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Phase separation of active Brownian particles in two dimensions: anything for a
quiet life
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ABSTRACT
Active Brownian particles display self-propelled movement, which can be modelled as arising from
a one-body force. Although their interparticle interactions are purely repulsive, for strong self-
propulsion, the swimmersphase separate intodilute anddensephases.Wedescribe indetail a recent
theory for such motility induced phase-separation. Starting from the continuity equation and the
force density balance, the description is based on four superadiabatic contributions to the internal
force density. Here the superadiabatic forces are due to the flow in the system and they act on top
of the adiabatic forces that arise from the equilibrium free energy. Phase coexistence is described
by bulk state functions and agrees quantitatively with Brownian dynamics simulation results from
the literature. We describe in detail all analytical steps to fully resolve the spatial and orientational
dependence of the one-body density and current. The decomposition into angular Fourier series
leads to coupling of total density, polarisation and all higher modes. We describe the power func-
tional approach, including the kinematic dependenceof the superadiabatic force fields and thequiet
life effect that pushes particles from fast to slow regions and hence induces the phase separation.
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1. Introduction

Active Brownian particles (ABPs) undergo self-propelled
motion and are often considered to be a minimal model
for the more general class of active matter. Systems of
active Brownian particles are seen as a prototype to
develop and test more general approaches to nonequi-
librium Statistical Physics, see e.g. Refs. [1–4]. One par-
ticular phenomenon of Brownian swimmers that has
attractedmuch current interest is motility-induced phase
separation (MIPS) (see e.g. the reviews [5–11]). MIPS
occurs for repulsive particles with sufficient strength of
their self-propulsion. The system separates into a dense
and a dilute phase, similar to liquid-vapour phase separa-
tion in equilibrium. The literature contains a range of the-
oretical descriptions of such systems. A broad overview
over the current literature can be found in Refs. [5–11]
and also in the introduction of Ref. [3], including dif-
ferent descriptions of swimming such as chemotaxis,
hydrodynamics and active Brownian motion, as leading
to collective phenomena such as clustering and MIPS. In
the following, we summarise several selected theories for
MIPS in active Brownian particles.

Experimentally realised active particles generate
hydrodynamic solvent flow,which induces hydrodynamic

CONTACT Matthias Schmidt matthias.schmidt@uni-bayreuth.de Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Bayreuth
D-95447, Germany

interactions between the particles. To include these inter-
actions in theoretical models is interesting and can
influenceMIPS non-trivially [12,13]. Including hydrody-
namic interaction was found to either enhance [12] or
suppress [13] phase separation of spherical swimmers in
a narrow slit.

Speck and co-workers [14–16] developed a model
for two-dimensional active disks with repulsive inter-
particle interactions. These authors neglected hydrody-
namical interactions and derived effective hydrodynamic
equations by integration of the N-body Smoluchowski
equation using two different closure relations [14]. The
Smoluchowski equation is the Fokker–Planck equation
(as a spatio-temporal partial differential equation for
the probability density distribution) for overdamped
motion. Furthermore, these authors carried out a linear
stability analysis [14,15]. Comparison with the scaling
behaviour of a small perturbation results in an effec-
tive Cahn–Hilliard equation. They translate results of the
classical Cahn–Hilliard equation such as the existence
of a free energy functional and determine the onset of
phase separation from that functional [15].More detailed
considerations as an adiabatic approximation or weakly
non-linear analysis were presented in [16]. These authors
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compare several phase diagrams from simulation and
theory. The phase diagrams coincide for low gaseous den-
sities but deviate for high liquid densities, which was
attributed to differing particle compressibilities.

Takatori, Yan and Brady introduced the swim pressure
[17] for two- and three- dimensional active spheres. From
this pressure Takatori and Brady construct a mechani-
cal theory, neglecting all hydrodynamic interactions [18].
An active pressure is defined via the combination of
the swim pressure and the interparticle interaction pres-
sure. The corresponding chemical potential follows from
a mechanical relation determined from the momentum
balance for active particles. The resulting phase dia-
gram of active particles is compared to simulation results.
The binodal is defined by the condition of equal val-
ues of the chemical potential in the bulk. The spinodal
(see Ref. [19] for recent work) is determined via van-
ishing of the first derivative of the active pressure with
respect to the packing fraction. These authors observe
that two-dimensional systems phase separate more eas-
ily than three-dimensional systems. A detailed study of
the influence of dimensionality is given by Stenhammar
et al. [20]. Additionally, the concepts of thermodynamics
were transferred to nonequilibrium [18]. Several differ-
ent quantities as the Helmholz free energy, the Gibbs free
energy, entropy and heat capacity were calculated. But
the authors also state that it is not certain whether those
relations are applicable.

The mechanical pressure in the two-dimensional sys-
tem of active Brownian spheres considered by Solon et al.
[21] arises from the particle interaction with the con-
fining walls. A similar (wetting) situation was recently
addressed by Neta et al. [22] in the context of a lat-
tice model. The pressure is calculated using Newton’s
third law and radial harmonics of zeroth, first and sec-
ond order corresponding to total density, polarisation
and nematic order, respectively. The pressure splits (as
does the active pressure in [18]) into an interaction con-
tribution and a swim pressure, which is further decom-
posed into an ideal and an indirect part. The expres-
sion for the pressure turns out to be a state function,
which has the same value in coexisting bulk phases and
is independent of the wall-particle interactions. How-
ever, the binodal determined from the mechanical pres-
sure assuming a hard cut-off for the interaction pressure
and using the equal area Maxwell construction does not
match the coexistence data of active Brownian dynamics
simulations.

A disagreement between the Maxwell construction
and Brownian dynamics simulations was reported by
Paliwal et al. [23]. In contrast to Ref. [21], the authors
constructed from Fokker–Planck calculations an expres-
sion for the chemical potential which contains an

intrinsic, an external and a swim contribution. The swim
contribution arises from a swim potential, which origi-
nates from the particle polarisation at the interface.

Active Brownian particles in steady state were consid-
ered in several different three-dimensional systems [23]:
as an ideal gas, as Lennard–Jones swimmers under sedi-
mentation and as Lennard–Jones particles in case of weak
phase separation.Additionally two-dimensional particles
with Weeks–Chandler–Anderson (WCA) interparticle
pair interaction undergoingMIPS were investigated [23].
For active Lennard–Jones swimmers, the binodal is found
to agree with simulation data. Here the interesting regime
is that of low self-propulsion speeds, where activity com-
petes with the entropy vs. energy balance of gas–liquid
coexistence in equilibrium. However, for high strength
of swimming as is relevant for WCA particles undergo-
ing MIPS, the theory clearly overestimates the coexisting
densities [23]. In simulations, the binodal is determined
from the value of the orientationally averaged densities
in the (gaseous or liquid) portion of a phase-separated
system. Since the theoretical binodal is derived by the
equal area Maxwell construction and therefore using the
Gibbs–Duhem relation, it was proposed that this relation
is not valid due to high anisotropy in the system. It was
concluded that the consideration of interfacial contri-
butions is necessary to determine coexistence densities.
This situation is in contrast to equilibrium liquid-vapour
phase separation. The approach of [23] has some similar-
ities to the work of Takatori and Brady [18] and to that of
Solon et al. [21], as these authors also introduce pressures
and chemical potentials.

Farage et al. [24] derived an effective interparticle pair
interaction potential to describe active particles. Start-
ing from the Langevin equations for active Brownian
spheres and averaging with respect to the orientational
degrees of freedom leads to an equation of motion with
coloured noise. Using the Fox approximation [25], which
is exact for infinitely fast rotational diffusion, Farage et al.
derive a Fokker–Planck equation. From this relation,
an effective interparticle interaction potential is deter-
mined, which turns out to develop an increasingly neg-
ative tail and therefore become more attractive as the
particle activity is increased. Here effective potential can
be attractive even when the bare particle-particle inter-
action potential is purely repulsive. The occurrence of
an effective interaction potential with attraction makes
the existence of a phase-separated state at high activity
plausible.

The effective interparticle pair interaction potential
determined in [24] was used in the context of dynam-
ical density functional theory [26]. The authors used
the dynamical density functional theory to determine
interfacial quantities, such as for the free interface, for
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wetting and capillary condensation and evaporation of
both purely repulsive and Lennard–Jones particles.

Despite the current interest in MIPS and the in simu-
lations well reproducible density distribution across the
interface, the number of theoretical descriptions con-
sidering the interface between the gas and the liquid is
relatively limited. One approach is to obtain interfacial
quantites from simulation results. The authors of Ref.
[23] derived thereby the position-dependent chemical
potential and pressure contributions. Bialké et al. [27]
derived non vanishing components of the pressure ten-
sor. Analogous to capillary wave theory the profile of
the interface is decomposed in Fourier modes and from
that decomposition the average interfacial width is deter-
mined [27,28]. The calculated interfacial surface tension
was remarkably reported to be negative [27], which was
challenged in Ref. [2] on theoretical grounds.

This result lead to a controversy about the sign of
the interfacial tension. Brady and his coworkers [29]
argue that the negative sign results from the swim pres-
sure, which they describe as not a true pressure. There-
fore these authors determine a correction for the pres-
sure tensor, which changes the interfacial tension from
a highly negative value to approximately zero. Speck
[30,31] derived the tension analytically from a van der
Waals theory for active discs using both the mechanical
and the thermodynamical route. He found both signs,
positive and negative, depending on the chosen route.
The generalised thermodynamics by Solon et al. [32] also
supports both positive and negative sign of the interfacial
tension and predicts a negative value for active Brown-
ian particles. The underlying interfacial theory is based
on an effective Cahn–Hilliard equation. These authors
determined the coexisting densities from an explicit vio-
lation of the Maxwell construction. A violation of the
common equal area construction is further found in Refs.
[21,23]. It was suggested that the effect might be due
to the influence of the interface on the coexisting bulk
densities [23,32].

