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Noether’s theorem in statistical mechanics
Sophie Hermann 1✉ & Matthias Schmidt 1✉

Noether’s calculus of invariant variations yields exact identities from functional symmetries.

The standard application to an action integral allows to identify conservation laws. Here we

rather consider generating functionals, such as the free energy and the power functional, for

equilibrium and driven many-body systems. Translational and rotational symmetry opera-

tions yield mechanical laws. These global identities express vanishing of total internal and

total external forces and torques. We show that functional differentiation then leads to

hierarchies of local sum rules that interrelate density correlators as well as static and time

direct correlation functions, including memory. For anisotropic particles, orbital and spin

motion become systematically coupled. The theory allows us to shed new light on the spatio-

temporal coupling of correlations in complex systems. As applications we consider active

Brownian particles, where the theory clarifies the role of interfacial forces in motility-induced

phase separation. For active sedimentation, the center-of-mass motion is constrained by an

internal Noether sum rule.
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Emmy Noether’s 1918 Theorems for Invariant Variation
Problems1,2, as applied to action functionals both in
particle-based and field-theoretic contexts, form a staple of

our fundamental description of nature. The formulation of energy
conservation in general relativity had been the then open and
vexing problem, that triggered Hilbert and Klein to draw Noether
into their circle, and she ultimately solved the problem3. Her deep
insights into the relationship of the emergence and validity of
conservation laws with the underlying local and global symme-
tries of the system has been exploited for over a century.

While Noether’s work has been motivated by the then ongoing
developments in general relativity, being a mathematician, she
has formulated her theory in a much broader setting than given
by the specific structure of the action as a space-time integral over
a Lagrangian density, as formulated by Hilbert in 1916 for Ein-
stein’s field equations. Her work rather applies to functionals of a
much more general nature, with only mild assumptions of ana-
lyticity and careful treatment of boundary conditions of inte-
gration domains.

In Statistical Physics, the use of Noether’s theorems is sig-
nificantly more scarce, as opposed to both classical mechanics
and high energy physics. Notable exceptions include the square-
gradient treatment of the free gas–liquid interface, cf. Rowlinson
and Widom’s enlightening description4 of van der Waals’ pro-
totypical solution5. In a striking analogy, the square gradient
contribution to the free energy is mapped onto kinetic energy of
an effective particle that traverses in time between two potential
energy maxima of equal height. Exploiting energy conservation in
the effective system yields a first integral, which constitutes a
nontrivial identity in the statistical problem. This reasoning has
been generalized to the delicate problem of the three-phase
contact line that occurs at a triple point of a fluid mixture6,7.
While these treatments strongly rely on the square-gradient
approximation, Boiteux and Kerins also developed a method that
they refer to as variation under extension, which permitted them
to treat more general cases8.

Evans has derived a number of exact sum rules for inhomo-
geneous fluids in his pivotal treatment of the field9. While not
spelling out any connection to Noether’s work, he carefully
examines the effects of spatial displacements on distribution
functions. This shifting enables him, as well as Lovett et al.10 and
Wertheim11 in earlier work, to identify systematically the effects
that result from the displacement and formulate these as highly
nontrivial interrelations (“sum rules”) between correlation func-
tions. This approach was subsequently generalized to higher than
two-body direct12 and density13 correlation functions and the
relationship to integral equation theory was addressed14,15.
Considering also rotations Tarazona and Evans16 have addressed
the case of anisotropic particles, where their sum rules correct
earlier results by Gubbins17. The exploitation of the fundamental
spatial symmetries9–16 appears to be intimately related to Noe-
ther’s thinking. This is no coincidence, as Evans’ classical density
functional approach (DFT) is variational as is the general pro-
blem that she addresses.

DFT constitutes a powerful modern framework for the
description of a broad range of interfacial, adsorption, solvation,
and phase phenomenology in complex systems9,18–20. Examples
of recent pivotal applications include the treatments of
hydrophobicity21–27 and of drying23,24,26, electrolytes near
surfaces28, dense fluid structuring as revealed in atomic force
microscopy29, thermal resistance of liquid–vapor interfaces30, and
layered freezing in confined colloids31. Xu and Rice31 have used
the sum rules of Lovett et al.10 and Wertheim11 (LMBW) to carry
out a bifurcation analysis of the confined fluid state. The sum
rules were instrumental for investigating a range of topics, such as
precursors to freezing32, nonideal33 and cluster crystals34, liquid

crystal deformations35, and –prominently– interfaces of
liquids36–40. A range of further techniques besides DFT was used
in this context, including integral equation theory32,36,39, mode-
coupling theory41, and Mori-Zwanzig equations33,35.

Much of very current attention in Statistical Physics is devoted
to nonequilibrium and active systems that are driven in a con-
trolled way out of equilibrium, such as e.g. active Brownian
particles42–44 and magnetically controlled topological transport of
colloids45–47. The power functional (variational) theory48 (PFT)
offers to obtain a unifying perspective on nonequilibrium pro-
blems such as the above. In PFT the (time-dependent) density
distribution is complemented by the (time-dependent) current
distribution as a further variational field. A rigorous extremal
principle determines the motion of the system, on the one-body
level of correlation functions. The concept enabled to obtain a
fundamental understanding and quantitative description of a
significant array of nonequilibrium phenomena, such as the
identification of superadiabatic forces49, the treatment of active
Brownian particles50–53, of viscous54, structural55,56 and flow
forces56. Crucially, the DFT remains relevant for the description
of nonequilibrium situations, via the adiabatic construction48,49,
which captures those parts of the dynamics that functionally
depend on the density distribution alone, and do so instanta-
neously. Both equilibrium DFT and nonequilibrium PFT provide
formally exact variational descriptions of their respective realm of
Statistical Physics. While action integrals feature in neither for-
mulation, the relevant functionals do fall into the general class of
functionals that Noether considered in her work.

Here we apply Noether’s theorem to Statistical Physics. We
first introduce the basic concepts via treating spatial translations
for both the partition sum and for the free energy density func-
tional. Considering the symmetries of the partition sum does not
require to engage with density functional concepts; the elemen-
tary definition suffices. We demonstrate that this approach is
consistent with the earlier work in equilibrium9–16, and that it
enables one to go, with relative ease, beyond the sum rules that
these authors formulated. In nonequilibrium, we apply the same
symmetry operations to the time-dependent case and obtain
novel exact and nontrivial identities that apply for driven and
active fluids. The three different types of time-dependent shifting
are illustrated in Fig. 1. The resulting sum rules are different from
the nonequilibrium Ornstein–Zernike (NOZ) relations57,58, but
they possess an equally fundamental status. We also consider the
more general case of anisotropic interparticle interactions and
treat rotational invariance both in and out of equilibrium. To
illustrate the theory we apply it to both passive and active phase
coexistence as well as to active sedimentation under gravity.

Results and discussion
Adiabatic state. We start with an initial illustration of Noether’s
concept as applied to the grand potential Ω. We consider spatial
translations of the position coordinate r at fixed chemical

Fig. 1 Illustration of the three types of dynamical transformations
considered. The system is spatially displaced by ϵ= const at all times
(green dashed), analogously to the operation in equilibrium. The system is
dynamically displaced by ϵðt0Þ, such that the spatial displacement vanishes
at the boundaries of the considered time interval, ϵ(0)= ϵ(t)= 0 (cyan
solid). The system is displaced instantaneously only at the latest time t,
such that the differential displacement is _ϵdt (purple dotted).
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potential μ and fixed temperature T. The system is under the
influence of a one-body external potential Vext(r), cf. Fig. 2a. We
take Vext(r) to also describe container walls, such that there is no
need for the system volume as a further thermodynamic variable.
For the moment we only examine systems completely bounded
by external walls. Systems with open boundaries are considered
below. Clearly the value of the grand potential Ω is independent
of the global location of a system. Hence spatial shifting by a
(global) displacement vector ϵ leaves the value of Ω invariant. To
exploit this symmetry in a variational setting, note that the value
of Ω depends on the function Vext(r), hence Vext(r)→Ω con-
stitutes a functional map, at given μ and T. Here the grand
potential is defined by its elementary Statistical Mechanics form
Ω½Vext� ¼ �kBTlnΞ, with the grand partition sum Ξ depending
functionally via the Boltzmann factor on Vext(r). The spatial
displacement amounts to the operation Vext(r)→Vext(r+ ϵ), cf.
Fig. 2b. For small ϵ we can Taylor expand to linear order: Vext(r+
ϵ)=Vext(r)+ δVext(r), where δVext(r)= ϵ ⋅ ∇Vext(r) indicates the
local change of the external potential that is induced by the shift.
As Ω[Vext] is invariant under the shift (which can be shown by
translating all particle coordinates in Ξ accordingly), we have

Ω½Vext� ¼ Ω½Vext þ δVext� ¼ Ω½Vext� þ
Z

dr
δΩ½Vext�
δVextðrÞ

ϵ � ∇VextðrÞ:

ð1Þ

Here the second equality constitutes a functional Taylor expansion
in δVext(r) to linear order, and δΩ[Vext]/δVext(r) indicates the
functional derivative of Ω[Vext] with respect to its argument,
evaluated here at the unshifted function Vext(r), i.e. ϵ= 0. It is a
straightforward elementary exercise9,18 to show via explicit cal-
culation that δΩ[Vext]/δVext(r)= ρ(r), where ρðrÞ ¼
h∑iδðr� riÞieq is the microscopically resolved one-body density
profile. Here ri indicates the position of particle i= 1…N, with N
being the total number of particles, δ(⋅) indicates the Dirac

distribution, and the average is over the equilibrium distribution at
fixed μ and T; the sum runs over all particles i= 1…N.

