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Fluid of penetrable spheres: Testing the universality of the bridge functional
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Penetrable spheres have been the object of recent extensive investigations as a prototype for intermicellar
interactions in a solvent, and as representing a class of bounded potentials allowing complete interpenetrability
of the particles. Here we compare density-functional and simulation results for the pair-correlation functions in
a bulk fluid of penetrable spheres, as a stringent test for the approximation of ‘‘universality’’ of the bridge
functional. Considering either a fundamental-measure functional for penetrable spheres or a perturbative treat-
ment using a fundamental-measure hard-sphere functional, we conclude that hard-sphere-type bridge function-
als are applicable also for bounded potentials with high penetrability.

PACS number~s!: 61.20.Gy, 05.70.Ce, 82.70.Dd, 61.25.Hq
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I. INTRODUCTION

There has been continuous progress in the theory of n
uniform classical fluids in recent years, bringing new a
proximations and models within density-functional theo
@1,2#. The central quantity is the Helmholtz free-energy fun
tional, F@r(r )#, of the inhomogeneous density distributio
r(r ). The geometrical character of the hard-sphere inte
tions, which has been a major reason for their long-stand
central role in the microscopic theory of classical fluids, a
simplifies the construction of model functionals, and even
ally led to the geometrically based so-called fundamen
measure theory~FMT! @3#. Several very recent analyse
@4–6# revealed the important role played by the dimensio
crossover properties of the fundamental-measure function
and in particular their zero-dimensional~0D! limit corre-
sponding to a cavity with at most one particle. Recent stud
showed@5,6# that the correct 0D crossover can be system
cally imposed, and the exact 0D limit plays the role of
generating functional forD-dimensional hard-sphere FM
functionals. The original FMT@3# together with its exten-
sions and modifications@4–6# proved very successful for de
scribing the inhomogeneous hard-sphere fluid, and soph
cated algorithms for implementing the hard-sphere FMT
complex geometries have been developed recently@7#. FMT
has also been applied successfully to parallel hard cubes@8#,
and a possible extension of FMT to general hard con
bodies was offered@9#. Very recently, the FMT was gener
alized to penetrable spheres@10# and to soft interactions@11#,
with particular extensions to star polymer solutions@12# and
colloid-polymer mixtures@13#.

It should be noted, however, that the Ornstein-Zern
equations using the second functional derivatives~i.e., the
direct correlation functions! of the generally accurate FMT
free-energy functionals do not always yield positive defin
and physically acceptable bulk pair correlations. The Perc
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Yevick pair correlations as obtained with the FMT for ha
spheres are an exception which proves the case. The re
for such failures is that even generally accurate free-ene
functionals will develop certain errors when functionally d
ferentiated, especially to second and higher orders. Never
less, any approximate excess free-energy functional can
self-consistently corrected up to second order by employ
the corresponding bridge functional in the test-particle lim
@14–16#. Moreover, the approximation of ‘‘universality o
the bridge functional’’@14–19# enables us to use the accura
FMT hard-sphere functionals~with optimized hard-sphere
radii when applicable! in order to obtain free-energy func
tionals for arbitrary pair interactions. Of particular impo
tance is the possibility to solve accurately the inverse s
tering problem~i.e., obtain the pair potential from a know
structure factor! @17,18#. However, we should not forget th
geometrical nature of the hard-sphere interaction, wh
means that, e.g., systems with a tendency to form pairs
higher-order clusters due to their attractions or peculiar
pulsion are not expected to be well treated with the h
spheres as reference. In particular, the pairing in electrol
@22# cannot be addressed by invoking the hard-sphere br
functional. In this paper we focus attention on the system
penetrable spheres, i.e., particles that can sit on top of e
other with a finite energy cost@20#. We employ both the
hard-sphere and the penetrable-sphere FMT functional
order to obtain a stringent test of the approximation of u
versality of the bridge functional.