The formally exact power functional theory (PFT)
[33] is based on a splitting of the effective one-body
force field that is generated from the interparticle inter-
actions. Both adiabatic and superadiabatic contributions
occur. The former are an instantaneous density func-
tional. These contributions are thus independent of the
current and similar to what underlies dynamical density
functional theory. The latter, superadiabatic contribu-
tions [33,34] account for nonequilibrium effects that go
beyond the adiabatic approximation. Hence superadia-
batic terms are specific to the form of the considered
nonequilibrium situation and in particular they depend
on the flow that occurs in the system. For ABPs, a range
of physically distinct force types was identified based on

the analysis of computer simulation data [1,3,4], includ-
ing drag [1,4] and forces that arise from superadiabatic
pressure and chemical potential contributions [1]. The
general PFT framework [33] admits straightforward for-
mulation for ABPs [3]. Crucially though, the formally
defined superadiabatic forces were modelled and made
very concrete in [1] using both correlator expressions
that are suitable to sampling in Brownian dynamics sim-
ulations, and semi-local kinematic functional forms, i.e.
expressions that express the respective superadiabatic
force depending on the (orientation-resolved) density
and velocity profiles. Using a small number of adjustable
parameters that determine the strength of each supera-
diabatic force contribution, which were obtained from
comparison to the simulation data [1], the otherwise
standalone theory predicts very satisfactory agreement
for both the MIPS binodal and spinodal against simula-
tion results [20,23]. Crucially, the curiously high density
of the gas at coexistence, even under strong drivingwhere
coexistence is very broad in density, is captured correctly.
The spinodal on the gas side shows similar behaviour and
again the agreement with simulation results for the spin-
odal is excellent, cf. Figure 2 in [1]. As the theory does
not discriminate between a mechanical and a thermody-
namic point of view, but rather unifies both consistently,
all further quantities are unanimous. In particular, there
is a unique interfacial tension associated with the free
interface in MIPS. Based on a semi-local superadiabatic
approximation [2] the value of the interfacial tension is
found to be positive. The interfacial treament is consis-
tent with the exact result of the interfacial polarisation
being a statefunction of the adjacent bulk phases [35], as
verified theoretically [36] and experimentally [37] for a
single laser-nudged microswimmer in a dedicated force-
free particle trap.

PFT ascertains that the superadiabatic forces are spe-
cific to the type of interparticle interaction potential. The
functional dependence of these forces is on density and
flow, but they are independent of the external driving
(swim forces). This formal result has been validated by
the universality of the occurring superadiabatic func-
tionals (for repulsive particles). Examples include lane
formation in counter-driven binary mixtures [38–41],
memory-induced motion reversal in Brownian liquids
[42], shear-induced deconfinement of hard disks [43] and
flow [44–46] and custom flow [47] in Brownian dynam-
ics. In the present contribution, we present in detail
the underlying derivations of the theory developed in
[1], which describes both the bulk and the interfacial
behaviour of this active system.

The theory of [1] for ABPs involves rotational degrees
of freedom and it is complex both in concept and in
execution. Ref. [1] only reported the key results and
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does neither give detailed derivations nor presents the
inherent theoretical structure at the fore. Rather, care
is taken to back up each step against (position- and
orientation-resolved) computer simulation data. Here we
supply all theoretical background, describe the theory
based on stand-alone reasoning and extend and com-
plete the description of Ref. [1] in order to aid future
applications of our framework.

This paper is organised as follows. In Section 2.1,
we describe, based on the continuity equation and the
force density balance, phase coexistence of active Brow-
nian disks in steady state. Four different superadiabatic
(above adiabatic) force density distributions are intro-
duced (Section 2.2) and defined. Here the superadiabatic
force density Fsup,0 is a spherical drag term. In bulk it
acts against the particle orientation ω which indicates
the direction of self-propulsion and is associated with
a force density. A non-spherical correction to the drag
term is given by the force density Fsup,1, an interfacial
drag term. It points along ω∗ which is ω mirrored with
respect to the interface normal. The superadiabatic force
density Fsup,2 corresponds to a superadiabatic pressure.
The so-called quiet life chemical potential term gener-
ates the force density Fsup,3 and opposes (approximately)
the adiabatic force density Fad, where the latter acts per-
pendicular to the interface towards the active gas. Using
these superadiabatic forces and a Fourier decomposi-
tion one determines recursive relations (cf. Section 2.3)
and approximative expressions (cf. Section 2.4) for the
one-body density and current.

We introduce the superadiabatic force correlators (cf.
Section 2.5) and the swim correlator expressions (cf.
Section 2.6). This allows us to determine that the result-
ing swim pressure is cancelled via a superadiabatic pres-
sure. Hence both pressures have no influence on the
coexistence densities. Finally, we show the derivation of
the phase diagram via a Maxwell equal area construction
(see Section 2.7). We conclude and give a short outlook
in Section 3.

In four appendices, we provide additional analyti-
cal details. We describe the bulk fluid limit of ABPs
(Appendix 1). We explicitly show the derivation for the
y-component of the current (Appendix 2) and formally
introduce two additional superadiabatic force densities,
Fsup,4 and Fsup,5, to improve the treatment of the ideal
contribution (Appendix 3). The derivation of the MIPS
critical point is also shown (Appendix 4).

2. Motility-induced phase separation

2.1. Formulation of the problem

Consider a (two-dimensional) suspension of active
Brownian disks with constantfree swim speed s or

equivalently constant self-propulsion force along their
particle orientation ω. The swimmers undergo both
translational diffusion and rotational diffusion with cor-
responding diffusion constants D and Drot. We neglect
hydrodynamical interactions. The interactions between
the particles are assumed to be purely repulsive andmod-
elled by e.g. the Weeks–Chandler-Anderson pair poten-
tial [1].

We aim at constructing a theoretical description for
this physical system, based in the one-body level of
dynamic correlation functions. The starting point of our
considerations is the continuity equation for the one-
body density ρ(r,ω) and the one-body current J(r,ω),
given by

∂ρ

∂t
= −∇ · J − ∇ω · Jω, (1)

where ∇ indicates a spatial and ∇ω an orientational
derivative. In case of steady state, as considered in the
following, the temporal change in density vanishes, i.e.
∂ρ/∂t = 0. Since there are no external torques acting
on the spheres (in contrast to active spinners [48–50]),
the rotational current Jω is purely diffusive and can be
expressed as

Jω = −Drot∇ωρ. (2)

To simplify the description, the interface between both
phases is assumed to be parallel to the y-axis, so the
system is translational invariant along this direction.
Since we consider a two-dimensional system, any depen-
dence on position r reduces to an x-dependence and
dependence on particle orientation ω = (cosϕ, sinϕ)

reduces to a ϕ-dependence, where ϕ is the angle mea-
sured against the x-axis. Thus the derivatives simplify
in the spacial case to ∂/∂x and in the angular case
to ∂/∂ϕ. For the theoretical description, we focus on
phase-separated nonequilibrium steady states. We con-
sider cases where the density distribution increases with
increasing x-values. The origin of the x-axis is set to the
location x̃ of the Gibbs dividing surface. It is defined by
the value of x̃ which satisfies∫ x̃

−∞
dx

∫ 2π

0
dϕ

(
ρ(x,ϕ) − ρg

)
)

+
∫ ∞

x̃
dx

∫ 2π

0
dϕ (ρ(x,ϕ) − ρl)),

= 0 (3)

where 2πρg (2πρl) denotes the coexisting particle num-
ber density per unit area in the dilute (dense) bulk phase
of the system.

In order to deal with the rotational degree of free-
dom, it is common to integrate the density with respect
to the particle orientation, which yields 2πρ0(x) [51] and
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additionally take the next higher order term, the polari-
sation πρ1(x), into account [14,15,23], where ρ0 and ρ1
indicate the zeroth- and first-order Fourier coefficient of
the density. Using Fourier space representation is benefi-
cial for construction of analytical solutions, see e.g. Ref.
[52] for a study of active ideal sedimentation. To consider
the full angular resolved problem, we Fourier decom-
pose the density and the x- and y-component of the
current [1]:

ρ(x,ϕ) =
∞∑
n=0

ρn(x) cos(nϕ), (4)

Jx(x,ϕ) =
∞∑
n=1

Jxn(x) cos(nϕ), (5)

Jy(x,ϕ) =
∞∑
n=1

Jyn(x) sin(nϕ), (6)

where ρn, Jxn and Jyn denote the Fourier coefficients of
the density and the current, respectively. Referring to
densities implies here units of particle number per two-
dimensional system volume and radiant, whereas ori-
entationally integrated densities, as e.g. 2πρ0, represent
number of particles per volume.

The system is symmetric with respect to an inversion
of the y-axis and reversal of the sign of angle ϕ, i.e. y →
−y and ϕ → −ϕ. This transformation does neither affect
the density nor the x-component of the current. Here
these are even functions with respect to ϕ and all (odd)
sine contributions vanish in the Fourier series. However,
the y-component of the current changes sign under this
transformation and it is therefore odd with respect to the
angle ϕ. So the coefficients corresponding to even cosine
terms vanish and the series (6) only contains the sine
summands.

These symmetries could also be observed in the simu-
lation results where e.g. the calculated even Fourier coef-
ficients of the x-component of the current are found to be
about one order of magnitude larger than the odd coef-
ficients [53], which validates (5). Analogous effects hold
for the y-component of the current and for the density
coefficients. Furthermore, as is common, the zeroth order
(n = 0) of the current has been neglected for simplic-
ity. Therefore, the orientationally averaged flux vanishes,∫
J dϕ = (Jx0 , J

y
0) = 0.