Comparing the left and right hand sides of (1) and noticing
that ϵ is arbitrary, we conclude

Ftotext ¼ �
Z

drρðrÞ∇VextðrÞ ¼ 0; ð2Þ

where we have defined the total external force Ftotext using the one-
body fields ρ(r) and Vext(r). It is straightforward to show the
equivalence with the more elementary form
Ftotext ¼ �h∑i∇iVextðriÞieq, where ∇i indicates the derivative with
respect to ri. Clearly, (2) expresses the vanishing of the total
external force (consider e.g. the gravitational weight of an
equilibrium colloidal sediment being balanced by the force that
the lower container wall exerts on the particles).

Equation (2) was previously obtained by Baus13. Here we have
identified it as a Noether sum rule for the case of spatial
displacement of Ω[Vext]. We can generate local sum rules by
observing that (2) holds for any form of Vext(r) and that hence
Vext(r)→ ρ(r) constitutes a functional map (defined by the grand
canonical average hρ̂ðrÞieq, which features Vext(r) in the
equilibrium many-body probability distribution). We hence
functionally differentiate (2) by Vextðr0Þ, where r0 is a new
position variable. The first and the nth functional derivatives
yield, respectively, the identities

∇ρðrÞ ¼ �
Z

dr0βH2ðr; r0Þ∇0Vextðr0Þ; ð3Þ

∑
n

α¼1
∇αHn ¼ �

Z
drnþ1βVextðrnþ1Þ∇nþ1Hnþ1; ð4Þ

where β= 1/(kBT), with kB indicating the Boltzmann constant,
H2ðr; r0Þ ¼ �δρðrÞ=δβVextðr0Þ is the two-body correlation func-
tion of density fluctuations, and Hn= δHn−1/δβVext(rn) is its n-
body version9,18. Here position arguments have been omitted for
clarity: Hn≡Hn(r1…rn), and ∇α indicates the derivative with
respect to rα. The variable names r and r0 have been interchanged
in (3) and ∇0 indicates the derivative with respect to r0. The
derivation of (3) and (4) requires spatial integration by parts.
Recall that boundary terms vanish as we only consider systems
with impenetrable bounding walls.

The sum rule (3) has been obtained by LMBW10,11 and by
Evans9 on the basis of shifting considerations. The present
formulation based on Noether’s more general perspective allows
to reproduce (3) with great ease and to generalize to the hierarchy
(4), as previously obtained by Baus13. Equation (3) has the
interpretation of the density gradient ∇ ρ(r) being stabilized by
the action of the external force field, −∇Vext(r). The effect is
mediated by βH2ðr; r0Þ, where the correlation of the density
fluctuations is due to the coupled nature of the interparticle
interactions. Equation (4) is the multi-body generalization of this
mechanism. Via multiplying (3) by Vext(r), integrating over r, and
using (2), and iteratively repeating this process for all orders, one
obtains a multi-body analog of the vanishing external force (2):Z

dr1Vextðr1Þ¼
Z

drnVextðrnÞ∇αHn ¼ 0; ð5Þ

for α= 1…n.
We turn to intrinsic contributions. As Noether’s theorem

poses no restriction on the type of physical functional, we
consider the intrinsic Helmholtz free energy F[ρ] as a
functional of the density profile as its natural argument. Here
a functional Legendre transform9,18 yields F[ρ]=Ω[Vext]
− ∫dr(Vext(r)− μ)ρ(r). Crucially, F[ρ] is independent of
Vext(r), and its excess (over ideal gas) contribution Fexc[ρ] is
specific to the form of the interparticle interaction potential u

Fig. 2 Illustrations of the effects induced by shifting in equilibrium. a In
the presence of external potential Vext(r), the system develops an
inhomogeneous density profile ρ(r), where r denotes the position
coordinate. b Shifting the external potential by a displacement vector −ϵ
(green arrow) induces a local change in external potential δVext(r) (black
arrow) between the original (solid line) and the shifted external potential
(dashed line); the grand potential is invariant, δΩ= 0. c The displaced
density profile (dashed line) implies a local change δρ(r) (black arrow) in
comparison to the initial density profile (solid line), which leaves the
intrinsic free energy unchanged, δF= 0.
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(rN); here we use the shorthand r1…rN ≡ rN. The full intrinsic
free energy functional consists of a sum of ideal gas and excess
contributions, i.e. F½ρ� ¼ kBT

R
drρðrÞ½ln ðρðrÞΛDÞ � 1� þ Fexc½ρ�,

where Λ is the (irrelevant) thermal de Broglie wavelength and D is
the dimensionality of space.

As u(rN) is globally translationally invariant, Fexc[ρ] will not
change its value when evaluated at a spatially displaced density, ρ
(r+ ϵ)= ρ(r)+ δρ(r), where δρ(r)= ϵ ⋅ ∇ ρ(r), cf. Fig. 2(c).
Hence in analogy to (1), we obtain Fexc[ρ]= Fexc[ρ+ δρ]=
Fexc[ρ]+ ∫dr(δFexc[ρ]/δρ(r))ϵ ⋅ ∇ ρ(r). Again ϵ is arbitrary. As
boundary terms vanish in the considered systems, integration by
parts yields

Ftotad ¼ �
Z

drρðrÞ∇δFexc½ρ�
δρðrÞ ¼

Z
drρðrÞfadðrÞ ¼ 0; ð6Þ

where the first equality expresses the total internal force Ftotad ¼
�h∑i∇iuðrN Þieq in DFT language. Hence (6) expresses the fact
that the total internal force vanishes in equilibrium; the more
general time-dependent case is treated below. The functional
derivatives of Fexc[ρ] constitute direct correlation functions9,18,59,
with the lowest order being the one-body direct correlation
function c1(r)=− δβFexc[ρ]/δρ(r). The equilibrium ("adiabatic”)
force field is simply fad(r)= kBT∇ c1(r). This one-body force field
arises from the interparticle forces that all other particles exert on
the particle that resides at position r.

From the global internal Noether sum rule (6), we can obtain
local sum rules by observing that (6) holds for all ρ(r) and hence
that its functional derivative with respect to ρ(r) vanishes
identically, i.e.,

∇c1ðrÞ ¼
Z

dr0c2ðr; r0Þ∇0ρðr0Þ; ð7Þ

∑
n

α¼1
∇αcn ¼ �

Z
drnþ1ρðrnþ1Þ∇nþ1cnþ1; ð8Þ

where c2ðr; r0Þ is the (inhomogeneous) two-body direct correla-
tion function of liquid state theory18; cn≡ cn(r1…rn) is the n-body
direct correlation function, defined recursively via cn+1= δcn/δρ
(rn+1). As identified by LMBW10,11 and Evans9, (7) expresses the
conversion of the density gradient, via the two-body direct
correlations, to the locally resolved intrinsic force field; recall that
fad(r)= kBT∇ c1(r). Via the Noether formalism the correspond-
ing hierarchy (8) is obtained straightforwardly from repeated
functional differentiation12–14 with respect to ρ(r). Note that
similar to the structure of (4), only consecutive terms of order n
and n+ 1 are directly coupled in (8). A multi-body version of (6)
is obtained by multiplying (7) with ρ(r), integrating over r,
exploiting (6), and iterating for all orders. The result is:Z

dr1ρðr1Þ¼
Z

drnρðrnÞ∇αcn ¼ 0; ð9Þ

for α= 1…n. In the case α= n= 1 we recover (6).
The global sum rule (6) of vanishing total internal force can be

straightforwardly obtained by more elementary analysis. We
exploit translation invariance in this non-functional setting:
u(rN)≡ u(r1+ ϵ…rN+ ϵ). Then the derivative with respect to ϵ
vanishes, 0= ∂u(r1+ ϵ…rN+ ϵ)/∂ϵ=∑i∇iu(rN). The latter
expression follows from the chain rule and constitutes the total
internal force (up to a minus sign), which hence vanishes for each
microstate rN. The connection to (the many-body version of)
Newton’s third law actio equals reactio becomes apparent in
the rewritten form−∇αu(rN)=∑i≠α∇iu(rN), for α= 1…N. The
thermal equilibrium average is then trivial and on average
Ftotad ¼ 0. This argument is very general and it remains true if
the average is taken over a nonequilibrium many-body

distribution function. The total internal force in such a general
situation is

Ftotint ¼ �h∑
i
∇iuðrN Þi ¼ 0; ð10Þ

where the average is taken over the nonequilibrium many-body
probability distribution at time t. We have hence proven that the
total internal force vanishes for all times t. In addition, the
particles can possess additional degrees of freedom ωi, i= 1…N,
as is the case for the orientation vectors of active Brownian
particles, to which we return after first laying out the setup in
nonequilibrium.