The system under consideration is a fluid of penetra
spheres~PS! interacting via the following pair potential:

f~r !50 if r .2R,
~1!

f~r !5e if r<2R,

and characterized by the reduced temperature,T* 5kBT/e,
and reduced density,h54prR3/3. For e5` ~i.e., for T*
50), this system corresponds to the hard spheres~HS!, and
then h is the standard hard-sphere packing fraction. T
system is of interest as a prototype for the interaction
,
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tween micelles in a solvent@23#, and was investigated re
cently by several methods@20#. It is the simplest of the clas
of bounded interactions which allow penetrability, anoth
example being the Gaussian core model@24,21# which was
recently shown to arise between the centers of star polym
if the polymeric arms are treated in the harmonic approxim
tion @25#. Although diverging at the origin, an ultrasoft pa
potential between star polymers@26# was validated by simu-
lations @27#. The glass transition for the penetrable sphe
was investigated by simulations@28#. Standard integral-
equation theories for the bulk pair structure employ closu
which are biased towards the concept of a hard core in
pair correlation, and thus are less accurate for penetr
spheres@20#. A very recent work@29# demonstrated a suc
cessful approximate closure relation for penetrable sph
which employs, however, three free parameters which
determined from thermodynamic self-consistency requ
ments, in particular the zero-separation theorem. As will
shown below, comparable accuracy can be obtained from
penetrable-sphere FMT bridge functional without any fr
parameters, or from the hard-sphere FMT functional by
timizing the effective radius.

II. FREE-ENERGY FUNCTIONALS, BRIDGE
FUNCTIONALS, AND THE TEST-PARTICLE LIMIT

The starting point for the application of the densit
functional method for both uniform and nonuniform fluids
the density-profile equation, i.e., the Euler-Lagrange eq
tion for minimizing the grand potential@1#. The equations
determining the density profiler(rW) for the fluid subject to
an external potentialu(rW) can be written in the modified
hypernetted-chain~MHNC! form @30,14–16# involving the
bridge functional, which is related to the sum of all term
beyond second order in the functional Taylor expansion
the excess free energyFex@r(rW)# around some reference de
sity. For a fluid in contact with a reservoir bulk fluid, o
average densityr0, the density profile equations can be wr
ten in the following form:

ln g~rW !52
u~rW !

kBT
2B@r0 ;r~rW !;rW#

1r0E drW8c(2,FD)~r0 ;urW2rW8u!@g~rW8!21#. ~2!

Here g(rW)5r(rW)/r0, is the bulk limit of the direct correla-
tion function given by the second functional derivati
c(2,FD)(rW1 ,rW2)52d2Fex@r(rW)#/kBTdr(rW1)dr(rW2), and the
‘‘Bridge’’ functional is given by@14–16#

B@r0 ;r~rW !;rW#5
mex@r~rW !;rW#

kBT
2

mex@r0#

kBT

1r0E drW8c(2,FD)~r0 ;urW2rW8u!@g~rW8!21#,

~3!

wheremex@r(rW);rW#52dFex@r(rW)#/dr(rW). By truncating the
expansion of the excess free energy after second order
r
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bridge functional vanishes, and the density profile equat
~2! then has the hypernetted-chain-approximation~HNC!
form.

An elementary test of the accuracy of a model free-ene
functional for a given pair potentialf(r ), and of the corre-
sponding bridge functional, is performed by considering
density profile equation for the same potential in the spe
case when the external potential is generated by atest par-
ticle at the origin of coordinates,u(rW)5f(r ). The resulting
density profiles correspond to the bulk pair-correlation fun
tions, g(r )5r(r )/r0. The test-particle limit of the density
profile equations takes the form@14–16#

g~r !5expS 2
f~r !

kBT
2b~r !

1r0E drW8c(2,FD)~r0 ;urW2rW8u!h~r 8! D , ~4!

whereh(r )5g(r )21, and the bridge function,b(r ), is de-
rived from the bridge functional B@r0 ;r(rW);rW# by using
r(rW)5r0g(r ),

b~r !5B@r0 ;r0g~r !;r #. ~5!

The exact free-energy functional must obey the ‘‘test-
particle self-consistency’’: the exact g(r ) as obtained from
the solution of the exact coupled density profile equations~4!
and ~5! is identical to that obtained from the Ornstei
Zernike relation using the direct correlation function fro
the second functional derivative of the functional

h~r !5c(2,FD)~r0 ;r !1r0E drW8c(2,FD)~r0 ;urW2rW8u!h~r 8!.

~6!