Considering all simplifications due to symmetries of
the system and inserting the expression for the rotational
current Jω (2) reduces the continuity Equation (1) to

∂Jx

∂x
= Drot

∂2ρ

∂ϕ2 . (7)

Additionally insertion of the Fourier decomposition and
evaluation of the second derivative with respect to ϕ

yields

∞∑
n=1

∂Jxn
∂x

cos(nϕ) = −
∞∑
n=1

n2Drotρn cos(nϕ). (8)

Separating this expression into orders of cos(nϕ) and
reordering the terms leads to

ρn = − 1
n2Drot

∂

∂x
Jxn (9)

for all n ≥ 1.
The translational current (components) can be in

principle determined from the force density balance

γ J = γ sωρ + Fint − kBT∇ρ, (10)

where γ denotes the friction constant, kB is the Boltz-
mann constant and T indicates the temperature. The
friction force density on the left hand side is balanced by
the self-propulsion (first term), the internal force density
Fint (second term) and the thermal diffusion (third term).
The internal force density is a complex, usually unknown
quantity. In such cases, the current cannot be calculated
from Equation (10) without approximations for Fint.

A derivation of Equation (10) and the continuity
equation (1) is e.g. given in Appendix A of Ref. [1].

2.2. Superadiabatic and adiabatic force densities

To further specify the expression of the internal force
density Fint in Equation (10), we split it into an adiabatic
part, Fad, and a superadiabatic part, Fsup [33,34],

Fint = Fad + Fsup. (11)

The superadiabatic contribution is further decomposed
into four summands [1],

Fsup = Fsup,0 + Fsup,1 + Fsup,2 + Fsup,3, (12)

so that one obtains for the internal force density the result

Fint = Fad + Fsup,0 + Fsup,1 + Fsup,2 + Fsup,3. (13)

In the following, all five adiabatic and superadiabatic con-
tributions will be introduced and described in detail. The
adiabatic contribution can be expressed by the relation
from density functional theory [54]

Fad = −ρ∇ δFexc[ρ]
δρ

(14)

with the excess (over ideal gas) intrinsic Helmholtz free
energy functional Fexc[ρ]. To apply the concept and
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Equation (14) to the situation under investigation one has
to consider the so-called adiabatic state. This reference
state is the corresponding theoretical equilibrium sys-
tem that has the same density and the same interparticle
interactions as the actual system [33,34].

In the present system, the swimmers are spherical and
only their direction of self-propulsion is indicated by the
orientation. As a consequence, the adiabatic state and
thereby the excess free energy functional are independent
of orientation. Furthermore, there is no exact explicit
expression for Fexc[ρ] known as is not uncommon in
density functional theory, but there exists a range of dif-
ferent approximations [55]. We will use the local density
approximation on the basis of the scaled particle theory
equation of state to specify the adiabatic force density (14)
further in Section 2.7.

Beyond the adiabatic part the remaining contribution
to the total internal force density (13) is formed by the
superadiabatic force densities. For each of these supera-
diabatic terms an approximative analytical expression, as
well as a physical interpretation will be given in the fol-
lowing. The first two terms, Fsup,0 and Fsup,1, express drag
contributions. The drag force density Fsup,0 is propor-
tional to the negative flux J, hence it directly opposes
the motion and is spherical with respect to J. The com-
plete dependence on orientation ω is contained in the
dependence of J onω. The current and the zeroth supera-
diabatic force density have thereby the same orientational
dependence. Our explicit approximation of Fsup,0 is the
orientationally averaged square gradient expansion of the
bulk drag force density, a generalisation of the bulk drag
contribution in Ref. [4] and is given as

Fsup,0 = −γ
ρ0

ρjam − ρ0
[1 + ξ(∇ρ0)

2]J, (15)

where the parameter ξ > 0 sets the amplitude of the
square gradient term and ρjam = const is the jamming
density. If the system density ρ0 reaches locally such a
high value, then the prefactor in Fsup,0 diverges and no
more motion or flow is possible in this region. Therefore,
the jamming densitymodels in a very simpleway the phe-
nomenon of ‘dynamical arrest’. Freezing itself is clearly a
more complex transitionwhich implies breaking of trans-
lational invariance [56]. Ref. [1] contains the description
of the adjustment of all occurring free parameters in the
theory, such as ρjam and ξ , to match theoretical results
with Brownian dynamics simulation data. The bulk drag
force density on which the approximation for Fsup,0 is
based is given in [4] and reproduced in Equation (A4),
Appendix 1, where the bulk quantities of the system are
summarised.

The second drag force density Fsup,1 is an interfacial
correction to Fsup,0 that takes non-spherical drag con-
tributions into account. Our approximative expression
is [1]

Fsup,1 = −sγ
ρ1

4
ω∗, (16)

where ω∗ = (cosϕ,− sinϕ) is the unit vector that
denotes the direction against which the interfacial drag
acts. This direction is the orientation ω mirrored with
respect to the x-axis. Hence ω∗ can be viewed as the
complex conjugate of ω, if the xy-coordinates are con-
sidered to form the complex plane. As an aside, note
that a description of the reversed succession of the two
phases, i.e. liquid-gas, with increasing value of x requires
the introduction of a minus sign (only) in Fsup,1 as given
by (16). This change of sign in Fsup,1 is required to
describe the simulation data [1].

One can prove [33,47] that it is possible to express the
total internal force density Fint and hence the expression
for Fsup,1 as a kinematic functional, i.e. as an object with
a functional dependence of the density and the current,
Fint([ρ, J, Jω], r,ω, t). This might seem entirely reason-
able, if one solves the force density balance (10) with
respect to the self-propulsion contribution

sγρω = γ J − Fint + kBT∇ρ. (17)

Here on the right hand side there is no dependence, nei-
ther explicit nor hidden, of the swim force density (or of
any other external force densities). Thus there has to be
a possibility to rewrite Fsup,1 (16) as a kinematic expres-
sion without usage of the swim speed s, which we will
treat later.

The third superadiabatic force density Fsup,3 is deter-
mined by the requirement to balance the thermal diffu-
sion and the adiabatic term,

Fsup,3 − kBT∇ρ + Fad = 0. (18)

This equation will be considered in more detail in
Section 2.7, where the mechanism of cancellation is
described. Furthermore, the internal force density (13)
can be expressed as

Fint = Fsup,0 + Fsup,1 + Fsup,2 + kBT∇ρ (19)

using Equation (18).
The remaining uniquely identified contribution to the

superadiabatic force density after having split off Fsup,0,
Fsup,1 and Fsup,3 is contained in Fsup,2. Hence this term
is determined by the force density Equation (10). We
require that the second superadiabatic contribution is
independent of orientation for simplicity, although a
dependence on ϕ is not excluded on principle grounds.
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2.3. Construction of a density recursion formula

An expression for the x-component of the nth cur-
rent Fourier coefficient Jxn follows from insertion of the
Fourier decomposition (4)–(6) and of the internal force
density Fint (13) into the x-component of the force den-
sity equation. In detail, as a first step, the internal force
density Fxint in the x-component of the force density bal-
ance (10) is replaced via Equation (19) and the kinematic
functionals for the zeroth (15) and first (16) superadia-
batic force densities are inserted. The resulting equation
is

γ Jx = γ sρ cosϕ − γ
ρ0

ρjam − ρ0

[
1 + ξ(∇ρ0)

2] Jx
− γ s

ρ1

4
cosϕ + Fxsup,2. (20)

Using the Fourier decomposition forρ (4) and Jx (5) leads
to

γ

∞∑
n=1

Jxn cos(nϕ)

= γ s
∞∑
n=0

ρn cos(nϕ) cosϕ − γ s
ρ1

4
cosϕ + Fxsup,2

− γ
ρ0

ρjam − ρ0

[
1 + ξ(∇ρ0)

2] ∞∑
n=1

Jxn cos(nϕ) (21)

In order to separate in orders of cos(nϕ), the first term on
the right hand side of Equation (21), i.e. the swim con-
tribution, is rewritten using the trigonometric relation
2 cos(nϕ) cosϕ = cos((n − 1)ϕ) + cos((n + 1)ϕ) as

γ s
∞∑
n=0

ρn cos(nϕ) cosϕ

= γ s
2

[ ∞∑
n=−1

ρn+1 cos(nϕ) +
∞∑
n=1

ρn−1 cos(nϕ)

]

= γ s
2

[
ρ1 + ρ0 cosϕ +

∞∑
n=1

(ρn−1 + ρn+1) cos(nϕ)

]
.

(22)

As a consequence, the force density balance (21) can be
reordered as

Fxsup,2 = −γ s
ρ1

2
+ γ s

(ρ1

4
− ρ0

2

)
cosϕ

+ γ

∞∑
n=1

{
Jxn

[
1 + ρ0[1 + ξ(∇ρ0)

2]
ρjam − ρ0

]

− s
2

(ρn−1 + ρn+1)

}
cos(nϕ). (23)

To simplify the relation, we define the expression in
square brackets in (23) as s/vf , or equivalently

vf = s
1 − ρ0/ρjam

1 + ξ(∇ρ0)2ρ0/ρjam
, (24)

which has units of velocity. We refer to vf as the forward
speed, in which ‘forward’ corresponds to the particle ori-
entation and swim direction ω. One can interpret vf as
a type of orientationally averaged projection of a velocity
on the particle directionω, although it is not proportional
to

∫
dϕ v · ω. An explicit correlator expression of the for-

ward speed is given below in Equation (35). Note that
extrapolation of the forward speed vf to the limit vf →
0 can be used to determine the value of the jamming
density ρjam from simulation data [1].