Nonequilibrium states. To be specific, we consider overdamped
Brownian motion, at constant temperature T and with no
hydrodynamic interactions present18, as described by the Smo-
luchowski (Fokker–Planck) equation. The microscopically
resolved local internal force field is fint(r, t)=− 〈∑iδ(r− ri)∇iu
(rN)〉/ρ(r, t), where the average is over the nonequilibrium dis-
tribution (which evolves in time according to the Smoluchowski
equation) at time t. The total internal force is then the spatial
integral Ftotint ¼

R
drρðr; tÞf intðr; tÞ. Applying Noether’s theorem to

the nonequilibrium case requires to have a variational descrip-
tion, as is provided by PFT48. Here the variational fields are the
time-dependent density profile ρ(r, t) and the time-dependence
one-body current J(r, t)= 〈∑iδ(r− ri)vi〉, where vi(rN, t) is the
configurational velocity of particle i. The microscopically resolved
average velocity profile is v(r, t)= J(r, t)/ρ(r, t). PFT ascertains the
splitting f intðr; tÞ ¼ fadðr; tÞ þ f supðr; tÞ, where the adiabatic force
field is that in a corresponding equilibrium (“adiabatic”) system
with identical instantaneous density profile, fad(r, t)=−∇
δFexc[ρ]/δρ(r, t) and f supðr; tÞ is the superadiabatic internal force
field, obtained as f supðr; tÞ ¼ �δPexc

t ½ρ; J�=δJðr; tÞ, where Pexc
t ½ρ; J�

is the superadiabatic excess free power functional48.
Crucially, fad(r, t) is a density functional, independent of the flow

in the system, while f supðr; tÞ is a kinematic functional, i.e. with
dependence on both ρ(r, t) and J(r, t), including memory, i.e.
dependence on the value of the fields at times < t. As the local force
fields split into adiabatic and superadiabatic contributions, so do the
total forces: Ftotint ¼

R
drρf int ¼

R
drρfad þ

R
drρf sup � Ftotad þ Ftotsup.

We have seen above that Ftotint ¼ Ftotad ¼ 0. Hence also

Ftotsup ¼ �
Z

drρðr; tÞδP
exc
t ½ρ; J�

δJðr; tÞ �
Z

drρf sup ¼ 0: ð11Þ

While the above reasoning required to rely on the many-body level,
the same result (11) can be straightforwardly obtained in a pure
Noetherian way, by considering an instantaneous shift of
coordinates at time t, i.e. Jðr; tÞ ! Jðr; tÞ � _ϵρðr; tÞ, cf. Fig. 3a
(Fig. 3 gives an overview of the three different types of shifting).
Here _ϵ is the corresponding instantaneous change in velocity with
vðr; tÞ ! vðr; tÞ � _ϵ, as obtained by dividing the current by the
density profile. Due to the overdamped nature of the Smoluchowski
dynamics, the internal interactions are unaffected and the shift
constitutes a symmetry operation for the generator of the
superadiabatic forces, Pexc

t ½ρ; J�. Hence the instantaneous current
perturbation δJðr; tÞ ¼ � _ϵρðr; tÞ that is generated by the invariance
transformation leads to Pexc

t ½ρ; J� ¼ Pexc
t ½ρ; Jþ δJ� ¼ Pexc

t ½ρ; J��R
drðδPexc

t ½ρ; J�=δJðr; tÞÞ � _ϵρðr; tÞ. As _ϵ is arbitrary, we obtain
(11). Treating the dynamical adiabatic contribution _F½ρ� ¼R
drJðr; tÞ � ∇δFexc½ρ�=δρðr; tÞ in the same way, we re-obtain (6).

As Noether’s theorem is converse, it allows for alternative
reasoning: the invariance of Pexc

t ½ρ; J� to the instantaneous shift of
the current (or analogously of the velocity) can hence be derived
from (11) by simply reversing the above chain of arguments.
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We can generate nonequilibrium sum rules by differentiating
the Noether identity (11) with respect to J(r, t), which yieldsZ

dr0M2ðr; r0; tÞρðr0; tÞ ¼ 0; ð12Þ

where M2ðr; r0; tÞ ¼ �βδ2Pexc
t ½ρ; J�=δJðr; tÞδJðr0; tÞ is the tensorial

two-body equal-time direct correlation function57,58. Its n-body
version is obtained from Mn+1(r1…rn+1, t)= δMn(r1…rn, t)/δJ(rn+1,
t), and it satisfies the hierarchyZ

drnþ1Mnþ1ρðrnþ1; tÞ ¼ 0; ð13Þ

as obtained by differentiating (12) repeatedly with respect to the
current.

Open boundaries. All our considerations have been based on
applying the symmetry operation to the entire system confined by
external walls. The effects of these system walls are modeled by a
suitable form of Vext(r). The position integrals formally run over
all space, with the cutoff provided by hard (or steeply rising)
external wall potentials. In many practical and relevant situations,
it is more useful to consider a system with open boundaries.
Alternatively one can consider only a subvolume V of the entire
system, and restrict the accounting of force contributions to those
particles that reside inside of V at a given time. In doing so, one
needs to take account of boundary effects60, as the boundaries of
V are open, such that interparticle forces can be transmitted, and
flow can occur.

In case that there are no net boundary contributions, all
previous derived sum rules still hold. This includes e.g. an
effectively one-dimensional system in planar geometry that
evolves to the same bulk state at the left and right boundaries
or if the boundary conditions are periodic. In both cases left and
right boundary terms are equal up to a minus sign and hence
cancel each other. This example can be generalized straightfor-
wardly to more complex geometries.

For nonvanishing net boundary terms additional contributions
arise in the above sum rules. These contributions occur if the

system develops different (bulk) states, e.g. for x→ ±∞ as is
relevant for bulk phase separation (see the section below). We
demonstrate that such cases can be systematically treated in the
current framework, by exemplary considering the total internal
force. Then boundary force contributions arise due to an
imbalance of “outside” particles that exert forces on “inside”
particles. The outside particles are per definition excluded from
the accounting of the total internal force exerted by all particles
inside of V. The sum of all interactions between inside particles
vanishes due to the global internal Noether sum rule (10). For
simplicity we restrict ourselves to systems that interact via short-
ranged pairwise central forces, where Fij indicates the force on
particle i exerted by particle j. So only forces exerted from an
inside to an outside particle contribute. The total internal force
that acts on V is hence Ftotint ¼ h∑0

ij Fiji, where the restricted sum
(prime) runs only over those i∈V and j 2 �V , where �V indicates
the complement of V. The total internal force between particles
inside of V, i.e. i∈V and j∈V, vanishes due to (10). We then
rewrite Ftotint via inserting the identity ∫drδ(r)= 1 twice into the
average. Then the restrictions of the sums can be transferred to
restrictions on the spatial integration domains. As a result the
total internal force acting on V can be expressed via correlation
functions as

Ftotint ¼
Z

V
dr
Z

�V
dr0h ∑

i;j≠i
δðr� riÞδðr0 � rjÞFiji ð14Þ

¼ �
Z

V
dr
Z

�V
dr0ρðrÞρðr0Þgðr; r0Þ∇ϕðjr� r0jÞ; ð15Þ

where ϕ(r) indicates the interparticle pair potential as a function
of interparticle distance r. In order to obtain the form (15) we
have identified the many-body definition of the radial distribution
function gðr; r0Þ ¼ h∑i;j≠iδðr� riÞδðr0 � rjÞi=ðρðrÞρðr0ÞÞ. Recall
that the pair distribution function g and the density-density
correlation function H2, as used in (3)–(5), are related via
H2ðr; r0Þ ¼ ðgðr; r0Þ � 1ÞρðrÞρðr0Þ þ δðr� r0ÞρðrÞ. Equation (15)
still holds for non-conservative interparticle forces, when
�∇ϕðjr� r0jÞ is replaced by the (nongradient) interparticle force
field. We demonstrate in the following section the practical
relevance of these considerations.

