotropy and hence local
and total polarization both vanish.

We emphasize that Eq. (10) holds in all steady states,
independent of the existence of external potentials or the
present type of interparticle or particle-wall interactions, in
each (sub)volume V with zero net flux through its boundaries.
The local and hence also the total fluxes through the surface of
the considered volume are zero if the orientational distribution
function is homogeneous at the surface and the current can be
expressed as J(r,ω) = Jbω. The magnitude Jb is equal to the
first Fourier coefficient of the current. The condition for the
current is satisfied, e.g., in isotropic bulk states or in regions
of vanishing current.
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As a first application of Eq. (10), we consider sedimen-
tation of ABPs [5,25]. Figure 1(a) illustrates two prominent
effects that occur: (i) The particle orientation points toward
the lower confining wall [4–7]. This leads to a particle accu-
mulation at the wall on top of the effect of gravity and may be
interpreted as a self-trapping mechanism. (ii) The sedimen-
tation length increases as compared to passive particles due
to the alignment of the swimmers against gravity g at large
distances from the wall [4–7]. Both effects can be interpreted
as originating from a dynamical balance between the spatial
self-sorting of the active particles and the counteracting mech-
anism of rotational diffusion. An upward oriented particle, for
example, swims on average toward higher altitudes until its
orientation changes via particle rotation.

Each of the above phenomena (i) and (ii) generates nonva-
nishing local polarization [4–7] [cf. Fig. 1(a)] and both have
at first sight no relationship with each other. But as the flux
through the boundaries is zero [26], the total polarization
has to vanish in steady state; cf. (10). Thus, if the volume
V is divided into bottom and top subvolumes, both partial
polarizations have to cancel each other, independent of the
division itself. This effect is nonlocal as the accumulation
and polarization at the bottom determines the overall particle
orientation in the remaining volume.

We next consider nonvanishing total flux through the
boundaries. We derive a spatially resolved (“local”) version
of the sum rule for the ubiquitous two-dimensional system in
steady state. In two dimensions, the orientation vector can be
written as ω = (cos ϕ, sin ϕ), where ϕ is the angle measured
against the positive x axis, and the orientational derivative ∇ω

reduces to ∂/∂ϕ. We assume, as a relevant case, translational
invariance along the y axis. (Note, however, that this restric-
tion is not necessary [27]). Because of the assumption of
translational invariance, the density ρ(x, ϕ) and x component
of the current Jx(x, ϕ) are even in the angle ϕ as both are
invariant under reflection at x axis, y → −y and ϕ → −ϕ

[14]. So the angular Fourier decomposition of both quantities
consists only of cosines. The density thus may be expressed as

ρ(x, ϕ) =
∞∑

n=0

ρn(x) cos(nϕ), (11)

where ρn(x) indicates the nth Fourier coefficient of the density
profile. Using (11) in the expression for the polarization (1)
yields M = (πρ1(x), 0). The y-component My vanishes
due to the symmetry of the density distribution (11), so
the magnitude of the polarization is equal its x component,
M = Mx. The x component of the current can be Fourier
decomposed similarly as

Jx(x, ϕ) =
∞∑

n=0

Jx
n (x) cos(nϕ), (12)

where Jx
n (x) denotes the nth Fourier coefficient and thus the

nth orientational moment of the current. As the rotational
current consists only of the thermal free diffusion contribution
(2), the continuity equation (3) simplifies for steady states to

∂Jx(x, ϕ)

∂x
= Drot

∂2ρ(x, ϕ)

∂ϕ2
. (13)

Equation (13) is satisfied, e.g., for the case of motility-induced
phase separation [14]. Insertion of the Fourier decomposition
(12) in Eq. (13) and integrating twice in the angle ϕ allows
us to solve the equation for density ρ. Evaluation of both
indefinite integrals leads to

ρ(x, ϕ) = − 1

Drot

∞∑
n=1

∂Jx
n (x)

∂x

cos(nϕ)

n2
+ ρ0, (14)

where we have used the Fourier expansion of the current (12)
and the integration constant ρ0 indicates the average density,
i.e., the total number of particles per system volume and per
radians. The integration constant of the first integral vanishes,
since a linear ϕ term does not satisfy the 2π periodicity in
angle ϕ.

The polarization profile M(x) (1) can be simplified as
M(x) = ∫ 2π

0 dϕ ρ(x, ϕ) cos ϕ using the present symmetries.
Inserting the expansion of ρ (14) and evaluating the integral
over all orientations yields

M(x) = − π

Drot

∂Jx
1 (x)

∂x
. (15)

That is, for each position x the local polarization is propor-
tional to the spatial change in the first moment of the current.
The spatially resolved relation (15) constitutes a local sum
rule, similarly determined by Refs. [13,14] in the special
case of ABPs. The derivation here is more general and based
only on the continuity equation with freely diffusive rotational
motion.