To satisfy Equation (23), all prefactors of cos(nϕ) have
to identically vanish for each value of n separately. This
leads to expressions for the current components Jxn for
n ≥ 1. In case of n>1 one obtains

Jxn = vf
2

(ρn−1 + ρn+1) , (25)

by simply setting the expression in curly brackets in (23)
equal to zero. For n = 1 an additional term, composed
of two contributions, is proportional to cosϕ. The first
contribution is the x-component of the interfacial drag
force density Fxsup,1 and the second contribution origi-
nates from the limiting term n = −1 in Equation (22).
This yields for the first Fourier coefficient of the current
the result

Jx1 = vf
2

(ρ0 + ρ2) + vf
2

(
ρ0 − ρ1

2

)
= vf

(
ρ0 − ρ1

4
+ ρ2

2

)
, (26)

where vf is still given by (24). Finally considering all con-
tributions that are independent of the particle orientation
ω determines the expression for the second superadia-
batic force density

Fxsup,2 = −γ s
ρ1

2
= γ s

2Drot

∂

∂x
J1

= γ s
2Drot

∂

∂x

[
vf

(
ρ0 − ρ1

4
+ ρ2

2

)]
, (27)

which is by definition rotationally invariant, i.e. indepen-
dent of ϕ. Here we have in the first step replaced the first
Fourier coefficient of the density ρ1 using Equation (9)
and have subsequently applied relation (26).

Performing the analogous calculation for the
y-component of the force density, Equation (10) gives
expressions for the current coefficients Jyn for n>1 and
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n = 1, which are

Jyn = vf
2

(ρn−1 − ρn+1) , (28)

Jy1 = vf
(
ρ0 + ρ1

4
− ρ2

2

)
. (29)

Furthermore it turns out that the y-component of the
superadiabatic force density vanishes, Fysup,2 = 0. The
derivation of these results is shown in full detail in
Appendix 2.

Combination of the Fourier decomposed continuity
Equation (9) and the translational current components
Jxn (25), (26) gives the implicit recursive relation,

ρn = − 1
n2Drot

∂

∂x

[vf
2

(ρn−1 + ρn+1)
]
, (30)

ρ1 = − 1
Drot

∂

∂x

[
vf

(
ρ0 − ρ1

4
+ ρ2

2

)]
, (31)

for all density coefficients ρn with n ≥ 1. For the zeroth
density coefficient ρ0 such a relation does not exist since
Equation (9) derived from the continuity equation (1)
is only valid for n ≥ 1. This is due to the isotropy of
the density coefficients ρ0 (recall that this is orientation-
ally independent per definition), which leads to vanishing
derivative with respect to ϕ.

2.4. Calculation of one-body density and current

By solving the system of coupled differential Equa-
tions (30) and (31), one can in principle determine all ρn
and the corresponding current components Jxn using (25)
or (26). Although this recursion relation might appear to
be simple at first glance as it only couples two ‘neigh-
bouring’ orders n ± 1, it does in fact constitute a diffi-
cult problem due to the complex dependence of vf on
x. A comparison of the density coefficients ρn deter-
mined by the Brownian dynamics simulations shows that
the magnitude of ρn decreases with increasing order n
[53]. It is therefore a reasonable approximation to neglect
higher order density coefficients in the recursion relation,
i.e. neglecting terms proportional to ρn+1 and keeping
contributions ρn−1 [1]. For n = 1 this corresponds to
neglecting ρ2 and keeping ρ0 and ρ1. This leads to

ρn ≈ − 1
n2Drot

∂

∂x
vf

ρn−1

2
, (32)

ρ1 ≈ − 1
Drot

∂

∂x
vf

(
ρ0 − ρ1

4

)
, (33)

and thus only couples the expressions for ρn with the
lower order density coefficient ρn−1 for n>1. Hence one
can, for a given density coefficient ρn, directly determine
the next coefficient ρn+1 and then iteratively calculate

all higher order density coefficients ρm for m>n. As a
starting point of this simplified recursion relation, the
orientationally averaged density ρ0 is set to a hyperbolic
tangent

ρ0 = ρl + ρg

2
+ ρl − ρg

2
tanh(x/λ) (34)

where λ indicates the width of the interface. The form of
the density profile (34) is a commonly used approxima-
tion in the ABP literature [23,26,57,58] and fits the sim-
ulation results very well. Combining both assumptions,
the form of ρ0 (34) and the truncation of the recursion
relation, allows to determine the forward speed and itera-
tively all density coefficients. Hence the complete density
distribution (4) and current distribution (5), (6) using
both (25) and (26) or both (28) and (29) can be calculated.
The so-derived expression for vf and the Fourier coef-
ficients of ρ and J can then be compared to simulation
results, see Ref. [1].

We first consider the results for the gradient expres-
sion (24) of the forward speed vf . It is also possible to
express this quantity via the correlator [1]

vf =
∫
J · ω dϕ∫
ρ dϕ

, (35)

which can be proven by insertion of the current and
the density Fourier decomposition, evaluation of the ϕ-
integral and using Equations (26) and (29). Thus vf (x) is
the speed corresponding to the forward current,

Jf = ρ0vf = 1
2π

∫ 2π

0
J · ω dϕ, (36)

which is the orientationally averaged projection of the
one-body current J on the particle ‘forward’ direction
ω, as the terminology already indicates. Since the ori-
entationally integrated density 2πρ0 = ∫

ρdϕ and the
forward speed vf (35) are independent of the angle ϕ, the
forward current Jf (x) only depends on the spatial coordi-
nate x. Recall that the current J is in general not parallel
to the orientation ω. The correlator expression (35) is
useful to calculate the forward speed in the Brownian
dynamic simulation from themeasured current and den-
sity. (Alternatively and equivalently this speed can be
calculated directly from a many-body expression [3].)

The forward velocity can be calculated explicitly from
Equation (24) using the hyperbolic tangent profile (34).
The calculation of the bulk densities as well as the
determination of the value λ is presented below in
Section 2.7. All remaining parameters were chosen via
comparison to simulation data [1]. The magnitude of
vf changes smoothly from a high plateau value in the
dilute state to a low value in the dense phase. This implies
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rapid particle movement in the gaseous phase and slow
behaviour in the liquid state, which will be an impor-
tant feature below in Section 2.7 when addressing phase
coexistence.

In the limit of a homogeneous bulk system the theo-
retical expression (24) reduces to the bulk forward speed

vb = vf (ρ0 → ρb) = s
(
1 − ρb

ρjam

)
, (37)

decreasing linear in bulk density ρb. This can be seen
by observing that gradient terms vanish for constant
density ρ = ρb = const. This linear relationship is well-
known [21,51,59]. As maybe expected, this simplified,
linear expression still describes with good accuracy both
plateau values and those regions which asymptotically
decay into bulk for large absolute values of x/σ . In
Appendix 1, the remaining bulk quantities of the system
were determined starting from the bulk forward speed vb.

Inserting the expression for the forward speed (24)
and the hyperbolic tangent profile for the rotationally
averaged density (34) into the reduced recursion for-
mula (32) and (33) allows to calculate the density coef-
ficients iteratively.

The term ρ1, which is proportional to the polarisa-
tion (the y-component of the polarisation vanishes due to
symmetry), is peaked at the interface. Hence the swim-
mers at the interface tend to point towards the dense
phase for the considered case of pure repulsive parti-
cles. This is reasonable since swimmers that are oriented
towards the dilute phase have less sterical hindrance
from other particles and their self-propulsion will make
them ‘escape’ into the gaseous phase. In contrast particles
pointing towards the liquid phase impede colloids in the
dense region from escaping into the dilute phase, which
is a mechanism that is sometimes called self-trapping
[60,61]. The second density Fourier coefficient ρ2 can be
interpreted as a nematic order parameter and shows a
single oscillation in the interfacial region [1]. Thus the
particle axis is parallel to the interface on the gas side and
perpendicular to the interface on the liquid side. Both
effects decay towards the respective (isotropic) bulk.

Note that we used truncated version of Equa-
tions (25), (26), (28) and (29) to calculate the current
to avoid artefacts and to be consistent with the trun-
cated recursion relation for the density. These truncated
expressions (A22)–(A25) were derived together with the
relation of the y-coefficients of the current Jyn to the
density components ρn (A19), (A20) in Appendix 2.

We find that themagnitude of J1 decreases from a high
value in the gaseous to a lower value in the liquid phase.
Its y-component has an additional peak at the interface.
Hence there occurs a forward flux perpendicular to the
density gradient at the interface of the system.

2.5. Derivation of drag and superadiabatic pressure

Having established physically correct and quantitatively
reasonable solutions for the density and the current pro-
files, we proceed to determine the superadiabatic force
densities that act in order to stabilise the interface. Recall
that the superadiabatic force densities that contribute to
the force density balance (17) have to be satisfied. As
was the case for the forward speed, we define correlator
expressions for the force densities Fsup,0, Fsup,1 and Fsup,2.
The correlator expressions are all structurally similar,
in the sense that they are proportional to orientation-
ally integrated projections of Fint on unit vectors. The
spherical drag correlator [1] is

Fsup,0 = J
2π Jf

∫ 2π

0
Fint · ω dϕ, (38)

and here ω is the unit vector on which Fint(x,ϕ)was pro-
jected. The expression for Fsup,0 is, as is the kinematic
functional (15), proportional to the flux J(x,ϕ). This
implies that the direction of the force density is parallel
to J. Furthermore Fsup,0(x,ϕ) has no direct dependence
on ω(ϕ) and the indirect dependence on the particle ori-
entation is completely contained in J, since the forward
current Jf (x) and the integral in Equation (38) are both
independent of orientation due to integration in ϕ. How-
ever, the integral depends on the x-position due to the
dependence of the internal force density Fint(x,ϕ) on
position.

Using theoretical results, e.g. densities from the trun-
cated recursion relation, one can determine the spherical
drag force density from the kinematic functional (15) or
from the correlator expression (38).