Phase coexistence. We turn to situations of phase coexistence. As
we demonstrate, considering a large, but finite subvolume V of
the entire system is useful but it also requires to take boundary
terms into account. Here we take V to be cuboidal and to contain
the free (planar) interface between two coexisting phases, see
Fig. 4a for a graphical illustration. The volume boundaries parallel
to the interface are taken to be seated deep inside either bulk
phase. The internal force contributions on those faces of V that
“cut through” the interface, i.e. have a normal that is perpendi-
cular to the interface normal, vanish by symmetry. It
remains to evaluate (15) over each of the two faces in the
respective bulk region. Therefore the position dependences
simplify to ρ(r)= ρb= const, where ρb indicates the bulk number
density, and the inhomogeneous pair distribution function sim-
plifies as gðr; r0Þ ¼ gðjr� r0jÞ. Furthermore only force contribu-
tions colinear with e, the outer interface normal of the considered
bulk phase b, contribute. For a single face in bulk phase b, it is
straightforward to show that the result is the virial pressure
multiplied by the interface area A, i.e. the force Apbint e, where the
internal interaction pressure pbint in phase b is e.g. given via the

Clausius virial18, pbint ¼ � π
2 ρ

2
b

Rr0
0
dr r2gðrÞ dϕdr in two spatial

Fig. 3 Illustrations of the effects induced by shifting in nonequilibrium.
All transformations affect both the density profile ρ(r, t) (blue) and the
current profile J(r, t) (yellow), while the superadiabatic excess power
functional is invariant, δPexct ¼ 0. Here t indicates the time and r is the
position coordinate. a An instantaneous spatial shift by _ϵ at time t induces a
current change δJ ¼ � _ϵρ. b A static shift by ϵ= const is applied at all times
t. c A time-dependent shift ϵðt0Þ is applied between initial time 0 and final
time t of the considered time interval.
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dimensions (the argument remains general). The constant r0
denotes the range of the interparticle interactions.

The total force density balance for equilibrium phase
separation contains thermal diffusion and the internal force
density, which cancel each other,

0 ¼ �kBT∇ρðrÞ þ ρðrÞf intðrÞ: ð16Þ

Integration over the volume V yields the total force which is
proportional to the pressure. Hence the total internal force Ftotint ¼R
Vdr ρf int on V, cf. (15), amounts to the pressure difference

ðpgint � plintÞAe, where e is the (unit vector) normal of the
interface, pointing from, say, the gas (index g) to the liquid phase
(index l). The total diffusive force is ðpgid � plidÞAe with the
pressure of the ideal gas pid= kBTρ, evaluated at the gas (ρg) and
liquid bulk density (ρl). As there are no external forces (Vext≡ 0)
then requesting the volume V to be forcefree amounts to
pgtot ¼ pltot, where the total pressure is the sum ptot= pid+ pint.
Hence the boundary consideration yields the mechanical
equilibrium condition of equality of pressure in the coexisting
phases.

We conclude that the internal interactions that occur across the
free interface do not influence the (bulk) balance of the pressure
at phase coexistence, as the net effect of these interactions
vanishes. At the heart of this argument lies Noether’s theorem for
invariance against spatial displacements.

Anisotropic particles. We turn to anisotropic interparticle
interactions, where ωi, ϖi are two perpendicular unit vectors that
describes the particle orientation in space. Such systems are
described by an interparticle interaction potential u(rN, ωN, ϖN),
which is assumed a priori to be invariant under spatial transla-
tions. Similarly one-body fields in general depend on position r
and orientations ω and ϖ of the particles, e.g. Vext(r, ω, ϖ) for the

external field. The fully resolved one-body density distribution is
ρ(r, ω, ϖ, t)= 〈∑iδ(r− ri)δ(ω− ωi)δ(ϖ− ϖi)〉.

It is straightforward to ascertain that all the above (force) sum
rules for translation remain valid, as the orientations are unaffected
by translations, upon trivially generalizing from position-only to
position-orientation integration, ∫dr→ ∫drdωdϖ etc.

In the following for simplicity of notation we first consider
uniaxial particles. Uniaxial particles depend only on one single
orientation ωi, as the particles are rotationally invariant around
this vector. Hence the ϖ-dependence of both the one- and many-
body quantities vanish and the total integral simplifies to ∫drdω.

Motility-induced phase separation. We use active Brownian
particles as an example for uniaxial particles. For simplicity we
consider spherical particles (discs) in two dimensions. The par-
ticles repel each other and they undergo self-propelled motion
along their orientation vector ω. Hence an additional one-body
force γsω acts on each swimmer, with γ the friction constant and s
the speed of free swimming. This self-propulsion creates char-
acteristic trajectories (see Fig. 4b for a schematic) which are also
affected by thermal diffusion (omitted in the schematic) of the
particle position ri and orientation ωi. Experimental realizations
of active Brownian particles include e.g. Janus colloids driven by
photon nudging61–65. If the density is high enough, motility-
induced phase separation (MIPS) into an active gas and active
liquid phase occurs for high enough values of the swim speed s, cf.
Fig. 4c.

The force density balance (see e.g. the work of Hermann
et al.52) of such a system in steady state (no time dependence) is

γJðr;ωÞ ¼ � kBT∇ρðr;ωÞ þ ρðr;ωÞf intðr;ωÞ þ γsρðr;ωÞω
þ ρðr;ωÞfextðr;ωÞ:

ð17Þ

The (negative) frictional force density on the left hand side is
balanced with the ideal gas contribution (first term), the
interparticle interactions (second term), the self-propulsion (third
term) and the external contribution (fourth term) on the right
hand side. As in case of the equilibrium phase separation we
integrate (17) over the volume V (see Fig. 4(a) for an illustration)
and over all orientations ω. In the following we discuss each term
separately. For simplicity we assume planar geometry of the
system and we assume a vanishing external force, fext(r, ω)= 0.
Here, the interaction contribution pintAe is obtained as above in
equilibrium via (15), but the virial is averaged over the
nonequilibrium steady state many-body probability distribution.
The integral over the current ∫drdωJ is assumed to vanish in
steady state.

The total swim force that acts on V contributes to the total
force. In the considered situation, the swim force is entirely due to
the polarization Mtot= ∫drdω ωρ of the free interface in MIPS.
Particles at the interface tend to align against the dense phase43 if
they interact purely repulsively (cf. Fig. 4(c)), and they align
against the dilute phase if interparticle attraction is present44. No
such spontaneous polarization occurs in bulk. The interface
polarization is a state function of the coexisting phases53 as
verified both experimentally66 and numerically67. The total swim
force that acts on V is ðpgswim � plswimÞAe, where
pbswim ¼ γsJb=ð2DrotÞ, with Jb the bulk current in the forward
direction ω and Drot indicating the rotational diffusion constant.
Apart from the ideal term no further forces act, cf. the force
density balance (17). The integral over the ideal term is similar to
the total equilibrium ideal contribution, ðpgid � plidÞAe. Combina-
tion of all results from integration yields the total force balance.

As the negative integral over the force density defines the
nonequilibrium pressure, the volume V being force free amounts
to pgtot ¼ pltot, where ptot ¼ pid þ pint þ pswim. Hermann et al.52

Fig. 4 Phase separation into macroscopically distinct phases.
a Illustration of the geometry of phase separation of passive or active
particles. Shown are the gaseous ρg and liquid ρl plateau values of the
density profile (indicated by the color gradient) and the direction vector
e normal to the interface. The total system volume V þ �V consists of the
subvolume V and its complement �V. b Illustration of an active Brownian
particle (blue disc) with position ri and orientation ωi undergoing
translational and rotational diffusion. The self propulsion along ωi creates
directed motion as indicated by the trajectory (magenta line). c Schematics
of motility-induced phase separation into active gas (left) and active liquid
phases (right). The arrows indicate the orientations ωi of the active
particles. The interface is polarized.
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demonstrate the splitting of pint into adiabatic and superadiabatic
contributions and present results for the phase diagram based on
approximate forms for the interparticle interaction contributions.
The pressure, especially its swim contribution is defined in
various different ways in the literature68–73.

We conclude that the internal interactions that occur across the
free interface do not influence the (bulk) balance of the pressure
at phase coexistence, as the net effect of these interactions
vanishes. In essence this argument follows from Noether’s
theorem for invariance against spatial displacements.

Active sedimentation. Sedimentation under the influence of
gravity is a ubiquitous phenomenon in soft matter that has
attracted considerable interest, e.g. for colloidal mixtures74–77 and
for active systems78–81. As sedimentation is a force driven phe-
nomenon the Noether sum rules apply directly, as we show in the
following.