In order to derive a global sum rule, we spatially integrate
the exact local sum rule (15),

Mtot =
∫ x2

x1

dx
∫ y2

y1

dy M(x) = πLy

Drot

[
Jx

1 (x1) − Jx
1 (x2)

]
, (16)

which determines the total polarization Mtot in the integration
volume V . For simplicity, we restrict ourself to rectangular
areas V aligned with the coordinate axes. The integration
limits are set to the arbitrary positions x1 and x2 for the x
coordinate and y1 and y2 for the y coordinate. Because of
the translational invariance, the y integral can be explicitly
evaluated and gives the length of y integration, Ly = y2 − y1.
In the following, we thus consider the total polarization per
unit length in the y direction, Mtot/Ly.

Equation (16) holds for ABPs in a large variety of situa-
tions. We address two general relevant cases in the following.
First, we consider ABPs absorbed at a (hard or soft) planar
wall [see Fig. 1(b)]. We set a wall parallel to the y axis at
x = 0. As the density vanishes inside the wall, the one-body
current J(x) = 0 for x → −∞. For x → ∞, the semi-infinite
system approaches an isotropic bulk fluid, so the current is
J(x) = Jbω, due to symmetry. The (constant) magnitude of the
bulk current, Jb, equals the first Fourier component, Jb = Jx

1 .
Setting the limits of integration in Eq. (16) to x1 → −∞ and
x2 → ∞ and using the known expressions for the currents
simplifies the total polarization at the wall per unit y length to

Mtot

Ly
= − π

Drot
Jb. (17)

Hence, the absolute value of Mtot is solely determined by
the bulk current and the rotational diffusion constant. Recall
that Mtot is oriented along the x axis due to the translational
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symmetry, so the sign of the right-hand side of Eq. (17)
determines whether the total polarization points toward or
against the wall. As the free swim speed s � 0, Jb is greater or
equal to zero, and hence the total polarization points towards
the wall. (Note that interparticle interactions only tend to
reduce the absolute value of the bulk current due to drag
effects.) Because of the global sum rule (17), the sign of the
total x polarization per unit length is negative. A vanishing
bulk current Jb = 0 constitutes a special case, which leads to
a vanishing total polarization as one would expect to occur for
a system of passive spheres. We conclude that the total swim
force density

∫
drdωsγ ρω always points toward the wall, so

that the total polarization also points to the wall (except if the
total polarization vanishes). The direction of the total polar-
ization is hence independent of both the particle-wall and the
interparticle interaction. Furthermore, due to locality of both
interactions the bulk itself, in particular the bulk current Jb, is
independent of the wall. Thus, the total polarization Mtot only
depends on bulk quantities via Eq. (17) and constitutes a state
function. This extends the work of Tailleur and coworkers
[28,29], who investigated whether pressure is a state function
in active fluids. Note that the magnitude and structure of
the local polarization profile M(x) may depend on both the
wall-particle and the interparticle interaction potentials.

As a second relevant example, we consider the phase sep-
aration of ABPs [schematic sketch in Fig. 1(c)]. The particles
phase separate in a dense (liquid) and a dilute (gas) bulk fluid.
Since both coexisting bulk states are isotropic, the coexisting
bulk currents are proportional to the orientation ω and the
corresponding magnitudes are Jg in the gas and Jl in the liquid
bulk phase. Using those relations for the bulk current and
setting the limits of integration inside an isotropic bulk phase,
i.e., x1 → −∞ and x2 → ∞, simplifies Eq. (16) to

Mtot

Ly
= π

Drot
(Jg − Jl ). (18)

Hence the difference between both local bulk currents, scaled
with the rotational diffusion constant, determines the total
polarization per transversal length. Equation (18) constitutes
an exact global sum rule. For particles interacting via the
Weeks-Chandler-Anderson potential, which is a Lennard-
Jones potential cut and shifted at its minimum to be purely
repulsive, the swimmers align toward the denser phase in
the interfacial region [13,14]; cf. Fig. 1(c). Hence, the total
polarization is also directed toward the dense phase and it is
positive. According to Eq. (18), one expects a higher current
in the dilute phase in comparison to the dense phase, which
is in qualitative and quantitative agreement with simulation
data [14,30]. In contrast, for active Lennard-Jones particles,
the total polarization was found to point toward the dilute
phase [17]. A sketch of the system would be similar to
Fig. 1(c), but with an inverted polarization arrow. Using the
total polarization to calculate the difference between both bulk
currents from the global sum rule (18), we predict a higher
current in the liquid than in the gas. Note that the particle
polarization is primarily located at the interface, since the
polarization in bulk vanishes due to isotropy; cf. Eq. (16).