The x-component of Fsup,0 is directed against the par-
ticle flow. The y-component of Fsup,0 also acts against
the current. The amplitude of both x- and y-component
increases with increasing density. Both, the amplitude
and the direction against the motion, show physically
expected properties for a spherical drag force density.

The interfacial drag correlator Fsup,1(x,ϕ) is given as

Fsup,1 = ω∗

2π

∫ 2π

0

(
Fint − Fsup,0

) · ω∗ dϕ, (39)

where the prefactor ω∗(ϕ) generates the entire depen-
dence on the particle orientation in Fsup,1, since the inte-
gral is performed with respect to ϕ. Note that before
projection on the directionω∗ and averagingwith respect
to the orientation, Fsup,0(x,ϕ) is subtracted from the total
internal force density Fint(x,ϕ). Hence the non-spherical
force density Fsup,1 constitutes a correction to the spher-
ical drag contribution Fsup,0.

An explicit result for the interfacial drag can be deter-
mined using Equation (16) or via insertion of Fint (19)
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in Equation (39) and neglecting the orientational depen-
dence of the density in the ideal gas term. We find Fsup,1
is an interfacial drag contribution, as it clearly is nonzero
only in the interfacial region. The maximal amplitude
is much smaller than the spherical drag Fsup,0, which
confirms the status ofFsup,1 as a non-spherical correction.

As already mentioned the superadiabatic force densi-
ties are kinematic expressions and it would be favourable
to express the approximation (16) for Fsup,1 without
the usage of the swim contribution. Therefore, we use
Equation (24) for the forward speed vf to replace the
swim speed s in (16) and rewrite the relation as

Fsup,1 = −sγ
ρ1

4
ω∗ = γ vfρ1

4
1 + ξ(∇ρ0)

2ρ0/ρjam

1 − ρ0/ρjam
ω∗.

(40)

Similarly one can replace the dependence of s in
Fsup,2 (27),(A21) (recall that this force density was deter-
mined to satisfy the force density balance) as

Fsup,2 = −γ s
ρ1

2
êx = −γ vfρ1

2
1 + ξ(∇ρ0)

2ρ0/ρjam

1 − ρ0/ρjam
êx.

(41)

Since this force density only contains a nonzero x-
component and is independent of the y-coordinate due
to symmetry, it may be written as the negative gradient
of a scalar pressure �2(x),

Fsup,2 = −∇�2. (42)

In general the pressure is a tensor, of which the isotropic
part is the scalar pressure. Note that our conventions are
entirely consistent with continuum mechanics. The neg-
ative gradient of a pressure is identified as a force density
and the negative gradient of a chemical potential is a force
field. Rewriting the density coefficient ρ1 with usage of
the density recursion Equation (31) leads to the result

Fsup,2 = γ

2Drot

∂

∂x

[
svf

(
ρ0 − ρ1

4
+ ρ2

2

)]
êx

= γ

2Drot
∇

[
v2f
1 + ξ(∇ρ0)

2ρ0/ρjam

1 − ρ0/ρjam

×
(
ρ0 − ρ1

4
+ ρ2

2

) ]
, (43)

where the spherical pressure is identified as

�2 = − γ v2f
2Drot

1 + ξ(∇ρ0)
2ρ0/ρjam

1 − ρ0/ρjam

(
ρ0 − ρ1

4
+ ρ2

2

)
.

(44)

Analogously to the correlator expressions of the above
considered superadiabatic drag force densities the corre-
lator for Fsup,2(x) is

Fsup,2 = êx
2π

∫ 2π

0
Fint · êx dϕ. (45)

Note that insertion of the kinematic functionals and rela-
tion (18) for the internal force density in all three corre-
lators reproduces the correct equation for the respective
superadiabatic force density, up to a thermal diffusion
term, which is found to be numerically quite small. The
deviation might be caused by the approximations for the
superadiabatic force densities and could in principle be
solved by introducing further superadiabatic terms (see
Appendix 3).

2.6. Swim correlator expressions and swim pressure

All correlator expressions for the superadiabatic force
densities (38), (39) and (45) are proportional to the ϕ-
integrated projection of the internal force density Fint
on another vector. For each of these equations, there
is a corresponding relation, where Fint is replaced by
the swim force density or self-propulsion term Fswim =
γ sρω. Although there are hardly any similarities between
Fint and Fswim, the force densities expressed by the corre-
lators are quite similar expressions.

The force density corresponding to the spherical drag
Fsup,0 (38) is the swim force density Fswim,0, given as

Fswim,0 = J
2π Jf

∫ 2π

0
Fswim · ω dϕ. (46)

Insertion of Fswim and explicit integration in ϕ leads to

Fswim,0 = γ s
2π Jf

J
∫ 2π

0
ρ dϕ = γ s

vf
J = −Fsup,0 + γ J,

(47)

which shows the connection to Fsup,0.
Fswim,1 corresponds to the interfacial drag contribu-

tion Fsup,1, see (39), and is therefore defined as

Fswim,1 = ω∗

2π

∫ 2π

0

(
Fswim − Fswim,0

) · ω∗ dϕ. (48)

Insertion of the force densities and orientational integra-
tion demonstrates that Fswim,1 and Fsup,1 are identical up
to a sign,

Fswim,1 = ω∗

2π
γ sπρ2 + ω∗

2π
γ sπ

(ρ1

2
− ρ2

)
= γ sρ1

4
ω∗

= −Fsup,1. (49)
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The contribution corresponding to Fsup,2 (45) is the sec-
ond swim force density

Fswim,2 = êx
2π

∫ 2π

0
Fswim · êx dϕ, (50)

which is caused by the polarisation πρ1 of the inter-
face. Explicit integration of Equation (50) in ϕ using the
Fourier decomposition (4) leads to

Fswim,2 = γ sρ1
2

êx = −Fsup,2, (51)

which directly implies Pswim = −�2 up to an irrelevant
constant, such that

Fswim,2 = −∇Pswim. (52)

As an aside, note that all introduced swim correlators
Fswim,i can be combined to the full expression for Fswim;
hence Fswim = Fswim,0 + Fswim,1 + Fswim,2 holds. In case
of the superadiabatic correlators, there is no similar rela-
tion due to the thermal diffusion term−kBT∇ρ. Neglect-
ing of this ideal diffusion contribution in the correla-
tor expressions results in Fsup,0 + Fsup,1 + Fsup,2 = γ J −
γ sρω = Fint − kBT∇ρ as expected from Equation (19).

It is ‘natural’ for the superadiabatic pressure caused
by internal particle interactions to be independent of the
swim speed s. Similarly the swim pressure which orig-
inates from self-propulsion should not contain the for-
ward speed vf . Using the relations (51), (52) and (44) and
replacing vf via Equation (24) leads to the swim pressure

Pswim = γ s2

2Drot

1 − ρ0/ρjam

1 + ξ(ρ0)2ρ0/ρjam

(
ρ0 − ρ1

4
+ ρ2

2

)
.

(53)

In order to construct amathematically simple expression,
one could of course insert Equation (24) only once and
obtain the formula

Pswim = −�2 = γ svf
2Drot

(
ρ0 − ρ1

4
+ ρ2

2

)
. (54)

In the limit of a bulk state this Equation (54) simplifies to
the previously obtained swim pressure

Pswim,b = γ svbρb
2Drot

. (55)

This expression is equivalent to the result respectively
obtained in [17,21,26,32,62,63]. The swim pressure is a
central object in a variety of approaches [17,21,63–66].
For a detailed description of active bulk properties (see
Appendix 1).

The comparison between our swim pressure and
the swim pressure from literature holds more gener-
ally than only in bulk. The origin of the term ρ1 in

Equation (54) is the non-spherical drag contribution,
which vanishes in the orientation-averaged case consid-
ered in [17,21,26,32,62,63]. Therefore, the contribution
ρ1 to the swim pressure could not be described in the
above references. Furthermore, the nematic contribu-
tions to the one-body density ρ2 were neglected.

To calculate the pressures via Equations (44) and (54),
the second density coefficient ρ2 was neglected. This was
done for consistency with the truncated recursion rela-
tion for the density coefficients. In general, Pswim has a
large contribution in the gas where the purely repulsive
particles can swim more or less unimpeded. The swim
pressure decreases with increasing density and a stronger
effect of interparticle interactions from this high value
in the gas to a low amplitude in the liquid phase. The
behaviour of �2 is analogous but with opposite sign.

Summarising, the corresponding force densities
oppose and cancel each other, as Pswim (54) and �2 (44)
are identical expressions (up to a minus sign). Thus, the
superadiabatic pressure �2 is balanced with the swim
pressure Pswim, due to the relationship

Pswim + �2 = 0, (56)

so these partial pressures do not contribute to the total
pressure. The identity (56) might be surprising at first
glance. However, it justifies a posteriori the chosen split-
ting (12) of the superadiabatic force density Fsup. To
generate stable phase coexistence all pressure terms have
to sumup to a constant value. Furthermore, the sumof all
chemical potential contributions has to add up to a con-
stant. Due to Equation (56), we conclude that neither the
swim pressure Pswim nor the corresponding swim chemi-
cal potentialμswim do contribute to the phase coexistence
condition. This is in striking contrast to the findings of
current literature [17,21,23], where Pswim or μswim are
claimed to induce MIPS.