We assume that the system is translationally invariant in the x-
direction and that an impenetrable wall at z= 0 acts as a lower
boundary of the system82 (cf. Fig. 5). We assume the wall-particle
interaction potential to be short-ranged. Its precise form is
irrelevant for the following considerations. The force density
balance for such a system is (17) with the external force field
chosen as

fextðr;ωÞ ¼ �mgez þ fwallðr;ωÞ; ð18Þ
where m denotes the mass of a particle, g is the gravitational
acceleration and ez indicates the unit vector in z-direction. Hence
the external force field fext consists of gravity and the wall
contribution fwall.

To proceed we integrate the force density balance over
all positions r in the volume V and over all orientations ω.
The total integral of the density distribution (per radiant) ∫drdωρ,
as appears in the gravitational term, gives the total number
of particles N. The integral over the total current ∫drdω J
is proportional to the center of mass velocity
vcmðtÞ ¼

R
drdω ρv=

R
drdω ρ ¼ 1

N

R
drdω J. Here vcm(t) is a

global quantity and hence it is independent of both position
and orientation. We first only consider steady states, so the
center of mass velocity vcm(t)= 0 and hence the total
current vanishes. The total thermal diffusion term vanishes
because ∫dr∇ ρ= ∂V dS ρ = 0 as there is no contribution of ρ
from the boundaries ∂V of the integration volume V. At the upper
and lower boundary the density is zero as it vanishes in the wall
and also for z→∞. The left and the right boundary contributions
cancel each other as the density is independent of x due to
translational invariance. The total internal interaction force
density vanishes, Ftotint ¼

R
drdω ρf int ¼ 0, using the global

internal Noether sum rule (10). The integrated swim force
density is proportional to the total polarization Mtot= ∫drdω ωρ.
This quantity vanishes, Mtot= 0, as there is no net flux through
the boundaries in steady state (see Eq. (10) by Hermann et al.53).
Combination of all integrals yields the relation

Ftotwall ¼
Z

drdω ρfwall ¼ mgNez: ð19Þ

Hence the z-component of the total force on the wall Ftot
wall is equal

to the total gravitational force acting on all particles (see Fig. 5 for
a graphical representation). Equation (19) of course also holds for
passive colloids (s= 0).

Keeping the translational invariance in the x-direction, we next
turn to time-dependent systems. Therefore all one-body field in
(17) additionally depend on the time t. Integration of the force
density balance (17) gives identical results for the thermal
diffusion, the internal force density and for the gravitational
contribution as in the above case of steady state. Even for the
time-dependent dynamics these integrals are independent of time
t. The total wall force density is given as Ftotwall ¼ Ftot

wallez and it only
acts along the unit vector in the z-direction ez, due to the
symmetry of the system. The integral of the self-propulsion term
is still proportional to the total polarization. However, the total
polarization does not vanish in general but decays exponentially
(see Eq. (21) by Hermann et al.53),

MtotðtÞ ¼ Mtotð0Þe�Drott; ð20Þ
where Mtot(0) indicates the initial polarization at time t= 0 and
the time constant 1/Drot is the inverse rotational diffusion
constant. Similarly, integration of the current still gives the (time-
dependent) center of mass velocity vcm(t).

Insertion of these results into the spatial and orientational
integration of (17) leads to the total friction force

γNvcmðtÞ ¼ sγMtotð0Þ e�Drott þ Ftot
wallðtÞ ez �mgNez; ð21Þ

which is hence a direct consequence of the Noether sum rule (10).
We find that the x-component of the center of mass velocity
decays simultaneously with the total polarization, cf. the first term
on the right hand side of (21). The z-component of vcm(t)
depends on Mtot(t) and additionally on the time-dependent total
force exerted by the wall and the total graviational force. Hence
measuring the total force on the wall (i.e. by weighing, cf. Fig. 5)
and knowledge of the total initial polarization and the total
particle number allows one to determine the center of mass
velocity. Note that in the limit of long times, t→∞, the total
polarization vanishes and this system evolves to a steady state.
Hence the center of mass velocity vanishes and (19) is recovered.
As we have demonstrated both statements (19) and (21)
ultimately follow from the global Noether identity (10).

Rotational invariance. We return to the general case and initially
consider spatial rotations in systems of spheres, i.e. systems where
u(rN) depends solely on (relative) particle positions, and where it
is invariant under global rotation of all rN around the origin. We
parameterize the rotation by a vector n. The direction of n
indicates the rotation axis and the modulus ∣n∣ is the angle of
rotation. To lowest nonvanishing order, the rotation amounts to
r→ r+ n × r. One-body functions change accordingly: the
external potential undergoes Vext(r)→Vext(r)+ δVext(r), with
δVext(r)= (n × r) ⋅ ∇Vext(r) and the density profile ρ(r)→ ρ(r)+
δρ(r) with δρ(r)= (n × r) ⋅ ∇ ρ(r). Much of the reasoning of the
above case of spatial displacement can be applied readily: Ω[Vext]
is invariant under the rotation, and δΩ= ∫dr(δΩ/δVext(r))
δVext(r)= ∫drρ(r)(n × r) ⋅ ∇Vext(r)= 0. As the rotation vector n
is arbitrary, we can conclude that the total external torque T tot

ext

Fig. 5 Illustration of sedimentation of active Brownian particles under
gravity g. The active particles with orientation ω (black arrows) are
confined by a lower wall and periodic boundary conditions on the sides
(dashed lines). The total force that the swimming particles exert on the
bottom wall (left scale pan) is equal to their weight (right scale pan) in
steady states of the system.
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vanishes in equilibrium13,

T tot
ext � �

Z
drρðrÞðr ´∇VextðrÞÞ ¼ 0: ð22Þ

As this holds true for any form of the applied Vext(r), we can
differentiate with respect to Vextðr0Þ, and obtain13

r ´∇ρðrÞ ¼ �
Z

dr0βH2ðr; r0Þðr0 ´∇0Vextðr0ÞÞ; ð23Þ

∑
n

α¼1
ðrα ´∇αHnÞ ¼ �

Z
drnþ1βVextðrnþ1Þðrnþ1 ´∇nþ1Hnþ1Þ:

ð24Þ
The excess free energy density functional Fexc[ρ] can be treated
accordingly. It is invariant under rotation, as its sole dependence
is on u(rN), which by assumption is rotationally invariant. Ana-
logous to this reasoning, we obtain the result that the total
interparticle adiabatic torque T tot

ad vanishes,

T tot
ad ¼

Z
drρðrÞðr ´ fadðrÞÞ ¼ 0: ð25Þ

Differentiation with respect to the independent field ρ(r) once
and n times yields the respective identities13,14:

r ´∇c1ðrÞ ¼
Z

dr0c2ðr; r0Þðr0 ´∇0ρðr0ÞÞ; ð26Þ

∑
n

α¼1
ðrα ´∇αcnÞ ¼ �

Z
drnþ1ρðrnþ1Þðrnþ1 ´∇nþ1cnþ1Þ: ð27Þ

The multi-body versions of the theorems of vanishing total
external (22) and adiabatic internal (25) torques are, respectively,Z

dr1Vextðr1Þ¼
Z

drnVextðrnÞðrα ´∇αHnÞ ¼ 0; ð28Þ

and Z
dr1ρðr1Þ¼

Z
drnρðrnÞðrα ´∇αcnÞ ¼ 0; ð29Þ

for α= 1…n. These identities are respectively derived from (23)
by multiplying with Vext(r), integrating over r and exploiting (22),
and from (26) by multiplying with ρ(r), integrating over r and
exploiting (25), and iteratively repeating for each order n.

On the many-body level, it is straightforward to see that the
total internal torque−∑i(ri ×∇iu(rN))= 0. Hence, as this
identity holds for each microstate, its general, nonequilibrium
average vanishes, T tot

int ¼ 0. The force field splitting f int ¼ fad þ
f sup induces corresponding additive structure for the internal total
torque: T tot

int ¼ T tot
ad þ T tot

sup, with the total superadiabatic (inter-

nal) torque T tot
sup ¼

R
drρðrÞ½r ´ f supðr; tÞ�. As T tot

int ¼ T tot
ad ¼ 0, we

conclude T tot
sup ¼ 0, ∀ t.

To apply Noether’s theorem to the power functional, we
consider an instantaneous rotation, with infinitesimal angular
velocity _n at time t. The effect is a change in current J→ J+ δJ
with δJ ¼ ð _n ´ rÞρðrÞ. Correspondingly, the velocity field acquires
an instantaneous global rotational contribution, according to
vðr; tÞ ! vðr; tÞ þ _n ´ r. The superadiabatic excess power func-
tional is invariant under this operation and hence Pexc

t ½ρ; J� ¼
Pexc
t ½ρ; Jþ δJ� ¼ Pexc

t ½ρ; J� þR
drðδPexc

t ½ρ; J�=δJðr; tÞÞ � ð _n ´ rÞρðr; tÞ.
As _n is arbitrary, we can conclude

T tot
sup ¼

Z
drρðr; tÞðr ´ f supðr; tÞÞ ¼ 0; 8t; ð30Þ

as is consistent with the result of the above many-body derivation.
As (30) holds for any (trial) J(r, t), the derivative of (30) with respect
to J(r, t) vanishes. Hence

Z
drρðr; tÞðr ´M2ðr; r0; tÞÞ ¼ 0; ð31Þ

where the cross product with a tensor is defined via contraction
with the Levi-Civita tensor. At nth order we obtain

Z
drnρðrn; tÞðrn ´MnÞ ¼ 0: ð32Þ

This identity and (31) express the vanishing of the total
superadiabatic torque, when resolved on the n-body level of (time
direct) correlation functions.