Given a model free energy based on an approximate br
functional, it can beoptimized up to second orderby impos-
ing the test-particleself-consistency~SC! @14–16# which is
achieved bycoupling the density-profile equations~4! and
~5! with the Ornstein-Zernike relation~6!. A measure of the
accuracy of an approximate excess free-energy functiona
the potentialf(r ) is given by the degree of test-particle se
consistency obtained by comparisonc(2,FD)(r0 ;r ) with the
self-consistent resultc(2,SC)(r0 ;r ).

This method can be used also for potentials for which
free-energy functional is not available. The assumption o
makes leading to the ‘‘universality’’ hypothesis is that th
bridge functional is~approximately! independent of the pre
cise form of the pair interaction, hence it is regarded as be
a universal quantity that can be obtained from any appro
ate givenreferencepotential. When the potential and th
reference potential are different, then it is possible toopti-
mize the reference-system parametersby free-energy mini-
mization that leads to an equation of the form@14–16#

E drW@g~rW !2greference~rW !#db~rW !50. ~7!

As the hard-sphere FMT is an especially successful theor
is expected that it gives a reasonable approximation for
bridge functional, and the method is, in principle, applicab
to any pair potential. The penetrable-sphere system, h
ever, is a stringent test case, as it isa priori unclear whether
the universality extends to systems without hard core. T
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hard-sphere FMT functional realizes the nonoverlap cr
rion, whereas the penetrable-sphere FMT takes into acc
the effect of potential energy of overlapping particles.

III. RESULTS AND DISCUSSION

In this paper we compare simulation results for the pa
correlation functions in the bulk fluid of penetrable spher
with the following four approximations.~i! The hypernetted-
chain approximation~obtained by ignoring the bridge func
tions altogether!, denoted HNC.~ii ! The bulk pair correla-
tions as obtained via the Ornstein-Zernike relation from
direct correlation functions as given by the second functio
derivatives of the penetrable-spheres FMT free-energy fu
tional, denoted by OZ-PS.~iii ! The bulk pair correlations a
obtained from the solution of the test-particle se
consistency equations using the penetrable-spheres
functional, denoted SC-PS. This is equivalent to using
bridge function in Eq.~4! as obtained from the penetrabl
spheres FMT bridge functional through Eq.~5!, without any
adjustment of parameters.~iv! The bulk pair correlations a
obtained from the hard-spheres FMT bridge functional, w
an optimal value for the reference hard-sphere packing f
tion, denoted SC-HS. The comparison of OZ-PS and SC
and both with the simulations reveals the accuracy of
penetrable-sphere FMT and its level of self-consistency.
comparison of SC-PS and SC-HS and both with the sim
tions enables us to test the ‘‘universality’’ hypothesis.

We compared an extensive set of Monte Carlo~MC!
simulation results with many solutions of density-profi
equations, for bulk pair correlations, of which we displ
graphically only two extreme representative cases:~a! sub-
stantial but relatively low penetrability~on average less tha
two particles with interpenetrating cores!: T* 50.2, h
50.35; and~b! high penetrability, mean field@31# cases: 4
<T* 5h<12. In the context of this paper, we must fir
consider the behavior of the HNC approximation, which
nores the bridge functions altogether. Recall that for h
spheres the HNC overestimates the first peak ofg(r ) just
outside the core. With increasing penetrability, the HNC
sults outside the core become almost indistinguishable f
the simulations. For relatively small penetrability, the ma
drawback of the HNC approximation is the substantial ov
estimation of the penetrability, namely ofg(r ) close to zero
separation@Fig. 1~a!#. With increasing penetrability, the
HNC results represent the simulations increasingly bet
both inside and outside the core. In the high penetrab
region, the simulations are reproduced very well@31# by the
mean field~mean spherical approximation, denoted MS!
for the direct correlation function, i.e.,c(r )52f(r )/kBT,
and even better results are obtained with the HNC.