2.7. Construction of the phase diagram

So far we have developed analytical expressions for the
one-body density and the current distribution which
solve approximately the force density balance (10) of the
active system. In principle, the expressions can be gener-
alised using the full recursion relation and then satisfy the
force density equation exactly. However, there is as yet no
condition that would determine the coexisting densities
or the width of the interface, as is required for fully spec-
ifying the hyperbolic tangent form (34). To resolve this
situation, we use Equation (18) which was split off and
not studied in detail so far. For simplicity, the force den-
sity balance (18) is rewritten as a force balance and hence
both its sides are divided by the one-body density field ρ,
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which yields

fsup,3 − kBT∇ ln ρ + fad = 0. (57)

Here fad = Fad/ρ and fsup,3 = Fsup,3/ρ denote the adi-
abatic and third superadiabatic force fields, respec-
tively, and the thermal diffusion term was rewritten as
−kBT(∇ρ)/ρ = −kBT∇ ln ρ. We approximate the ideal
diffusive contribution as being independent of orienta-
tion and thus replace density ρ via the orientationally
averaged density ρ0, so −kBT∇ ln ρ ≈ −kBT∇ ln ρ0 [1].
Therefore Equation (57) becomes

fsup,3 − kBT∇ ln ρ0 + fad = 0. (58)

Since the ideal contribution is negligibly small (its mag-
nitude is about one order smaller than that of other terms
[1]) and the gradient of ρ is mainly influenced by the first
Fourier coefficient ρ0, this is a good approximation. In
the reduced force balance (58), the dependence on ori-
entation of the superadiabatic force fields simplifies, as
we will see below. However, the approximation can be in
principle avoided and the balance (58) directly obtained
when additional superadiabatic force densities are taken
into account (cf. Appendix 3).

The approximated ideal chemical potential corre-
sponding to the thermal diffusion term in (58) is

μid = kBT ln ρ0, (59)

up to an irrelevant constant.
Recall that the adiabatic force density contribution is

determined via the density functional Equation (14), or
equivalently, expressed as a force field,

fad = −∇ δFexc[ρ0]
δρ0

. (60)

In the considered adiabatic reference system of spherical
swimmers, the excess free energy functional Fexc[ρ0] is
independent of orientation. Thus the adiabatic force field
fad is a gradient expression independent of ϕ. The force
field can be expressed as

fad = −∇μad, (61)

where μad = δFexc[ρ0]/δρ0 denotes the adiabatic excess
chemical potential. Since we base our local density
approximation on scaled particle theory, μad(x) is given
as [67]

μad = kBT
[
− ln(1 − η′) + η′ 3 − 2η′

(1 − η′)2

]
, (62)

where η′(x) = cη is a rescaled packing fraction η =
ρ0/ρjam to approximately model the soft interparticle

interaction potential and the possibility of the spheri-
cal swimmers to penetrate each other to some extent.
The rescaling with factor c ≤ 1 is necessary, because
the scaled particle theory assumes hard particles and
allows to model various repulsive interparticle interac-
tions. Alternatively, η′ = ρ0/ρ∞ can be interpreted as
a packing fraction with higher jamming density ρ∞ =
ρjam/c > ρjam.

Since both the adiabatic force and the thermal diffu-
sive contribution are gradient expressions and because
of the chosen approximation independent of orientation,
the superadiabatic force fsup,3 has to be a gradient field
and independent of ϕ too, in order to satisfy the force
balance (58). Hence fsup,3 can be written in the form

fsup,3 = −∇ν3, (63)

where ν3(x) is a superadiabatic chemical potential, which
is referred to as quiet life chemical potential [1]. The cor-
responding kinematic functional is chosen with a struc-
ture that is similar to that of the superadiabatic pressure
�2 (cf. the quadratic dependence on speed and the linear
dependence on density in the first term of ν3). Further-
more the quiet life potential has to balance the adiabatic
chemical potentialμad (up to the small ideal contribution
kBT ln ρ0). We have chosen a simple and plausible form
of ν3 and postulate this approximative relation to be [1]

ν3 = γ

2Drot

[
e1v2loc

ρ0

ρjam

+ e2
ρ2
jam

∇ · v2loc(
1 − ρ0/ρjam

)2∇ρ0

]
, (64)

where e1 and e2 are dimensionless constants. The local
speed vloc is defined as

vloc = vf
[
1 + ξ(∇ρ0)

2ρ0/ρjam
]
. (65)

Keeping in mind that fsup,3 is a kinematic functional and
therefore should be intrinsically independent of swim
speed s, vloc(x) (65) can be rewritten using Equation (24)
in the simple form

vloc = s
(
1 − ρ0

ρjam

)
. (66)

Thus Equation (64) can be expressed as

ν3 = s2γ
2Drot

[
e1

(
1 − ρ0

ρjam

)2
ρ0

ρjam
+ e2

ρ2
jam

∇2ρ0

]
.

(67)

Considering the structure of (64) and (67) inmore detail,
ν3 consists of two contributions. The first term, a bulk
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contribution, will be relevant to determine the coexis-
tence densities and has the same density and velocity
dependence as has �2. The factor e1 scales the magni-
tude of this term. The remaining second term in (64) is an
interfacial contribution, which vanishes in the bulk due
to the absence of a gradient of ρ0. It can be used to deter-
mine the width of the interface as is shown below. The
magnitude of this interfacial contribution is scaled by e2.
Although it would be desirable to derive the values e1 and
e2 from first principles, these were obtained in Ref. [1] by
comparison to simulation data.

The value of the combined chemical potential μid +
μad increases from a negative value, generated by the
ideal contribution, in the gas to a large positive value,
primarily generated by the adiabatic contribution, in the
liquid. As expected this chemical potential leads to a force
towards the dilute phase and supports mixing of both
phases.

The quiet life potential ν3 is high in the gas and low,
approximately zero, in the liquid, since the corresponding
superadiabatic force opposes both the adiabatic and ideal
contribution. Therefore, the term ν3 would induce phase
separation. The name quiet life was inspired from the
observation that particles ‘prefer’ the slow liquid phase
(although there is more interparticle repulsion). Consid-
ering Equation (64), this effect is caused by the quadratic
dependence on speed. The speed is low in the liquid and
high in the gas. Therefore, slow regions with small par-
ticle velocity are favoured, which we call the quiet life
effect.

All three chemical potentials should add up to a
constant value ν3 + μad + μid = const, if the force bal-
ance (58) is satisfied. Within our approximations, this is
indeed the case to a very satisfactory degree, see Figure 5
in Ref. [1].

We are now in a position to introduce the total chemi-
cal potential μtot, given as the sum of all chemical poten-
tials of the system,

μtot = μid + μad + ν3, (68)

and the total pressure,

Ptot = Pid + Pad + �3, (69)

which is hence composed of the ideal pressure Pid, the
adiabatic pressure Pad and the quiet life pressure �3.

For stable phase coexistence to occur both the total
chemical potentialμtot and the total pressure Ptot have to
be constant. These conditions, when applied to the two
bulk phases, allow to determine coexistence densities by
requiring

μtot(ρg) = μtot(ρl), (70)

Ptot(ρg) = Ptot(ρl), (71)

and solving for ρg and ρl. Recall the definition of the
coexistence densities ρg and ρl below Equation (3). Since
the interfacial contributions do not contribute in Equa-
tions (70) and (71), we only need to consider bulk terms,
evaluated at a bulk density ρb = ρg or ρl. In case of
ν3(ρb), the second contribution in (64) vanishes and the
local speed simplifies to the bulk speed vb (37), so

ν3(ρb) = e1γ
2Drot

v2b
ρb

ρjam
. (72)

Insertion of all contributions into Equation (68) leads to

μtot(ρb) = kBT ln η′
b − kBT ln(1 − η′

b)

+ ckBT
ρb

ρjam

3 − 2η′
b

(1 − η′
b)

2 + e1γ
Drot

v2b
ρb

ρjam
. (73)

where we have used η′
b = cρb/ρjam. There are no further

contributions from the corresponding chemical poten-
tials of �2 and Pswim, since both terms cancel each other
up to an irrelevant offset.

The total pressure can be determined from the total
chemical potential by integrating in ρb the Gibbs–
Duhem equation

∂Ptot
∂ρb

= ρb
∂μtot

∂ρb
, (74)

which holds by construction. Again the swim pressure
Pswim does not contribute to the total pressure since it is
cancelled by the superadiabatic pressure�2. The remain-
ing contributions to the total pressure (69) are derived
by separately solving the Gibbs–Duhem equation (74)
for the ideal (A9), adiabatic (A11) or superadiabatic (72)
bulk chemical potential. One finds [1]

Pid(ρb) = kBTρb, (75)

Pad(ρb) = kBTρb

[
1

(1 − η′
b)

2 − 1
]
, (76)

�3(ρb) = e1γ
4Drot

v2b
ρ2
b

ρjam

[
1 + ρb

(
3ρb − 4ρjam

)
6(ρb − ρjam)2

]
.

(77)

Having expressions for the total pressure and the total
chemical potential, Equations (70) and (71) can be solved
numerically for the bulk densities ρg and ρl at coexis-
tence. The results for the densities as a function of the
Péclet number Pe constitute the theoretical phase dia-
gram for MIPS. The dimensionless Péclet number relates
the strength of active swimming against that of diffusion,

Pe = sγ σ

kBT
= 3s

σDrot
. (78)

Therefore, Pemeasures the scaled activity of the particles.
The coexistence densities for different values of Pe form
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the binodal. One finds that the density of the active gas
has even for rather high values of Pe a significant value
well removed from zero density. This is in contrast to
typical equilibrium gas–liquid phase diagrams where ρg
approaches very dilute densities with increasing inverse
temperature.

The spinodal is set via the densities that satisfy
the condition ∂μtot(ρb)/∂ρb = 0 and shows surprisingly
high values of density for the gaseous branch in compar-
ison to the behaviour in equilibrium. These properties
for the binoal and spinodal have also been observed in
simulations [23,51].

The critical point determines the onset of phase sep-
aration and it is given when both the first and second
derivative of the total chemical potential vanish. Hence
∂μtot(ρb)/∂ρb = 0 as for the spinodal and additionally
∂2μtot(ρb)/∂ρ

2
b = 0. These conditions lead to a fourth

order polynomial which is derived explicitly in Appendix
4. The relevant zero of this polynomial can be obtained
numerically, see Figure 2 in [1] for the result. For a sim-
ulation study of the critical behaviour of active Brownian
particles see [68,69].