Orbital and spin coupling. The case of rotational symmetry of
uniaxial particles is clearly more complex, as both particle coor-
dinates and particle orientations are affected by a global (“rigid”)
operation on the entire system, i.e. both positions and orienta-
tions are rotated consistently. Noether’s theorem ensures though
that this operation is indeed the fundamental one, and that the
physically expected coupling of orbital and spinning effects will
naturally and systematically emerge. Here we use (common)
terminology for referring to spin as orientation vector rotation
(i.e. particle rotation around its center), as opposed to orbital
rotation (of position vector) around the origin of position space.
Hence all the above considered torques that already occur in
systems of spheres are of orbital nature. These of course remain
relevant for anisotropic particles, but the nontrivial orientational
behavior of the latter will generate additional spin torques. The
global rotation consists of an orbital part, r→ r+ n × r, and a
spin part, ω→ω+ n × ω; see Fig. 6 for a graphical
representation.

For anisotropic systems the external field naturally acquires
dependence on position r and orientation ω, i.e. Vext(r, ω), where
−∇Vext(r, ω) is the external force field as before, and
−ω ×∇ωVext(r, ω) is the external torque field, where ∇ω is the
derivative with respect to ω in orientation space. Hence the
induced change of external potential is δVext(r, ω)= (n × r) ⋅ ∇
Vext+ (n × ω) ⋅ ∇ωVext. This change leaves the grand potential Ω
[Vext] invariant, hence δΩ= ∫drdω(δΩ/δVext(r, ω))n ⋅ (r ×∇Vext

+ ω ×∇ωVext)= 0, from which we identify the rotational Noether
theorem for the total external torque of anisotropic particles:

T tot
ext ¼ �

Z
drdωρðr;ωÞðr ´∇Vext þ ω ´∇ωVextÞ ¼ 0: ð33Þ

Fig. 6 Illustration of the rotation operation of uniaxial particles. The
particles (rectangular shapes) at position r and with orientation ω are
shown in original (black) and rotated (blue) configuration, where n
indicates the rotation axis (direction) and angle (length).
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Differentiation with respect to Vext(r, ω) yields

r ´∇ρþ ω ´∇ωρ ¼ �
Z

dr0dω0βH2ðr;ω; r0;ω0Þðr0 ´∇0V 0
ext þ ω0

´∇0ωV 0
extÞ;

ð34Þ

∑
n

α¼1
ðrα ´∇αHn þ ωα ´∇

ω
αHnÞ

¼ �
Z

dr0dω0βV 0
extðr0 ´∇0Hnþ1 þ ω0 ´∇0ωHnþ1Þ;

ð35Þ

where we have used V 0
ext ¼ Vextðr0;ω0Þ as a shorthand,

H2ðr;ω; r0;ω0Þ ¼ �δρðr;ωÞ=δβVextðr0;ω0Þ is the density-density
correlation function, and its n-body version Hn=Hn(r1, ω1…rn,
ωn) with Hn+1= δHn/δβVext(rn+1, ωn+1); in (35) the prime refers
to the n+ 1th degrees of freedom. On all levels of n-body
correlation functions, the spin and orbital torques remain
coupled.

Turning to internal torques, the change of density upon global
rotation is δρ(r, ω)= n ⋅ (r ×∇ ρ+ ω ×∇ωρ) and the net effect on
the excess free energy is δFexc= ∫drdω(δFexc[ρ]/δρ(r, ω))n ⋅
(r ×∇ ρ+ ω ×∇ωρ)= 0. We hence obtain

T tot
ad ¼

Z
drdωρðr;ωÞðr ´ fad þ τadÞ ¼ 0; ð36Þ

where the adiabatic spin torque field is τad(r, ω)=
− ω ×∇ωδFexc[ρ]/δρ(r, ω). From differentiation with respect to
ρ(r, ω) we obtain

r ´ fad þ τad ¼
Z

dr0dω0c2ðr;ω; r0;ω0Þðr0 ´∇0ρ0 þ ω0 ´∇0ωρ0Þ;
ð37Þ

∑
n

α¼1
ðrα ´∇αcn þ ωα ´∇

ω
α cnÞ

¼ �
Z

dr0dω0ρ0ðr0 ´∇0cnþ1 þ ω0 ´∇0ωcnþ1Þ;
ð38Þ

where ρ0 ¼ ρðr0;ω0Þ. Multi-body versions of (33) and (36) read asZ
d1Vextð1Þ¼

Z
dnVextðnÞðrα ´∇α þ ωα ´∇

ω
α ÞHn ¼ 0 ð39Þ

and Z
d1ρð1Þ¼

Z
dnρðnÞðrα ´∇α þ ωα ´∇

ω
α Þcn ¼ 0: ð40Þ

Here we have used the shorthand notation 1≡ r1, ω1 etc., and the
derivation is analogous to the above rotational case of spherical
particles.

The two-body sum rules (34) and (37) are identical to those
obtained by Tarazona and Evans16 using rotational invariance
arguments applied directly to correlation functions. Our meth-
odology not only allows to naturally re-derive their results, but
also to identify the full gamut of adiabatic rotatational sum rules,
from the global statements (33) and (36) to the infinite
hierarchies (35) and (38) (we use notational convention different
from Tarazona and Evans16: our ∇ω is (only) a partial derivative
with respect to ω, i.e. ∇ω≡ ∂/∂ω, whereas their ∇ω≡ ω × ∂/∂ω.
The modulus is fixed, ∣ω∣= 1, in both versions. Tarazona and
Evans16 notate H2 as G in their (18) and (19)).

Again for each microstate ∑iðri ´∇iuþ ωi ´∇ω
i uÞ ¼ 0 and

hence on average T tot
int ¼ 0. From the splitting

T tot
int ¼ T tot

ad þ T tot
sup, we conclude T tot

sup ¼ 0. From rotational
invariance of Pexc

t ½ρ; J; Jω�, where Jω(r, ω, t) is the rotational
current50, against an instantaneous angular “kick” δJ ¼ ð _n ´ rÞρ

and δJω ¼ ð _n ´ωÞρ, we find

T tot
sup ¼ �

Z
drdωρðr;ω; tÞ r ´

δPexc
t

δJ
þ ω ´

δPexc
t

δJω

� �
¼ 0: ð41Þ

Local sum rules can be obtained straightforwardly by building
derivatives with respect to J(r, ω, t) and Jω(r, ω, t). The result is:Z

dr1dω1ρð1Þ½r1 ´ δ=δJð1Þ þ ω1 ´ δ=δJ
ωð1Þ�Mn;m ¼ 0: ð42Þ

Here the tensorial equal-time direct correlation functions are defined
as Mn;m ¼ �βδnþmPexc

t =δJð1Þ¼ δJðnÞδJωðnþ 1Þ¼ JωðnþmÞ,
where the roman numerals refer to position, orientation and time t
(no index), e.g. 1≡ r1,ω1, t. We have assumed that all functional
derivatives commute.

So far we have restricted ourselves to uniaxial particles. The
derived rotational sum rules can be analogously determined for
general anisotropic particles with an additional orientation vector
ϖ. This can be done by simply replacing ω ×∇ω→ ω ×∇ω+
ϖ ×∇ϖ, ω ´ ∂=∂Jω ! ω ´ ∂=∂Jω þ ϖ ´ ∂=∂Jϖ and ∫drdω→ ∫
drdωdϖ in (33)–(42). This replacement also affects the adiabatic
spin torque field τad and all one-body field depend additionally to
r and ω on the orientation ϖ. For anisotropic particles there exists
a more general version of (42) by exchange of Mn,m→Mn,m,l,
where l denotes the number of functional derivations with respect
to the rotational current Jϖ. The indices n and m belong to the
number of functional derivatives with respect to J and Jω as
before.

Memory invariance. In the above treatment of nonequilibrium
situations we have exploited invariance against an instantaneous
transformation applied to the system. As we have shown, the
corresponding Noether identities carry imminent physical
meaning. These sum rules hold for the nonequilibrium effects
that arise from the interparticle interaction, i.e. they constrain
superadiabatic forces and torques, as obtained from translation
and rotation, respectively. Here we exploit that the corresponding
nonequilibrium functional generator Pexc

t carries further invar-
iances, once one allows the transformation to act also on the
history of the system. As we demonstrate in the following, the
resulting identities constitute exact constraints on the memory
structure that are induced by the coupled interparticle interac-
tions. Recall that a reduced one-body description of a many-body
system is generically non-Markovian (i.e. nonlocal in time)83. The
study of memory kernels, often carried out in the framework of
generalized Langevin equations, is a topic of significant current
research activity84–91.