For cases of type~a!, both SC-PS and SC-HS significant
improve on the HNC@Fig. 1~a!#, and the overall picture is
better seen in Fig. 1~b! for the structure factor. With respec
to SC-HS, it should be emphasized that according to
standard criterion usually applied for optimizing the refe
ence hard-sphere radius, an integral of a weighted differe
between the reference hard-sphere and the penetrable-s
pair correlations has to vanish. However, when the pene
bility is non-negligible, and the pair correlations manifes
belong to different classes, this criterion is no longer ap
-
nt
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cable. Instead, in order to see to what extent the approxi
tion of ‘‘universality’’ holds even when the hard-sphere re
erence is no longer expecteda priori to be good, we have
varied the value of the reference packing fraction in the ha
sphere bridge functional in order to see how it affects
bridge functions. The comparison with simulations sho
that the reference parameter can be chosen by imposing

FIG. 1. ~a! Pair-correlation functiong(r ) for penetrable sphere
for T* 50.2, h50.35. The lines and symbols represent the M
simulations~open circles!, HNC ~full line!, method OZ-PS~short-
dash–long-dash line!, method SC-PS~dashed line!, and method
SC-HS~dotted line!, with the value of the reference packing fra
tion h* 50.32. ~b! Structure factorsS(k) corresponding to~a!. ~c!
Bridge functions,b(r ), as calculated by the bridge functional
Penetrable-sphere functional with the HNC~long dash line!, and the
method SC-PS~short-dash–long-dash line! g(r ) results as input;
hard-sphere functional, with indicated reference packing fract
h50.32, with the HNC~full line!, and the method SC-HS~dotted
line! g(r ) results as input.
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single thermodynamic consistency criterion. Indeed, with
appropriately chosen value of the packing fraction for
reference hard-sphere system,h* , the bridge functions from
method SC-HS are comparable to those from method SC
@Fig. 1~c!#. The accuracy of OZ-PS for penetrable sphere
comparable to that of the same method, namely the Per
Yevick result, when applied via the FMT functional for th
case of hard spheres. As for hard spheres, the test-pa
limit results for the penetrable-sphere functional improve
the corresponding Ornstein-Zernike results, i.e., SC-PS
more accurate than OZ-PS. However, the difference betw
the SC-PS and OZ-PS results is relatively small, demons
ing that the new penetrable-sphere functional obeys q
well ~to about the same extent as the corresponding F
theory for hard spheres! the ‘‘test-particle self-consistency’
between the density-profile and the Ornstein-Zernike eq
tions. Thus, by comparison with the simulations, bo
density-functional treatments are quite successful. We
thermore conclude that the hard-sphere bridge functiona
applicable even for bounded potentials with substantial p
etrability.

With increasing penetrability and the increase of the
curacy of the HNC, then the method SC-HS based on
hard-sphere bridge functional with a judicious choice ofh*
will automatically work well since thermodynamic consi
tency will naturally imposeh* !1 ~i.e., the HNC!. This,
however, represents a favorable feature of the method w
automatically resorts to the HNC when the HNC becom
thermodynamically consistent@30#, but it does not mean tha
the bridge functional itself is accurate. In turn, th
penetrable-sphere bridge functional does not contain any
parameters when applied to penetrable spheres, so tha
performance in the test-particle limit checks its intrinsic a
curacy. Considering cases of type~b!, the pair-correlation
function g(r ) in the regime of high penetrability,T* 5h
54,6,8,10,12, is shown in Fig. 2. We see that OZ-PS
scribes the behavior quite well, while SC-PS essentially
incides with the HNC and the simulations.

In summary, by investigating the bulk fluid of penetrab
at
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spheres, considering either a fundamental-measure f
tional for penetrable spheres or a perturbative treatment
ing a fundamental-measure hard-sphere functional in c
parison with simulations, we conclude that hard-sphere-t
bridge functionals are applicable also for bounded potent
with high penetrability. In particular, the penetrable-sphe
bridge functional, as a generalization of the hard-sph
FMT functional, is applicable without any adjustable para
eters for arbitrary penetrability including the special case
hard spheres. Moreover, the PS bridge functional can be
ployed for the treatment of bounded potentials other than
themselves. Then the penetrable spheres act as a refe
system with adjustable parameterse and R, and the same
theoretical framework can be used as in the case of diverg
interactions and the hard-sphere bridge functional with
justableR.
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FIG. 2. Pair-correlation functiong(r ) for penetrable spheres fo
T* 5h54,6,8,10,12. Method OZ-PS~dashed line! compared with
the MC simulation results~thin line!. On the scale of the figure, th
HNC and MSA results are almost indistinguishable from the sim
lations, and therefore are not shown.
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