Note that in our derivation of the phase diagram no
interfacial contributions were necessary. Recall that the
total pressure and the total chemical potential have to be
constant not only in bulk but also at the interface for a
stable interface to exist and therefore a stable phase sepa-
ration to occur [1]. Since the conditions for the total pres-
sure and chemical potential are related via Equation (74)
a perfectly constant chemical potential would imply a
constant pressure. In bulk this stability condition is sat-
isfied by the choice of the coexistence densities. At the
interface, the fulfilment of this relation can be controlled
via the amplitude of the interfacial term in ν3. Its magni-
tude is proportional to e2/λ2 due to the second derivative
of ρ0 with respect to x. Therefore, the amplitude can be
fitted such that μtot is as constant as possible and from
this amplitude can be derived the interfacial width λ for
a fixed value of e2.

3. Conclusions and outlook

We have given a full account of the theoretical descrip-
tion developed in Refs. [1,2] for phase separating active
Brownian particles. The underlying formal framework
of Krinninger et al. [3,4] was complemented by con-
crete and physically plausible kinematic force approx-
imations. It was shown that the positional and ori-
entationally resolved force density balance splits into
two distinct contributions. The first contribution (17)
(using (19)) contains the friction term, self-propulsion,
spherical and non-spherical drag force densities as well as
the superadiabatic pressure gradient. This contribution

was used togetherwith the continuity equation to derive a
recursion relation for the one-body density Fourier coef-
ficients. The second contribution (18) to the force density
balance contains the adiabatic term, the ideal gas contri-
bution and the quiet life term.Wehave shown that it is the
second contribution that determines phase coexistence.
The bulk densities at coexistence were calculated and the
interfacial width follows from matching the magnitude
of the quiet life force with the magnitude of the adiabatic
and ideal forces.

The active gas–liquid binodal is determined start-
ing from a chemical potential and a pressure using the
Maxwell construction similar to [18,23]. In Refs. [21,23],
it is a common conclusion for high particle activity
that the phase coexistence cannot be determined from
Maxwell construction. The authors of [23,32] argue that
interfacial contributions have to be taken into account
due to the anisotropy of the system [23]. In contrast to
this conclusion, we find that the phase diagram obtained
by the equal area construction matches the simulation
data to a very satisfying degree. Due to Equation (56),
the superadiabatic and the swim pressure, arising from
the interfacial particle polarisation, cancel each other
pointwise across the interface. Hence these two pressure
contributions and similarly the corresponding chemical
potential contributions do not contribute to the stabil-
ity conditions [1]. We assumed that the total pressure
and chemical potentials are constant across the inter-
face. This is indeed satisfied to a very good degree, see
Figure 5 in Ref. [1] for a graphical representation. Fur-
thermore, the polarisation is found to be a state function
in this system [35], so bulk quantities alone determine
the total polarisation at the interface. Therefore, we con-
clude that a coupling from the interface to the bulk due
to the occurring particle polarisation is not necessary for
the description. This is the same situation as in equilib-
rium. Furthermore, our approximate expression for the
polarisation, in the form (31) or (33), satisfies the exact
polarisation sum rule of Ref. [35]. The normal and tan-
gential components of the pressure tensor vary differently
across the interface and the integral over the difference
constitutes the interfacial tension, which is found to be
positive, see Ref. [2].

The stable nonequilibrium phase coexistence origi-
nates from repulsive forces: the quiet life force com-
presses the liquid and the ideal and adiabatic force
expands the liquid and therefore compress the gaseous
phase. It would be interesting to investigate further the
relationship with the theory of Farage et al. [24] and
whether the obtained repulsion can be reinterpretated as
an effective attractive interparticle force.

The swim pressure which arises due to the parti-
cle polarisation at the interface is proportional to the
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orientation-averaged density, as well as to the swim speed
and to the density-dependent particle speed. In Refs.
[18,21], the pressure is claimed to be important for the
formation of phase separation. We have shown that the
swim pressure does not contribute to coexistence, since
this term cancels exactly with the (second) superadia-
batic pressure. The superadiabatic pressure arises from
the corresponding superadiabatic force density, which
was introduced to satisfy the first contribution of the
force density balance.

To summarise, the considered system can now be
investigated with standard Maxwell phase coexistence
tools. Despite its simple form, the developed theory cap-
tures all important observed physical phenomena such
as the phase separation and the surprisingly high density
of the gas phase. Considering the necessary approxima-
tions, as e.g. a local density approximation and mean-
field theory, and the very small number of five fit param-
eters (three for the bulk and two more for the interfa-
cial description) the agreement with Brownian dynamics
simulations is very satisfying, in particular for the phase
diagram [1].

Our treatment works on the level of both fully
orientation- and position-resolved one-body fields.
Hence the influence of external torques on the particles
lies within the realm of our treatment forming possible
future work. It would be worthwhile to extend the the-
ory from two to three spatial dimensions [20,70], see
Refs. [71,72] for recent studies, in particular of freez-
ing. In three dimensions, the particle orientation varies
on a unit sphere (not a unit circle). Therefore, the
Fourier expansion of the density and the current (4)–(6)
becomes an expansion in spherical harmonics which
makes calculations more involved. It might be interest-
ing to extend the framework to nonlocal contributions
and to include memory [43,73], possible aided by the
nonequilibrium Ornstein-Zernike relations [74,75] and
the Noether theorem for statistical physics [76]. Fur-
thermore, it would be fruitful to investigate sedimenta-
tion [52], active-passive mixtures [77–81], dipolar active
Brownian particles [82,83], and curved interfacial shapes
[84]. It would be highly interesting to extend the theory
to Lennard–Jones interactions, where very different phe-
nomena (from MIPS in purely repulsive particles) were
reported [57,77,85,86]. This can be useful to examine the
applicability and generality of the developed concepts.

Future applications of our framework could well be
motivated by the study of confined systems, such a
freezing of water inside of pore structures [87–89] and
capillary condensation [90,91], that Findenegg and his
coworkers pioneered. Given the experimental control of
colloidal particles that e.g. nudging with light [92–96]
and topological transport by magnetic fields [97,98]

allows, thinking into such directions seems both reason-
able and exciting.
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Appendix 1. Active Brownian bulk fluids

The density distribution in bulk is homogeneous, thus
ρ(x,ϕ) = ρb = const is independent of position x and orien-
tation ω. The speed is constant and it is assumed to decrease
linear in density

vb = s
(
1 − ρb

ρjam

)
(A1)

in accordance with simulations and literature [15,21,51,59]. In
the low-density limit, this behaviour can be derived by consid-
ering the particle collisions, cf. Ref. [51]. The absolute value of
the current is Jb = ρbvb. The direction of the current is along
to the particle orientation ω since the (averaged) interparticle
interactions are the same from all directions and hence have
no influence on the one-body current. The vectorial current is
given as

Jb = ρbvbω = sρb
(
1 − ρb

ρjam

)
ω. (A2)

The force density balance (10) simplifies in bulk to

γ Jb = Fsup,b + sγρbω, (A3)

where the ideal diffusive term and the adiabatic force density
vanish since both contain a spatial derivative. The supera-
diabatic bulk force density follows from inserting (A2) in
Equation (A3) as

Fsup,b = −sγ
ρ2
b

ρjam
ω = −γ

ρb

ρjam − ρb
Jb. (A4)

In the second step, this force density was rewritten to emphasise
the connection to the spherical drag contribution Fsup,0 (15).
Since all other superadiabatic force densities (determined in
Section 2) vanish in bulk, it is logical that only Fsup,0 con-
tributes to Fsup,b. Furthermore the correlator expressions are
exact in bulk, because the ideal diffusion contribution van-
ishes due to the constant density distribution ρb. Note that as
Fsup,b (15) simplifies in bulk to (A4) the forward speed (24)
and the current (5), (6) also reduce to the above-derived rela-
tions (A1), (A2) in the bulk limit.

Although the adiabatic force density Fad and the superadia-
batic contributions Fsup,n for n = 1, 2, 3 vanish in bulk fluids,
the corresponding pressures and chemical potentials are in gen-
eral different from zero. The superadiabatic pressure �2 (44)
reduces to

�2(ρb) = − γ v2b
2Drot

1
1 − ρb/ρjam

ρb

= − γ s2

2Drot
ρb

(
1 − ρb/ρjam

)
(A5)

in the limit of a bulk fluid. For the swim contributions applies
�2(ρb) = −Pswim(ρb) as before and hence

Pswim(ρb) = γ s2

2Drot
ρb

(
1 − ρb/ρjam

) = γ

2Drot
svbρb. (A6)
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The determined bulk swim pressure is linear in density ρb, lin-
ear in the swim speed s and linear in the density-dependent
bulk speed vb(ρb) and thus equal to the pressure obtained in
the literature [17,21,26,32,62,63]. The corresponding chemical
potential can be determined using the Gibbs–Duhem equation
∂�2/∂ρb = ρb∂ν2/∂ρb. The result is

ν2(ρb) = −μswim(ρb) = γ s2

2Drot

(
2ρb
ρjam

− ln ρb

)
. (A7)

In the derivation of the phase coexistence conditions (see
Section 2.7), we have already obtained the bulk contributions
for the ideal, the adiabatic and the quiet life term. For complete-
ness, the relations are rewritten in the following.