Our approach differs from these efforts in that no a priori
generic form of a reduced equation of motion is assumed. Rather
our considerations are formally exact and interrelate (and hence
constrain) time correlation functions, which are generated from
the central nonequilibrium object Pexc

t via functional differentia-
tion. Very little is known about the memory structure of
superadiabatic forces, with exceptions being the NOZ
framework57,58 and the demonstration of the relevance of
memory for the observed viscoelasticity of hard sphere liquids92.
Both the Ornstein–Zernike (OZ) and NOZ relations are different
from the Noether identities. The former relations are a direct
consequence of the generality of the variational principle. Per se,
neither the OZ nor the NOZ relations reflect the Noether
symmetries.

Recalling the illustrated overview of the different types of
shifting in Fig. 1, in the following we treat two further types of
invariance transformations: One is the static transformation. This
operation is formally analogous to the above equilibrium
treatment of the adiabatic state, but it is here carried out in the
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same way at all times. This static transformation contrasts (and
complements) the instantaneous transformation used above for
the time-dependent case. The corresponding changes to density
and current are graphically illustrated in Fig. 3b. The second
invariance operation is that of memory shifting, where the
transformation parameter is taken to be time-dependent, cf.
Fig. 3c for a graphical representation. For simplicity we restrict
ourselves to cases where at both ends of the considered time
interval, no shifting occurs (i.e. such that the transformation is
the identity at the limiting times).

The static spatial shift consists of ρðr; t0Þ ! ρðrþ ϵ; t0Þ and
Jðr; t0Þ ! Jðrþ ϵ; t0Þ, where the time argument t0 is arbitrary, and
ϵ= const characterizes magnitude and direction of the transla-
tion, see the illustration in Fig. 3b. Hence the time derivative
_ϵ ¼ 0 such that the current does not acquire any displacement
contribution, as also � _ϵρ ¼ 0 at all times. The spatial shift applies
to all times t0 considered, and we can restrict ourselves to
0≤ t0 ≤ t. Hence the changes in kinematic fields are to first order
given by δρðr; t0Þ ¼ ϵ � ∇ρðr; t0Þ and δJðr; t0Þ ¼ ϵ � ∇Jðr; t0Þ. As
Pexc
t originates solely from the interparticle interaction potential,

the invariance of u(rN) against the global displacement at all
times induces invariance of Pexc

t . Hence
Pexc
t ½ρ; J� ¼ Pexc

t ½ρþ δρ; Jþ δJ� ¼ Pexc
t ½ρ; J� þ δPexc

t . Here δPexc
t

indicates the change in superadiabatic free power and due to
the invariance δPexc

t ¼ 0. On the other hand we can express δPexc
t

via the functional Taylor expansion. To linear order the result
consists of two integrals. One integral comes from the time-slice
functional derivative at fixed (end) time t and is given byR
dr½ðδPexc

t =δρÞδρþ ðδPexc
t =δJÞ � δJ�. The second integral is from a

functional derivative at (variable) time t0, given byR t
0 dt

0 R dr0½ðδPexc
t =δρ0Þδρ0 þ ðδPexc

t =δJ0Þ � δJ0�, where the prime
indicates dependence on arguments r0 and t0. We then exploit
that the displacement ϵ of the static shift (which parametrizes the
changes in density and in current) is arbitrary. The result is a
global nonequilibrium Noether theorem, given byZ

dr
�δPexc

t

δρ
∇ρ� f sup � ∇JT

�
þ

Z t

0
dt0

Z
dr0

�δPexc
t

δρ0
∇0ρ0 þ δPexc

t

δJ0
� ∇0J0T

�
¼ 0;

ð43Þ

where we have used the relationship of the superadiabatic force
field to its generator, f supðr; tÞ ¼ �δPexc

t ½ρ; J�=δJðr; tÞ, the primed
symbol ∇0 indicates the derivative with respect to r0, and the
superscript T denotes the matrix transpose (in index notation the
k-component of the vector a ⋅ ∇ bT is ∑k0ak0∇kbk0 ).

Equation (43) constitutes a global identity that links
density, current, and superadiabatic force field in a nontrivial
spatial and temporal form. As the central variation principle48

allows to vary J(r, t) freely, (43) remains true upon building the
functional derivative with respect to J(r, t). The result is a local
identity

β∇f sup ¼
Z

dr0ðm2ðr; r0; tÞ∇0ρðr0; tÞ þM2ðr; r0; tÞ � ∇0JTðr0; tÞÞ

þ
Z t

0
dt0

Z
dr0ðm2ðr; t; r0; t0Þ∇0ρ0 þM2ðr; t; r0; t0Þ � ∇0J0TÞ;

ð44Þ
where two-body time direct correlation functions occur in
vectorial form: m2ðr; r0; tÞ ¼ �βδ2Pexc

t =δJðr; tÞδρðr0; tÞ,
m2ðr; t; r0; t0Þ ¼ �βδ2Pexc

t =δJðr; tÞδρðr0; t0Þ, as well as in tensorial
form: M2ðr; r0; tÞ ¼ �βδ2Pexc

t =δJðr; tÞδJðr0; tÞ, M2ðr; t; r0; t0Þ ¼
�βδ2Pexc

t =δJðr; tÞδJðr0; t0Þ. Here we have made the (common)
assumption that the second derivatives can be interchanged.

Repeated differentiation of (44) with respect to J(r, t) generates
a hierarchy,

∑
n�1

α¼1
∇αMn�1ðrn�1; tÞ ¼

Z
drnðmnðrn; tÞ∇nρðrn; tÞ þMnðrn; tÞ

� ∇nJðrn; tÞTÞ

þ
Z t

0
dt0

Z
drnðmnðrn�1; t; rn; t

0Þ∇nρðrn; t0Þ þMnðrn�1; t; rn; t
0Þ

� ∇nJðrn; t0ÞTÞ;
ð45Þ

where the n-body equal-time direct correlation functions of rank
n are Mnðrn; tÞ ¼ �βδnPexc

t =δJðr1; tÞ¼ δJðrn; tÞ and mnðrn; tÞ ¼
�βδnPexc

t =δJðr1; tÞ¼ δJðrn�1; tÞδρðrn; tÞ, where we have used the
shorthand rn= r1…rn. Furthermore at unequal times we have:
Mnðrn�1; t; rn; t

0Þ ¼ �βδnPexc
t =δJðr1; tÞ¼ δJðrn�1; tÞδJðrn; t0Þ as a

rank n tensor, and also a rank n− 1 tensor
mnðrn�1; t; rn; t

0Þ ¼ �βδnPexc
t =δJðr1; tÞ¼ δJðrn�1; tÞδρðrn; t0Þ.

In the second case, we consider a more general invariance
transformation that is obtained by letting the transformation
parameter be time-dependent. In this case of time-dependent
shifting, we prescribe a displacement vector ϵðt0Þ for times
0≤ t0 ≤ t, i.e. between the initial time, throughout the past and up
to the "current” time t. We restrict ourselves to vanishing shift at
the boundaries of the considered time interval, i.e. ϵ(0)= ϵ(t)= 0.
Due to the overdamped character of the dynamics, its
interparticle contributions are unaffected by this transformation,
and hence Pexc

t is invariant. The induced changes that the density
and the current acquire arise from shifting their position
argument, but the current also acquires an additive shifting
current contribution. The latter contribution is analogous to the
(sole) effect that is present in the instantaneous shifting, but here
applicable at all times (in the considered time interval).

Hence the time-dependent shifting, as illustrated in Fig. 3c,
induces the following changes to the density and the current:
δρðr0; t0Þ ¼ ϵðt0Þ � ∇0ρðr0; t0Þ and δJðr0; t0Þ ¼ ϵðt0Þ � ∇Jðr0; t0Þ�
_ϵðt0Þρðr0; t0Þ, where _ϵðt0Þ ¼ dϵðt0Þ=dt0. Next we can regard Pexc

t ½ρþ
δρ; Jþ δJ� as a functional of ϵðt0Þ and _ϵðt0Þ. Its invariance
amounts to stationarity, i.e. vanishing first functional derivative,
with respect to the displacement. This problem, in particular for
the present case of fixed boundary values, amounts to one of the
most basic problems in the calculus of variations. It is realized,
e.g., in the determination of catenary curves and indeed, in
Hamilton’s principle of classical mechanics. Exploiting the
corresponding Euler–Lagrange equation leads to

d
dt0

Z
dr0m0

1ρ
0 þ

Z
dr0m0

1 � ∇0J0T þ
Z

dr0m0
1∇

0ρ0 ¼ 0; ð46Þ

where the one-body time direct correlation functions are
m0

1ðr0; t0; tÞ ¼ �βδPexc
t =δJðr0; t0Þ and m0

1ðr0; t0; tÞ ¼ �βδPexc
t =

δρðr0; t0Þ. Differentiation with respect to J(r, t) yields again a local
memory identity.