A physical interpretation of the global sum rule (18) is that
the interfacial quantity Mtot is solely determined by the bulk
values Jg and Jl . In other words, the interfacial polarization is

a mere consequence of the properties of the bulk states. This
interpretation follows from the locality of the short-ranged
interparticle interactions, which is a similar reasoning as in the
case of particles in front of a semi-infinite wall [cf. Fig. 1(b)].
The combination of the expression (18) and the locality of
interparticle interactions lets the nonlocal influence of Mtot on
the entire bulk seem implausible. This questions the conclu-
sion of Solon et al. [15, p. 16] that “the phase coexistence
densities [...] is controlled by the polar ordering of particles at
the gas-liquid interface.” It seems more reasonable that the
interface is a consequence of the bulk and not vice versa,
especially since no mechanism has been identified which
would generate these nonlocal effects. Furthermore, our inter-
pretation is in agreement with the theory of Ref. [14] where
no interfacial contributions are required to describe the bulk
and the gas-liquid coexistence, as is the case in equilibrium.

We next generalize the steady-state relationship (10) and
consider the time dependence of Mtot. We restrict ourselves
to cases of vanishing total flux through the boundaries of the
considered volume V at all times. The time-dependent total
polarization Mtot(t ) is then given as

Mtot(t ) =
∫

V
dr M(r, t ) = N

∫
dω ω f (ω, t ), (19)

and thus can be determined via the global orientational dis-
tribution function f (ω, t ). We first consider two-dimensional
systems. Hence, as above, the orientation vector is ω =
(cos ϕ, sin ϕ), where ϕ is an angular coordinate and �ω

simplifies to ∂2/∂ϕ2. So, f (ω, t ) is given as the solution of
Eq. (8),

f (ϕ, t ) =
∞∑

n=0

[an cos(nϕ) + bn sin(nϕ)]e−n2Drott , (20)

where the constants an, bn are determined by the initial
conditions. Inserting the global orientational distribution func-
tion (20) into Eq. (19) and carrying out the angular integral
yields the temporal behavior of the total polarization as an
exponential decay,

Mtot(t ) =
(

a1

b1

)
e−Drott , (21)

where 1/Drot is the time constant and the vector (a1, b1) is the
initial polarization at time t = 0.

In three spatial dimensions, we parametrize ω =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ), where θ and ϕ indicate
polar and azimuthal angles. Then Eq. (8) is solved by

f (θ, ϕ, t ) =
∞∑

l=0

l∑
m=−l

almYlm(θ, ϕ)e− Drot
l (l+1) t , (22)

where the constants alm are again set by initial conditions and
Ylm(θ, ϕ) indicate the spherical harmonics. Insertion of (22)
into Eq. (19) gives

Mtot(t ) =
∞∑

l=0

Ml e
− Drot

l (l+1) t , (23)

where we have defined the constants Ml = ∫
dω

∑
m alm

Ylm(θ, ϕ)ω. Hence, in both the 2D and 3D cases, Mtot decays
exponentially in time. The dynamics depend only on the rota-
tional diffusion constant and on the initial conditions. Clearly
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in the limit t → ∞, the results for the time dependence of
Mtot, (21) and (23), reduce to the steady-state sum rule (10) of
vanishing total polarization.

Furthermore, one can extend the obtained sum rules
to higher (e.g., nematic) order moments, e.g., Mn(r) =∫ 2π

0 dϕ cos(nϕ)ρ(r, ϕ) in two-dimensional systems. For a
vanishing flux through the surface of the volume, those higher
moments in the considered volume are all equal to zero in
steady state, as is the polarization [cf. Eq. (10)], and their
time evolution can be derived from Eqs. (20) and (22). In
translationally invariant two-dimensional systems the sum
rules are similar to Eqs. (15) and (16), where the nth moment
Mn corresponds to the spatial derivative of the nth moment
of the current Jx

n . Since higher moments of the bulk current
Jx

n>1 vanish in bulk due to symmetry, the total higher order
moments M tot

n>1 are also zero for particle adsorption at a
wall or motility induced phase separation. Hence, these total
moments cannot contribute to determine the bulk densities.
Note, however, that the local structure of these higher order
moments is nontrivial in general.

To conclude, we have demonstrated that polarization and
current distribution of ABPs are intimately connected. Using
the continuity equation, together with the properties of free

rotational diffusion, we have derived three exact global sum
rules (10), (17), and (18). These imply, respectively, (i) that the
total system polarization vanishes, (ii) that the polarization at
a wall is determined by the bulk current and hence represents
a state function, and (iii) that for phase-separated fluid states
the polarization of the free interface is given by the difference
of bulk current in the coexisting active bulk phases. Note that
Eq. (18) is indeed satisfied qualitatively and quantitatively
in the theory of Refs. [14,31]. These global sum rules, as
well as the local sum rule (15), can be useful as consistency
checks for simulations and theories and can also be used
as an input for theoretical descriptions. One could apply
the derived local and global sum rules to further interesting
systems: The relations hold in case of spatial inhomogeneous
activity s(r) as considered by Sharma et al. [32] and Hasnain
et al. [33] or for spatially varying translational diffusion
[33], as long as the rotational diffusion coefficient is kept
constant. It would be interesting to explore in future work
the connections of our treatment to the results presented in
Refs. [34,35].

We thank D. de las Heras for stimulating discussions and
critical reading of the manuscript.
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