The ideal contribution contains the ideal pressure (75) and
the ideal chemical potential (59),

Pid(ρb) = kBTρb, (A8)

μid(ρb) = kBT ln ρb. (A9)

The adiabatic terms, the adiabatic pressure (76) and adiabatic
chemical potential (62), are in scaled particle theory given as

Pad(ρb) = kBTρb

[
1

(1 − cρb/ρjam)2
− 1

]
, (A10)

μad(ρb) = kBT
[

− ln
(
1 − c

ρb

ρjam

)

+ c
ρb

ρjam

3 − 2c ρb/ρjam

(1 − c ρb/ρjam)2

]
. (A11)

The quiet life pressure (77) and the quiet life chemical poten-
tial (72) were found as

�3(ρb) = e1γ s2

4Drot

ρ2
b

ρjam

(
1− ρb

ρjam

)2
[
1+ ρb

(
3ρb − 4ρjam

)
6(ρb − ρjam)2

]

= e1γ
4Drot

v2b
ρ2
b

ρjam

[
1 + ρb

(
3ρb − 4ρjam

)
6(ρb − ρjam)2

]
, (A12)

ν3(ρb) = e1γ s2

Drot

ρb

ρjam

(
1 − ρb

ρjam

)2
= e1γ

Drot
v2b

ρb

ρjam
. (A13)

Appendix 2. Derivation of the recursion relation
for the y-component of the current

The derivation of expressions for the y-component current
Fourier coefficients is analogous to the calculation for x-
components (cf. Section 2.3). The starting point is the y-
component of the force density balance (10)

γ Jy = γ sρ sinϕ + Fyint. (A14)

Expressing the internal force density via Equation (19) and
inserting the assumed, approximative relations for the drag
force densities Fysup,0 (15) and Fysup,1 (16) yields

γ Jy = γ sρ sinϕ − γ
ρ0

ρjam − ρ0

[
1 + ξ(∇ρ0)

2] Jy
− γ s

ρ1

4
sinϕ + Fysup,2. (A15)

Performing a the Fourier decomposition of the density and the
current using Equations (4) and (6) leads to

γ

∞∑
n=1

Jyn sin(nϕ)

= γ s
∞∑
n=0

ρn cos(nϕ) sinϕ − γ s
ρ1

4
sinϕ + Fysup,2

− γ
ρ0

ρjam − ρ0

[
1 + ξ(∇ρ0)

2] ∞∑
n=1

Jyn sin(nϕ). (A16)

The self-propulsion contribution (first term on the right hand
side) can be expressed as

γ s
∞∑
n=0

ρn cos(nϕ) sinϕ

=
∞∑
n=0

γ s
2

ρn

[
sin((n + 1)ϕ) − sin((n − 1)ϕ)

]

= γ s
2

[ ∞∑
n=1

ρn−1 sin(nϕ) −
∞∑

n=−1
ρn+1 sin(nϕ)

]

= γ s
2

[
ρ0

2
sinϕ +

∞∑
n=1

(ρn−1 − ρn+1) sin(nϕ)

]
, (A17)

using the trigonometric relation 2 cos(nϕ) sinϕ = sin((n +
1)ϕ) − sin((n − 1)ϕ). Insertion of the relation (A17) and
rewriting Equation (A16) in orders of sin(nϕ) gives

Fysup,2 = −γ s
(ρ0

2
+ ρ1

4

)
sinϕ

+ γ

∞∑
n=1

[
Jyn

s
vf

− s
2

(ρn−1 − ρn+1)

]
sin(nϕ). (A18)

Since the terms sin(nϕ) with different values of n are inde-
pendent of each other, it is required for the corresponding
prefactors to vanish in order to satisfy the equation. For n> 1,
this requirement corresponds to

Jyn = vf
2

(ρn−1 − ρn+1) , (A19)

obtained from setting the square brackets in Equation (A18)
equal to zero. In case of n = 1 an additional term has to be
taken into account. As in the x-component it is caused by the
first superadiabatic force density Fysup,1 and a sum boundary
term of the self-propulsion. This leads to

Jy1 = vf
(
ρ0 + ρ1

4
− ρ2

2

)
. (A20)

Except for Fysup,2 there are no further contributions indepen-
dent of ω, so we conclude

Fysup,2 = 0. (A21)

The determined relations for the nth Fourier coefficient of the
current Jy (A19), (A20) are structurally similar to those for
the x-component Jx (25), (25). They differ only in sign of the
highest density distribution ρn+1 or for n = 1 in sign of ρ1
and ρ2.



MOLECULAR PHYSICS 19

Using the same truncation for the current components as
for the density in Section 2.4, i.e. neglecting the highest order
in density ρn+1, yields

Jxn ≈ vf
ρn−1

2
, (A22)

Jx1 ≈ vf
(
ρ0 − ρ1

4

)
, (A23)

Jyn ≈ vf
ρn−1

2
, (A24)

Jy1 ≈ vf
(
ρ0 + ρ1

4

)
. (A25)

One can clearly see that within this approximation Jxn = Jyn for
n> 1.

Appendix 3. Superadiabatic force densities
Fsup,4 and Fsup,5
The correlators introduced in Section 2.5 agree with the
approximated kinematic functionals only up to the thermal dif-
fusion term. This restriction can be avoided if one introduces
two additional superadiabatic force densities Fsup,4 and Fsup,5
as

Fsup,4 = kBT∇ρ, (A26)

Fsup,5 = kBT
ρ

ρ0
∇ρ0. (A27)

Note that correlators and kinematic functionals of these force
densities are as yet unknown. The terms are defined via the
contribution that they cancel analogous to Fsup,3, which was
introduced by (18) and later on specified as (63) and (64).

In the following, it is shown that the force density bal-
ance still holds and that the correlators agree with the kine-
matic functionals. The internal force density Fint = Fad + Fsup
is extended by the new contributions to

Fint = Fsup,0 + Fsup,1 + Fsup,2 + Fsup,3
+ Fsup,4 + Fsup,5 + Fad. (A28)

Inserting this relation in the force density balance (10) leads to

γ J = Fint − kBT∇ρ + sγρω

= Fsup,0 + Fsup,1 + Fsup,2 + Fsup,3
+ Fsup,4 + Fsup,5 + Fad − kBT∇ρ + sγρω

= Fsup,0 + Fsup,1 + Fsup,2 + Fsup,3
+ Fsup,5 + Fad + sγρω, (A29)

in which Equation (A26) was applied in the last step. Defining
the third superadiabatic force as in Equation (58) gives, rewrit-
ten as a force density balance and using (A27), the relation

0 = Fsup,3 − kBT
ρ

ρ0
∇ρ0 + Fad

= Fsup,3 + Fsup,5 + Fad. (A30)

Insertion of Equation (A30) in the force density balance (A29)
yields

γ J = Fsup,0 + Fsup,1 + Fsup,2 + Fsup,4 − kBT∇ρ + sγρω

= Fsup,0 + Fsup,1 + Fsup,2 + sγρω. (A31)

This balance is identical to Equation (17) with (19) as required.
That the approximative theoretical relations satisfy the corre-
lator expressions, the internal force density Fint in the correla-
tors (38), (39) and (45) has to be replaced by

F′
int = Fint − Fsup,4

= Fsup,0 + Fsup,1 + Fsup,2 + Fsup,3 + Fsup,5 + Fad
= Fsup,0 + Fsup,1 + Fsup,2. (A32)

In this case the new F′
int is equal to the previous internal

force density (19) when the thermal diffusion contribution is
neglected.

Appendix 4. Critical point

At the critical point, the first and second derivative of μtot (68)
with respect to ρ0 vanish, thus

∂μtot

∂ρb
= ∂μid

∂ρb
+ ∂μad

∂ρb
+ ∂ν3

∂ρb
= 0, (A33)

∂2μtot

∂ρ2
b

= ∂2μid

∂ρ2
b

+ ∂2μad

∂ρ2
b

+ ∂2ν3

∂ρ2
b

= 0. (A34)

First all occurring derivatives were evaluated using the relation
∂ηb/∂ρb = 1/ρjam, which yields

∂(μid + μad)

∂ρb
= kBT

ρjam

1 + cηb
ηb(1 − cηb)3

, (A35)

∂ν3

∂ρb
= kBT

ρjam

e1Pe2

6
(1 − ηb)(1 − 3ηb), (A36)

∂2(μid + μad)

∂ρ2
b

= kBT
ρ2
jam

3c2η20 + 4cηb − 1
η2b(1 − cηb)4

, (A37)

∂2ν3

∂ρ2
b

= kBT
ρ2
jam

e1Pe2

6
(6ηb − 4). (A38)

Equation (A33) can be rewritten inserting Equation (A35)
and (A36) as

e1Pe2

6
η0(1 − cηb)3 = − 1 + cηb

(1 − ηb)(1 − 3ηb)
(A39)

and Equation (A34) gives

e1Pe2

6
η0(1 − cηb)3 = − 3c2η2b + 4cηb − 1

ηb(1 − cηb)(6ηb − 4)
(A40)

using (A37) and (A38). Since both relations were reordered
such that they have the same contributions on left hand
side, on can equate Equations (A39) and (A40). From this
follows

(1 − cηb)(1 + cηb)(6ηb − 4)ηb

= (1 − ηb)(1 − 3ηb)(3c2η2b + 4cηb − 1) (A41)

and hence after multiplying out the fourth order polynomial

0 = −15c2η4b + (16c2 − 12c)η3b + (−3c2 − 16c + 9)η2b
+ (−4c − 8)ηb + 1. (A42)
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Due to the fundamental theorem of algebra this polynomial has
four zeros. The desired packing fraction ηb,crit can be identi-
fied via physical properties as ηb > 0 and comparison with the
phase diagram. An expression for the critical Péclet number
Pecrit can be determined from

Pe2crite1 = − 1 + cη0,crit
η0,crit(1 − cη0,crit)3(1 − η0,crit)(1 − 3η0,crit)

,

(A43)

which was derived by insertion of the critical packing fraction
ηb,crit in Equation (A41).
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