Conclusions. We have demonstrated that Noether’s theorem for
exploiting symmetry in a variational context has profound
implications for Statistical Physics. Known sum rules can be
derived with ease and powerfully generalized to full infinite
hierarchies, to the rotational case, and to time-dependence in
nonequilibrium. Recall the selected applications31–41 of the
equilibrium sum rules, as we have laid out in the introduction.
For the time-dependent case, we envisage similar insights from
using the newly formulated nonequilibrium sum rules in inves-
tigations of e.g., the dynamics of freezing, of liquid crystal flow,
and of driven fluid interfaces. On the conceptual level, Noether’s
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theorem assigns a clear meaning and physical interpretation to all
resulting identities, as being generated from an invariance prop-
erty of an underlying functional generator. Although the sym-
metry operation that we considered are simplistic, and only their
lowest order in a power series expansion needs to be taken into
account, a significantly complex body of sum rules naturally
emerges. Hence the application of Noether’s theorem is sig-
nificantly deeper than mere exploiting of symmetries of argu-
ments of correlation functions, i.e. that the direct correlation
function c2ðr; r0Þ in bulk fluids depends solely on jr� r0j. Rather,
as governed by functional calculus, coupling of different levels of
correlation functions occurs.

The Noether sum rules are different from the variational
principle, as embodied in the Euler–Lagrange equation. On the
formal level, the difference is that the Euler–Lagrange equation
(both of DFT and of PFT) is a formally closed equation on the
one-body level. In contrast, the Noether rules couple n- and (n+
1)-body correlation functions, hence they are of genuine
hierarchical nature. They also describe different physics, as the
Euler–Lagrange equation expresses a chemical potential equili-
brium in DFT and the local force balance relationship in PFT. In
contrast, the Noether identities stem from the symmetry proper-
ties of the respective underlying physical system.

The standard DFT approximations, ranging from simple
local, square-gradient, and mean-field functional to more
sophisticated weighted-density-schemes including fundamental
measure theory satisfy the internal force relationships. This can
be seen straightforwardly by observing that these functionals
do satisfy global translation invariance (the value of the
free energy is independent of the choice of coordinate origin).
All higher-order Noether identities are then automatically
satisfied, as these inherit the correct symmetry properties from
the generating (excess free energy) functional. Our formalism
hence provides a concrete reason, over mere empirical experience,
why the practitioners’ choices for approximate functionals are
sound. The situation for more complex DFT schemes could
potentially be different though. As soon as, say, self-consistency
of some form is imposed, or coupling to auxiliary field comes into
play, it is easy to imagine that the Noether identities help in
restricting choices in the construction of such approximation
schemes.

The sum rules imposed by the three types of dynamical
displacements are satisfied within the velocity gradient form of
the power functional54,56. It is straightforward to see that the
functional is independent of the coordinate origin (static
shifting). For the cases of dynamical shifting, the invariance of
the functional stems from invariance of the velocity field against
shifting. For both instantaneous and memory shifting, the
velocity gradient remains invariant under the displacement.

We envisage that the higher than two-body Noether identities
can facilitate the construction of advanced liquid state/density
functional approximations. Such work should surely be highly
challenging. In the context of fundamental measure theory (see
e.g. the work by Roth20 for an enlightening review) it is worth
recalling that in Rosenfeld’s original 1989 paper93, he calculated
the three-body direct correlation function from his then newly
proposed functional. The result for the corresponding three-body
pair correlations compared favorably against simulation data.
Furthermore, the recent insights into two-body correlations in
inhomogeneous liquids94 and crystals95 demonstrates that work-
ing with higher-body correlation functions is feasible.

In future work it would be very beneficial to bring together the
Noether identities with the nonequilibrium Ornstein–Zernike
relations57,58, in order to aid construction of new dynamical
approximations. One could exploit the rotational invariance of
the superadiabatic excess power functional Pexc

t to gain deeper

insights in its memory structure and also generalize the
translational memory relations (43)–(46) to anisotropic particles.
It would be highly interesting to apply (49) to the recently
obtained direct correlation function of the hard sphere crystal.
This would allow to investigate whether Triezenberg and
Zwanzig’s concept that they originally developed for the free
gas–liquid interface applies to the also self-sustained density
inhomogeneity in a solid. Furthermore, addressing further cases
of self motility42–44, including active freezing96,97, as well as
further types of time evolution, such as molecular dynamics or
quantum mechanics should be interesting. This is feasible, as the
Noether considerations are not restricted to overdamped classical
systems, as (formal) power functional generators exist for
quantum98 and classical Hamiltonian99 many-body systems. On
the methodological side, besides power functional theory, our
framework could be complemented by e.g. mode-coupling theory
and Mori-Zwanzig techniques100, as well as approaches beyond
that101. Given that the equilibrium force sum rules are crucial in
the description of crystal33,34 and liquid crystal35 excitations, the
study of such systems under drive is a further exciting prospect.

Methods
Relationship to classical results. We give an overview of how the Noether sum
rules relate to previously known results. The famous LMBW-equation was derived
independently by Lovett et al.10 and by Wertheim11 and reads

∇ln ρðrÞ þ β∇VextðrÞ ¼
Z

dr0c2ðr; r0Þ∇0ρðr0Þ: ð47Þ

We can conclude that (47) is a combination of the local internal Noether sum rule
(7) for translational symmetry and the equilibrium Euler–Lagrange equation
c1ðrÞ ¼ ln ρðrÞ þ β∇VextðrÞ � βμ, where μ indicates the chemical potential. LMBW
also derived a lesser known external relation, which is equivalent to (47) and reads

∇ρðrÞ þ βρðrÞ∇VextðrÞ ¼
Z

dr0ðgðr; r0Þ � 1ÞρðrÞρðr0Þ∇0Vextðr0Þ: ð48Þ

We find that (48) contains the local external Noether sum rule (3) along with the
relation H2ðr; r0Þ ¼ ðgðr; r0Þ � 1ÞρðrÞρ0ðr0Þ þ ρðrÞδðr� r0Þ18.

The Triezenberg–Zwanzig equation102 holds for vanishing external potential
Vext(r)= 0 and is given by

∇ln ρðrÞ ¼
Z

dr0c2ðr; r0Þ∇0ρðr0Þ: ð49Þ

Originally (49) was derived for the free liquid–vapor interface in a parallel
geometry. We find that the relation consists of the local internal Noether sum rule
(7) and the equilibrium Euler–Lagrange equation. The LMBW equation (48)
reduces to the Triezenberg–Zwanzig equation (49) for cases of Vext(r)= 0.

Another related equation is the first member of the Yvon–Born–Green (YBG)
hierarchy103,104,

ρð∇ln ρðrÞ þ β∇VextðrÞÞ ¼ �β

Z
dr0gðr; r0ÞρðrÞρðr0Þ∇ϕðjr� r0jÞ; ð50Þ

where ϕ(r) denotes the interparticle pair potential as before. Although (50) has a
similar structure as the LMBW equation, it is not based on symmetry or Noether
arguments but arises from integration out of degrees of freedom. If one would like
to include the translational symmetry one can simply replace the left hand side of
(50) with the right hand side of the LMBW equation (47), which leads toZ

dr0c2ðr; r0Þ∇0ρðr0Þ ¼ �β

Z
dr0gðr; r0Þρðr0Þ∇ϕðjr� r0jÞ: ð51Þ

Some of the here derived sum rules are rederivations of known relations. We
reiterate the relationships. In his overview Baus13 showed that in equilibrium the
total external (2) and internal (6) force vanish and derived the corresponding local
hierarchies (3), (4) and (7), (8). Similar sum rules13 hold for the external (22) and
internal (25) total torques and their corresponding hierarchies (23), (24) and (26),
(27). Tarazona and Evans16 generalized these equations for uniaxial particles and
derived the first order of the external (34) and internal (37) hierarchies due to
rotations.

To the best of our knowledge the hierarchies of global Noether sum rules, such
as (5), (9), (28), and (29), have not been determined previously. Furthermore the
global external (33) and internal (36) Noether sum rules for uniaxial colloids and
their corresponding hierarchies (35) and (38) (with exception of the first order) are
reported here for the first time. As the considerations in the literature focused on
equilibrium, all our nonequilibrium relations, as e.g. (11)–(13) and especially the
ones including memory (43)–(46) have not been found before.
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